GENERALIZED GAMMA FAMILY REGRESSION MODELS
FOR
LONG-DISTANCE TELEPHOHE CALL DURATIONS

by

"T. A. Cameron
University of California, Los Angeles

and

K. J. White
University of British Co]unb1a

Discussion Paper #363
January 1985

The authors wish to thank D. Gorham, S. Haun, D. Smeaton, and T Wales
for helpful discussions and assistance.



ABSTRACT

In regression applications where the dependent variable cannot logically
take on negative wvalues, the usual normal conditional probability density
function is often inappropriate. In these circumstances, the Generalized Gamma
(GG) distribution can be adopted as a flexible distribution for regression error
terms. This distribution contains the simple Gamma (G), Weibull (W), Exponential
(E), Lognormal (LN), and other distributions as special cases. These models can
be specified as linear or log-linear. Discrimination among the special cases is
achieved by examination of the appropriate Wald, Lagrange Multiplier, or
Likelihood Ratio test statistics. We show how the GG family can be used in
linear and log-linear regression to model the duration of 1long distance
telephone calls. Previous regression models of call duration have assumed normal
errors (usually on aggregated data); Weibull and Gamma distributions have been
used only in a non-regression context. OQur results imply that experimentation
with this model may be indicated for other economic analyses of duration.



1. Introduction

In regression applications where the dependent variable cannot logically
take on negative values, the usual normal conditional probability density
function is often inappropriate. In these circumstances, the Generalized Gamma
(GG) distribution can be adopted as a flexible distribution for regression error
terms. This distribution contains the simple Gamma (G), Weibull (W), Exponential
(E), Lognormal (LN), and other distributions as special cases. Discrimination
among these special cases is achieved by examination of the appropriate Wald,
Lagrange Multiplier, or Likelihood Ratio test statistics. McDonald [1984] has
used the simple GG distribution to estimate the parameters of an income
dis;ribution. In this paper, we show how the GG family can be extended to
regression models of the duration of long distance telephone calls. The existing
literature observes that call durations vary with a number of characteristics of
the call, such as marginal price per minute, distance, time-of-day, type of call
and origin of call. Previous regression models of call duration have assumed
normal errors (usually on aggregated data); Weibull and Gamma distributions have
been used only in a'non-regressioﬁ context. |

In section 2, avbrief descriptibn of feléged fesearch oh the demand for
telephone sérvices is provided. Section 3 focusses on call duration as an
important aspect of telephone demand and develops a regression model with
generalized gamma errors for analyzing the determinants of call duration. The
theoretical regreséion models described in section 3 are rendered operational in
section 4 with the selection of specific explanatory variables. The estimation
results are discussed and compared to the findings of previous analyses. The
important methodological iésue of discrimination among wvarious models in the
generalized gamma family is addressed in section 5. Finally, section 6 describes

a policy experiment using the estimated equations.



2. Related Research on Telephone Demand

In the United States, the recent AT&T divestiture decision has aroused
considerable interest in the determinants of demand for a variety of telephone
services. Park, Wetzel and Mitchell [1983] use aggregated data on local
telephone calls from the General Telephone and Electronics (GTE) pricing
experiment in central Illinois. Their objective is the measurement of price
elasticities both for the total number of calls and total minutes of
conversation. Pacey [1983] concentrates specifically on the estimation of
"point-to-point” price elasticities for intercity long distance service. One
conclusioﬁ was that "more disaggregated data needs to be made available in order
to estimate the mean duration of a call”. The present study responds to this
point, but carries the analysis even further by allowing mean duration in the
disaggregated model to be a function of a whole range of explanatory variables,
while still constraining.the distribution of durations to be strictly non-
negative. Rea and Lage [1978] utilize time-series/cross-sectional data on
communications originating in the United States and directed to 37 foreign
countries. Regarding the pitfalls of aggregation, the authors state that
"...since demand for telegraph and telephone services arises from both household
and business sectors, it‘would be desirable to estimate disaggregated functions.
However, the data are not available, and the assumption must be made in
estimating the demand equations that meaningful aggregate relationships exist".

Gale [1971,1974] made several studies of call duration and reported a
number of basic results. Amon§ these were that (1) the mean duration of a toll
call is 1longer, the more distant the call. (2) Evening calls are longer than
daytime'calls. However, since night rates are lower than daytime rates, the
difference incorporates an unknown price effect. (3) Pergon—to-person calls are
longer than station-to-station calls, and (4) collect calls and calls billed to

third parties are longer than "paid" calls. Finally, (5) day-of-week makes a



large difference in the distribution of calls by time—of-day for business
traffic, but makes only a moderate difference for residence traffic.

The simple, unconditional distribution of telephone call durations has been
explored by Wong [1981] using the Weibull distribution, by Pavarini [1979] using
the Powernormal distribution, and by Curien [1981] using the exponential and
Erlang distributions. De Fontenay, Gorham, Manning and Lee [1983] estimate
separate Weibull distributions for the average 1lengths of calls with
destinations in each of seven mileage bands to obtain mean duration values used
in a subsequent ordinary least squares regression to derive price and income
elasticities of demand. .

In this study, we attempt to consolidate the methodology used in the
previous studies to show how the determinants of duration can be explored using
maximum likelihood estimation of a regression model with non-normal errors. We
examine a sample of disaggregated data for long-distance phone calls over a
twenty-four hour period for the Canadian province of British Columbia. As de-
regulation of long-distance telephone markets progresses, further work on the
demand for such services is warranted. Our data permits separate analyses of
particular types of calls. For example, we have chosen (a) residential calls tg
Canada and United States destinations and (b) both business and residential

calls to overseas destinations.

3. Distributiénal Assumptions for Call Duration
In the linear regression model with normal errors, a non-zero probability
is associated with négative values of the dependent variable, even though the
regression line might be strictly positive, thus permitting prediction intervals

to include values which may be theoretically (and empirically) impossible in

some contexts. Lawless [1982] provides a comprehensive analysis of “"Lifetime"



models for product testing (often called "accelerated failure time" (AFT)
models) which fall into this category. More recently, Heckman and Singer [1984]
have explored the estimation of these models in studies of unemployment
durations where the data are censored. They found that estimation becomes
complicated when typical durations are long, (both relative to the sample period
and in real time), and the sample will often contain a substantial proportion of
incomplete spells. Further complexity is introduced when durations span an
interval which must be acknowledged as "time inhomogeneous"”, and when the
distribution exhibits "duration dependence”.! In these contexts, the presence of
left- or right-censoring due to a relatively narrow sampling window means that
the hazard function, rather than the probability density function, is a more
useful statistical concept upon which to base an econometric analysis.

In contrast to unemployment duration data, the telephone call durations
modelled here are very short relative to the sample period. Since the data
consist of all calls initiated during a twenty-four hour sample period, and
complete durations are recorded, censoring is not a problem. Furthermore, since

individual call durations are so very short, ceteris paribus may more readily be

assumed to hold during each call. Most importantly, the rates applicable to each

call are usually determined sdiely by the time of initiation of the call, even

if the call itself spans two rate periods.

A. "Linear" Models
We focus first on the.class of "linear" regression models where duration
(t) for a particular call is assumed to be a linear function of a set of

exogenous variables (x) so that E(tlx)=x'ﬁ. While this allows the possibility of

! For example, in job search models of unemployment, the existence of a
"declining reservation wage" can result in positive duration dependence.



negative fitted values for the dependent variable, it does permit a simple
interpretation of the coefficients, which are analogous to those in linear OLS

regressions.
The simple GG probability density function (see Johnson and Kotz

[1970,p.197] for a single observation (t) on the random variable T is given by:

(1)  £(t) = ¢ £557° 1 exp{%(g)f} , €20

bck T'(k)

where b 1is a "scale" parameter and c and k are "shape" parameters and T is
the mathematical Gamma function. The simple-Gamma (G) distribution 1is obtained

when ¢ = 1, while the Weibull (W) imposes k =1. For the Exponential (E) model,
¢ =k =1, while as k + « the lognormal (LN) distribution results.

The mean of the GG distribution is:

(2) E{t) = br(k+£)/r(k)

If we wish to make this density conditional upon a (p x 1) vector of explanatory
variables, x, we can.adopt the usual assumption that the scale parameter varies
with x while the shape parameters are constant.? Thus for a "linear" regression

model, t = x'f + ¢, with GG errors:

(3)  E(t]x) = b (ke2)/T(k) = x'B

2 To be comparable with ordinary normal regression models, the mean of the
conditional distribution should be x'f§. However, the mean of the G distribution,
as a simple example, is the product: bc. The least restrictive assumption would
allow both b=b(x)= and c=c(x). However, the fitted "regression line" would then
be given by the quadratic function b(x)c(x). Holding the shape parameters
constant is an assumption no stricter than that of homoscedasticity in the
normal regression model.



This means that we must Substitute b(x) for b wherever the latter appears in

the density function (1).? We find that:

€Y b(x) = x'8 I(k) = x'B
1 G

F(x+=)

[o]

T (k+ l)
_——c
I'(k)

where G =

The conditional density function for t is now:

AR T Sty E20

£(t]x) = ¢ .
k  T(k) x'8/G

() (x'8/6)°
The joint density of n independent observations on the variable T = (t,,t;...)
yields a log-likelihood function to be maximized by an appropriate choice of the
parameters (f8,k,c).

In order to simplify the exposition, we define the funct{on as the
derivative . of log(l'). First and second derivatives of the I' and ¢ functions are
denoted as I'', I''', ¢', ¢¥''. In addition, the following abbreviations will be

adopted:

(6) P = Yy(k)

~D

- ) 1 : = ] 1 D = ——--k
D wn«;) Dk L4 (k+—c-) o 2

3 Straightforward substitution of x'f for b(x) would mean that the fitted value
of t would be a non-linear function of the estimated parameters. This
complicates the process of inference. It is desirable to preserve the fitted
value of t as a linear function of the estimated parameters.
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The GG log-likelihood function can then be expressed as:

n n n
(7) 4% =n log ¢ - n log I'(k) + nck log G + ck X log t* = X log t, - 2 (t*G) €
i=1 R T Loy

The first derivatives, £(1), of this log-likelihood with respect to the unknown

parameters are:

n n
. e . .
(8) L = - ck ) Xt _ + cG L t*Cxe r=1,¢0.,p
B/, =1 ir g=1 ¥

n n
3% = -n(P+ckGH) + c ) log(tie) - c6,6°' ) 1€ &

9k i=1 i=1

n n n
3% = n(1-kD) + k ) log(tyG) - ) (t3G)°log ¥ + (D - log G) } (t36)°
9c¢ ¢ A i=1 i=1 c i=1

The second derivatives, £(2), are:

n n
2 : c c
"L = ck ) x* x* = c(1+c)G l t* x* x* r,8=1,¢¢4,p
(9) I joq i is jmq 1 Tiris
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Given the maximum 1likelihood estimates of the parameters (§,k,c) the
negative of the inverse of the matrix of second derivatives can be used to
estimate the asymptotic covariance matrix of parameter estimates. These
estimates can be used for Wald tests involving hypotheses about the

coefficients. In particular, specific tests concerning the values of the shape



parameters can be used to aid in model selection.

Table I details the analogous formulas used to generate each of the special
cases of the linear GG model: the E, G, W, and LN models. Derivation of these
formulas is quite tedious and since most have not been previously published it

is important to display them here.

B. "Log-linear" Models

Accelerated failure time models such as those discussed in Lawless [1982],
generally assume that E(t]x)=exp(x'ﬁ). The error term then enters additively
into the exponent. These models have the advantage of fércing E(t|x)>0,
regardless of the sign of the inner product, x'g. For these models, the
transformation y=log(t) renders the right-hand side linear-in-parameters, and it
is clear how to derive the corresponding density functions for the transformed
variable. However, this procedure makes the model "log-linear” rather than
"linear”. Table 1Ila provides a summary of the likelihood function calculations
for "log-linear" versions of the E, G, and W moaels. The GG model appears in
Table IIb. (Of course, the "log-linear" LN model is simply ordinary least

squares (OLS) with y=log(t) as the dependent wvariable.)

4. Estimation and Results
‘Data were obtained on a stratified sample of approximately 65,000 1long
distance telephone calls originating in the Canadian province’ of British
Columbia on July 13, 1983. Frbm this sample, a subsample of 21,738 residential
calls to Canada and the U.S. (excluding Alaska) were found. A second subsample
consists of both business and residential calls to all overseas destinations,
yiélding a total of 4934 calls. Table III provides variable names, definitionms,

sample means, and standard deviations for the variables: in the sample. The

Appendix provides a more complete description of the data.
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Variable

DUR

LOG(DUR)

LOG(DIST)

EVENING
NIGHT
BUSINESS
COLLECT
CARD
PERSON

NORTHEAST

MEANS (STANDARD DEVIATIONS) OF DATA:

TABLE III

Description
(Dichotomous variables

= (0 otherwise)

duration in minutes

log of duration
marginal rate in dollars
log §f distance in miles

= 1 if evening rate period
= 1 if n;ght rate period

= 1 if business service

= 1 if call collect

= 1 if credit or third-party
= 1 if person-to-person

= 1 if.originating in Northeast

13

LONG DISTANCE TELEPHONE CALLS

Canada and U.S. Overseas

Destinations Destinations

(weighted)

{n = 21738) {n = 4934)
6.5655 7.7383
(7.9394) (7.5121)
1.3682 1.6349
(1.0065) (0.9484)
0.3738 2.1105
(0.1879) (0.4675)
4.5151 B8.5669
(1.4242) (0.1931)
0.4617 -
0.0834 0.2475

- 0.3032
0.0645 -
0.0555 0.0359
0.0082 0.0387
0.3788 '0.1092
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A. Canada and United States Destinations

1. "Linear" Models

The dependent variable in all cases is the duration of each long distance
telephone call (in minutes). For each alternative model, the estimated
coefficients, shape parameters, and regression statistics for this sample appear
in Table IV.A.* Among the linear specifications, the LN model achieved the
highest wvalue of the log-likelihood function. The GG model should have had a
higher log-likelihood function than the LN, but final convergence was not
possible due to a very flat likelihood surface at large values of k and small
values of c. This is not too surprising given the multiplicative term involving
these two parameters which appears twice in the likelihood function making
estimation somewhat difficult. However, it seems that the f-vector for the GG
would have been very close to the LN estimates. Since the GG model becomes LN as
k -+ e, an intermediate k value for this model of 697.0 suggests that the
algorithm is moving the model in the direction of the LN parameters.

The fip@eg coefficients of the "linear” model suggest that a ten cent
incre;se in m;rginal rates should‘decrease call duration by .34 minutes or about
20 seconds. A one pércent increase in the distance between call origin and‘call
destination is found to increase expected duration by 1.3 minutes. This supports
preéious findings summariz;d by the phrase "the longer the haul, the longer the
call" (see Taylor [1980]). Duration is usually expected to increase with

distance because the frequency of calls declines.

The dhmmy variables for the time-of-day rate periods indicate that evening

¢+ The first and second derivatives derived in Section 3 have been incorporated
in the Quasi-Newton algorithms utilized by the MLE command in Version 5 of
White's [1978] SHAZAM Econometrics Computer Program. All analytical derivative
formulas were verified by numerical differencing of the log-likelihood function.
Convergence was generally attained rapidly except in the GG case.



TABLE IV.A
MAXIMUM LIKELIHOOD ESTIMATES, CANADA AND U.S. DESTINATIONS

{LINEAR REGRESSION)

b
Dep. Var. = DUR N E G W GG LN

RATE -1.626 -3.770 -3.770 -3.677 -3.5066 ~3.422
(.7135) (.7581) (.6774) (.7117) (.7129) (.7122)

LOG(DIST) 1.238 1.428 1.428 1.418 1.3431 1.330
(.0885) (.1001) (.0894) (.0939) (.0938) (.0936)

EVENING 2.716 2.057 2.057 2.089 1.8116 1.815
{.1578) (.1459) (.1304) (.1372) (.1345) (.1347)

NIGHT 2.867 1.947 1.947 2.021 1.3664 1.370
(.3043) (.3211) (.2869) (.3026) (.2852) (.2851)

COLLECT +4210 .4956 .4956 .4725 1.0027 1.031
(.2120) (.1832) (.1637) (.1715) (.1891) (.1899)

CARD -.9992 -.6006 -.6006 -.6274 -.3084 -.3007
(.2267) {(.1351) (.1207) (.1261) (.1421) (.1432)

PERSON -.4133 -.1044 -.1045 ~. 1547 .4614 .4783
(.5792) (.4668) (.4171) (.4337) (.5048) (.5087)

NORTHEAST -.3780 -.4520 -.4520 -.4496 -.4449 -.4445
(.1064) (.0737) (.6586) (.0692) (.0724) (.0728)
intercept .2644 .5508 .5508  +5694 .8769 9237
(.1821) (.1396) (.1247) (.1311) (.1377) (.1362)
Gamma Shape, k .- o1 1.252 1 696.42 -
: (.0108) - (755.60)
Weibull Shape, ¢ - 1 1 1.068 .0398 -
‘ (.0052) (.0216)
Lognormal Shape, © - - - - - .9524
. (.0046)
Log L -80661.4 -61253.28 -60931.76 -61166.5 -59542.34 ~59525.91

a » ,
asymptotic standard error estimates in parentheses
b .

convergence not achieved
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calls are about 1.8 minutes longer, and night calls are about 1.4 minutes
longer, on the average, than day calls. This time-of-day effect is distinct from
the influence of the lower marginal rates charged during these off-peak periods.
Person-to-person calls are a half a minute longer than station calls but the
difference is not statistically significant. Collect calls are longer than paid
calls by about one minute and statistically significant. This may be explained
by the fact that the initiator of the call might not be paying for the call.
Credit card calls, on the other hand, are about 20 seconds shortef, on average.
This probably reflects the fact that the caller is often using someone else's
residence telephone. Courtesy may require that such calls be kept "short".

The coefficient on the NORTHEAST dummy variable indicates that calls
originating in this generally less-populated area of B.C. tend to be about a
half-minute shorter than those in other regions. The greater geographical
dispersion of the popdlation in this region may mean that a greater proportion
of calls made by these subscribers must be long distance calls. Hence we may be
observing a substitution effect between frequency of calls (or number of
different destinations called) and duration of each individual call, subject to
the subscriber's overall bﬁdget constraint.

It is importanﬁ to note that the estimated coefficients of the GG and LN
models are similar to each other, and noticabiy different from those of the E,
G, énd W models. The simple OLS coefficients are markedly different from any of
the other models and the calculated OLS 1log likelihood 'function is roughly

20,000 lower than the other models.

2. "Log?linear" Models
Table IV.B gives the results for the Canada/U.S. sample when the same
family of conditional distributions is assumed for duration itself, but it is

assumed that the log of duration is linearly related to the explanatory



TABLE IV.B

MAXIMUM LIKELIHOOD ESTIMATES, CANADA AND U.S. DESTINATIONS

(LOG~LINEAR REGRESSION)

Dep.Var=LOG (DUR) E G w GG LN
RATE -.0010 -.0010 .0046 .0274 .0280
(.1051) {.0939) (.0988) (.0898) (0.894)
LOG (DIST) . 1645 .1645 .1633 .1485 .1482
(.0132) (.0118) (.0124) (.0111) (.0111)
EVENING .4773 .4773 .4787 .4326 .4318
(.0223) (.0199) (.0209) (.0198) (.0198)
NIGHT .5026 .5026 .5082 .4181 4171
{(.0432) (.0385) {.0405 (.0383) (.0381)
COLLECT .0955 .0955 .0914 «1733 .1740
(.0279) (.0249) (.0261) {.0266) (.0266)
CARD -,1399 -.1398 -.1452 -.0714 -,0709
(.0298) (.0266) (.0279) (.0285) (.0284)
PERSON -.0600 -,0600 -.0674 .0276 .0284
(.0765) (.0683) (.0716) (.0728) (.0726)
NORTHEAST -.0789 -.0789 -.0780 -.0733 -.0731
(.0140) (.0125) (.0131) (.0134) (.0133)
intercept .8443 .6172 .8760 -1063.7 4747
(.0247) (.0237) (.0233) (123.13) (.0228)
Gamma Parameter, k 1 1.2549 1 11.7M -
(.0108) -{(10.730)
Weibull Parameter, 1 1 - .9359 13713. -
o=1/c (.0046) (2570.6)
Lognormal - - - - .9511
Parameter, ©
Log L -61232.01 -60905.09 -61144.33 -59495.48 -59492.0




variables. Optimization proceeds using the associated conditional distributions
for the logarithmically transformed variable. Point estimates of the slope
parameters thus represent the expected percentage change in duration as a result
of a one unit change in each explanatory variable.

Again, the E,G, and W models yield very similar parameter estimates, but
the LN and GG specifications result in a considerably higher maximized value of
the likelihood function and (for some variables) different parameter estimates.
All computed log-likelihood functions in the log-linear models were transformed
to be made comparable to those in linear models by using the appropriate

Jacobian transformation as discussed in Box and Cox [1964].
B. Overseas Destinations

1. "Linear" Models

Table V.A exhibits the estimated results for the subsample of overseas
calls. The linear GG regression model achieved a substantially higher value for
the 1log-likelihood function than all the other linear models. In addition, the
linear models proved to be marginally better than the 1log-linear models,  in
contrast to our results for the Canada/U.S. sample. The estimated coefficients
;mply that a ten cent increase in the marginal rate would be expected to
decrease average duration by only .08 minutes, in contrast to the .34 minutes
observed for the Canada/U.S. sample. Distance, however, has no significant
impact wupon call duration,‘ in sharp contrast to our results for the previous
sample. The coefficients on the dummy variable for the off-peak nighttime period
suggests that such calls are marginally longer by .73 minutes, an amount which
is statistically significantly different from zero. Business ca%ls are shorter
by about a half a minute and also statistically significant. Credit card calls

and calls billed to a third number are longer by about 1.4 minutes, also a



TABLE V.A
MAXIMUM LIKELIHOOD ESTIMATES, OVERSEAS DESTINATIONS

(LINEAR REGRESSION)

Dep. Var. = DUR N E ' G W GG LN
(.4431) (.4680) (.3998) (.4149) (.4097) (.4162)
LOG(DIST) -.7857 -.6523 -.6508 -.7841 -.1674 -.1368
(.7591) (.7742) (.6614) (.6829) (.6888) (.7036)
NIGHT 1.012 +9656 «9651 1.009 7343 .6730
(.3896) (-4197) (.3586) (.3681) (.3869) (.3998)
BUSINESS -.1490 -.1925 -.1929 -.1045 -.5642 -.6425
(.2396) {.2429) (.2075) (.2141) (.2206) (.2267)
CARD 1.315 1.445 1.445 1.440 1.424 1.419
(.5816) (.6997) (.5978) {(.6123) (.6490) (.6709)
PERSON 1.890 2.017 2.017 1.850 3.394 4.048
(.5621) (.7007) (.5987) (.6032) (.7437) (.7966)
(.3447) {.3569) (.3049) (.3104) (.3435) (.3589)
intercept 14.36 13. 41 13.40 14.30 10.79 11.14
(5.934) (5.982) {5.111) (5.269) (5.365) (5.492)

Gamma Shape, k - 1 1.370 1 21.66 -

{.0249) (8.338)
Weibull Shape, ¢ - 1 1 ©1.150 .2311 -
(.0121) (.0451)

Lognbrmal Shape, O - - - - - 9394
(.0095)
Log L -16929.4 =-15011.0 =14873.6 =-14930.1 -14746.4 =-14759.4

a v
asymptotic standard error estimates in parentheses



significant difference. The largest increase in duration is observed for person-
to-person calls, which are longer by almost three and a half minutes and
statistically significant. Finally, in contrast to the results for the
Canada/U.S. sample, we find that for the overseas calls the region of origin

{NORTHEAST) has no significant influence on call duration.

2. "Log-linear" Models

In Table V.B the estimated parameters are dispiayed for the log-linear
model using the overseas data. Once again, the estimated parameters for the GG
and LN models are more similar to each other than they are to the estimates for
the other special cases of the the GG model. None of the estimated slope
parémeters are more than just marginally significantly different from zero. It
seems that the explanatory variables available on billing records are not
particularly reliable predictors of the expected duration of an overseas call.

It is important to draw attention to the possible consequences of using
parameter estimates from a regression model with misspecified errors. Tables IV
and V show that, relative to the GG estimates, the implied influence of marginal
rates 1is sometimes substantially distorte& by the E, G, or W shape parameter
restrictions (and espeéially by the Normal assumption in the linear model). 1In
the 1log-linear models, the effect of rate becomes insignificant. Thus, not only
an iﬁappropriate functional form, but also the choice of an inappropriate error
distribution could have significant implications for rate policy decisions. Bear
in mind that previous studies.of duration have been inclined to use the W or the
E distribution. For the overseas sample, both the linear and the log-linear E,
G, and W models imply that business calls are not significantly shorter. The GG
and LN specifications suggest that they are.

Section 2 described a number of results from previous studies. The positive

effect of distance on duration is strongly supported by our models for



TABLE V.B

MAXIMUM LIKELIHOOD ESTIMATES, OVERSEAS DESTINATIONS

(LOG~LINEAR REGRESSION)

Dep.Var=LOG (DUR) E G W GG LN
RATE -.0190 -.0189 -.0054 -.0973 -.1184
{.0611) (.0522) (.0534) (.0556) (.0557)
LOG (DIST) -.0973 -.0974 -.1116 -.0466 -.0453
(.1034) (.0883) (.0902) (.0948) (.0954)
NIGHT .1225 .1226 .1272 .0907 0794
(.0529) (.0452) {.0461) (.0486) (.0489)
BUSINESS -.0225 -.0225 -.0110 -.0699 -.0780
(.0321) (.0275) (.0280 (.0298) (.0301)
CARD .1655 .1655 .1649 .1609 .1572
(.0778) (.0665) (.0677) (.0722) (.0731)
PERSON .2334 .2335 2140 .3726 <4245
(.0752) (.0642) (.0654) (.0705) (.0706)
NORTHEAST ~.0040 -.0040 -.0090 -.0245 -,.0344
(.0461) (.0394) (.0401) (.0429) (.0433)
intercept 2.878 2.564 3.022 -10.80 2.251
{.8040) (.6872) {.7011) (4.234) (.7454)
Gamma Parameter, k 1 .1.3697 1 21.27 -
(.0249) (8.074)
Weibull Parameter, 1 1 .8696 4.289 -
o=1/c (.0092) (.8257)
Lognormal - - - - .9404
Parameter, ¢
Log L -15011.32 -14874.05 =-14930.43 -14747.48 -14760.7
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Canada/U.S. data, but we do not find the same result for the overseas calls.
Perhaps the incremental effect of distance diminishes with distance, and the
overseas calls are at distances beyond where this effect vanishes. For previous
studies, the result that night calls are longer than day calls was derived
without controlling for differing marginal rates. With regression, we have been
able to isolate the separate effect of time-of-day on duration. We find little
support in the Canada/U.S. sample for the result that person-to-person calls are
longer than station-to-station calls, but this is strongly corroborated by the
overseas destination sample. Collect calls and calls billed to third parties
have previously been found to be longer than‘sent-paid calls. We f£find in the
Canada/VU.S. sampie that collect calls are longer, but third party (credit card)
calls are shorter. There were no collect calls in the overseas sample, but
third-party calls are, somewhat surprising}y, significantly longer by more than

a minute.

5. Model Discrimination

In Figures 1 and 2 we present some diagrams to illustrate the differences
in the fitted models. .Since the shape of the conditional distribution for t
depends upon the x vecior, Figure 1 depicts the fitted conditional distributions
for t, in the linear models, for a "représentative" telephone call from
Vancouver, British Columbia, to Toronto, Ontario (RATE=1.05, DIST=2098, all
dummy variables=0). The domain of the conditional'density functions for the log-
linear models is y=log t. Figﬁre 2 compares the transformed densities for the GG
model with those for each of its special cases, along with the symmetric normal
density éppropriate to the.log-linear normal model. It is interesting to observe
that the transformed densities in the log-linear models appear much more alike
than the densities of the linear model.

While the fitted densities appear to differ considerably across models, it
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is important to assess whether the alternative formulations yield results which
are statistically significantly different. We must appeal to the asymptotic
distributions of the appropriate test statistics to evaluate the null hypotheses
of model equivalence. Lee [1984] proposes Lagrange Multiplier (LM) tests for
specific accelerated failure time models. This procedure can be used here to
test estimates of a restricted model (for example: linear E) against a more
general model (for example: linear W). Alternative tests are the Wald and the
Likelihood Ratio (LR) tests. It is computationally convenient to employ the
Hessian formulas from Section 3 in computing the Wald and LM tests. Following

Amemiya [1983,p.350] the appropriate test statistics are:
(10) LR = 2 [4()-4(N]

(11) Wald = (5-7)'[V(})]-1(3-7)

(12) M = [2 @] {ee (PHI-2 e (]

where 7 is the vector of unrestricted estimated parameters and Y is the vector
of parameters subject to a set of distribution restrictions. In our case 7
includes the parameters (8,k,c) and V(7) is the estimated covariance matrix of

parameters.

Comparison of the maximized value of the log-likelihood function under
alternative distribﬁtional assumptions is a simple method for choosing among the
GG, G, W, LN, and E models. Hypotheses concerning thé adequacf‘of spgcial cases
such as the G,.W, or LN mbdels can be formally tested using the approbriate LR,
LM, or Wald tests against the more-general GG distribution. Similarly, these
formal tests can be used to compare the E model against either the G or W

models. Tables VI and VII give the values of the test statistics for each



TABLE VI

SPECIFICATION TEST STATISTICS: CANADA AND U.S. DESTINATIONS
LINEAR REGRESSION
Comparison LR IM Wald
E:G 643.04 548.53 547.95
E:W 173.58 169.05 169.18
G:GG 2778 .84+ 4581.80 -
W:GG 3248.30+ 771.29 -

+using highest value of likelihood achieved for GG

LOG-LINEAR REGRESSION

Comparison LR M Wald
E:G 653.84 926.19 556.38
E:W 175.36 197.0 195.47
G:GG 2819.22 1 7820.5 -
W:GG 3297.70 778.87 =

*5% critical value for xz(l) = 3,84



TABLE VII

SPECIFICATION TEST STATISTICS:

OVERSEAS DESTINATIONS

LINEAR REGRESSION

Comparison LR M Wald
E:G 274.8 220.54 220.15
E:W 161.8 152.07 152.56
G:GG 254.4 349.34 290.50
W:GG 367.4 112.26 6.1381
LN:GG 26.0 - -
LOG-LINEAR REGRESSION

Comparison LR M Wald
E:G 274.54 465.16 219.94
E:W 161.78 209.16 201.66
GGG 253.14 104.66 15.865
W:GG 365.90 112.04 ' 6.304
LN:GG 26.44 - -

5% critical value for x2(1) = 3,84



pairwise comparison between nested models (within the linear and log-linear
families), for the Canada/U.S. and overseas samplas respectively. As we might
expect in very large samples the null hypotheses of model equivalence are
soundly rejected in all cases. Although the computed x? statistics for the three
tests are often quite different numerically, there is apparently no conflict in
the test results. In all cases the tail probability values associated with the
observed values of the test statistics are extremely small. Nevertheless, it is
interesting to note the relative magnitudes of the statistics. The Berndt-Savin
A [1977] inequality (Wald 2 LR 2 LM) for linear normal models is not expected to
hold here and it does not. We find the LM and Wald statistics to be quite close
in comparing E to either G or W models, while the corresponding LR statistic is
higher. Tests against the GG model show much less agreement. In this case the LR
or LM statistic is always the largest. Magee [1984] has shown that conflict
among the test statistics can often be explained by examination of the third and
fourth derivatives of the 1log-likelihood function. His results indicate that
when the third and fourth derivatives are negative, the LR statistic will be the
smallest. In cases where the third derivative is not negative the LR statistic
will be the largest. As an illustration of Magee's result in the pre;ent case we
can easily compute the third and fourth derivatives of the likelihood function
for the G distribution and examine the ranking of the test statistics of the E
distribution against the G distribution in the linear model. The third and
fourth derivatives of the linear G log-likelihood function with respect to shape

parameter k are:

(13) 2£¢3) (k)

n [-k-* - y22(k)]

(14) £t (k) = n [2k-2 = y3)(k)],



Tables VI and VII show that the LR statistics in this test always exceed the
corresponding LM and Wald statistics. For the linear G model, evaluation of the
third and fourth derivatives at the maximum likelhood estimates of k resulted in
£(27=14874 and «£(*)=-37962 for the Canada-U.S. sample and £(3)=2532.1 and £(4)=-
5898.7 for the Overseas sample. Under these circumstances Magee reports that we
should obtain LR 2 max(W,LM) which is exactly what happened. While computation
of the third and fourth derivatives is often quite difficult we have shown that
in a few cases it is relatively simple and can be used to explain conflicts
among the test statistics. Examination of Tables VI and VII shows that the LR,
statistic was the largest in all tests except G versus GG, in which case it Qasv
the smallest.

Model discrimination among the G, W, and LN models is more difficult since
these are non-nested. However, the distribution of the likelihood ratioc test
statistics for some non-nested tests have been tabulated. For example,
Dumonceaux and Antle [1973] provide small sample tables (derived by Monte Carlo
methods) for the log-linear W and LN models. Unfortunately these tables are not
sufficiently detailed for use here.

Note that it 1is not possible to compare the linear and the log-linear
families of models using the techniques appropriate for nested models. While the
faﬁiliar Box-Cox transformation is often invoked to COmpare linear and "log-
linear models, it is not appropriate here. The density function, in this case,
is modified to accommodate the log transformation of the dependent variable. The
Box~-Cox approach assumes the Same error distribution for both the 1linear and

log-linear specifications.
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6. Policy Implications .

One outcome of deregulation in long-distance markets has been decreases in
marginal rates. This is likely to increase both the number of calls and the mean
duration of calls. The fitted models obtained above can be employed to shed some
light on current rate-setting issues facing telephone utilities. Although the
model is not designed to predict the number of new calls induced by a change in
rates, one can predict the influence of hypothetical 1long-distance rate
reductions upon the durations of existing calls.

The estimated coefficients reported in Tables IV and V can be used with the
summary statistics reported in Table iII_to generate estimates of the "rate
elasticity of duration" at the mean values of the observed data. In the Canada -
U.S. sample these estimated rate elasticities are nearly zero for the log-linear
regressions. While the rate elasticity for the Normal Linear model was also
small (-.0925), the non-normal linear model rate elasticities were over twice as
large, ranging from -.1948 to -.2146. This indicates that substantial losses in
revenue on existing calls are to be expected as a result of any decreases in
marginal rates. For example, a 25% reduction in marginal rates as a result of
 deregulation (reductions of this magnitude are likely) could increase duration
at most by 5% according to these results. The expected 20-25% 1loss in revenue
.will need to be offset by an increase in the number of calls or increases in
local service charges. As new services such as MCI and SPRINT in the U.S. and
CNCP in Canada offer these rate reductions we are likely to observe substantial
increases in their business At the expense of traditional companies such as AT&T
and Bell Canada. However, our results indicate that total industry revenue will
decline unless it iS offset from other sources.

Although " deregulation has had little impact on overseas rates the results
indicate similar rate elasticities of duration to those in the Canada - U.S.

sample. In the Overseas sample the calculated rate elasticities at the means
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ranged from -.2054 to -.2763 for the GG and LN models and from -.0114 to -.0506
for the remaining models. In this case, use of a model with the wrong
distributional assumptions could lead to an understatement of the magnitude of

the rate elastiticity.

7. Conclusions

This paper has demonstrated that in regression applications where the
dependent variable is strictly non-negative the usual normal conditional
~ probability density function may be inappropriate. Whereas a log-linear

regression model with normal errors may sometimes suffice, we have experimented
with a wide range of linear and log-linear models with error distributions in
the GG family of distributions.

In our application of these alternative models to long-distance telephone
call durations, we have utilized two samples, two assumptions about functional
form, and five major assumptions about error distributions (the GG and its four
special cases). We have found that different error assumptions can result in
considerably different point estimates for the regression coefficients. Lagrange
Multiplier, Wald, and Likelihood Ratio tests hgve been employed to distinguish
between nested pairs'of models. Unfortunately, the two classes of models, linear
and' log-linear, are not formally comparably by these methods because they are
non-nested.

Overall, the simple log-linear model with normal errors seems to provide a
good fit for our sample of célls with Canada/U.S. destinations. In contrast, the
linear model with GG errors fits better for our sample of overseas calls. The
regression techniqué improves upon previous correlation studies between duration
and other variables; it also formalizes the fitting of non-normal distributions
for different categories of calls. Qualitatively, our results regarding the

determinants of duration are generally consistent with previous findings, but



the regression model represents a more systematic mode of analysis and should
therefore yield more reliable gquantitative estimates. The estimated rate
elasticities indicate that rate reductions are 1likely to result in a small
increase in call duration. As a result, the revenue loss on existing calls must
be offset by a substantially increased number of calls or higher charges for
local service.

In general, we conclude that researchers seeking to explain the
determinants of a strictly non-negative dependent variable should not limit
themselves to a log-linear, normal-error model. There are more-flexible
distributional assumptions which can be made, and linear regression models can
quite readily be adapted to non-negative distributions. The usual assumption of
log-linear functional relationship between the dependent and the explanatory
variables is not mandatory. At the very least, one should perform a Lagrange
Multiplier specificatioh test to assess whether generalization to the log-linear

GG model is warranted.
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APPENDIX A: DATA

Two specific subsets from a stratified sample of approximately 65,000 long
distance calls were obtained for the Canadian Province of British Columbia. The
first subsample consists of calls originated by residential service customers
with destinations either in Canada or the U.S. (except Alaska). These represent
about 41 percent of the full sample. Because we suspect that there may be
systematic differences between calling patterns from residences and businesses
(i.e. different perceived budget constraints, differing flexibility, different
availability of substitutes), we chose not to incorporate both'types of calls in
this first model. The second subsample consists of both residential and business
calls with destinations overseas.

Most models of telephone demand include a variable for marginal per-minute
rates (RATE). Here, we can be much more accurate than studies using aggregated
data because we know the exact price of an extra minute for every individual
call (computed directly from the rate schedule in effect when our sample was
collected). Deducing the effective marginal rate reQuires a distinction between
calls with one-minute and three-minute minimum charges. The data records only
whole nﬁmbers of minutes éﬁd callers must al%ays pay for ét least one minute.
For directv distance dialed (DDD) calls, with their one-minute minimum, the
telephone company rate schedules were used to determine the price for "“each
additioﬁal minute". For operator-handled and person-to-person calls, however, a
three-minute minimum usually applies. If the observed call duration is three
minutes or longer; the marginal price is again drawn from the rate schedule as
the price fbr "each additional minute”. However, if the observed duration is
less than three minutés, the marginal price is zero, since the full three
minutes must be paid for regardless of whether they are used.

As Gale [1971] has found, distance is another factor 1likely to affect

duration of a 1long distance call. A crude plot of the results derived by
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de Fontenay, Gorham, Mitchell and Lee suggests that the relationship is highly
non-linear. The logarithm of distance, LOG(DIST) is much more appropriate (and,
indeed, yields a much highef value of the 1likelihood function in any
specification). More remote calls may display longer durations because such
calls are made less frequently. An overall "budget constraint” for calls at
greater distances may encourage subscribers to substitute duration for frequency
of calls.

For the Canada/U.S. subsample, the data provide exact mileages between each
origin and destination, except for the 433 calls to Hawaii. Distances are
irrelevant to tﬁe official billing formula for these calls, since rates to
Hawaii are identical from anywhere in British Columbia. We opted to construct an
approximate distance for each of these calls, based on the air-miles from
Vancouver to Hawaii (2704) plus or minus the distance from Vancouver to the city
where the call originates. For the overseas subsample, no mileage data were
provided at all. Distances had to be approximated by using air-miles from the
city of Vancouver to either the capital city or the 1largest city of the
destination country.

The time-of-day at which the call .is made also affects duration, even
- beyond the influence of differing marginal prices. All calls in the Canada/U.S.
‘sample were subject to three different rate periods. "Daytime" calls, defined by
the time period with the highest rates, (either 8:00-17:00 or 8:00-18:00), are
considered to be the base period. Dummy variables were ‘then defined for the
"evening” time period (EVENING, either 17:00-23:00 or 18:00-24:00) and for the
night time'period (NIGHT). For overseas calls, only two rate periods are
defined. This difference in billing practices explains the need for separate
analyses for the two samples. The delimiting hours vary considerably by call
destination in the overseas sample. We have arbitrarily termed the off-peak

discount period NIGHT, but the actual time period involved could easily overlap
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daytime hours in either location.

Type of service has also been recognized to influence call lengths. We
undertook some grouping of values of the categorical variables provided in the
raw data. Most calls are designated as "sent paid”. We defined one dummy
variable, COLLECT, to indicate either "collect" or "special collect” calls, and
a second dummy variable, CARD, signifying credit card or third number calls.
Among call classes, we grouped direct-distance-dialed calls (DDD), DDD~-
equivalent calls, and operator-handled station-to-station calls. A dummy
variable, PERSON, was then defined for person-to-person and "person call back"
classes, since we suspect that the nature or importance of these messages may
have a systematic influence on call duration. The model for overseas calls of
course includes an additional dummy variable, BUSINESS, to discriminate between
business and residence calls.

Studies using aggrégated data must select as dependent variables either the
total number of calls of each duration (regardless of destination) or the total
number of minutes for all calls. By using completely disaggregated data, we can
control for each individual factor suspected to contribute to the explanation of
call length. Further, by focussing on such a narrow "window"” in time, we have
effectively controlled for a host of other factors which might confuse the
estimation process if they were not entered explicitly. Day-of-week effects are
certainly present, as are seasonal effects. A single day's sample, which
controls for such factors, is particularly expedient given the complexity and
expense of estimating regreséion models with non-normal errors. Summer data were
chosen to minimize the discrepancies in temperature between different regions of
the province.$

One last dummy variable responds to the observation that the population is

$ July 13 was chosen simply because it was the "middle"” Wednesday in the month
which can be considered the middle of the summer.
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heavily concentrated in the southwest corner of the province, where ocean
currents result in a moderate climate throughout the year. The interior and
northern regions of the province, however, experience much more extreme weather
conditions, especially in winter. Since it is widely held that telephone calls
are longer when the weather is bad, we opted to avoi& these effects as much as
possible by focussing on summer conditions. Still, different patterns of
settlement may affect calling behavior in the Interior and in the North even in
the summer months. Lower population densities may mean that a larger population
of a household's calls are long distance calls. The NORTHEAST dummy variable,
£hen, is intended as a very loose proxy variable for demographic effects and for
geographical dispersion, and takes on a zero value for the divisions labelled
"Coastal West", "Lower Mainland"”, and "Island" (the most densely-populated
areas). It takes a value of unity for the "Northern"”, "Interior"™ and "Coastal
East" divisions.

Finally, it should be noted that the coded data included several categories
of calls which we judged sufficiently atypical to warrant their exclusion from
the model a priori. We imposed automatic deletion of any PABX/PBX (private
automated branch = exchange) - calls from the residential Canada/U.S. sample, and
coin calls, calls frdm hotels, centrex calls, and miscellaneous or unidentified
calls from both samples. We retained only those residential calls classified as
individual, two-party or multiparty service. We eliminated "collect to coin” and
"coin paid" calls .(less than one percent), few of which are likely‘ to survive
previous deletion 'criteria; We deleted "radio and two-number calls" (less than
four perceht). The absence of data on time of initiation was also  deemed
sufficient to exclude calls (less than one percent). A number of these atypical
calls recorded an associated distance value of zero. In general, then, since
distance is presumed to be an important explanatory variable, we opted to

establish that calls spanning less than five miles could not be considered
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"long~-distance.” This criterion excluded about seven percent of the original

sample.



