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ABSTRACT

This paper provides a generalization of the standard adjustment cost-
rational expectations model due to Sargent (1978), which, in addition to the
cost of changing the level of the decision variable, also allows for the
cost of altering the speed with which decisions are changed. It establishes
the existence of a unique stable solution for this more general model,
derives an explicit solution for the underlying decision problem, and
provides a necessary order condition for identification of the structural
parameters. The paper also contains an application of the model to the
determination of the employment in the U.K. coal industry over the 1956-83

period.



1. Introduction

In this paper I provide a generalization of the standard adjustment
cost-rational expectations model discussed, for example, by Sargent (1978),
Kennan (1979), and Pesaran (1987, Example 7.2). In addition to the familiar
costs involved in changing the level of the decision variable, I also allow
for the cost of altering the gpeed with which the decision variable is
changed. This generalization is of some interest as it furnishes a theoret-
ical justification for the inclusion of a second-order lag of the dependent
variable in rational expectations models with future expectations.

The plan of the paper is as follows. Section 2 presents the
generalized adjustment cost model. Section 3 shows that the solution of the
model (say yt) is unique and has the interesting property that it depends
' positively on Yeo1r and negatively on Yeon- This section also derives the
necessary order condition for identification under a fairly general specifi-
cation of the process generating the exogenous variables, and a set of
cross-equation restrictions that can be readily used to test the model’s
empirical adequacy. The paper ends with an application of the model to the
determination of employment in the U.K. coal industry over the 1956-83

period.

2. d Ad t
Suppose an economic agent is faced with the problem of deciding on Ye

in order to achieve stochastic targets y:, determined by

1For a different generalization of the standard partial adjustment
model see Smyth (1984) and Ouliaris and Corbae (1985), where the adjustment
parameter is allowed to vary with other variables, such as the rate of
interest or the unemployment rate. As shown, for example, in Nickell
(1984), theoretical justification for the inclusion of second or higher
order lags of the dependent variable in the RE models can also be given by
appeal to aggregation over different types of labor or "goods".



yE = £(x7) +ug, (1)

where X, is a kxl vector of exogenous or forcing variables, v an mxl

vector of fixed constants, and u a serially uncorrelated disturbance term
with zero mean. In the context of economié problems, Ye could represent
the number of workers to be employed or the level of stock to be held by the
economic agent. Similarly, X, could include variables such as real
product wage, the real rate of interest, or an index of technological
change.

Assume now that in the process of moving towards the target yt, the
economic agent incurs two types of adjustment costs. First, the cost of
changing Yer and second the cost of adjusting the speed with which changes
in Y, are put into effect. Denoting these adjustment costs, respectively,

by ¢1(Ayt), and ¢2(A2yt), and the cost of being out of equilibrium by

¢(yt-y§), the optimization problem facing the economic agent can be written

2
as:
[}
: T 2
Min E{ Z BT [8(y,,"YE,) + 618y ,,) + 6,(8%y )] lot}, 2)
YerYesr 0 1=0
where Ot - (yt’yt-l’"';§t'§t-1""; ut,ut_l,...) is the information set of

the economic agent (but not necessarily that of the observing econometrician)
at time t, and 0 < 8 <1 1is the discount factor. In the special case
where the functions ¢(+), ¢1(-) and ¢2(-) are quadratic, the solution of

the above optimization problem leads to linear decision rules.  Setting

2Here it is assumed that the economic agent knows, or has completely
learned the functional forms of £(+), (), ¢1(-), and ¢2(-) and their

parameters, as well as the processes generating the exogenous variables,

¥t°



40y = 3 (y -y,

, 1 2
¢1(Ayt) - 5 ¢1(Yt‘yt_1) s , ¢1 > 0,

2 1 2
¢2(A Yt) - 5 ¢2(Yt'2yt_1+yt_2) ’ ¢2 > 0.
The decision rule for the current period (r=0) can be written as:3

Ve = MYeoq * A¥eip * MEG18) + aE(y o]0 + ov%, (3)

where

5

®
]

1+ ¢1 + p¢1 + ¢2(ﬂ2+45+1) > 0,
a, = 0(¢1+2¢2+2ﬂ¢2) > 0,
a, = -6¢, < 0, b (4)

Al = 9ﬂ(¢1+2¢2+2ﬂ¢2) >0,

A = -a¢232 <0.

3. Solution and Identification of the Model
The solution of equation (3) depends on the roots of the characteristic
equation4

1 - Alx-l + Azx-z +oyx + a2x2. (5)

The RE equation (3) has a unique non-explosive solution (relative to y:)
if and only if (5) has exactly two roots outside the unit circle with the
remaining two roots falling strictly inside the unit circle. I now show

that, for positive values of ¢1 and ¢2, and 0 < 8 <1, these

3This decision rule is obtained from the first-order Euler condition

for the minimization problem (2), at r = 0.

aSee, for example, Whiteman (1983) and Broze et al. (1985), and also
Pesaran (1987, Ch. 5) for a survey of different methods of solving linear RE
models.



conditions on the roots of (5) are in fact satisfied. Using results in (4)
it is easily seen that (5) can be written as:

2

$,2° + ¢1z +1=0, _. (6)
where
-1 '
z=1+p8 - (x+8x 7). 7N
Let N and z, be the roots of (6), and denote the roots of (7)

corresponding to each value of 2z = zy by By and pi, i =1,2. From (7)

it now follows that5
pipi =<1, i=1,2,
- '- - -
(b-D(pg-1) =2z, i 1,2,

But since ¢1 and ¢2 are, by assumption, positive we also have (from (6))
that z, < 0, i=1,2. This together with the above results establishes
that equation (5) has two roots, say By and Bys outside the unit circle,
and two roots, pi and pé, inside the unit circle. Furthermore, with
B =20, it also follows that “i’“i 20, 1i=1,2,

The unique solution of (3) can now be obtained by a variety of methods
[see Pesaran (1987, §5.3)]. In general, assuming that the present value

expressions

-1
E: By E(y§+i|ot), for j = 1,2,
i=0

exist, we have

5Here we are assuming that the roots of (6) are real. This requires

that ¢§ 2 A¢2.



2 ©

-i

Ye ¥Yer t ¥o¥e.1 * }: 5 Ez By E(y§+i|nt)' (8)
j=1 i=0

where
¥y =Byt By >0, %y = ompy <0,
wil e by () my = by (b
IS ALy M R T T A M R
The positive and the negative values predicted by the theory for the
coefficients of Yeo1 and Yeoor respectively, provides a quick check on
the adquacy of the model in empirical analysis.

In the case where yg can be approximated by the linear function,

yt = 1'§t + u the present value expressions in the above solution will be

t!
given by
@ [
p'i E(y* . |q) =¥ y-i E(x, . |a )} +u
j t+i'l't - h| -t+i't t’
i=0 i=0

which can be obtained explicitly in terms of the parameters of the process

generating X, For example, when {§t) can be approximated by the rth
order vector autoregressive process
r
E: Ri%er = ¢ R = Ly ®)
i=0 :

using results in Pesaran (1987, pp. 294-95) we have

L r-1

-i -1 i
Z Hy E(Xeyq190) = (L)~ (I - Z B3l ) X
i=0 i=1

6Notice that the presence of unit roots in the process generating X
are not ruled out here.



where Ik is an identity matrix of order k, and

r

-(s-1) . -
°ij }: “j Rs, i=0,1,2,...,r-1, ] 1,2.
s=i+l '

Substituting these results in (8), the unique solution of the RE model

becomes

yt - 'l’lyt-l + 'l’zyt_z + e;-l(L) }-(t + aut' (10)
where o = (Lo -$)[1 - (b/B) - (hp/BD)], and a (1) =5 art™t
1 72 1 2 ’ -r-1 i=-1 -1
represents a kxl vector of lag polynomial of order r-1 in the lag
operator L, defined by
2 r-1
[J ' ‘1 i
§r_1(L) Y { }: " (Ik+00j) [Ik- }: QijL ]}. (11)
j=1 i=1

From (10) it now follows that the necessary condition for identification of
the k+3 structural parameters, ¢1, ¢2, B and v is given by rk + 2 2
k+ 3, or k(r-1) 2 1.7 When the model is identified the relations in (11)
give k(r-1) - 1 over-identifying cross-equation restrictions. These
cross-equation restrictions are, however, difficult to work with in pract-
ice. They involve the roots By and By in a highly non-linear form and
in general do not readily lend themselves to empirical evaluation. An
alternative approach would be to derive the cross-equation restrictions in
terms of the reduced form parameters. ¢1, ¢2, and a! i=1,2,...,r-1,

-1’
and the parameters of the VAR system (9). This can be easily achieved by

7T'ne order condition for identification when the ith element of X,

(say, x follows a univariate autoregressive process of order re, is

it)

k

given by 21_1 r, =z k + 1.



using the factorization method suggested in Pesaran (1987, §7.2.2). Suppose

that r = 2, then gl(L) -a L should satisfy the polynomial identity

1Y%
' 2 '
aj(L) (L%-5,L-6,) = dy + (d4]-dsR))L

o qrm v12 . are 13
1R1-9oRIL - 4R, LY,

+ (o7’
2
where 81 - ¢1/ﬁ, 82 - ¢2/ﬂ , O = (1-¢1-¢2)(1-61-82). 91 and 92 are
kx1 vectors of the auxiliary parameters and a, and a, are the vectors
of the reduced form parameters iﬁ (10). Equating the coefficients of the

powers of L from both sides of this identity yields

4Ry = -3y 7
dy = -85
4 - gRy - Goyag v 6ap), | o
o+ YRy - YR, = 8 - a6y,
- which can be solved for the following cross-equation restrictions:8
B2(ayl) - B (alRy) - ¥y(ajRR) + asR)) = O. (13)

Unlike (11), these restrictions do not depend on the roots By and By

and can be readily tested by standard classical methods such as the likeli-
hood ratio method, or the Wald procedure.9 One only needs to compute
consistent estimates of the parameters of the reduced form equations (9) and
(10), and their (asymptotic) covariance matrices. Under the assumption that
u, and €. are serially uncorrelated, the application of the least squares
method to relations in (9) and (10) yields consistent estimates of the

8 2
Recall that 61 - ¢1/ﬂ and 82 - ¢2/ﬂ .

9When the discount factor, B, 1is not known, any one of the k
relations in (13) can be used to estimate it, thus leaving the total of k-1
over-identifying restrictions for testing purposes.



parameters, and any possible heterogeneity in the variance of u_ can be
taken care of via the White (1980) heteroskedasticity-consistent method of
computing the covariance matrices of the least squares estimators. Rela-
tions in (13) can also be used to obtain fhe following expression for 1

the parameters of the target equation:

RS T 2

Now, using the cross-equation restrictions (13), the expression for 7 can

also be written as:

v - o 85,5y, (an
where
S, = (I -6R,-6,R,-5,R2)
1 k' °117%272 %2
and
Sy = (8,R|Ry+6,R)) (Ik-sznz)‘l (6,1,+6,R,).

4 The extension of the results (13) and (14) to higher order VAR systems is
relatively straightforward. For example, for r = 3 we have the following

2k cross-equation restrictions:

ei(62R1R2+81R2+62R3) - gé(Ik-Ssz) - 6193, (15a)

and

- {6 + §i(611’+6 R )}R3. (15b)

a3 = 18,2 k2M
Again, when g 1is not known, any one of the relations in (15) can be used
to estimate it; thus leaving 2k-1 restrictions to be tested. Similarly,

for the structural parameters we have

’ ' 2 ’ [
oy’ = 2] (T -8R =6,Ry-81Ry) - 8306 TH6oRy) - 6p23.



§2 and §3 can be solved out in terms of 91

equation restrictions in (15).

where using the cross-
In deriving the above cross-equation restrictions it is assumed that
X, does not contain perfectly predictable variables, such as the intercept

term, time trends or seasonal dummies. When these variables are present

they could be included in (10), without any loss of generality.

4. An Application

In this section I apply the generalized adjustment-cost model to the
determination of employment demand in the U.K. coal industry over the period
1956-1983. 1 assume that the logarithm of desired employment, yt,
measured in man-hours, is determined by the log-linear specification

* -
YE= Bt BT ¥ M+ 1pe U
- ]
ﬂl + ﬁth +'x +ou, (16)
where Qes Wes and Tt stand respectively, for the logs of output, real

product wage, and a linear time trend (T =0) wused as a proxy for

1980
technical change.lo The disturbances u, represent mean zero, serially
uncorrelated productivity shocks. Applying the model of Section 3 to (16)

yields:
Ye = bo + 0T + ¥ q + ¥oVpp + 8 (WX, + ou, (17)

where X, = (qt,wt)', and tl' $2 and o are as defined in the previous
section. Taking r = 2, we obtained the following results for the

unrestricted version of (17):

10For the data sources and other details, see Pesaran et al. (1987).
The log-linear specification for y* can be justified as a cost minimiza-
tion solution to a firm's employmenE decision problem under a Cobb-Douglas
technology with neutral technical progress.
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y, = 1.0529 - 0.0088 T + 1.1661y , - 0.3397y , + 0.4287 q
(3.39)  (-5.71) (11.80) (-3.68) (6.90)
- 0.4787 q_ . - 0.0895w_- 0.0849 w_ . + e, (18)
(-8.69) 1 (2.01) ¢ (-1.68y P F
&% - 0.9989, g, = 0.0136, LLF = 85.23, n = 28 (1956-1983),
2
xgc(l) - 0.29, X§F(1) - 0.10, xﬁ(z) - 0.22, Xy (1) = 0.01.

The figures in parentheses are t-ratios, 36 is the standard of the regres-
sion, iz is the adjusted R2, n is the number of observations. xgc(l),
ng(l), x§(2), xﬁ(l) are diagnostic statistics distributed approximately as
chi-squared variates (with degrees of freedom in parentheses), for teéts of
residual serial correlation, functional form misspecification, non-normal
errors, and heteroscedasticity, respectively.11
The equation has a good fit, passes all the diagnostic tests and except
for the coefficient of LAY all the other coefficients are statistically
significant at the 5 percent level and have the expected signs. The highly
significant positive and negative estimates obtained for ¢1 and ¢2 is in
accordance with the prediction of the theory and in particular suggests that
changes in the speed of adjustment of employment are an important considera-
tion in the U.K. coal industry.12
The parameter estimates for the VAR system (9) in the case of the

present application are given in Table 1. The estimates of the reduced form

parameters of the full model can now be summarized as

11For more details about these test statistics and their computations
see Pesaran and Pesaran (1987).

121t is important to note that this is not an isolated result. The
disaggregate estimates reported in Pesaran et al. (1987) also support the
generalized adjustment cost model in the case of 13 of the 40 employment
functions estimated for the U.K. economy.
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. (0.3597  -0.1288 . 0.5586  -0.107
R, - [0 ], R, - [

0882 0.6861 2 Lo.0810 0.040
41 - (0.4287, -0.0895), & = (-0.4787, -0.0849),
$, - 1.1661, P, = -0.3397.

Using these estimates in (13) yields the following quadratic equations in
B:
o.A78732 + 0.28778 + 0.0575 = O, (19)

0.0849p2 - 0.057863 - 0.0094 = 0. (20)

Under the REH either of these equations can be used to estimate g. But
equation (19) has no real roots, and the only positive root of (20) is equal
to 0.82, which yields an annual real fate of discount of 22 percent which is
far too high. These results cast serious doubt on the validity of the RE
restrictions in the case of the present example.13 However, if we ignore
the RE restrictions and suppose that B is known to be equal to 0.95, we
obtain @i = 0.5988, hj = 0.5673, #y = 1.5865 and fiy = 1.6746, which have
the sort of magnitudes predicted by theory (i.e., all are positive with two
of the roots falling inside the unit circle, and the other two falling
outside the unit circle). Furthermore, from equations (6) and (7)

A

z, = -0.2353, 2. = -0.2919, which imply the estimates 32 - 1/(2122) -

3
14.56, and @, = -3,(Z,+%z,) = 7.68 for the coefficients of the cost
1 2'417%2

funct:ion.l4

13A formal test of the RE restrictions in (13) can be carried out by
means of the Wald procedure, but will not be attempted here.

14The results are not much affected if instead of the VAR system in

Table 1, univariate AR processes are estimated for q, and LA
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TABLE 1
timates the Coefficie vV t ressiv
Equations for Real Qutput and Real Product Wages
In_the Goal Industry. 1956:1983"

R
egressors q W
Intercept -0.6705 -1.5877
(-1.15) (-2.22)
9.1 0.3597 0.0882
(1.79) (0.36)
a., 0.5586 -0.0810
(2.85) (-0.34)
W o -0.1288 0.6861
(-0.63) (2.73)
v, -0.1074 0.0400
"(-0.60) (0.19)
o 0.0616 0.0757
&2 0.9614 0.5250
X§C(1) 0.27 0.001

t

q, = logarithm of real output, v, = logarithm of real product wage,
o0 = estimated standard of the equation, 82 - adjusted R2, xgc(l) -

Lagrange multiplier statistic for the test of first order serial correla-
tion. The figures in parentheses are t-ratios.
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Overall, there seems to be some support for the hypothesis that apart
from the familiar costs of changing employment, there are also additional
costs involved in altering the gpeed with‘which the employment in the coal
industry is changed. There, however, seeﬁs to be little evidence in favor
of the rational expectations hypothesis that output and real wage expecta-
tions are formed rationally (in the sense of Muth) on the basis of a VAR

model.
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