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Abstract

This paper deals with the problem of aggregation where the
focus of the analysis is whether to predict aggregate variables using
macro or micro equations. It generalizes the Grunfeld-Griliches
prediction criterion to allow for contemporaneous covariances between
the disturbances of micro equations, and the possibility of different
parameteric restrictions on the equations of the disaggregate model.
The paper also develops a formal statistical test of the hypothesis of
tperfect aggregation’ which tests the validity of aggregation either
through coefficient equality or through the stability of the
composition of the regressors across the micro-units over time. The
choice criterion and the perfect aggregation test are then applied to

employment demand functions for the UK economy disaggregated by

40 industries.



1. Introduction

The problem of aggregation over micro units has been
approached in the empirical literature from a number of different
view points. In the case of linear models one important issue
addressed in this literature is the problem of ‘aggregation bias’,
defined by the deviation of the macro-parameters from the average of
the corresponding micro-parameters. [See, for example, Theil (1954),
Boot and de Wit (1960), Orcutt, Watts and Edwards (1968), Barker
(1970), Gupta (1971), Sasaki (1978), and Winters (1980)].1 Another
closely related issue is the prediction problem originally discussed by
.Grunfeld and Griliches (1960), where the focus of the analysis is
whether to predict aggregate variables using macro or micro
equations. Our primary concern in this paper is with the prediction
problem in the context of linear models. We preseni a generalisation
of the Grunfeld-Griliches (GG) prediction criterion which allows for
contemporaneous covariances between the disturbances of the micro
equations, and the possibility of different linear parametric
restrictions on the equations of the disaggregate model. We also
develop a formal statistical test of the hypothesis of ‘perfect
aggregation’ which, unlike the test proposed by Zellner (1962) in the
context of the seemingly unrelated regression model, does not
necessitate the requirement that all coefficients across the equations
of the disaggregated model are the same. The proposed test allows
for the possibility of valid aggregation either through coefficient

equality or through the invariance of the composition of the

(1) On the problem of aggregation across non-linear micro equations
see, for example, Ando (1971), Kelejian (1980), Stoker (1984, 1986)
and the references cited therein.



regressors across the micro-units over time.

The choice criterion and the test of perfect aggregation
developed in the paper are then applied to two alternative
specifications of employment functions for the UK economy
disaggregated by 40 industries, and for the manufacturing sector
disaggregated by 23 industries. As far as the choice criterion is
concerned, the empirical results show that for the economy as a
whole the disaggregate model fits better than the aggregate
specification, while the reverse is true for the manufacturing
industries taken as a group. The slightly better fit obtained for the
aggregate model in the case of the manufacturing industries should
not, however, be taken to mean that there are no aggregation
problems at this level. In fact the application of the test of perfect
aggregation to the employment functions provides strong evidence in
favour of rejecting the hypothesis of perfect aggregation both for
the economy as a whole, and for the manufacturing sector. Our
results also suggest serious upward bias in the estimates of output
and real wage elasticities of aggregate employment demand obtained
for the UK in the literature using aggregate relations. The slightly
better within-sample performance of the aggregate specification in
the case of the manufacturing industries is best interpreted as an
indication of the misspecification of the disaggregate equations.

The plan of the paper is as follows. Section 2 sets out the basic
econometric framework. Section 3 examines the small sample bias of
the GG prediction criterion. Section 4 generalises the basic model so
that different specifications for the micro-equations is possible, and
derives a goodness-of-fit criterion for discrimination between

aggregate and disaggregate models that does not suffer from the



small sample problem. Section 5 considers alternative methods of
testing for the errors of aggregation, and develops a new test of the
hypothesis of perfect aggregation. Section 6 deals with the problem
of misspecification of the disaggregate model and the implications that
this has for the use of the proposed choice criterion. Section 7
contains a detailed application of the econometric methods developed

in the paper to the UK employment functions.

2. The basic econometric framework

We start with the micro-model analysed by Theil (1954), and

" subsequently by Grunfeld and Griliches (1360), and others, and

suppose that the n observations of the m micro-units ({yjt, i=1, 2,
we, m; t =1, 2, .., n} are generated according to the following linear
specifications
k
y. = r B ., tou.,, i=1, 2, , m
it j=1 ij "i,J4t it t =1, 2, . n

or in matrix notations (Kloek, 1961)

(2.1) Hd: y; = Xi Ei+gi, i=1,2, ..., m.

nx1 nxk kxl nxl
In the above specification it is assumed that the variations in
dependent variables of all micro-units can be explained by means of
linear combination of the same set of k explanatory variables. This
assumption will be relaxed in the next section.

Writing (2.1) as a System of Seemingly Unrelated Equations

(SURE), following Zellner (1962) we have



(2.2) y = XB+u

~

where y = (y{, Y5 ---s v,) s B = (B> Bos oo B)» u-= (40, 4o

.o gn'l) *, and X is an mn x mk block-diagonal matrix of full column

rank with matrix X; as its ith block. We also make the following

assumption:
Assumption 1: The mn x 1 disturbance vector u is distributed inde-
pendently of X, has mean zero and the variance matrix @ = L eI,

where L = (cij)’ and I, is the identity matrix of order n.

The problem of aggregation can arise when an investigator

m
interested in the behaviour of the macro-variable Y, = ) Yy
- izl ~
considers the single macro—equation
(2.3) Ha: v, = Xa b + Yo
nxl nxk kxl nxl

m
where Xa = L X., instead of the m micro-equations in (2.1).

i=1

Following Grunfeld and Griliches (1960) we examine the question of
whether to predict y,; using the macro-equation (2.4), or the micro-

equation (2.3), or the micro—equations (2.1).

3. The small sample bias of the Grunfeld-Griliches criterion

The GG prediction (or more accurately the within-sample
goodness—of-fit) criterion for the discrimination between the
disaggregate model, Hy and the aggregate model, Hy can be written

as



Choose H if ee <e

4 €484 e , otherwise choose Ha’

a~a

where eq and e, are the estimates of the errors in predicting y,

~

under Hy and H, respectively. The estimates employed by GG for gq

and e, are based on the Ordinary Least Squares (OLS) method and are

given by
_ _ B vy 1y, a
(3.1) e, ° Mai'a’ Ma = In Xa(XaXa) Xa = In Aa s
and
m 1
(3.2) ed = igl M1 Zi’ Ml = I - Xi(xixi) Xi = In - Al

It is important to note that in general eq is not an efficient
estimator of uq = y5 — ; X; Bj, unless the disturbances of the
micro—equations ar; con’t;nporaneously uncorrelated (i.e. Sij = 0, for
i # j), or when X; can be written as exact linear functions of X;.
The problem of efficient estimation of jB;, and hence uq, and the
effect that this has for the GG criterion will be discussed later. For
the moment we assume that the GG criterion, as specified above, is
applied even in the case where the micro-equation disturbances are
contemporaneously correlated, and investigate the small sample bias
that such a procedure entails.

Like the justification offered for Theil’s RZ criterion, the
rationale behind the use of the GG criterion must lie in the fact that

if the micro-equations are correctly specified, then ‘on average’ the

fit of y, from the macro-equation should not be any better than that

obtained from the micro-equations. That is we should have



(3.3)  Eylejey) ¢ Eylele) »

~

where Egq(+) represents the mathematical expectations operator under

Hy. However, using (3.1) and (3.2) it is easily seen that(1)

k m

. . e _ o2
Byleq g ~ Balea &) = “EGEMS - 2L I o ,{l-Ele )}
s=1 i>)
m
where € = L X. B, - X_b, and o4 ij is the sth canonical correla-
s 4 bi a = ,

tion coefficient between the explanatory variables of the ith and the
jth micro-equations. Therefore, in general the inequality condition
(3.3) need not be satisfied even if Hy is' correctly specified. There
are, however, two circumstances under which the the GG criterion
satisfies the inequality relationship (3.3).

(i) - when X; can be written as exact linear functions of Xj, for
all i and j. 1In this case pg,ij = 1, and irrespective of the values
of O;j we have Ed(gci gd) - Ed(gz; ga) = - E(g’Mag).

(ii) - when the micro-disturbances are all contemporaneocusly
uncorrelated (oij = 0, i # j). In general the direction of the bias
involved in the use of the GG criterion in small samples depends on
the signs of Sij for i = j.

The finite sample bias in the use of the GG criterion will not dis-
appear even when fB; are estimated efficiently by the SURE method.

Consider the simple case where L is known. The SURE estimator of uy4,

(1) In deriving this result we have also made use of the relation
k 2
k - Tr(A; Aj) = s}=:1 1 - p;,ij) 3> 0. See, for example, Rao
(1973, pp. 582-587).



which we denote by eg, will be

R

where S stands for the n x nm summation matrix

(3.4) S = [In : In et In] s

and

3.5) A = xxelx kel

Under Hg, eg = S(Imn - A)u, and hence

E(e’e) -E e’ e) = ko> -EEME) - E{Tr[(X’Q_IX)_IX'S'SX]}

d‘<s ~s d‘~a ~a a < a= ’
o m

where o = L oi,j’ Again leaving the case where X; are exact

i,j=1

linear functions of X, to one side, the strict inequality Ed(gégc) £

Ed(g;ga) holds only in the special case where OU =0, for 1 # j.

4, A generalised goodness-of-fit criterion for discrimination between

aggregate and disaggregate models

From the results of the previous section it is now a straight-
forward matter to derive a choice criterion for discrimination between
the disaggregate and the aggregate models that does not suffer from
the finite sample bias of the GG criterion. But it is first important
to extend the econometric framework of section 2, so that different
specifications for the micro-equations can be considered. Such a
generalisation is particularly important when the primary purpose of

the disaggregation is to achieve a better explanation of the macro-



variables. Accordingly, we consider the following specifications for

the disaggregate and the aggregate models:

Hy : Zi = X, Bty i=1,2, ..., m,
nx1 nxk; k;jx1 nxl

Ha Za - Xa "b * Yy
nxl nxky kgyxl nx1

where Rank(X;) = ki, and Rank(X,) = kg. In this formulation there
are no restrictions on the number of columns of X;, or what these
columns may represent. The micro-equations under id can also be
viewed as a restricted version of the equations under Hg, with each
micro-equation having its own specific linear parametric restrictions.
In this way a wide range of different specifications across the
micro-equations can be allowed for. The specification of the
macro-equation is also generalized so that the investigator can
specify a restricted form of the macro-equation defined in (2.3).
Consider now the following ‘adjusted’ goodness-of-fit criteria for

the aggregate and the disaggregate models

1) 8% = ele/n-k),
and
@2 & = E &
' d 5=
where
(4.3) &, = (n-k -k + Tr(AiAJ)}-lgi'gJ. ,



with e; and e; being respectively the OLS residual vectors of the

regressions under ﬁa and ﬁd» and A; = xi(xi'xi)-lxi'. The use of sg

as a measure of the goodness-of-fit of the disaggregate model is

justified on the grounds that it represents an unbiased (and con-

sistent) estimator of oﬁ = V(.gluit)' the population variance of the
i=

error of predicting y, from the disaggregate model. It is now easily

seen that under ﬁds
(4.4) B, (s2) -E(s%) = - (n-k)IE(EME <O
: d‘"d d‘"a a < Ta< i
where € is now defined by
m
(4.5) € = L

Therefore, as required we have Ed(sczi) 4 Ed(sczi), and unlike the GG
criterion, the use of the proposed goodness—of-fit criteria sg and
sg will ‘on average’ result in the choice of the disaggregate model
in finite samples, assuming, of course, that the disaggregate model is
correctly specified. In situations where the disaggregate model fits
worse than the aggregate model (i.e. sg > sg), it is likely that the
disaggregate model is misspecified. The implications for the above
choice criterion when the disaggregate model is subject to errors of
specification will be discussed below. Here, for comparison purposes
2

it is worth considering the following decomposition of the s 5

criterion.
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(4.6) 52=(n—k)_—lf='e +(n—k)_lg(k-k)8
) d a ~d~d a i1 i a’ ii
_.1 m
+ 2(n - ka) _Z. {Qij/(l - ¢ij)}gigj ,
1>)
m
where e, = Le., and
~d Rt
i=1
_ _ -1 _ _
Qij = (n ka) {ki + kj ka Tr(AiAJ.)} .

The GG prediction criterion focuses on the first term on the right-
hand side of (4.6) and ignores the asymptotically negligible second
and third terms. The second ierm represents the contribution to the
sg—criterion arising out of the possible differences in the number

of estimated coefficients between the aggregate and the disaggregate
models. The third term in (4.6) captures the effect of the
contemporaneous correlation amongst the disturbances of the

micro-equations.

5. Tests of aggregation

In studying the aggregation problem our emphasis so far has
been on the model selection procedures. An alternative approach
would be to employ classical hypothesis testing procedures and
develop a statistical test of the conditions necessary for valid
aggregation. In the context of the generalized disaggregate model
ﬁd’ the necessary condition for perfect aggregation is given by §=0,

where € is defined in (4.5). Under the hypothesis of ‘perfect

aggregation’
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. 9
it readily follows from (4.4) that Eg(sd) = Eq(sz) = og, and as far

as the fit of y, is concerned we should not expect to gain from

disaggregation. (1)

Before developing a formal test of Hg, it is important to note that

the condition § = 0 can be given a meaningful interpretation only in

the context of the basic model (2.1) where B; are of the same dimen-

sion and refer to the same type of variables across the micro-

" equations. In this case the condition £ = 0 is clearly satisfied

under the ‘micro—homogeneity’ hypothesis, ‘<

(2
\

~——

This is not, however, the only situation where Hg holds. Another

hypothesis of interest which yields § = 0, is the ‘compositional

stability’ hypothesis

where C; are k x k non-singular matrices of fixed constants, such

that T C; = Iyx. The ‘compositional stability’ hypothesis repre-

i=1

senis a set of restrictions on the joint probability distribution of the

regressors and states that the composition of the regressors across

(1)

(2)

For the basic disaggregated model (2.1), the hypothesis Hg is
equivalent to the n-covariance condition discussed in Theil (1954)
and Lancaster (1966), in the special case where the number of

regressors is equal to one.

Notice that this hypothesis can not hold under the generalized
disaggregated model Hy.
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micro-units remain fixed over time. This condition for valid
aggregation in linear models has been discussed in the econometric
literature by Klein (1953) and Wold and Jurden (1953). Distributional
assumptions on the regressors have also been employed in the
literature, for example, by Ando (1971), McFadden and Reid (1975),
Kelejian (1980), and more recently by Stoker (1984) to connect the
aggregate function to the underlying micro-equations in the context

of non-linear models. Under Hy, the -macro-coefficient vector b, is

defined in terms of the micro-coefficients through the identity

m
b= L CiB. The condition € = 0 will also be met under the mixed
i=1
hypothesis(l)
H X, = XC. , i=1, s S, s <{m
Bx i 1
Bov1 % Bswg T o0 7 & - 5]
s s s
where in this case X; = L Xj, I C; = Iy and by = £ C; B
i=1 i=1 i=1

The test proposed by Zellner (1962) for aggregation bias is a
test of the micro-homogeneity hypothesis, Hp, and is not necessarily
relevant as a test of Hg: § = 0. The Zellner test can therefore be
unduly restrictive. Rejection of Hp does not necessarily imply that
the perfect aggregation hypothesis Hg should also be rejected. What
is needed is a direct test of € = 0. In what follows we develop such

a test in the case of the basic disaggregated model (2.1) and the

(1) The aggregation condition is also met by an alternative mixed
hypothesis where the k regressors X; can be partitioned into two
sub-sets, one of which satisfies the compositional stability
hypothesis and the other having an associated parameter vector
satisfying the micro-homogeneity hypothesis.
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aggregate model (2.3). Although our results can be extended to the
generalized model ﬁd’ we have chosen not to do this here, since we do
not think that the perfect aggregation condition £ = 0 can be given a
plausible interpretation under ﬁd' In the case of the generalized
model neither the micro-homogeneity hypothesis nor the compositional

stability hypothesis can be maintained.

5.1 A test of perfect aggregation: case of known L

To help clarify the nature of the test that we are proposing, we
first develop the test in the case where L, the covariance matrix of
the micro-disturbances, is known. A computationally feasible version
of the test will be discussed in Section 5.2.

The idea behind the test is straightforward and asks whether the
estimator of § is significantly different from zero. When L is known

an efficient estimator of € is given by

(5.1) & SXB - X b ,

where é and § are the SURE and the OLS estimators of the parameters
of the disaggregate and the aggregate equations respectively, and S
is the summation matrix defined by (3.4). Substituting
é = (X'Q‘lx)‘lx'ﬂ'ly, é = (X;Xa)'lX;ya in (5.1) now yields g = Hy
where H = SA - AaS.~ The matrices A, and A are already defined b;
(3.1) and (3.5), respectively. On the null hypothesis that
g = g XiB; — Xab = 0, we have g = Hu. Therefore, under the

i=1

assumption that u is normally distributed with zero means and a known

non-singular variance matrix @ = L ® I,
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2

(5.2)  Emon) g~ xC

A necessary condition for HQH  to have a full rank can be obtained
in the following manner: since, by assumption & is a non-singular

matrix then Rank(HQH ) = Rank(H). But,
Rank (H) < Rank (SA) + Rank (AaS) ,
Bmm(Ag) = Rm&(AJ = k,
Rank (A) = Tr(A) = uk, Rank (S) = n
and
Rank (SA) < Min(n, mk)

Consequently, Rank (H) ¢ k + Min(n, mk), and for matrix H to have

full rank equal to n, it is necessary that k + Min(n, mk) > n, or

(5.3) k(m+1) » n.

This rank condition is clearly satisfied when m is large relative
to n/k. But in situations where the number of micro-equations is
relatively large, the computational burden of obtaining the SURE
estimates, é in (5.1) can be considerable. One possibility would be
to construct a test of Hg based on the OLS estimates of 3 instead of

the SURE estimates. The estimate of € based on the OLS estimators is

given by

Y

m
= L X

L é. -Xb = e - a4
i=1

where e, and eq are already defined by (3.1) and (3.2), respectively.
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Under Hg, and on the assumption that the hypothesis of perfect
aggregation Hg holds, we have

A m m
(5.4) € = L (A, ~A)u, = L Hu, .
521 & a’~i jo] i

Now assuming that u; are normally distributed, then conditional on Xj

we have
-3 A
mo BIX, ~ N0, v,
where
-1 n
{(5.5) wm = m r ci'HiH' .
i,g=1 1

Therefore, assuming that ¥, is a non-singular matrix,(l) we arrive at

the result

-1 =1 2
(5.6) m (ga - gd) v (ga - gd) ~ X

which is the OLS counterpart of (5.2).

5.2 Case of unknown E

When L[ = (c’ij) is unknown, it is still possible to obtain an
tapproximate’ test of the perfect aggregation hypothesis by replacing

o:: in (5.2) or (5.6) with their SURE or the OLS estimates. Here, we

13

focus on the latter and consider testing Hg by means of the statistic

S VI S
(5.7) a = m (g, — ey ¥ (e, gy s

(1) Notice that a necessary condition for ¥, to be invertible is given
by (5.3).
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where
- -1 m -
(5.8) v,o= m L ini 5
i, =1
(5.9) &.. = {n -2k + Tr(A.A)} Tele
’ iJ iJ i7J

We shall refer to a test of Hg based on (5.7) as the perfect
aggregation test, or the a-test for short.

The exact distribution of the aj statistic under Hg is no longer
a xg, and unfortunately does not lend itself to a simple derivation
. either. But it is possible to approximate the distribution of ay by
means of a 'suitabI.e’ limiting distribution. The usual asymptotic
theory where the limiting distribution is obtained by letting n, the
sample size, tend to infinity is clearly not applicable here. A
relevant asymptotic framework for testing the hypothesis of perfect
aggregation is to allow the level of disaggregation, m, to increase
without a bound, while keeping the sample size n, fixed. The idea of
expanding the micro units to obtain distribution properties in an
aggregate framework is not particularly novel and has been used by
Powell and Stoker (1985), and Granger (1987). In our application of

the large m-asymptotics we make the following assumptions:

Assumption 2: The average matrix Ym = m‘lxa, and the aggregate pro-
Jection matrix A, = F(.m(in';)_('m)‘l-)zn'l , converge (in probability) to

finite limits.

Assumption 3: The elements of the disaggregate projection matrices,

A; = Xi(XiXi)'lxi' remain bounded in absolute value as m - .

Notationally we write [A;| < P < = .
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Assumption 4: The elements of the variance matrix L = (0;j) remain

bounded as m » . Namely, |oj;l < T2 (=, Wi,j.

Assumption 5: the variance matrix ¢ defined by

-1 B
*Pm = m r oi'HiH‘
i,g=1 M Y

tends to a non-singular matrix ¢, as m - o,

When assumptions 1-5 hold, it seems reasonable to suppose that the
distribution of ap,, on the null hypothesis of perfect aggregation

will tend towards a xg as m » . Although, at this stage we are not
able to present a proof of this proposition in its present form, we

can nevertheless offer the following less general theorem.

Theorem: consider the disaggregate model (2.1) and suppose that the
standardised micro~disturbances uj;/v0;; are identically distributed,
independently both across time periods and across equations, with
zero means, unit variances and finite third order moments. Then

conditional on X, and under assumptions 2-5, the statistic
m - —
a = (ga— ~d) (iE o, ;0 (e, &g o

will be asymptotically distributed as a xﬁ variate on the null

hypothesis of perfect aggregation (i.e. § = 0), as m » =,

(See Appendix A for a proof)
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It is worth noting that the above theorem is applicable even
when micro-equations contain lagged dependent wvariables, macro-

variables, or other common variables such as an intercept term or a

time trend.(1)

6. Disaggregation and specification error

The model selection criterion and the aggregation test developed
in this paper are based on the assumption that the disaggregate
model 1is correctly specﬁied. In reality, however, both the
disaggregate and the aggregate models may sufferl' from errors of
specification, with the latter also being subject to the additional
problem of aggregation error. In such a circumstance the issue of
whether disaggregation is useful for the study of macro-phenomena
and the extent of the gain that may be expected from disaggregation
depends very much on the relative importance of the two types of
errors of specification and aggregation. In this section the
implications that errors of specification may have for the use of our
proposed choice criterion will be examined.

Let the correctly specified disaggregate model be

(6.1) Zi = X, B + W, YL oy, i=1,2, ..., m
nx1 nxk; kjx1 nxsj six1 nx]

which in a stacked form can also be written as

1. Here it is assumed that the micro-disturbances, uj; are serially
uncorrelated; otherwise the estimates can be badly biased if
lagged values of the dependent wvariable are included in the
disaggregate equations.
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-~

(6.2) 'y = XB+Wy+u,

where X is now an mn x k (E = £T=1 k;) block diagonal matrix with Xj
as its ith block, y = (Zi, Zé, . ZA)', and W is an mn X s, (s =
2?21 s;) block-diagonal matrix with W; on its ith block. The other
notations are as in relation (2.2). Suppose now that a reseércher
misspecifies this model by omitting the variables in W, and continues
to employ the model selection criterion based on sg and sg, defined by
(4.1) and (4.2) respectively. Clearly, the result Ed(sg) £ Ed(sg),
which provided the rationale for the choice criterion, need no longer
hold. | | |

Stacking the OLS residuals e; = Mjy; in the vector e = (gi, gé,

~

P . 9 . . . .
. gm) ) sa can also be written as sg = e’'le, in which

L =(A® In), and A is an m X m matrix with a typical element equal

to [Tr(MiMj)]’l. Now under the correctly specified model (6.2),

_ _ _ von—1y .
= My , M = Imn X(X°X) “X°,

~

120}

MWy + Mu .

Hence

cz + Z’W’MLMWZ .

H

2
(6.3) Ed(sdlx, W)

Since in general L. may not be a positive semi-definite matrix, without
further information about the nature of the specification error, it will
not be possible to say whether misspecification leads to an upward or

a downward bias in the application of the choice criterion.
Expanding (6.3) in terms of the misspecification of the individual

micro-equations we have
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2 _, m
(6.3) Ed(sdIX, W) = . + (n - k_) E

m

+2 i}>:j (d;d,/Tr(MM )}
where d; = Miwizi’ and Tr(MiMj) =n - ky - kj + Tr(AiAJ.).
The direction of the bias resulting from misspecification clearly
depends on the sign of the cross-equation terms gng, i+ j, and
their quantitative importance relative to the equation-specific terms
glgl In practice, however, it is reasonable to expect that Ed(sg) >

Now turning to the sg criterion, under (6.1) we obtain

(6.4) E.(sS|X, W) = o>+ (n-k)EME o
) d‘"a'"? a a’ < a-< a’
where
m m
(6.5) £ = L X.B. + L Wy. = € +§ .
< . i*~i . i*i “a  “s
i=1 i=1

Comparing (6.3) and (6.4) it is clear that in general it is not
possible to say whether Ed(sg) exceeds Ed(sg). The result depends
on the relative importance of the specification error and the
aggregation error for the explanation of the macro-variable ys. In
their work, Grunfeld and Griliches (1960), consider a special case of
some interest where there are micro-specification errors that cancel
out in the aggrecgate. In the context of model (6.1) this can arise
either when there are, for example, errors of measurement in the

micro-variables that cancel out exactly in the aggregate“) (i.e.

(1) The problem of measurement errors in a disaggregate model in
the special case where m = k = 2 is discussed by Aigner and
Goldfeld (1974).
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€ = L W.y. = 0), or when the micro-specification errors involve

omission of macro-variables already included in the aggregate

model,(l) (i.e. M, &g 0). In such a case, using (6.4), we have

1

2 2 -
Ed(salx, W) o + (n - ka)

and only aggregation errors (€, # 0) cause the expectations of sg

to exceed the true error variance of the aggregate model. However,
even in this special case it is not possible to say whether it is
’better to use the aggregate model. The answer still depends on the
relative importance of the micro—épecif{cation errors in the
disaggregate model and the aggregation error in the aggregate model
for the explanation and prediction of macro-behaviour. The issue of
whether one should choose the aggregate or the disaggregate model
cannot be resolved by a priori reasoning alone and has to be settled
with respect to particular problems and in the context of specific

models.

7. Applications: employment demand functions in the UK

In this section the methods described in the preceding sections

will be applied to the annual estimates of disaggregate and aggregate

(1) It is beyond the scope of the present paper to go into the
reasons for the importance of macro-variables in the explanation
of micro-behaviour. In general they may arise because individual
micro-behavioural relations are not independent but are
influenced or constrained by outcomes (or expectations of
outcome) of the market as a whole.
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employment demand functions for the UK economy. Although, our
emphasis will be on the aggregation problem, it is hoped that the
disaggregate results are of some interest in their own right.

Our empirical analysis is based on the Cambridge Growth Project
Databank and uses a consistent set of data on man hours (EH;),
outputs (Y;), and real product wages (W;) across 41 industry groups.
Details of the data and the sources are given in the data appendix.
For the employment equation at the. industry level we have adopted

the following fairly general log-linear dynamic specification

(7.1)  LEH;y = By/m + Bip(Ty/m) + BiglBH; o * BiglBll p
t OB sLY  * Bigl¥y oyt gty t BiglW e
+ Big(SLYTt/m) + ﬁi’lo(SLYTt_l/m) + Uy
i=1,2,3, 5 6, ..., 41,
t = 1956, 1957, ..., 1984,
where
LEHit = log of man-hours employed in industry i at time t,
T, = time trend (Tjggo = 0),
LYit = log of industry i output at time t,
LWit = log of average real wage rate per man—hours employed in
industry i at time t,
v 4]
SLYTt = .? LYit .
i=1
i#4

Industry 4 (Mineral oil and natural gas) is excluded from the

analysis, on the grounds that output and employment in this industry
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have been negligible before 1975.

The above specification for the employment demand function can
be justified theoretically when employment decisions are made at the
industry level by cost minimizing firms with identical production
functions and the same given demand and factor price expectations.
In this framework the inclusion of lagged employment variables can
be justified on the grounds of inertia in revision of expectations,
adjustment costs involved in hiring and firing of workers, or
aggregation over different labour types. (See, for example, Sargent,
1978, and Nickell, 1984). = The variable SLYT, which measures the
level of aggregate output (in logs) is a proxy measure intended to
capture changes in demand expectations arising from the perceived
interdependence of the demand in economy by the firms in the
industry.(l) The time trend is included in the specification in order
to allow for the effect of neutral technical progress on the labour
productivity.(z) Ideally, we would have liked to avoid using a simple
time trend as a proxy for the trend productivity. But, unfortunately

direct reliable observations on technical change, especially at the

(1) Apart from the aggregate variable SLYTy, the employment
function (7.1) is similar to the equations estimated by Peterson
(1988), as a part of the Cambridge Multisectoral Dynamic Model of
the UK economy. (See Barker and Peterson, 1988).

(2) Notice that, for the ease of comparison of the aggregate and the
disaggregate parameter estimates the time trend, and the
aggregate output variable that are common to all the micro-
equations are specified in the taverage’ form. Clearly this has
no effect on the overall fit of the equations for a fixed level of

disaggregation.
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industry level are not available.(1) The use of time trends in
regression equations with non-stationary variables also poses a
number of important econometric problems and, as shown by Nelson
and Kang (1983), Mankiw and Shapiro (1985, 1986), and Durlauf and
Phillips (1986), can result in biased inferences.(2) In view of these
measurement and econometric problems it is not clear how one should
proceed to allow for trend changes in labour productivity on
employment demand functions.(3) Here, in the absence of direct
measures of trend productivity at the industry level we estimate (7.1)
with a time trend, but also briefly report on the effects of omitting
the time trends.(4)

For the aggregate employment function we adopted the following

dynamic specification

(1) In their work on aggregate employment demand function Layard
and Nickell (1985, p. 168) use a production function approach to
obtain an index of labour-augmenting technical progress as a
‘residual’.  This approach requires time series data on capital
stock and the share of capital which are not readily available at
the industry level. Moreover, since their measure of technical
progress is constructed using actual employment, including it as
a regressor in the employment demand function can lead to
biased estimates.

(2) Notice, however, that in the case of the test of perfect
aggregation where the test is justified asymptotically for a fixed
sample size but with an increasing number of micro-units, the
inclusion of time trends in the micro-equations does not affect
the validity of the test.

(3) However, see Harvey et al. (1986) where a stochastic specification
(a random walk with a drift) is advanced for trend productivity.
In their formulation T; is modelled as Ty = a + Ty_; + €, where
€, is a white-noise process.

(4) The effect of replacing the time trend by other proxies such as
distributed lag functions of gross investment as a way of
modelling endogenous technical change & la Kaldor (1956) is
discussed in Lee et al. (1988).
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(7.2) SLE’I‘t b, +b Tt +b

1 2 SLETt_ +b SLETt_ +b SLYTt

3 1 4 2 5

+

beSLYT, , + b

5 | * DoSLWT, + bSIWT, ) +u

8 t’

t = 1956, 1957, ..., 1984,
where
41 41
SLETt = .F LEHit’ and SLWTt = .§ Lwit .
i=1 i=1
i#4 i=d

Here we are assuming that the purpose of the study is to explain
SLET, which is the sum of the logarithms of industry employment (in
man-hours). This is clearly different from the more usual practice of
specifying aggregate employment functions in terms of the logarithm
of the sum of industry employment. For our purposes the
specification (7.2) has the advantage that it fits directly within the
theoretical framework of the paper, and as is pointed out, for
example, by Lovell (1973), it also satisfies the Klein-Nataf consistency
conditions. A theoretical analysis of the alternative methods of
aggregating micro-specifications such as (7.1}, and an econometric
investigation of the relative merits of such aggregation methods is

beyond the scope of the present paper.

7.1 Results for the economy as a whole

The estimates of the unrestricted version of the industry demand
functions (7.1) for the 40 industry groups 1, 2, 3, 5, 6, ..., 41, over
the sample period 1956-84 are set out in Table 1. The estimates of
the standard errors of the regression coefficienis are given in the

brackets. The Table also includes the adjusted multiple correlation



Table 1*
ate employment demand functions (unrestricted
{1956-1984)
Industry groups INPT/40 T/40 Ly;, LY, ., LEH, ., LEH, ., LW, I ., SLYT;/40 SLYT; /40 ] R2 LLF  DW xmaav
1. Agriculture, 56.4355 0.0264 0.2538 0.1743 0.5162 0.0152 -0.4196 -0.0073 -0.2408 -0.1762 0.0148 0.9981 87.21 1.9633 0.93
forestry and fishing (80.5624) (0.1580) (0.1722) (0.1926) (0.2165) (0.1479) (0.0839) (0.1315) (0.1091) (0.1358)
2. Coal Mining ~46.3870 -0.3462 0.2753 -0.4222 1.1160 -0.1770 ~0.2095 -0.0670 0.0901 0.0709 0.0159 0.93986 85.11 1.6715 1.07
(60.2401) (0.0742) (0.0362) (0.0600) (0.1186) (0.1076) (0.0356) (0.0615) (0.1188) (0.1315)
3. Coke -334.1719 -1.4903 -0.0190 0.5195 0.1201 -0.1380 -0.3478 0.0845 0.9039 0.2270 3.3499 0.9763 54.48 2.4823 0.05
(89.0939) (0.3678) (0.1169) (0.2007) (0.1636) (0.1091) (0.0762) (0.0998) (0.3324) (0.3801)
4. Mineral Oil and - - - - - - - - - - - - - - -
Natural Gas
5. Petroleum Products -438.0316 -0.7008 0.3845 -0.4844 0.5455 0.1274 -0.2769 -0.0819 0.7001 0.7214 0.0580 0.9136 47.53 1.9463 0.68
(286.8173) (0.2348) (0.3395) (0.3300) (0.2211) (0.2427) (0.1085) (0.1570) (0.7530) (0.7879)
6. EBlectricity Ete. 91.2396 -0.2074 0.2053 0.2029 1.1513 -0.6629 -0.1465 -0.0588 -0.1838 -0.1144 0.0205 0.9855 77.73 2.0344 0.41
(69.2323) (0.2179) (0.2592) (0.3127) (0.2277) (0.2021) (0.0937) (0.1039) (0.2523) (0.2579)
7. Public Gas Supply -103.6365 -0.4472 -0.1297 0.1423 0.4114 0.1617 -0.2605 0.1188 0.2816 0.3240 0.0329 0.9707 63.97 2.2360 2.99
(116.3665) (0.2799) (0.2341) (0.2165) (0.2288) (0.1842) (0.0962) (0.1212) (0.2945) (0.2682)
B. Water Supply 42.9711 0.0492 0.6751 -0.8120 0.8817 -0.0969 -0.3652 0.3937 -0.5947 0.7993 0.0448 0.9149 55.07 1.8170 0.30
(76.4264) (0.3303) (0.5110) (0.5967) (0.2256) (0.1862) (0.1664) (0.1806) (0.4200) (0.3770)
9. Minerals and Ores 197.0285 -0.0037 0.2785 0.0091 0.4998 0.1898 -0.1741 0.0437 -0.5639 -0.0421 0.0342 0.9722 62.89 2.0457 0.72
(119.2942) (0.1311) (0.1428) (0.1517) (0.2283) (0.1899) (0.0814) (0.0971) (0.4006) (0.3775)
10. Iron and Steel -349.9418 -0.9245 0.1361 0.0248 0.4620 -0.0029 -0.4526 0.0666 0.9679 0.2003 0.0279 0.9925 68.77 1.9940 0.85
(110.1168) (0.3780) (0.1031) (0.0976) (0.2354) (0.1512) (0.1087) (0.1491) (0.3587) (0.4190)
11. Non-Ferrous Metals -58.6696 -0.4029 0.1387 -0.2285 1.3339 -0.5140 -0.0696 0.0623 0.8235 -0.4050 0.0251 0.9863 71.84 2.2252 1.69
(38.5798) (0.2149) (0.1359) (0.1414) (0.1682) (0.1418) (0.0549) (0.0592) (0.2501) (0.2939)
12. Non-Metallic -389. 8347 -0.5395 0.3985 -0.2419 0.5945 0.0854 -0.3173 ~-0.1961 0.4744 0.4906 0.0179 0.9933 81.72 2.3446 3.62
Mineral Products (116.1591) (0.2589) (0.1690) (0.1680) (0.2070) (0.1785) (0.1212) (0.1348) (0.3233) (0.3838)
13. Chemicals and ~159.1132 ~0.0882 0.0983 0.1058 0.2440 0.2676 -0.2988 -0.1215 0.3032 0.2011 0.0158 0.9789 85.22 2.2664 5.28
Manmade Fibres (71.0291) (0.1744) (0.1607) (0.1596) (0.2123) (0.1780) (0.0923) (0.1146) (0.3051) (0.2983)
14. Metal Goods -31.2352 -0.2375 0.2866 0.0653 0.6460 -0.0954 -0.1761 0.0345 0.3585 -0.2214 0.0207 0.9858 77.48 2.1717 5.66
(54.8630) (0.2189) (0.1359) (0.1618) (0.2287) (0.1537) (0.1164) (0.1288) (0.3055) (0.3215)
15. Mechanical -131. 8896 0.1976 0.5334 -0.2266 0.4505 -0.1080 -0.2575 -0.3748 -0.0908 0.5055 0.0144 0.9912 87.%4 2.0471 3.81
Engineering (56.4251) (0.1567) (0.1187) (0.1038) (0.2068) (0.1457) (0.1193) (0.1400) (0.1860) (0.1974)
16. Office Machinery -397.5477 0.2032 0.2159 -0.0564 1.0066 0.1224 -0.6515 -0.1085 0.3853 -0.0189 0.0303 0.9166 66.37 1.7819 2.05
etc. (147.5041) (0.3070) (0.0947) (0.1499) (0.2501) (0.2832) (0.1613) (0.2020) (0.2938) (0.3014)
17. Electrical 11.0264 -0.3711 0.4461 -0.2587 1.0101 -0.2373 -0.4120 0.4282 0.1741 -0.1295 0.0179 0.9678 81.67 2.2173 2.73
Engineering (35.8630) (0.2243) (0.1248) (0.1853) (0.2172) (0.1463) (0.1355) (0.1440) (0.2172) (0.2073)
18. Motor Vehicles -210.7119 -0.2799 0.5063 -0.3633 0.8391 -0.1636 ~0.0568 -0.1675 0.5151 0.1640 0.0192 0.9867 79.67 2.3117 2.34
(61.6410) (0.1336) (0.0718) (0.1230) (0.1883) (0.0946) (0.1000) (0.1043) (0.2088) (0.2397)
19. Aerospace 200.2420 -0.7488 0.0710 0.0468 0.5991 -0.3688 -0.0085 ~0.1422 -0.2225 -0.2250 0.0284 0.9864 68.28 2.0370 1.17
Bquipment (98.6992) (0.1808) (0.0821) (0.0806) (0.2238) (0.2001) (0.0921) (0.0879) (0.2480) (0.2600)
20. Ships and Other -159.2346 0.2741 0.6650 -0.3609 1.1618 -0.1246 -0.0186 -0.0490 0.6358 ~0.5276 0.0302 0.9840 66.47 2.2101 2.48
Vessels (63.9773) (0.2704) (0.1660) (0.1540) (0.2077) (0.2075) (0.0808) (0.0921) (0.2322) (0.2384)
21. Other Vehicles -127. 8464 -0.4292 0.2594 0.0648 0.8089 -0.0679 -0.1583 0.0360 0.1202 0.1451 0.0258 0.9969 71.09 1.9994 1.32
(84.5230) (0.2006) (0.1060) (0.1115) (0.2445) (0.2152) (0.0656) (0.0669) (0.1989) (0.2126)



Table 1% (continued)

ate employment demand functions (unrestricted

{1956-1984)

Industry groups INPT/40 1/40 L, LV, ,, IR ., IEH ., DM, LN ., SLYT,/40 SLVT,_,/40 © w2 LLF DW xmoﬁmv

22. Instrument -102.7648 -0.2292 -0.0485 -0.1541  0.6941 —0.1319 -0.2264 0.1475  0.5565  0.2893 0.0246 0.9311 72.37 1.7674 0.81
Engineering (86.1619) (0.1616) (0.2108) (0.1699) (0.2304) (0.2037) (0.1196) (0.1373) (0.2681) (0.3691)

23. Mapufactured Food ~-209.2242 ~0.4900  0.7273  0.0656  0.2394  0.2501 -0.1577 -0.0753  0.0340  0.0808 0.0174 0.9816 82.48 1.7024 4.77
(138.5611) (0.2336) (0.3465) (0.2334) (0.2303) (0.1746) (0.0869) (0.1211) (0.1695) (0.1486)

24. Alcoholic Drinks 101.6376 -0.6943  0.5685 -0.0005 0.8466 -0.2612 -0.0878 0.0948 -0.2328 -0.2029 0.0282 0.9162 68.45 2.0663 2.53
etc. (121.3637) (0.3435) (0.4859) (0.4296) (0.2624) (0.2854) (0.1068) (0.1051) (0.4551) (0.4300)

25. Tobacco ~300.3142 -0.2605  0.7063 -0.2276  0.8345 0.4788  0.0238 -0.0569 -0.6541  0.8452 0.0496 0.8803 52.10 2.3769 5.28
(126.6923) (0.4339) (0.4676) (0.5169) (0.2947) (0.3493) (0.0730) (0.0907) (0.5131) (0.4385)

26. Textiles -127.6754  0.1293  0.4654 -0.1376  0.6979  0.0464 -0.4302  0.0292  ©0.1772 -0.0316 0.0186 0.9979 B80.59 2.2309 2.33
(62.481T) (0.5631) (0.1663) (0.1515) (0.2123) (0.1390) (0.0970) (0.1446) (0.3237) (0.2984)

27. Clothing and 259.4303 -0.1340  0.4585  0.0217  0.5867 ~0.0346 -0.4004  0.1067 -0.0342  0.0194 0.0118 0.9981 93.85 2.0674 0.26
Footwear (26.3298) (0.2073) (0.1154) (0.1572) (0.2160) (0.1428) (0.0833) (0.1092) (0.1568) (0.1683)

28. Timber and 33.7633 -0.5183  0.2993 -0.0213  0.3362 -0.1005 -0.2491 0.1186 0.1765 0.1864 0.0140 0.9859 88.71 1.9694 1.53
Furniture (44.1269) (0.1714) (0.0895) (0.1248) (0.2314) (0.1190) (0.0853) (0.0892) (0.2467) (0.2876)

29. Paper and Board 217.8043 -0.2271  0.5324  0.3381  0.1236  0.1281 -0.2353 -0.0844 -0.1617 -0.0889 0.0200 0.9921 78.36 2.2984 4.73
(37.0048) (0.1687) (0.1528) (0.1761) (0.2513) (0.1320) (0.0722) (0.1120) (0.3221) (0.2940)

30. Books etc. 106.4095  0.0419  0.3518 -0.0926 1.2912 -0.6039 -0.0640 -0.0395 -0.1222 —0.1749 0.0124 0.9296 92.29 2.2104 3.23
(41.1675) (0.0468) (0.1167) (0.1381) (0.2215) (0.1718) (0.0611) (0.0649) (0.1968) (0.1937)

31. Rubber and Plastic -124.2511 -0.6223  0.1943 -0.0152  0.4938 0.1046 -0.2650 0.2121  0.5905 -0.0211 0.0176 0.9811 82.18 2.1726 7.97
Producta (52.6895) (0.2588) (0.2485) (0.2093) (0.2227) (0.1469) (0.1171) (0.1475) (0.4566) (0.3819)

32. Other Manufactures 202.2515 -0.4204 0.1757 0.1393  0.5916 -0.0512 0.0166 0.1451  0.3999 -0.7045 0.0134 0.9921 90.08 1.9558 0.90
(80.7245) (0.1658) (0.0858) (0.1148) (0.1755) (0.0985) (0.0939) (0.0967) (0.1678) (0.1813)

33. Construction 84.3552 -0.0006 0.3618 -0.2488 1.1406 -0.3369 -0.2854  0.3684  0.1373 -0.2078 0.0174 0.9709 82.53 1.5347 1.84
(48.6187) (0.0723) (0.1301) (0.1453) (0.1571) (0.1139) (0.1122) (0.1105) (0.1798) (0.1962)

34. Distribution etc.  111.7644  0.5543  0.0254  0.5177  0.6887 -0.1943 -0.2772 -0.1398 -0.0449 -0.5522 0.0142 0.9587 88.44 2.2835 2.14
, (46.6165) (0.2857) (0.1910) (0.2715) (0.2261) (0.1634) (0.1209) (0.1452) (0.1750) (0.2230)

35. Hotels and 131.7171  0.1650 0.2394 0.1746  0.6033 -0.1807 -0.3824 0.2140 -0.0718 -0.1783 0.0209 0.9077 77.22 1.9588 0.30
Catering (132.1092) (0.1157) (0.2469) (0.3314) (0.2642) (0.2362) (0.1426) (0.1300) (0.2039) (0.1810)

36. Rail Transport 9.2868 -0.0880 0.0969 0.3117  0.8301 -0.0399 -0.0821 0.0953 -0.0469 -0.1113 0.0253 0.9952 71.58 1.9033 3.80
(135.1609) (0.1796) (0.1543) (0.1%06) (0.2087) (0.2156) (0.1427) (0.1388) (0.2911) (0.2803)

37. Other Land 141.1240 -0.4169  0.0524  0.1751  0.9730 -0.5159 -0.0200 0.0269  0.1628 -0.1715 0.0170 0.9724 83.11 2.4060 5.29
Transport (74.6539) (0.1293) (0.1457) (0.1818) (0.2248) (0.2020) (0.0599) (0.0638) (0.1645) (0.1545)

38. Sea, Air and Other 8.3655 -0.1128  0.3135 -0.3582 1.1912 -0.4875 -0.2868  0.1941 -0.1525  0.4478 0.0216 0.9254 76.26 2.2168 1.04
(132.0896) (0.1340) (0.1866) (0.1944) (0.1884) (0.2454) (0.1370) (0.1291) (0.2147) (0.2436)

39. Cowsunications 72.2461 -0.4312  0.6876 -0.5043  0.7816 -0.2629 -0.1278  0.2150  0.0045  0.2006 0.0178 0.9392 81.85 2.3222 2.15
(57.0163) (0.2596) (0.2987) (0.2480) (0.1689) (0.1616) (0.0851) (0.0879) (0.2004) (0.1648)

40. Business Services  294.6267  0.1653  0.1874  0.0981  0.5952 -0.3769  0.0312 -0.0237  0.0360 -0.2212 0.0139 0.9929 88.96 2.1808 1.79
(131.8402) (0.3506) (0.1452) (0.1485) (0.2703) (0.2248) (0.0839) (0.0783) (0.1145) (0.1257)

41. Miacellaneous 41.4060  0.2004  0.2764 -0.2928 0.8375  0.0023 -0.1728  0.0470 -0.0622  0.0803 0.0240 0.9429 73.10 1.6354 2.48B
Services (241.2260) (0.3980) (0.2071) (0.2149) (0.2620) (0.2789) (0.1434) (0.1433) (0.2152) (0.1956)

For source of data see the Appendix.
© is equation standard errors
is the maximized value of

LLF

the log-likelihood function.

Standard errgrs in brackets
R® is adjusted multiple correlation coefficient,
DW is the Durbin-Watson statistic

xmnﬁmv is the Lagrange multiplier teat against

second order residual serial correlation.
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coefficient (ﬁz), the equations’ standard errors (6), the maximized
values of the log-likelihood function (LLF), the Durbin-Watson
statistic (DW), the Lagrange multiplier statistic for testing against
second order residual autocorrelation (xgc(Z)).

The results are in general quite satisfactory: the equations fit
reasonably well, and the value of R2 for the majority of the
industries is well above 0.85. Only in the case of the tobacco
industry does it fall below 0.90. With the exception of the estimates
for industry 31 (Rubber and Plastic Products), the results do not
show significant evidence of residual serial correlation. The
parameter estimates, when statistically significant have signs that are
a priori plausible. The short run elasticities of employment with
respect to real wages and oulput are generally well determined and
have the correct signs. The (current) real wage variable is
significant at the five percent level in 23 out of the 40 industry
groups, and the (current) output variable is significant in 17 of the
industries. Notice also that the few incorrectly signed estimates
obtained for the real wage and the output variables are not
statistically significant, even at the 10 percent level of significance
using a one-tailed test. Overall the results provide further evidence
in support of the view that both the demand and the product wage
variables are significant determinants of changes in employment,
although, as is already stressed by Peterson (1987), in the case of
most industries changes in demand have been historically more
important than changes in product wages in the explanation of
employment changes.

As far as the lime trends are concerned they are significant at



27

the five percent level only in 12 of the industry estimates, and there
are no cases where the coefficient of the time trend is positive and
statistically significant. In fact omitting the time trend variable from
the analysis in general proved to have only a marginal effect on the
coefficient estimates and the significance of the real wage and the
output variables.(1)

The resullts in Table 1 are, however, subject to two important
shortcomings: in many cases they seem to be over-parameterized, and
the estimates for the industries 16 (Office Machinery etc.), 20 (Ships
and other Vessels) and 25 (Tobacco) are unstable.(2) To deal with
these shortcomings we estimated a restricted version of the industry
employment functions by imposing suitable linear restrictions on the
coefficients of (7.1). The coefficient estimates of this ’restricted’
specification and their estimated standard errors are summarized in
Table 2. The chi-squared statistics for testing the validity of the
restrictions together with a number of important diagnostic statistics
for tests of misspecification arising from residual serial correlation,
functional form, non-normal errors, and heteroscedasticity are given
in Table 3. These results are generally more satisfactory than the
unrestricted versions. The parameter restrictions cannot be rejected,
and only in the case of a very few of the indusiries do diagnostic

statistics indicate that the regression equations are likely to be

(1) The effects of omitting the time trend variable on the coefficient
estimates were particularly marked only in the case of industries,
2, 3, 5, 10, 24, 32 and 37.

(2) The autoregressive parts of the regressions for these three
industries have unstable roots.



Table 2

regate employmenli demand functions (restricted)

(1956-1984)

Industry groups INPT/40 T/40 r<wm r<w.n|~ Hm=w.on~ rmzw.wzm riwn rsm,p-~ SLYTy /40 SLYT{_;/40
1. Agriculture, 52.1517 - 0.2687 0.1752 0.5312 - -0.4211 - -0.2437 -0.1729
foresiry and fishing (64.9478) (0.1375) (0.1121) (0.0589) (0.0821) (0.0981) (0.1088)
2. Coal Mining 41.2000 ~0.3502 0.2734 -0.4181 1.1604 -0.2648 -0.2018 - - -
(14.3416) (0.0670) (0.0345) (0.0589) (0.0811) (0.0765) (0.0296)
3. Coke -351.5712 -1.3100 - 0.6330 - - -0.3005 - 1.0448 -
(44.6561) (0.1752) (0.1471) (0.0418) (0.1564)
4. Mineral 01l and - - - - - ~ - - - -
Natural Gas
5. Petroleum Products -70.7959 -0.5087 0.3640 - 0.5185 - -0.3144 = - -
(71.7711) (0.1297) (0.1324) (0.1348) (0.0869)
6. Electricity Etc. 18.5225 - 0.1614 - 1.2739 -0.5958 -0.1732 - - -
(14.6976) (0.0798) (0.1744) (0.1563) (0.0687)
7. Public Gas Supply -47.1096 -0.6014 - 0.0611 0.419] -0.1507 - 0.5379
(97.2188) (0.1995) (0.0659) (0.1524) (0.0496) (0.1827)
B. Water Supply 8.1676 - 0.6536  -0.6536 0.8112 - 0.4027 0.4027 -0.6415 0. 7906
(18.9241) (0.4042) (0.4042) (0.0785) (0.1086) (0.1086) (0.3085) (0.3064)
9. Minerals and Ores 172.9158 - 0.2655 - 0.6931 - ~0.1494 - -0.5337 -
(79.1246) (0.1265) (0.0790) (0.0622) (0.2560)
10. lron and Steel -349.9558 -0.9045 0.1083 - 0.4978 - -0.3873 - 1.1803 -
(58.8686) (0.2732) (0.0893) (0.0832) (0.0777) (0.2928)
11. Non-Ferrous Metals -84.8257 -0.5749 0.1817 -0.3091 1.2461 ~0.4796 -0.0756 0.0756 0.5854 -
(30.7245) (0.1517) (0.1286) (0.1273) (0.1458) (0.1229) (0.0481) (0.0481) (0.1789)
12. Non-Metallic -280.5702 -0.3729 0.3101 - 0.6919 - -0.2356 -0.2214 0.5170 -
Mineral Products (60.6439) (0.2148) (0.1511) (0.0877) (0.1075) (0.0959) (0.2901)
13. Chemicals and -125.0557 - - - 0.6205 - -0.2810 - 0.6049 -~
Manmade Fibres (23.8339) (0.0693) (0.0337) (0.0773)
14. Metal Goods -32.2448 -0.1231 0.4365 - 0.5798 - -0.1671 ~ - ~
(25.5280) (0.0976) (0.0444) (0.0542) (0.0817)
15. Mechanical ~-149.7049 - 0.4122 -0.1779 0.3215 - -0.3100 -0.2725 - 0.6080
Engineering (38.5546) (0.0584) (0.0977) (0.1093) (0.0868) (0.1104) (0.1488)
16. Office Machinery ~3.4674 - 0.1694 -0.1694 1.2748 ~0.3244 -0.3884 0.3123 - -
Etc. (22.7537) - (0.0865) (0.0865) (0.2004) (0.1800) (0.1379) (0.1344)
17. Electrical 2.5709 -0.3785 0.5239 -0.2827 0.9582 -0.1929 -0.4143 0.4027 - -
Engineering (32.7774) (0.2110) (0.0757) (0.127G) (0.1935) (0.1228) (0.1259) (0.1295)
18. Motor Vehicles -184.6112 -0.2365 0.4908 ~0.3811 0.9237 -0.1783 - ~0.1843 0.5856 -
(50.0625) (0.1093) (0.0629) (0.1093) (0.1610) (0.0897) (6.0713) (0.1774)
19. Aerospace 200. 3920 -0.6788 0.0732 0.7560 0.4659 - ~0.1252 - -
Equipment (53.1219) (0.1586) (0.0654) (0.1659) (0.1440) (0.0674)
20. Ships and Other ~0.766G7 - 0.4809 -0.4809 1.4717 -0.4717 - - 0.5103 -0.5103
Vessels (0.3086) (0.1171) (0.1171) (0.1543) (0.1543) (0.2000) (0.2000)
21. Other Vehicles ~-132.1537 -0.4754 0.3130 - 0.7270 - -0.1432 - - 0.2845
(54.3892) (0.1730) (0.0729) (0.0884) (0.0462) (0.1069)



Table 2 (continued)

regate employment demand functions (restricted)

(1956-1984)
Industry groups INPT/40 T/40 r<mn r<p.n-~ rmzw.nx~ rmzn.n‘N riwn riw.wou SLYT{/40 SLYT{_)/40
22, Instrument -11.3576  -0.3580 0.3611 - 0.5319 - -0.2624 - - -
Engineering (44.4947) (0.1353) (0.1005) (0.1253) (0.1134)
23. Manufactured Food -172.1572 -0.4510 0.6697 - 0.3177 0.2237 ~0.1962 - - 0.1157
(76.0519) (0.1973) (0.1734) (0.1742) (0.1560) (0.0645) (0.1233)
24. Alcoholic Drinks -15.1802 -0.4844 0.2933 - 0.7283 - ~0.0945 0.0591 - -
etc. (73.4889) (0.1411) (0.1167) (0.1239) (0.0919) (0.0882)
25. Tobacco -213.3698 -0.3959 0.7424 - 0.7367 0.2633 - E - -
(80.8449) (0.1161) (0.2840) (0.2225) (0.2225)
26. Textiles -68.1499 - 0.5278  -0.1236 0.5880 - -0.3428 - - -
(10.0202) (0.0546) (0.0754) (0.0600) (0.0465)
27. Clothing and -68.9489 - 0.4514 - 0.5364 - ~-0.3756 - - -
Footwear (11.9600) (0.0372) (0.0411) (0.0284)
28. Timber and 60.3105 -0.3017 0.3769 - 0.4312 - -0.2460 0.1493 - -
Furniture (20.9479) (0.0788) (0.0365) (0.0582) (0.0662) (0.0740)
29. Paper and Board -44.7394 -0.3259 0.4680 0.1585 0.3644 - ~0.2503 - - -
(13.2869) (0.1040) (0.0652) (0.0925) (0.0842) (0.0433)
30. Books etc. 58.9250 - 0.2973 -0.2575 1.4842 -0.7029 -0.0454 - - -
(20.8186) (0.0583) (0.0592) (0.1686) (0.1518) (0.0482)
31. Rubber and Plastic -64.4432 -0.3192 0.5398 -0.1401 0.6844 - -0.1820 - ~ -
Products (14.2846) (0.1872) (0.0588) (0.0963) (0.0818) (0.1007)
32. Other Manufactures 60.3555 ~0.3233 0.2345 - 0.6028 - - - 0.4274 -0.4274
(20.0274) (0.0653) (0.0435) (0.0933) (0.1287) (0.1287)
33. Construction 7.2409 - 0.5490 -0.4527 1.0813 -0.2453 -0.4434 0.3376 - -
(20.5598) (0.0828) (0.0863) (0.1559) (0.1135) (0.0822) (0.1096)
34. Distribution etc. 109.9863 0.3892 - 0.5034 0.5641 - -0.3036 - - ~0.5578
(43.3346) (0.2057) (0.1964) (0.0884) (0.1187) (0.1655)
35. Hotels and ~58.7494 - 0.3544 - 0.7096 - -0.3876 0.1959 - -
Catering (44.4425) (0.1150) (0.1022) (0.1191) (0.1094)
36. Rail Tramsport -65.1073 - - 0.4070 0.8047 - ~-0.0729 - - -
(26.2802) (0.0979) (0.0532) (0.0531)
37. Other Land 146.4317 -0.4542 0.2451 0.9023 -0.4855 - - - -
Transport (37.8129) (0.1047) (0.0701) (0.1931) (0.1838)
3B. Sea, Air and Other 48.5900 -0.1921 0.1924 - 1.1919 --0.5542 -0.0853
(104.9126) (0.1054) (0.1634) (0.1741) (0.2189) (0.0683)
39. Communications 14.3221 -0.6566 0.9014 ~-0.4533 0.8261 -0.2785 -0.1686 0.1565 -
(41.3966) (0.2354) (0.1808) (0.1966) (0.1727) (0.1579) (0.0822) (0.0807)
40. Business Services 209.6513 - 0.3108 - 0.6781 -0.3104 - - - -0.1633
(49.1545) (6.0718) (0.1759) (0.1680) (0.0486)
41. Miscellaneous -39.9043 - 0.2123 - 0.8264 - -0.1408 - - -
Services (33.3057) (0.0790) (0.0970) (0.0747)
3

For source of data see the data appendix.

statistics are given in Table 3.

The stundard errors are in brackets.

The relevant summary, and diagnostic



Table 3

Summary and Diagnostic Test Statistics for the Restricted
Employment Equations

(1956-1984)

Industry groups 52 xf o xgc(l) ng(l) XS(Z) xﬁ(l)
1. Agriculture, forestry and fishing .9983 0.04(3) 0.0137 0.01 7.25 0.39 2.25
2. Coal Mining .9986 3.72(3) 0.0158 0.84 0.91 0.32 0.05
3. Coke L9771 5.20(5) 0.0449 0.24 0.67 0.27 1.87
4. Miperal 0il and Natural Gas - - - - - - -
5. Petroleum Products .9178 4.89(5) 0.0566 0.48 0.01 1.83 0.85
6. Electricity Etc. .9876 2.19(5) 0.0130 0.17 1.26 0.18 0.12
7. Public Gas Supply .9719 3.97(4) 0.0322 1.29 0.00 4.86 1.42
8. Water Supply .9279 0.73(4) 0.0412 1.67 0.00 0.47 1.05
9. Minerals and Ores .9760 2.40(5) 0.0318 1.36 0.16 32.70 0.00
10. Iron and Steel .9933 2.49(4) 0.0265 0.08 0.19 1.42 0.43
11. Non-Ferrous Metals . 9864 2.63(2) Q.0250 0.01 3.47 0.20 1.89
12. Non-Metallic Mineral Products .9935 3.44(3) 0.0177 1.11 0.23 0.76 3.15
13. Chemicals and Manmade Fibres .9795 6.27(6) 0.0156 3.51 1.80 0.96 1.14
14. Metal Goods . 9877 2.37(5) 0.0192 0.09 0.27 0.38 1.00
15. Mechanical Engineering .9913 3.64(3) 0.0143 0.093 0.10 0.02 0.73
16. Office Machinery etc. .8922 10.47(4) 0.0345 0.05 2.68 7.24 5.05
17. Electrical Engineering . 9698 1.02(2) 0.0173 0.33 0.11 2.19 2.29
18. Motor Vehicles .9874 1.29(2) 0.0186 1.55 8.92 3.89 0.01
18. Aerospace Equipment .9878 2.21(4) 0.0268 0.90 0.30 1.81 1.30
20. Ships and other Vessels . 9817 9.70(6) 0.0323 0.45 0.61 0.40 4.46
21. Other Vehicles .9973 1.69(4) 0.0241 0.01 0.81 0.17 0.04
22, Instrument Engineering .9250 7.92(5) 0.0257 0.47 3.07 0.01 0.84
23. Manufactured Food .9837 0.85(3) 0.0164 1.68 2.78 1.33 4.38
24. Alcoholic drinks etc. .9232 2.56(4) 0.0269 1.32 0.02 0.94 2.06
25. Tobacco .8796 7.09(6) 0.0497 0.25 8.22 0.65 7.62
26. Textiles .9981 3.18(5) 0.0175 0.05 4.46 0.74 5.09
27. Clothing and Footwear .9984 3.76(6) 0.0110 0.36 1.92 0.62 0.03
28. Timber and Furniture . 9864 4.24(4) 0.0138 0.00 2.43 1.34 0.30
29. Paper and Board . 9927 2.86(4) 0.0192 1.08 1.33 1.74 4.41
30. Books etc. .9306 4.69(4) 0.0123 1.70 0.01 0.14 0.44
31. Rubber and Plastic Products .9818 4.73(4) 0.0173 0.21 1.59 0.96 1.03
32. Other Manufactures .9917 7.18(5) 0.0137 0.37 0.21 1.12 0.00
33. Construction . 9689 5.54(3) 0.0179 5.00 2.34 1.62 1.00
34. Distribution etc. . 9580 5.44(4) 0.0143 0.49 0.02 0.94 2.06
35. Hotels and Catering .9169 3.49(5) 0.0198 0.58 1.88 0.45 0.63
36. Rail Transport . 9960 2.36(6) 0.023¢ 0.28 0.00 1.27 1.98
37. Other Land Transport .9747 4.04(5) 0.0163 0.02 1.23 0.64 2.71
38. Sea, Air and Other .9155 7.87(4) 0.02239 0.27 4.31 0.39 2.75
39. Communications .9351 4.42(2) 0.0184 1.56 0.48 0.14 1.81
40. Business Services .9940 1.81(5) 0.0128 0.98 2.01 1.98 0.17
41. Miscellaneous Services .9512 3.21(6) 0.0222 0.06 0.47 0.39 1.91
Notes:
x2 is the chi-squared statistic for the test of r linear restrictions on the parameters of unrestricted

r employment equations (see Table 1). The value of r is given in brackets after the statistic.
xgc(l) is the f?rst order IM test of residual serial x%r(l) is Ramsey’s RESET test of order
correlation. 1.
xﬁ (2) is a test of normality of the errors. x%(l) is a heteroscedasticity test
of order 1.

o is equations’ standard errors. "2 is the adjusted multiple

correlation coefficient.
The underlying regressions and the test statistics reported in this table are computed on Data-FIT package.
For details of relevant algorithms and references - see Pesaran and Pesaran (1987). ’
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misspecified.(l) Also note that the restricted estimates for the
industries 16, 20 and 25 are no longer unstable, although the
equations for the latter two industries are specified in first
differences and do not possess long run solutions. The long run
elasticities of employment with respect to output and real wages for
the 38 industries that do have long run solutions are displayed
graphically in figures 1 and 2, respectively.

Although there is still a great deal more room for improving the
results by, for example, including 'indusiry specific’ variables in the
employment demand functions, we believe that the rgsults obtained so
far provide a reasonable basis for the application of the methods
developed in this paper to the restricted and unrestricted
disaggregate results and those that can be obtained by the direct
estimation of the aggregate specification (7.2). For the unrestricted

estimate of (7.2) we obtained

(7.3) SLET, = -136.50 - 0.0217 T, + 0.5862 SLET_, + 0.0819 SLET, ,
(51.47) (0.0861) (0.2274) (0.1833)
+ 0.4817 SLYT, + 0.0088 SLYT, ; - 0.3508 SIWT,
(0.0670) (0.1253) (0.0799)
- 0.0334 SLWT + U, ,
0.0955) 1 tT
LLF = -7.77, R2 = 0.9958, o = 0.3717, DW = 2.06, n = 29,

xec(1) = 0.88,  xep(l) = 0.6279,  xx(2) = 4.86,  x3(1) = 1.48.

(1) The results in Table 2 are also of some interest in so far as they
show evidence of significant aggregate output effects on
employment demand at the industry level. See footnote 2 on p.
26.
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Figure 1

Histcgram of the long run elasticities of employment

with respect to output in different industries

-1.2 -2.8 -2.4 2.2 0.4 0.8 1.2 1.6 2.9
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Histegram of the long run elasticities of emplovment

with respect to real wages in different industries
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The notations are as before, and the test statistics ch, xgp, Xg,

and xlz{ are already defined at the foot of table 3. This aggregate

specification passes all the tests and has reasonable short run and
long run properties. However, it is again over-parameterized. The
coefficients of T, SLETy.j, SLYT;.; and SLWT; ) are statistically
insignificant whether considered singly or jointly. The chi-squared
statistic for the joint test of zero restrictions on the coefficients of
these variables was equal to 0.53. So we also estimated the following

restricted version of (7.2)

-134.07 + 0.6956 SLET + 0.4611 SLYT

"

(7.4) SLETt

(15.22) (0.0417) UL (0.0457) °
- 0.3718 SIWT, + u
0.035a) °© T
LLF = -8.39, R2 = 0.9963, & = 0.3481, DW = 2.27, n = 29,

2
Zo(l) = 0.65,  xep(1) = 0.86,  xj(2) = 5.53,  xj(1) = 2.20.

The coefficient estimates are all well determined and imply long run

elasticities of aggregate employment with respect to output and real
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wages of 1.52 and -1.22, respectively.(l) The long run real wage
elasticity is only marginally different from the value of -0.92
reported recently by Layard and Nickell (1985, p. 177) for the UK.
This similarity is especially striking considering the differences that
exist between the two analyses as far as the aggregation procedure,
the specification of employment function, and the estimation periods
are concerned.

We are now in a position to compare the disaggregatle and the
aggregate results. As far as the in-sample ‘predictive’ performance
of the aggregate and the disaggregate models are concerned, we
.computed the sg criterion [as defined by (4.2)] for the unrestricted

and the restricted versions of the disaggregate model. These were

0.1091 and 0.1035 respectively, thus providing evidence of a slightly

(1) To check for the possible effect of the simultaneous determination
of output, employmeni, and real wages on the OLS estimates, we
also estimated (7.4) by the instrumental variable method using
Zy = {1, SLETy -1, SLET{-2, SLYT¢-3, SLYT¢-2, SLWTy 1, SLWTt_z}
as instruments. We obtained the following results:

SLET, = -137.01 + 0.6840 SLET, , + 0.4745 SLYT, -
(20.70) (0.0569) (0.0708)

~ 0.3830 SIWT, + u,., ,
0.0540) ¢t T

R2 = 0.9963, O = 0.3487, DW = 2.25, n = 29,
2 _ 2 2 2 _
xSc(1) = 0.56, xgp(l) = 0.07, xj(2) = 4.15, xy(1) = 2.18,

which differ only marginally from the OLS results. In fact the
Wu-Hausman statistic (To statistic in Wu (1973)), for the test of
the ‘exogeneity’ of SLYT{ and SLWT{ in (7.4), using z{ as the
instruments, was equal to 0.112, which is well below the 5
percent critical value of the F distribution with 2 and 23 degrees
of freedom.
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better fit for the restricted version of the disaggregate model. (1)
The value of the goodness-of-fit criterion for the aggregate
equations (7.3) and (7.4) were equal to 0.1359 and 0.1153,
respectively. These results are summarized in Table 4, where the
uncorrected GG criterion (the first term on the right hand side of
(4.8)) is also reported in brackets. On the basis of the proposed
choice criterion the restricted as well as the unrestricted versions of
the disaggregate model are preferable to the aggregate equation.
The computation of the statistic for the test of perfect aggregation
defined by (5.8) also provided additional support jn favour of the
_disaggregate model. in the case of the unrestricted version the
value of this test statistic was equal to 81.66, which is

approximately distributed as a x%Q, thus firmly rejecting the
hypothesis of perfect aggregation. This is also clearly reflected in
the estimates of the long run elasticities obtained from the
disaggregate and the aggregate results. For example, concentrating
on the restricted versions of the employment functions, the long run
elasticity of aggregate employment with respect to output based on
the disaggregate results (Table 2), turned out to be equal to 0.724 as

compared with the figure of 1.52 obtained using the aggregate

(1) Notice that in general there is no reason to believe that the
restricted model should perform better than the unrestricted
model as far as the s2 criterion is concerned. Although it is
true that the imposition of statistically 'acceptable’ linear
restrictions on the parameters of the micro equations, such as
omitting one or more variables from the micro equations whose t-
or F- values are less than unity, lowers the estimates of oj;, the
same is not true of the estimates of the contemporaneous
covariances, Ojj, i # j. As a result the effect of restrictions on

m
s = L o,.+2L o,
i=1 oy Y
will, in gencral, be ambiguous.



Table 4

Relative predictive performance of the aggregate and the
disaggregate employment functions
(1956-1984)

Aggregate equations Disaggregate eguations3

Unrestrictedl Restricted? Unrestricted Restricted

All industries% 0.1382 0.1201 0.1091 0.1035
(0.0846) (0.0859)
Manufacturing® 0.0492 0.0433 0.0506 0.0455
(0.0439) (0.0373)

\1. See equations (7.3) and (7.5).

2. See equations (7.4) and (7.6).

3. See the results in tables 1 and 2.

4. Excluding Industry 4, Mineral 0il and Natural Gas.

5. Industries 10 to 32 inclusive.

Bracketed figures refer to the degrees-of-freedom uncorrected

measure of the choice criterion, given by the first term in the
expression for sg defined in (4.6).



32

specification (7.4).(1) Similarly the long run elasticity of aggregate

em: ‘ment with respect to real wages based on the disaggregate
re: was equal to -0.4551 as compared with the estimate of -1.22
ba. on the aggregate specification (7.4). These results clearly
su: st the existence of important upward bias in the estimates of

output and real wage elasticities of employment demand obtained in

the literature using an economy wide aggregate specification.

7.2 Resulis for the manufacturing industries

Having rejected the aggregate employment function in favour of
the disaggregate model, the question of what the appropriate level of
disaggregation should be naturally arises. One possibility would be
to repeat the above analysis for all possible levels of disaggregation.
Here in the way of illustration we only consider the problem in the
case of the manufacturing industries. The disaggregate results for
this industry grouping are given by the industries labelled 10 to 32
inclusive in Tables 1 and 2. We also obtained the following estimates
of the unrestricted and the restricted employment demand functions

for the manufacturing sector as a whole:

(7.5) SLEMt = -65.58 - 0.0039 Tt + 0.7491 SL}EIMt_1 - 0.0162 SLEMt_1
(22.19) (0.0565) (0.2211) (0.1655)

+ 0.4933 SLYMt - 0.0897 SLYMt-—l - 0.2979 SLWMt
{0.0531) (0.1170) (0.0659)

- 0.0148 SLwM + u

(0.0837) t1 M’

(1) The estimates of the long run elasticities for the disaggregate
model were computed from the simple averages of the micro
coefficients.
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LLF = 7.20, RZ = 0.9968, 6 = 0.2218, DW = 2.21, n = 29,
2 2 2 9
Xsc(1l) = 4.56  xpp(1l) = 0.01, xN(2) = 0.24, xyTl) = 1.70,
and
(7.8) SLEM, = -66.82 + 0.7407 SLEM, , + 0.4004 SLYM
(6.65) (0.0417) (0.0434)
+ 0.0906 ASLYM, - 0.3137 SLWM, + atM ,
(0.0551) (0.0343)
LLF = 7.13, RZ = 0.9972, o = 0.2080, DW= 2.19, n = 29,
2 ~ 2. 2 ' 2
X§c(1) = 0.34, xpp(l) = 0.00, x§(2) = 0.21, xg(1) = 1.47 ,
32 32 2
where SLEMt = L LEH,t, SLYMt = L LY't’ SLWMt =L LW.t .
i=10  *t i=10 ' i=10 *

The restricted version (7.6) clearly cannot be rejected against the
unrestricted version (7.5).(1) In this application the values of

the goodness—of-fit criterion (sg) for the unrestricted and the

restricted models were 0.0506 and 0.0455 respectively, indicating that
the restricted version of the disaggregate model has a better
in-sample performance in so far as predicting the aggregate
employment variable SLEM; is concerned. The goodness-of-fit
criterion for the aggregate specifications (7.5) and (7.68) are given by
0.0492 and 0.0433 respectively. (See also Table 4). Hence on the

basis of the choice criterion, for the manufacturing industries the

(1) We also estimated the restricted version (7.6) by the IV method
using 2 < (1 SLEMt 1 SLEMt 24 SLYMt 1 SLYMt 24 SLWMt 1s
SLWM;_2) as instruments and obtained very similar results.
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aggregate models give marginally a better fit than either of the
disaggregate models. This, of course, does not mean that the
aggregate model is not subject to the aggregation error problem. In
fact the application of the test of perfect aggregation to this example
resulted in the value of 69.92 for the aj statistic which is well in
excess of the 5% critical value of the x2 distribution with 29 (= n)
degrees of freedom.

The rejection of the perfect _aggregation hypothesis is also
reflected in the large differences that exist between the estimates of
the long run real wage and output elasticities of the manufacturing
.employment based on the disaggregate and the aggregate results. In
the case of the restricted models, the estimates of the long run real
wage elasticity based on the aggregate and the disaggregate models
were -1.21 and -0.509, respectively. The corresponding figures for
the long run real output elasticities were 1.54 and 0.763, respectively.
The better performance of the aggregate model should be interpreted
as an important indication that the disaggregate employment functions
are misspecified. This suggests the need for a much more detailed
analysis of employment demand at the industry level, which may
involve including ‘industry specific’ variables in employment
equations, experimenting with a different choice of functional forms
across industries, or searching for new industry-specific explanatory

variables, or even compiling a more reliable set of micro-data.

8. Concluding remarks

In this paper our primary concern has been with the problem of

choice between macro and micro regression equations for the purpose
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of predicting macro variables. The test of perfect aggregation
developed in the paper also addresses the macro prediction problem;
although as our application to the UK employment demand functions
shows, it has some bearing on the problem of aggregation bias as
well. In using the goodness-of-fit criterion and the test of perfect
aggregation it is, however, important to note that these methods, like
most other methods of inference in econometrics, suffer from the fact
that they may have little to say on the validity of the aggregation
conditions outside the estimation period. In the case of aggregation
across micro units this problem is especially serious' as the extension
of the results of aggregation tests to the post estimation period
requires stability of the micro-coefficients as well as the stability of

the industrial composition of the economy.



Appendix A

A proof of the asymptotic validity of the proposed
test of perfect aggregation

In this appendix we provide a proof of the theorem stated in the

paper. Let

m
(A1) g = (L 6,1 ey

_where e eq, H; and 6ii are already defined in the text. For con—

<~a?

venience we reproduce them here

) _ S ) ~
“a [In Xa(xaxa) Xa]Za - (In Aa)‘fa ’
n -1
eq = L Myvis Mpo= T - X (XX X = I 7 Ay
i=1 ~

3 = yiMpyy/(m -k
H. = A, - A.

1 1 a

Then the test statistic in the theorem can be written as

(A2) 2, = g, -

-1

Consider now the probability limit of ¢m = m
i

m o
Y o0..H, as m » o,
-1 111

Under (2.1) we obtain
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where €;; represent scalar random variables distributed independently
across i and t with zero means and unit variances. Substituting (A4)

in (A3) yields

m
L c..s? Hg/m .
io1 1ii7iti

: . -1 n—k
(A5) ¢m = (n - k) 3 [
t=1

But, noting that H; = Aj - Ay, we have

(A6) mlr o € H: = fA +F -FA -AF ,
i=1 11 1t 1 ma m m a am
where
-1 8 2
T = m L o, €, ,
m . 11 it
i=1
m
F = mlT o €A, ,
m . 1171t 1
i=1

Now under assumption 4 it readily follows that

m
plim(f_) < 7% plim(m™ ! T e?t) ,
M=o me i=1
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and since €; are identically and independently distributed random
m

variables, then by the law of large numbers m"1 r eitg 1, and
i=1

(AT) plim(f ) < 2w,

m-»ee

Similarly, under assumptions 3 and 4 we have

(AB)  plim(F) ¢ TP <,

m-se0
where P is already defined by assumption 3. The results (A7) and
(A8) establish the existence of the probability limits of f, and Fp, as
m -» ®, and this in turn establishes (using (A6) and noting that by

assumption 2 matrix Ay has a finite limit as m = =) that

m m
plim(m 1 T o..s? H?) = lim(m-1 ) O..H?)
. i1 it . i1'1
o0 i=1 meo i=1
Using this result in (A5) we finally obtain
m m
a9y b - . °iiH§ B linm! £ ciiu‘f) = ¢
i=1 me i=1

Therefore, asymptotically we have(1)

Ry,
gmgq) (ga—-'d)'

n
But under (2.1) on the assumption that HE: r xiﬁi = Xalg holds
i=1

(1) Note that by assumption 5, matrix ¥ is non-singular.



A4

m
m %(e -e,) = m—” I H.u.
~a =d . 1~1
i=1
Hence
m
a _-¥
(Al0) g, ~m L z.,
i=1
in which
z = cg. ¢_%H.v. ,
=1 ii i~i

and y; = gi/lsii. We now show that under the assumptions of the
m

theorem, as m » =, the sum s = m %L z; tends to a multivariate
i=1

normal distribution with mean zero and the covariance matrix I,; an

identity matrix of order n. For this purpose it is sufficient to
demonstrate that for any fixed vector A = (Xj, 2o, ..., 2 )", the

limiting distribution of X’sp is N(O, 2"}).

-~

Let
u D
(All) d = A = m L w. ,
m ~ Znm . i
i=1
in which
(A12) w. = of Ay, i=1,2 ..., m

is now a scalar random-variable. We have, for all i,

E(wi) = 0 ,
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Setting 4 = Y78, then

no

m m Hz
(A13) Cm = E V(wi) H( El S5 i)H .

i=1 i

Denoting the (t, t’) element of matrix H; by hi,tt" we also have

[using (Al2)]

t i,tt')vit' :

Therefore, since by assumption ¥ is non-singular and h;j ¢t are

bounded in absolute value for all i, then

where |ugh; t¢] < k < ». Consequently

n
Ejw.[° ¢ nk303/% B L .
1 11 =

However, since the random variables vj{ are i.i.d. with finite third

n
order moments, then E| L Vit|3 £ ne3, where 63 = E|V1t|3, and
t=1

(A14) Elwilg < n4K3630§{2.

We are now in a position to apply the Liapunov Central Limit Theorem
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to the sum dy defined by (All).{l) Setting

m

B3 = ¢ Ew. |3,
. 1

i=1

then using (Al4) it follows that

m
B3 < (n4K363) £ 03(2’
m j-1 it

which together with (Al13) yields(2)

B ‘ 4/3 o ‘m 11/3
lim [ = ] < [ n_* } lim m f| T c?iz
M- m ) Mo i=1
But under assumption 4
_ m 1/3 -
lim m & T 0?(2} ¢ lim (m 1/8T) = 0,
M- iz} meeo

and for a fixed n, we have lim(By/Cp) = 0, as m » «; and the con-

dition of the Liapunov theorem will be met. Hence

a a
Sm N(O, In) .

Im

Now using (A2) we have

_ . a 2
gm = 9 9 xn . Q.E.D.

(1) See, for example, Rao (1973, p. 127)

1 B
(2) Notice that lim{g (m 1 T oiiﬂf)y} = Y = AT
m-o i=1 A



Data Appendix: Data Sources and Definitions

The data used in the empirical analysis in section 7 are annual
observations on 41 industry groups for the UK obtained from the
Cambridge Growth Project Databank. The data on industry
man-hours, employment, wages and salaries and employers’
contributions were originally provided by the Institute for
Employment Research at the University of Warwick. The data on
industry output were obtained from the Central Statistical Office’s
commodity flow accounts adjusted for our industrial classification.
.The data on producer price indices of industry output .were obtained
from a number of published sources including the Department of
Trade and Industry’s publication ‘British Business’, the CS0O’s
publications, the ‘Annual Abstract of Statistics’ and the ‘Monthly
Digest of Statistics’, and the Department of Energy's 'Energy Trends’.

Some of the 41 industry groups are identical to the ‘groups’
distinguished in the 1980 Standard Industrial Classification. However
in view of the significant differences between them in a large number
of cases, the groups are listed in Table Bl, using as a reference the
Division, Class or group of the 1980 Standard Industrial classification.
In the analysis of the manufacturing sector groups 10 to 32 inclusive
are included.

For empirical estimation, the man-hours employed (EH;) are
defined as a product of the actual hours worked per week and the
numbers employed in each of 41 industries, including self employed
('000s) in these industries. Industry output (Y;) is gross value
added by industry in 1980 prices (£Em). Average real wage rate (W;)

is a measure of the real product wage by industry. It is obtained



by first deflating an industry’s total labour costs including both
employees’ wages and salaries and employers’ national insurance
contributions (Em) by the price index of industry output (1980 =
1.00). This is then divided by the man-hours employed in that
industry to obtain the average real wage rate.

All the data are annual covering the period 1954-1984 with both
the aggregate and disaggregate equations estimated over the period
1956-1984. These data, and the computer programmes used both in
estimation and in the computation of the choice criterion and the
statistics for the test of perfect aggregation, are available on request

from the authors.



Table A

Classification of industry groups

(in terms of the 1980 Standard Industirial Classification)

Industry

1. Agriculture, forestry and fishing

2. Coal Mining

3. Coke

4, Mineral o0il and Natural gas
Petroleum Products

6. Electricity etc.

7. Public Gas Supply

8. Water Supply

9. Minerals and Ores n.e.s.

10. Iron and Steel

11. Non-Ferrous Metals

12. Non-Metallic Mineral Products

13. Chemicals and Manmade Fibres

14. Metal Goods n.e.s.

15. Mechanical Engineering

16. Office Machinery etc.

17. Electrical Engineering

18. Motor Vehicles

19. Aerospace equipment

20. Ships and other vessels

21. Other Vehicles

22. Instrument Engineering

Division, class or
group

0

1113, 1114
1115, 1200
1300

140

1520, 1610, 1630
1620

1700

21, 23

2210, 2220, 223
224

24

25, 26

31

33

34

35

3640

3610

3620, 363, 3650

37



23.

24,

25.
26.

217.

29,
30.
31.
32.
33,

34.

35.
36.
37.
38.
39.
40.

41.

Table A {continued)

Manufactured food

Alcoholic drinks etc.

Tobacco
Textiles

Clothing and footwear

. Timber and furniture

Paper and Board

Books etc.

Rubber and Plastic Products

Other Manufactures
Construction

Distribution etc.

Hotels and Catering
Rail transport

Other land transport
Sea, air and other
Communications
Business Services

Miscellaneous Services

41, 4200, 421, 422,

4239

4240, 4261, 4270,

4283
4290

43

45

46

4710, 472
475

48

14, 49

5

61, 62, 63, 64, 65,

67
66
71
72
74, 75, 76, 77

79

81, 82, 83, B4, 85

94, 98, 923, 95, 96,

97.
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