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Joseph M. Ostroy

A characterization of perfectly competitive equilibrium called the

no-surplus condition developed in Ostroy [1980, 1981], Makowski [1980]

and Artzner and Ostroy [1981] is extended in this paper to a fairly broad
class of nonatomic economies.
Of principal concern are the connections between the no-surplus condition
and
(1) Freéchet differentiability
(ii) Walrasian equilibrium
(iii) sufficient conditions for its realization
(iv) cooperative game-theoretic approaches to perfect competition
(v) the marginal productivity theory of distribution.

Basic to the mathematical exposition is the notion of a direct market

in which individuals "sell themselves' directly and an indirect market

in which individuals sell various commodities. .The mathematical concept of
a linear operator is used to establish an equivalence between direct and indirect
markets and its adjoint establishes an equivalence between the competitive
pricing of persons and commodities.

The term "direct market' appears in Shapley and Shubik [1969] and the

construction used below differs from theirs only in permitting a continuum

rather than a finite number of individuals/commodities.
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I. PRELIMINARIES

The set of agents is the unit interval, denoted by A, along with its
Borel subsets, A, and Lebesgue measure, M.

It will be useful to regard the measure space of agents as elements
of a normed linear space. To this end define for each E ¢ A the charac-

teristic function Xg * A+ R where

1 if a € E
XE(a) =
0 if a & A\E.

-
1\l
rt

X = {XE : E € A}.

This provides a one-to-one correspondence between elements of ¥ and A.
To embed X in a linear space, let 7T = {Ei} be a finite set of
pairwise disjoint elements of A whose union is A. Regarded as {XE.}’
a linear combination of the elements of the partition 7T is an x : A +liR

defined by

x = Oo.X s
i Ei

where o, are scalars. Let X be the set of all such elements and X+
the positive convex cone formed when all a; are restricted to be nonnegative.
Thus, X+ is the smallest convex cone containing X -

The norm of x € X is given by

|x| = zlailx(Ei) .



Therefore,

(The closure of X 1is Ll(A, A, )), the space of Lebesgue integrable functions

on A.)

The commodity space will be denoted by Y, also a linear space with

norm denoted by ||*||. A normon Y is a nonnegative function such that
(a) |lyll = 0 only when y = 0, the zero element of Y,

(b) absolutely homogeneous: |lay|| = |a| |kl

(c) subadditive: |ly +y'|l < |lyll + lly'Il.

A linear transformation, or linear operator, from X to Y is a

mapping T that is homogeneous (aTx = Tox) and additive (T(x+x') = Tx + Ix').
A linear operator is bounded 1f there is a scalar B > 0 such that for all

x € X

x|l < 8lx|.

When the range of T includes its domain define the identity operator

by T = I, where Ix = x.

Let 2(+) be a linear functional on X, i.e., a linear operator from

X to R. A linear functional % 1is bounded if there is a R' such that

for all x € X, |2(x)]| i_B'lx

. It is well-known that any bounded linear
functional on X can be represented by a p € Lw(A, A, A) —— i.e., for

all x € X

L(x) = pr(a)X(a)dA

The norm of p 1s given by



| px |

Ipl_ = sup .
x|<t |x|

Let q(*) be a linear functional on Y. The set of all bounded linear

functionals on Y is denoted by Y*. The norm of q € Y* is

la)l

su ————— .
Isif<t Tyl

Below q(y) will be written as qy just as 2(x) 1is written as px.

lall 4 =

The space X was introduced to embed the set of agents into a normed
linear space. An element p € L°° is a price vector for the set of agents,
where p(a) 1s the price of agent a € A, Similarly, q 1is a price vector
for commodities. The goal 1is to establish a relation between the pricing
of commodities and the pricing of persons, i.e., between q and p.

Assume T 1is bounded. Since T : X+ Y and q € Y*, q(Tx) is a
linear functional on Y. If R#(x) 1is the scalar defined by (qT)x, £(x)

o]
is a linear functional on X. Thus, there is.a p € L.  such that

L(x) = (qT)x = px.

Holding T fixed, £(°) = p varies with q. Denote this functional

dependence of p on q by the adjoint operator T* : Y* > L°° where T*

is defined by the condition that for all x

(T*q)x = (qT)x.

Thus, T* 1s a mapping from the space of prices for commodities to the space

of prices for persons.



II. DIRECT AND INDIRECT MARKETS

Let Y+ be a positive, convex cone in Y, i.e., y, y' € Y+ and
a >0 imply (oy +y') € Y+. Just as ]{i is used to denote the relevant
commodity space when there are two inputs, Y+ plays the same role for

the commodity space Y.
The function g : Y+ + 1R+ is a production function from the relevant

space of inputs to scalar outputs. It is assumed that for all o >0 and y, y' € Y+,

(g.1): (positively homogeneous) g(ay) = og(y),
(g.2): (superadditive) g(y +y') > g(y) + g(y"),
(g.3): (Lipschitz) There exists Y > 0 such that

lgy) - gy < Aly-y'll.

REMARK 1: A bounded linear functional is both Lipschitz and positively
homogeneous on Y+. Therefore g differs from a bounded linear functional
only be permitting superadditivity rather than additivity. The norm l“ H

is both positively homogeneous and Lipschitz. Therefore g differs from

||- H by being superadditive rather than subadditive and by the absence

of the requirement that g(y) = 0 implies y = 0. (g.1l) and (g.2) imply g is

concave.
Let T be a linear operator from X to Y such that

(T.1): T[x] <y,

(T.2): T is bounded.

Note that by putting

W(E) = D‘E,



W: A~ Y+ defines a Y+—valued measure on A. W(E) describes the initial
endowment of inputs held by E.

(T.2) implies that

W is countably additive : if {Em} is a sequence of
pairwise disjoint sets in A whose union is E,
m=k
lim ||W(E) - W(U E)|| = 0; and,
k m=] @
W is nonatomic : if ||W(E)|| # O, there is an

E'C E, E' ¢ A such that 0 # |[|[W(E")|| # ||W(E)|]

REMARK 2: 1If W 1s countably additive and nonatomic there may be no bounded
T such that W(E) = TXE. To 1llustrate suppose Y = R. By the Radon-
Nikodym Theorem there is an x € Ll(A, A, A) such that W(E) = fxxEdk

but there is no guarantee that x € Lw(A, A, A) as is necessary if T

is to be bounded. Thus, (T.2) imposes the requirement that per capita
endowments, ”TXE“/IXEl? be bounded. This does not appear to be a serious
restriction. It is not, however, imposed in the Aumann [1964] or Vind [1964]

formulation of nonatomic economies.
It is useful to distinguish among the following three subsets of the
commodity space,
T[x] cT[x+] cY+ .

T{x] 4is the set of inputs that are actually available to the agents. It



is the range of the vector measure W(E) = TXE. The convex cone T[X+]
may be regarded as the relevant "subspace" for T[X] on which certain
mathematical concepts may be defined. Finally, there is Y+ which may

be interpreted as the space of concelvably available, rather than actually

available, inputs.

Taking Y+ as given, define an indirect market by the pair (g,T).

Let be the function g restricted to the subset T[X+] of its domain.

&

To every indirect market (g,T) there corresponds a direct market (f,I)

where f : X+ +?R+, I is the identity operator on X and for all x ¢ X+,
f(x) = £(Ix) = g(Tx).

f is simply 8 defined on its underlying domain X+. In an indirect
market E sells commodities TXE whereas in the corresponding direct
market the members of E sell themselves directly.

The connections between direct and indirect markets are described

in Figure 1.

Space Prices
of of
Commodities Commodities
Y > Y*
T T*
Space o Prices
of X = X > L of
Agents 1 Agents

Figure 1



The upper route goes from the space of agents, X, via T to the space
of commodity inputs, to the space of prices for those inputs and then,
via the adjoint T*, to the prices of agents. This is the path through

the indirect market (g,T). The direct market (f,I) takes the more

direct lower route.



ITI. WALRASTAN AND NO-SURPLUS DEFINITIONS OF COMPETITIVE EQUILIBRIUM

The pair (g,T) defines a simple economy in which agents supply

inputs, inelastically, to produce output. A distribution of the total output

is an additive measure u : A *ﬁR+ such that
H(A) = S(TXA)
UW(EUE'") =u(E) + U(E'), whenever ENE' = @

These restrictions on | are assumed throughout.

Equilibrium in (g,T) amounts to a definition of what constitutes
an equilibrium distribution. In this section the Walrasian and no-surplus
definitions are given.

A Walrasian equilibrium (WE) for (g,T) is a pair (@,q) where

g € Y* such that

WE.1: aTXp = u(E), E € A

WE.2: 8(Tx,) - aTX, > 8(¥) - qy, vy e Y,

(WE.2) says that taking WE prices, q, as given, profit-maximizing
demands for inmputs equal their supply, TXA. (WE.1) says that output,
assumed to have a price of unity, is distributed according to the WE prices
of inputs.

It follows from the homogeneity of g that (WE.2) 1is equivalent to

WE.2a: qTXA = g(TxA)

WE.2b: ay > 8(y), yey,

This, in turn, is equivalent to the condition that q Dbelongs to the

subdifferential of g on Y+ at TxA defined by
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9g(Tx,) = la € Y* : g(Tx,) - a(Tx, - y) > 8(y), y e Y }.

Since the condition (WE.l) describing 1y is derived from q it suffices

to define a WE for (g,T) as

WEq: q € 3g(TXA).

Thus, a WE is defined as a weak derivative (subderivative of a concave
function) of g at TXA.

A definition of WE entirely in terms of U may also be obtained.
If q¢ Bg(TxA), then by definition of the adjoint T* and the definition

of the direct market (f,I) associated with (g, T),
*q € 9 = { ® > }
Thqe 9f(x,) = {peL : £(x,) - P(X, - ¥ > f£(x), x € X }.

If q represents WE prices for commodities in the indirect market

(g,1), T*q represents WE prices for persons in the corresponding

direct market.

Putting M(E) = PXp? where p e Bf(XA), it is easily verified that the
distribution of output defined by p satisfies for all 7 = {Ei} and

oy > 0,

. > .
WEU. Zaiu(Ei) __f(Zaiin)
Therefore, if q € ag(TxA) there is a U satisfying WEu. The converse is

THEOREM 1: If y satisfies WEU there 1is a p ¢ af(XA) such that

*_
u(E) = PXg and a qe T lp such that q ¢ ag(TxA).

To prove the Theorem it must be established that
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LEMMA: ag(TXA) # 0.

PROOF: Let vy = Tx, and T = g(y). Define
B, = {(t,y) g 21, (,y) e RxY 3,

B = {(y") = (T,y) +al(t,y) - (T,y)]: a >0, (1,y) € Bg}-

By (g.1-2) Bg is a convex cone in R X Y+ and by construction B
is a convex cone in R X Y. Setting a = 1 reveals that Bg(: B and
setting o = O reveals that (T,y) is a boundary point of B.
(According to Dunford and Schwartz [1957, 451-452}, B would be
defined as the cone with vertex (T,y) generated by Bg.)

1. It will be demonstrated that
(T+y,y) ¢ cl B,

where cl = closure and Y is the parameter defining the Lipschitz condition,

(g.3). It suffices to show that for any y € Y+ and a > 0 such that
Iy +aty-»1 - yll =llaty -l < 8 <1,
there is the inequality,
1T+ aey)-sGN] - @+ 7| = latoy) - gl - v| > X5
This follows from the Lipschitz condition,

lg(ay) - glay)| < v |lay-m) | < vé.

2. As a consequence of 1., there is by the Separation Theorem (Dunford
and Schwartz, 417-418) an (§,q) € R x Y*, (&,q) # (0,0), separating

the point (T+y,y) from cl B. Thus, for all y € Y+ and a > 0,
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ECTH) + qy > B = sup £(T+a[1-T]) + q(y + aly-y])

uzp
T,y) €B
(t,y) g
> ET + qy.

3. To show that B = ET + qy, suppose the contrary that a (1,y) € Bg

exists such that &£T - qy > £T + qy, or
£(t-1) - q(y-y) > 0.

Since B 1is a cone (T + a[t-T], y + afy-y]) € B for all «o > 0. But

the above inequality would make
E(t+a[T-T]) + q(y+aly-y])

arbitrarily large when o is arbitrarily large, contradicting the existence

of the sup = B.

4. To show that B =0, note that g(0) = 0 and therefore B > 0.
If B were positive, homogeneity, (g.l), would make it unbounded. By the

inequality in 2., E&(T+y) + qy > €T + qy = 0. Thus, & > O.

5. Setting q' = -E_lq, it follows from 3. and 4. that

q'TX, = q'y = T = g(¥)
q'y > g(y)

The inequality is obtained by setting a = 1. Thus, q' € Bg(TxA).
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PROOF OF THEOREM 1: From the assumptions that g is Lipschitz and T

is bounded,

B(TX) - B(Typ)  £0G) - £04p) |

© >  sup = .
|xg|>0 |XE| A(E) ‘

From the hypothesis of the Theorem, H(A\E) Z»f(XA\E)' Since u(A) = f(xA),

f(xA) - f(xA\E) . p(A) - u(A\E) . u(E) .
A(E) - A (E) CME) =

o >

The Radon-Nikodym Theorem (Halmos [1950, 128]) along with the

above inequality implies the existence of a p € L°o such that
W(E) = pXp-
Therefore, PX, = f(xA) and p(ZaiXEi) z_f(Zaiin), or
p € 9f(x,)-
Define
9g..(Tx,) = {q'eY* : g(TXA) - q'T(XA—x) > g(Tx), x € X+}.

A\l

*_.
By construction if p € af(xA) and q' € T 1p, then q' € BgT(TXA).

This follows from
q'(Tx) = (T*q')x = px.

For any q' € BgT(TXA) there exists q € Bg(TxA) such that for all

y € T[X],
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qy = qy .
Combining these results
= ' = * ' = =
aTxy = a'TX; = (T*q")X, = pXg = u(E).

Therefore, the hypothesis on | implies a p leading toa q ¢ Bg(TXA)

that is a WE for (g,T).
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The Walrasian definition of equilibrium has individuals responding
passively to announced prices rather than bargaining for more favorable
terms; and, prices are obtained for all commodities in Y+, not only
those actually available in T[X]. In the no-surplus approach individuals
are relied upon to bargain vigorously for all they can obtain; and,
the definition is based entirely on the properties of g on T[¥].
Therefore, it may be described via the corresponding direct market.

Relative to the distribution p, E contributes

a positive surplus > u(E)
no surplus if f(XA) - f(xA\E) = U(E)
a negative surplus < U(E)

The quantity f(xA) - f(XA\E) is the addition to total output attributable
to E -~ the marginal product of E. When this is greater (less) than
what it receives, u(E), E contributes a positive (negative) surplus
to A\E. When the amount it receives is exactly equal to the output it
adds E 1is contributing no surplus, i.e., E is extracting all the surplus
it contributes.

It would be both unreasonably demanding and inconsistent with the
notion of perfect competition to require of an equilibrium U that it
exhibit no surplus for every group E. The smallest amount of superadditivity
of f on X+ would preclude such a distribution. Further, the term "per-
fectly competitive equilibrium'" describes a relation between individuals

and the rest of the economy rather than between arbitrary groups E and

A\E.
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Let {En} be an arbitrary sequence of elements in A such that
A(En)\N 0. Thus {A(En)} is tending to the scale of an individual
agent. The direct market (f,I) exhibits no-surplus (NS) if there
exists a distribution p such that for all {En},

[£0) = FOg ) ~ W]
=0.

NS: lim
X(En)

When p is NS the smaller the group, and therefore the closer it is to
the scale of an individual, the more nearly it is extracting all of the
per capita surplus attributable to it.

Just as a WE 1is equivalent to a subderivative of g on Y+ at
TXA’ it will be shown that a NS distribution is equivalent to a Fréchet
derivative of 8 at TXA. This is defined as

(T, - 8(Tx) - aTOx)|

DgT(TXA) = {ge Y*: 1lim 0}.

xnex+ IIT(XA—xn)H

20, ) 11 20

It is more convenient to work with the corresponding direct market in

which the Fréchet derivative of f at is

XA
l£x,) - £x) - p(XA—Xn)I=

0}

From the definition of f and the assumption that T is bounded,

q € DgT(TXA) iff T*q € Df(xA).



17

Because T[X+] need not be dense in Y+ or TXA need not be in the
relative interior of Y+, DgT(TxA) may contain more than one element.
When translated to the direct market, however, this redundancy disappears --

\J

i.e., if q, q' € Dgy(Tx,), then |T*(g-q")], = O.

REMARK 3: The Gateaux derivative of f at y, denoted Vf(xA), may be
defined by the condition that Bf(xA) is a singleton. Therefore, a

necessary condition for DgT(TXA) is that

T*[0g(TX,) ] = VE(X,).

If p = Df(XA) it follows immediately that (f,I) exhibits an NS
distribution. Simply substitute XA\En for X and p(xA - XA\En) =
PXg = u(En) into the definition of Df(xA). Along with a demonstra-
tioE of the converse, the differentiability properties of concave functions
may be further exploited to yield an equivalent definition of perfectly
competitive equilibrium in terms of perfectly elastic demand/supply sche-
dules facing individuals. Related equivalences between NS and definitions
of perfectly elastic demand/supply appear in Ostroy [1980], Makowski {19801,

and Artzner and Ostroy [1981].

Let p' e Sf(XA\E). Therefore,
- ' - '
f(XA\E) ) XA\E > f(x) p'x, x € X+ .

Even though x may contain strictly positive quantities of all inputs
1

in A, at the prices p profits are maximized when no inputs in E

are hired. Clearly, the values of p'(a), a € E, must be sufficiently
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high to make their employment unprofitable, whereas p'(a), a ¢ A\E,
must be such as to permit their full employment.

In (g,T) or its associated (f,I) individuals would accept any
nonnegative price for their inputs if they could not do any better.
(Reservation demands are nil.) In terms of prices, the boundary of
bargains between E and A\E for the prices paid to the members of E
lies in the interval [0, p'(a)], a € E, where p's Bf(XA\E). If
p' € {Bf(XA) F\af(XA\E)}, E may be said to have extracted the most
favorable prices it could have obtained. At prices any higher than p'(a),
a € E, demand for the inputs owned by E would be zero while at p' they
are fully employed. Thus E may be said to face perfectly elastic
demands for the inputs it supplies at prices p'.

Of course, not all groups can be expected to face such prices.

This would require that p'e {af(XA)};QAaf(XA\E)} which would imply that
f 1is the linear function f(x) = p'x. What is required is that each indivi-
dual face perfectly elastic demands. This will obtain and p € Bf(xA)

will be said to be perfectly determinate (PD) if for any {En} and

n

PD: lim |pn—p|w= 0.

Note the convergence of the prices of persons with respect to the L” norm.
Convergence with respect to any less demanding norm such as the Ll

would be too weak to capture the notion of perfectly competitive equilibrium

among individuals. This is illustrated in Figure 2.



19
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Figure 2

Assume that klp—pnldl N 0. This is obviously a necessary condition for

PD but it is not sufficient because it does not preclude the possibility that
in {pn} the prices of the persons in En remain much higher than they

are in p no matter how small is A(En). (See example 1, below.)

The summary characterization of the NS definition of equilibrium is

THEOREM 2: The following are equivalent:

(i) (£f,I) exhibits an NS distribution,

(i1) p = DE(X,)»

(iii) p is PD.

The following steps prove Theorem 2.
1. (4dii) » (1) : Let py be defined by u(E) = PXg* When p is PD,

P e af(XA) and therefore

£(xy) = £X\g ) - P(XA™Xp\E ) f(xy) - f(xA\E ) = WE)
n n n
= >0. (1)
Xy - Xa\g_| A(E )
n
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n
Similarly, when p € Bf(XA\En),

n
f(XA\En) - f(XA) =P (XA\En—XA)

> 0. (2)
'XA - XA\E l
n
Adding (1) and (2),
(p™-P) (X, =Xz \g ) Ip_=p |, A(E)
O < n < . (3)
Xy - xA\EnI A(E_)

From PD, 1lim |pn—pl°o = 0. Since (3) dominates (1), its limit is zero.

Thus, u 1s NS.

2, (ii) - (iii) : A theorem of Smulian [1940] (see also Yamamuro [1974, p. 811])

for homogeneous, subadditive functions adapted here to homogeneous, superadd:::

—_— -

functions on X+ is: If p = Df(xA), then for any {pn} such that (a)

nX -+ f(x) and (b) pnx > f(x), xeX lim pn -pl|l. =0, If
P Xy X%’ ane z o

+’

pn £ af(XA\E ), pn fulfills (b) and since {pn} is known to be weak-star
n

convergent to p it fulfills (a). Therefore, p is PD.

3. (i) » (4i): If M is a subset of X, containing Xy define

|£(x,) - £(x ) - p(x,~x )|

Df(xA;M) = {p ¢ L7 . 1lim l I
x_eM X, - X
|x,7x_ 1>0 Aom

= 0}

3a. From the Lemma to Theorem 1 applied to f there is a

P E Bf(XA). To show that p = Df(XA;X) it suffices to show that u(E) = px
E

where u is NS. For any {E },
n

s

<
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FGQ) = £0G\g ) - pxg
14m n 5o,
A(En)

The definition of U as NS says that when PXg is replaced by u(En)
n

the limit is zero. Therefore,

u(En) - PXg
n

1im > 0.

A(En) —

Since {En} is arbitrary and u(A) = PXyp> u(E) = PXg*
Note that p = Df(xA;x) implies by substituting PXy for f(XA),
n n

lim = Q. (4)
A(En)

3b. Let T = {Ei} , i=1, ..., n.

Yefine s : [0,1]n +GR+ and e = (al,...,un) £ [0,1]n as
w = -
s (e) = p(Zaiw(Ei)) f(ZaiW(Ei)) > 0.

For fixed Xg i=1, ...,n, p and f are functions on [0,1]“;
i
p 1is linear and therefore convex and f 1s concave and therefore -f

. ™
is convex. s , being the sum of two convex functions, is also convex.

Let eo = (1,1,...,1), ej = (0,...,0,1,0,...,0) and e = eO - e,

1 n
} are the extreme points of the convex set

Then {eo,e yeoes€
n n
A = {e € [0,1] : e = (al,...,an), Ia - ai) < 1}.

The maximum of a convex function on a convex set occurs at an extreme

point. (Rockafeller [1970, p. 344]). Therefore, since sﬂ(e) z_sﬂ(eo) = 0,

max sn(e) =  max sﬁ(ei) = max p(XA\E ) - ).
i

f(x
ech 1<i<n lfifp A\Ei
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Let {xn = Zai(n)XE } be a sequence in <x> converging to Xp
i(n)
such that A(E ) = n_lA(A) = n_1 and
i(n)
X, - x| |Z(-o, )]
lim 2% = 1in L) 4.
-1 -1
n n
Letting m(n) = {E }, sﬂﬁ”(ei(n)) = pX - f(x ); and for some
1(n) A\E, A\E
i(n) i(n)
e € AQ s?ﬁn(e) = px - f(xn). Therefore,
pXA\Ei(n) - f(XA\Ei(n)) pPx_ - f(xn)
lim max =) > lim >0 .
1<i(n)<n n n
- - |XA~Xl
Ev (4), this limit is zero.
3c. p = Df(xA) : Let Xi be the subset of X+ consisting of elements
x = Zo,X such that A(E,) = n—l, i=1, ..., n, and a, € [0,a], o > 1.
i Ei i i —

The argument in 3b. demonstrates that p = Df(XA;Xi) and it follows im-
mediately that for any a >1, p = Df(XA;Xi).

For any 51 > 0 there is an o such that if x' ¢ X+ there is an
X € Xz for which |x' - x| < 61. For any o > 1 and 62 >0 there is a

63 such that

f(xA) - f(x) - p(xA—x)
< 8

X, - x| ?

A

whenever |Xx, - x| < §,. This follows from p = Df( ;Xa).
A 3 Xa3 %y

Therefore, if x' ¢ X, and IXA - x'| < 63,

f(xA) - f(x') - p(xA—X')

< 6, + 6|l trB),
IXA - X'] )
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where 7Yy 1is the Lipschitz parameter for (g.3) and B 1is the bound for T,
i.e., Ig(TX) - g(Tx')l <y ”T(x—x')” < yB Ix—x'l = YBSI. Therefore,

p = Df(XA).
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IV. NO-SURPLUS: SUFFICIENT CONDITIONS

Since the direct market is derived from some indirect market (g,T)
it is the properties of g and T upon which the existence of an NS
distribution depends. In Remark 1 it was observed that g differs from
a linear function on Y+ only by permitting superadditivity. Since all
linear functions are Fréchet differentiable, the failure of NS can be
imputed to the superadditivity of g ~-- more precisely, the superadditivity
of 8y The purpose of this section is to examine the rather substantial
restrictions on the supperadditivity of By imposed by the requirement
that DgT(TXA), and therefore an NS distribution, exists,

From Theorem 2, (g,T) is NS iff for all {En}, " e Bg(TXA\E )

n

and q € Bg(TXA),
n
lim|T*(q"-q) | =0 .
Two quite separate conditions are subsumed by this. The first is,
% =
T*[3g(Tx, )] = VE(X,) -
The second is,
* n
{T q '} contains a Cauchy subsequence.

They are each necessary and jointly sufficient for the desired conclusion.
Granting Vf(XA) (see Remark 6, below), differentiability will depend

on the properties of T*. T* 1is said to be compact if it maps bounded

sets in Y* onto sets in L whose closures are compact. The nonemptiness

of 23g(y) for all y 1in a Y+ ~ neighborhood of TXA (Lemma 1) implies
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that there is a bounded set B C Loo such that
B r\ag(TxA\E ) # 0.
n
Therefore,

PROPOSITION 1: If T*[Bg(TXA)] = Vf(XA), and T* is compact, (g,T)

exhibits NS.

The restrictions on the superaddivity of 8 when T* is compact
will be examined. Translating the problem from the indirect market (g,T)
to its associated direct market (f,I), superadditivity implies that
for any 7 = {Ei}

o(m = f(x,) - 2 flxg)2>0.

Eisn i

The difference, 0(m), is a measure of the gains in output from the sharing
of imputs. In general, the smaller is each A(Ei) the larger the value
of o(m).

Say that (f,I) exhibits population constant returns (PCR) if

for any 8 >0 and &' > 0 there exists a 7 = {Ei} such that

PCR.1: X(Ei) < g, all i,

PCR.2: o(m) < &'

PCR is similar to the commodity constant returns of g, assumption (g.l),
in that both permit maximum efficiency to be achieved at arbitrarily small
scale. However, PCR 1is stronger than commodity constant returns because it
requires that these small scale productive units draw their (small scale)

inputs from entirely disjoint sets of factor owners. Thus, PCR implies

that the economy as a whole exhibits no gains associated with the phenomenon
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of specialization and division of labor. PCR 1is also weaker than
commodity constant returns since it does not require that a doubling

of persons doubles outputs -- only that there is some way always to divide
any group of factor owners into disjoint halves without damage to total

productivity.

THEOREM 3: If T* is compact, the direct market (f,I) associated with

(g,T) exhibits PCR.

The following steps prove Theorem 3.

1. A basic result in operator theory 1s that T* is compact iff T is

compact. (See for example, Kantorovich and Akilov [1964, p. 309].)

2. The compactness of T 1is closely associlated with its finite
dimensionality. An operator T 1is finite-dimensional if T[X] 1is a
finite-dimensional subspace of Y. Of course this represents no restric-
tion if Y is itself finite-dimensional. It is well-known that bounded
operators having finite-dimensional range are compact. Further, T is
compact iff there exists a sequence of finite-dimensional operators iIk\
such that

lim  sup ||Tx - Tka = 0.
x|< 1

(See Diestel and Uhl [1977, p. 69].) Thus the compactness of T, an es-
sential sufficient condition for NS, implies that T is "virtuallv"
finite-dimensional. The implications of this are carried one step fur-
ther to yield the restrictions on the superadditivity of 8y

3. Suppose T is finite-dimensional. Let T be defined by EXE = (TXE,

A(E)).
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Then f[x] is the range of a finite-dimensional, nonatomic vector measure.
By Lyapunov's Theorem (Diestel and Uhl [1977, p. 264]), if <T[x]> is

the convex hull of T[x], then
flx] = <Tlx]>.

Therefore, for any integer n there exists T = {Ei}, i=1, ..., n, such

that

Ty = (Tx,, nTAA)).
i

Each Ei comprises one—nth of the population and owns one-—nth of the
total inputs. By the homogeneity of g,
-1
i
4, To complete the demonstration of Theorem 3, let n_1 < ¢ and k be
k '
such that sup ||[Tx - T xllf_ﬁ .

x|<1

REMARK 4 (Thick Markets): An operator T is representable if there is

a Bochner integrable function w : A > Y such that for all x ¢ X,
Tx = [x(a)w(a)dA.

If T 1is representable the Y-valued measure W defined by

W(E) = TXE has w as its Radon-Nikodym derivative,

W(E) = fx wdX =/ wdA.
E E

When the measure W describing holdings of commodities has a Radon-

Nikoydm derivative markets will be said to be thick. To justify this
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term suppose Y 1s a set of real-valued functions on C, the index set

of commodities (e.g., C might be the integers or a subset of R). Denote
by WC(A) the aggregate quantity of commodity ¢ € C available in the
market. If W has a Radon-Nikodym derivative, then WC(A) > 0 onlvy

if there is a set E with A(E) > 0 such that
WC(E) = wac(a)dk >0,

i.e., only if there is a non-null set of agents all of whom have positive
quantities of commodity c.
If T 1is compact it is known to be representable. (See Diestel and

Uhl, [1977, p. 68]}). Therefore compactness of T implies that markets

are thick. Remark 2 shows that the converse does not hold.

The model Aumann [1964] used to prove the core equivalence theorem
may be described as having introduced thick markets into general equilibrium
theory. Bewley's [1973] generalization displays the power of the thick
markets hypothesis by showing that Aumann's conclusions for finite-~dimensional
spaces can be extended. Indeed, it is possible to show that Aumann's
result holds for any (Banach) commodity space as long as markets are

thick. Such markets also exhibit PCR. (See Remarks 6 and 9.)

REMARK 5 (Thin Markets): Define markets to be thin if they are not thick.
Since a compact operator necessarily implies that TXE = W(E) defines

a W with a Radon-Nikodym derivative, for a market to be thin, T cannot

be compact.

The canonical example of thin markets i1s the ldentity operator, I.

I 1is bounded (|Ix| = le) and therefore W(E) = IXE = Xg defines a countably
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additive, nonatomic measure; but there can be no w : A~ Ll(A,A,A) such
that IXg = fEWdX. To demonstrate, let c¢ € C = A. The only E having

positive endowment of ¢ is E = {a} where a = c. Therefore,
WC(A) = fwc(a)dA = IE wc(a)dA = 0;

but WC(A) = 1.

The identity operator would be appropriate to the depiction of an
economy with commodity heterogeneity, the opposite of thick markets. This
heterogeneity need not be incompatible with perfect competition.

Let T be a bounded operator from X to Y and U a compact
operator from Y to Y'. Y' may, for example, be a subspace of Y.

Then T' = UT is from X to Y' and it is known that T' is compact.
(See Kantorovich [1964, 309].) Define g' : Y' +ZR+ to be a function on
the same space as the range of T'. To demonstrate that (g,T) exhibits
an NS distribution, assuming that T*[Bg(TXA)] = Vf(xA), it suffices

1

to impose the added assumption on g that there is a g such that
g(Tx) = g'(T'x).

Therefore the indirect market (g,T) is equivalent to (g',T') and
step 1. of Theorem 3 can be applied to Proposition 1 to show that (g,T)
exhibits NS.

The added assumption on g increases the substitution possibilities among
commodities. Therefore, physical differences among the heterogeneous com-
modities supplied by individuals, for example when T = I, overstates
their economic individuality. This point may be given further emphasis

by noting that although markets in (g,T) may be thin, if (g,T) 1is
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equivalent to (g',T') where T' is compact, then (g,T) is equivalent
to an indirect market in which markets are thick.
An examplar of this version of thin markets is Mas-Colell's [1975]

model of perfectly competitive product differentiation.

REMARK 6 (Perfectly Competitive Environments): Sufficient conditions
for NS described above have focused on the particular properties required

of T or g. Define Y as a perfectly competitive environment if for

all, or "almost all," (g,T) satisfying (g.1-3) and (T.1-2) an NS distribu-
tion exists. Since g 1is concave and NS is equivalent to DgT(TXA),

a space Y such that convex functions are almost always Frechet differen-
tiable constitutes a perfectly competitive environment. Asplund [1968]

classifies Y as a strong differentability space if every continuous

convex function is Fréchet differentiable on a dense G6 set of its domain.

Therefore, a strong differentiability space is a perfectly competitive

environment. Asplund's results imply, for example, that for 1 < r < o,
Lr(C,C,p) is a strong differentiability space. [Lr(C,C,p) is the rth-
integrable functions on the o-finite measure space (C,C,p).]

A weak differentiability space 1s one in which continuous convex func-

tions are Gateaux differentiable on a dense GG set. Ll is known to be

a weak, but not a strong, differentiability space.
There appears to be a close connection between the differentiability
properties of convex functions on Y and the PCR property of By Call

Y a Lyapunov convexity space if for every bounded operator T: X>Y,

(*) cl T[x] = cl <T[x]>.
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It is from (*) that the PCR property of Theorem 3 is obtained. Precisely

the same spaces Asplund finds to be strongly differentiable can be shown,

via a result of Uhl [1969], to be Lyapunov convexity spaces. (Uhl proves

that if W 1is a Y-valued measure with finite total variation and Y is

either reflexive or a separable dual space, the range of W, T[x], satisfies

(*). Asplund [1968] proves that these are strong differentiability spaces.)
The identity operator shows that Ll is not a Lyapunov convexity

space. There is no element in cl I[x] equal to I/ZXA € <I(x]>.

REMARK 7 (Euler's Theorem): The relation between perfectly competitive

environments (strong differentiability spaces) and PCR (Lyapunov convexity

spaces) is reminiscent of Euler's Theorem for homogeneous functions. Let
k

e R4_+fm+ be a production function and Ve(*) its vector of partial

derivatives. When inputs are paid their marginal products, output is

exactly exhausted by payments to inputs ¢t = (tl,...,tk) iff
Ve(t)t = e(t). 1)
Similarity to the NS condition
Dgr(Tx,)TX, = 8(TX,)> (2)

is evident.

Just as (1) might hold for an arbitrarily given e at some t, so
(2) might hold for arbitrary g at some TXA' However, to guarantee (1)
for all t 1t is necessary to have commodity constant returns; and, to

guarantee (2) for all TXA it may be necessary to have PCR.



32

1
EXAMPLE 1: Since L is not a strong differentiability space and the
identity operator does not satisfy (*), an example that is neither NS nor

PCR can be found. Let (g,T) = (f,1), where for x ¢ Li(A,A,A)

B /B

g(Tx) = £(x) = (MIx@ 1P anl’B, o0<p<1 .

It is readily verified that (g,T) satisfies (g.l1l-3) and (T.1-2). Further,

and therefore (u,p) = (A,XA) is the unique WE. Thus, one of the necessary

conditions for NS holds. However, for any disjoint, nbn—null E and E',
f(xEk)E,) > £(Xg) + £(Xge) -

The market does not exhibit PCR.
To demonstrate that (f,I) 1is not NS, part (iii) of Theorem 2 is

used. It may be verified that pn € Bf(XA\E ) where,
n

1/8-1
N [A(A\E )] , aehAE
p (a) =

1/8, ac E .
Letting p = Xy = Vf(XA),
lim |pn - plm =1/8 -1 # 0.

Therefore p is not PD. (See Figure 2.)
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V. INDIRECT MARKETS WITH DIRECT INPUTS

The construction in this section provides the bridge to carry over
the above results to economies with many outputs and ordinal preferences.

Let (h, (T,I)) be an indirect market with direct inputs where

T and 1 are defined as above and T satisfies (T.1-2). The produc-
tion function h : Y+ x X+;+ EH. is assumed to satisfy (h.l), positively
homogeneous; (h.2), superadditive; and (h.3), Lipschitz on its domain just

as g satisfies (g.1-3). The Lipschitz condition is that for all

v, y' € Y+ and x, x' ¢ X+ there is a 7Yy' such that
Ih(y,x) - h(y',x")| <v'"(|ly=y"| + |x=x"]).

Although production possibilities are described by the single
function h, it is useful to regard h(',IXE) = h(',XE) as the produc-~
tion function available to E so that there may be as many production
functions as there are distinct groups. Thus, h(TxE,IXE) is the output
E could produce when its endowment of '"raw material' inputs is TXE and
its endowment of "entrepreneurial' inputs is, by definition, IXE

Let r € L°° and interpret r(a) as the rent assigned to one unit
of entrepreneurial input a € A. An element of Bh(TXA,IXA) is a pair

(q,r) € Y*x L”  such that

qIX, + rIX, = h(TIX,,IX,)

qy + rx > h(y,x), (y,x) € Y+ X X+.
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If (q,r) € Bh(TxA,IXA) and Y 1s a distribution of the total
output such that u(E) = qTXE + rIXE, then in a manner entirely analogous
to the definition for (g,T), (u,(q,r)) is a WE for (h,(T,I)).

Similarly, u is an NS distribution for (h,(T,I)) if for every
{E 1,

[n(Tx,, 1Ix,) - h(TXg Targ ) = BB

lim = 0,
X(En)

Letting hT be the restriction of h to the subset of its domain which

is the graph of T,

{(y,x) : (y,x) = (Tx,Ix), x € X+},

define,
Ih(TX s IX,) - h(Tx ,Ix ) - [qT(x,~x_) + rI(x,-x )]|
Dh_(Tx.,Ix.) = {(q,r) : 1lim A7 A LA A n A0 )
TOTATTA XXy T Ol + [1(x,x )|
n A n A 'n
x,~x_ [0

An extension of Theorem 2 characterizing an NS distribution for (g,T)

yields the result that
U is NS iff p(E) = qTXE + rIXE, where (q,r) € DhT(TXA,IXA),

The difference between a (q,r) € 8h(TXA,IXA) and a (q,r) which
also belongs to DhT(TxA,IxA) is the difference between Walrasian and
perfectly competitive pricing. Applied to r, it is the difference between
rents such that if they are taken as given along with q, hiring all the
inputs represents an aggregate, profit-maximizing production plan, and rents
such that each agent is extracting all the surplus or marginal product
contributed by its entrepreneurial input. This is more fully elaborated

in Makowski [1980].



35

REMARK 8: Suppose there are only a finite number of raw material inputs
(T is finite-dimensional) and Bh(TXA,IXA) is unique. Then the existence
of a perfectly competitive equilibrium reduces to the existence of per-
fectly competitive rents. However, since I 1is not a compact operator
(see Remark 5), the competitiveness of r 1is dubious unless there is a
compact U such that h(y,x) = H(y,x'") whenever x' = UIx = Ux -- i.e.,
unless there are substantial substitution possibilities among the entre-
preneurial inputs. When U is compact and T 1is finite-dimensional,

entrepreneurial inputs are sufficiently redundant to guarantee PCR.

The direct market (f,I) corresponding to (h,(T,I)) is defined

£(xg) = h(TXE,IXE).

Let (T*,I*) be the adjoint of (T,I), where (T*,I*) : Y* x L 1"

and (T*,I*)(q,r) = p is defined by the equality that for all x ¢ X,
(T*q)x + (I*r)x = q(Tx) + r(Ix) = PX.

Thus, if q represents the prices of raw material inputs and r the

prices of entrepreneurial inputs, then
p = T*q + I*r

represents the prices of persons in the corresponding direct market.
The representation of an ordinal exchange economy by an indirect
market with direct inputs will impose an added restriction on h. For

all & > 0 and (y,x) € Y, % X, another assumption on h 1is

(h.4): (zero homogeneity in entrepreneurial inputs) h(y,ox) = h(y,x).
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With (h.1-3) additions to entrepreneurial inputs allow access to another
technology that may be, in terms of raw material inputs, more productive.
This is also permitted with (h.4) but the productivity of these additional
entrepreneurial inputs is limited to those changes that do not take place
by positive scalar multiplication.

As a consequence,

PROPOSITION 2: If h satisfies (h.1-4) and (q,r) € 3h(y,x), then rx = 0.
PROOF: By (h.1), qy + rx = h(y,x) and qy' + rx' > h(y',x"), (y',x") ¢ Y+}<X+.
When 6 >0 and x' = ax, qy + orx > h(y,ox) = h(y,x) which can only

be satisfied if rx = 0.

Therefore, if x = XA and (q,r) € oh(y,x) then r must be the
null function. The implication is that if (u,(q,r)) dis a WE when h
satisfies (h.4), the total value of output is entirely accounted for by
the values given to the raw material inputs -- i.e., qTXA = h(TXA,IXA)
and u(E) = qTxE. Even though r 1s null, the existence of an NS
distribution will depend in part on whether or not lim lrn[oo =0,

n n . ;
where (q ,r ) € Bh(TxA\En,IXA\En). The interpretation is that if

lim lrnlw = 0, the preferences of any small group of agents are not very
different from the preferences exhibited by others. There is, of course,
no guarantee of this. For example, locational differences among commodities
and persons might preclude it. If it is satisfied, the existence of an NS
distribution would depend on whether or not lim IT*(qn-q)Ln= 0, precisely
the condition for an NS distribution in (g,T).

Not treated in this paper are ordinal economies with production, but
the framework of this section and Makowski's results for finite economies

suggest that such an extension may be straightforward.



37

VI. ORDINAL EXCHANGE ECONOMIES

The following description of an ordinal exchange economy is based
on Vind [1964].

It was observed above that by setting W(E) = TXE’ W defines a
countably additive, nonatomic, Y -valued measure which will be referred

+

to as the initial allocation. A final allocation, or simply allocation,

is a countably additive Z : A > Y+. Unlike W, Z 1is not required to
come from a bounded linear operator on X. An allocation is feasible

if

Z(A) = W(A) = TX -

It is simply a rearrangement among agents of the initial allocation.
Let I be the set of allocations, feasible or not. For Z, Z' € Z,
Z agrees with Z' on E if for all E' € A, E'C E, Z'(E') = Z(E'").
Preferences are defined by a mapping S : Z X A ~» 2Y+. S(Z,E) is
the set of total resources that could be distributed to E in such a way
that the members could obtain an allocation unanimously preferred by them
to Z. S(Z,E) dis derived from some underlying preference relation,
>, defined on Z x Z. Whatever these preferences may be, attention is
confined to the conclusion that if there is some Z' € Z such that
(1) 2 >b Z, (ii) 2' agrees with Z on A E, and (iii) y = Z'(E), then
y € S(Z,E).
An ordinal exchange economy is defined by the pair (S,T). T is

subject to the above restrictions (T.1-2) and
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(T.3): HTXEII # 0 whenever A(E) # O.

Non-null sets of agents have non-null initial endowments.

For (Z,E) € Z x A, assumptions on S are:

(s.1): (Absence of External Effects) If Z agrees with Z' on E,

S(Z,E) = S(Z',E).

(8$.2): (Countable Additivity) If {Em} is a sequence of pairwise
disjoint set in A  whose union is E, then y € S(Z,E)
m=k
iff there exists y, € S(Z, U E ) such that lim Hy—yk|| = 0.
m=1 ©
(s.3): S(Z,E) 1is Y+—open
(S.4): (Local Non-satiation) Z(E) € cl S(Z,E)
(8.5): (Monotonicity) y € ¢l S(Z,E) implies y + {Y+\{O}} c S(Z,E).

(5.6): S(Z,E) is convex.

Denote by 9S(Z,E} the Y+—boundary of S(Z,E). (S5.3-4) imply that
if Z(E) € 3S(Z,E), then Z(E) ¢ S(Z,E); otherwise, Z would be preferred
to itself by E.

A representation of an ordinal exchange economy by a real-valued function
appears in Shafer and Sonnenschein [1975] where it is used in the proof of
existence of WE 1in finite economies. The construction employed here is
a concave variant of the Minkowski function describing the distance between
a point and a convex set. Shepard [1953] has characterized producticn
technologies using this device.

Let S be a subset of Y+ whose closure does not contain the origin

and which satisfies (S.3), (S.5), and (S.6). Define the distance between
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vy Y and S by

0, ifay ¢S, all o >0
d(y;s) =

sup a?t:a> 0, ay € S}, otherwise,

The function d(y;S8) has the following properties.

d(y;S)>11 yesS
(d.1): d(y;s8) =1 iff y € 3S
d(y;s) <1 ‘ y¢clsS

For o >0, its various homogeneity properties are
d(ay;as) = d(y;S)
(d.2): d(ay;S) = ad(y;S)

o td(y;s)

d(y;as)
It is superadditive,

(d.3): d(y+y';S) > d(y;S) + d(y';S).

(d.3) follows from the well-known result that (a) (at+a')S = aS + a'S
when o, a' >0 and S is convex (Rockafeller [1970, p. 17]) and (b)
the positive homogeneity of d(-;S).

It will be assumed throughout the remainder of this section that Z

is a feasible allocation such that
[|z(E)|] # 0 whenever A(E) # O.

By (S.3-6) this implies that 0 ¢ cl S(Z,E) whenever A(E) # 0.

For T = {Ei}’ A(Ei) > 0, and o, > 0, let

i

Z
i
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Because d(*;+) 1s a homogeneous of degree zero so is dZ. To obtain a

positively homogeneous and also superadditive function, define
Z Z
b (y,%) = d"(v,%) |x|

where x = Zaiin. Thus, an allocation in an ordinal exchange economy
yields a function of the form associated with an indirect market with direct
inputs. By the homogeneity of degree minus one of d(y;-), it exhibits
property (h.4).

Assume that hZ also satisfies the Lipschitz condition (h.3). This

is an implicit restriction on Z and the preference mapping S. As a

consequence of (h.1-4) for hZ, there exists q € Y* such that

z

vA
qy > h"(y,x), (y,x) € Y_ XX,

which is to say that (q,0) € BhZ(TXA,IXA). (This follows from the Lemma to
Theorem 1 and Proposition 2.)

A feasible allocation is Pareto-optimal when TXA = 7(A) ¢ S(Z,A).

By (5.4), 2Z(A) e cl S(Z,A). Therefore, Z 1is Pareto-optimal iff
TXA € 9S(Z,A). By (5.4) and (S.5) and the maintained assumption on Z,
if Z(A) € 8S(Z,A) then Z(E) € 3S(z,E) whenever A(E) # 0. By property

(d.1) of d, d(z(E);$(2,E)) = 1. Therefore,

bE(2(E), Ixy) = d(Z(E);S(Z,EN Ixgl = ME).

A
The summary statement is that Z is Pareto-optimal iff the values of h

coincide with Lebesgue measure on_ the subset (Z(E),XE) of its domain.

Z co . c e
I1f Z is Pareto—optimal and (q,0) € oh (TXA,IXA) it is easily verified

that
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qZ(E) = hz(Z(E),IXE) = A(E).

This 1s equivalent to the condition that the hyperplane defined by q is

supporting for Z(E) € 9S(Z,E) -- 1i.e.,
inf q[S(Z,E) - Z(E)] = 0 ,

when q 1is normalized so that qZ(E) = A(E).
The allocation Z 1s a WE for (S5,T) if there exists a gq ¢ Y%,

Hq!L# 0, such that for all E e A, X(E) > 0,

inf q[S(2,E) - Tx;] = 0, (1)

y € S(Z,E) implies qy > qTXg (2)

Under the above assumptions, (2) is superfluous. (T.3) and (S.5) are known
to imply qTXE > 0 whenever A(E) > 0 and from this one may conclude (2)
from (1).

Since qTxA > 0 when q 1is the commodity prices associated with the
WE Z, it may be assumed that qTXA = A(A) = hZ(TXA,IXA). Therefore, the

WE pair (q,Z) satisfies
Z
aTxy = qZ(E) = h"(Z(E),IxX;) = A(E)

These remarks are summarized in
Z
PROPOSITION 3: (q,2) 1s a WE with qTx, = A(a) 1ff  (q,0) € 3h7(Z(E),Ix)
and qTXE = A(E).

The purely ordinal version of NS for the economy (S,T) is a feasible

allocation Z such that for any {E },
n

d(Txy\ 35(Z,A\E )
n

1im = 0.
A(En)
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An NS allocation 1s evidently Pareto-optimal. Representing Z by hZ,
the Pareto-optimal allocation Z 1is NS {1ff the distribution u = A
is NS : for any {En},
[h%(Tx,, Ix,) - B2 (Tx g » Tyg ) = AED
A’ A A\E > ""A\E_ n

lim =0
A(En)

This is equivalent to the existence of Dhi(TXA’IXA)'

Let fz(x) = hZ(Tx,Ix) be the direct market derived from hz which
is in turn derived from Z and (S,T). The following result shows that
precisely the same differences in the differentiability properties that
distinguished WE and NS distributioms in Section III apply to WE and

NS allocations in ordinal exchange economies.

PROPOSITION 4: Let hZ satisfy (h.1-4) and let fZ be the direct market

derived from hz.

. Cn L
(i) Z 1is a WE iff XAE,Bf (XA)

(1i) z is NS iff X, = DfZ(XA)

PROOF: Part (ii) follows from inspection of the definition of NS and

Theorem 2.

For (1), suppose Z 1is a WE allocation and its associated price

YA Z
vector q 1s normalized so that qTXA =h (TXA,IXA) = f (XA). Then

z N Z
(q,0) € oh (TXA,IXA) and therefore T*q € 2f (XA). For any E,

Trqyg = alxg = aZ(E) = h*(2(D),Ix) = A(E).
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But thils can only be satisfied if T*q = Xy

Conversely, suppose Xy € BfZ(XA). Applying the Lemma to Theorem 1,
the hypotheses on n” ensure that th(TXA,IXA) # . From
Proposition 2, if (q,r) € BhZ(TXA,IxA) then r = 0. Applying the
argument used in the proof of Theorem 1, if Xy € BfZ(XA) there is a
q € Y* such that T#*q = Xa and (q,Q) € BhZ(TXA,IXA). Since TXA = Z2(A)

and Z 1s Pareto-optimal,
Z
* = = =
T*axg = aTxg = A(E) = h7(Z2(E),Ixp)

It follows from (q,0) € BhZ(TxA,IXA) that qZ(E) z_hZ(Z(E),I\E)

and therefore q(Z(E) - TXE)-i 0; but this implies
q(Z(E) - TXE) =0, a")

If y € S(Z,E) and A(E) > 0, then by property (d.1), d(y;S(Z,E)) > 1

and therefore,

Z
ay > h2(y,Tx) > hP(Z(E),Ixy) = alxg - 2")

Conditions (1') and (2') 4imply conditions (1) and (2) defining

Z as a WE.
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VII. THE NO-SURPLUS CONDITION AND THE COOPERATIVE THEORY OF GAMES

Two solution concepts from the cooperative theory of games that have
been linked to WE are the core (Debreu and Scarf [1963], Aumann [1964],
Vind [1964], Hildenbrand [1974]), and the (Shapley) value (Aumann and Shaplev
[1974], Aumann [1975], Champsaur [1975], Mas-Colell [1977]). By demonstra-
ting an equivalence between the core and WE or the value and WE, game
theory provides a rationalization of its competitiveness. It is the
purpose of this section to provide an alternative interpretation. Instead
of using core or value equivalence to justify perfect competition, the NS
definition of perfect competition will be shown to imply core and value
equivalence (but not conversely).

Solution concepts in cooperative game theory with transferable utility
are based on the game-theoretic characteristic function, a mapping
v : A->TR. Using the hZ construction comparisons between NS and the
core established below have immediate extensions to games with non-
transferable utility; but this construction cannot be used for the value
and therefore the connections, if any, must be demonstrated by other means.
(See Geanakoplos [1978] and Mas-Colell [1978].)

A restriction on v, due to Shapley [1967], called a balanced game
has been shown to capture much of the essential structure of general
equilibrium models. It is defined by the condition that for any

{E.}, not necessarily a partition, and o, > 0,
i hl

i

Zuiv(Ei) < v(A) whenever Zaiinvi Xy
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Every indirect market yields a v according to
v(E) = g(Txy) = £(xy)

Further, the homogeneity and superadditivity properties of g imply that
v 1s balanced. Throughout this section v is assumed to be derived from
a (g,T).

Let U be a distribution of the total output: u(A) = v(A) = g(TXA).
The following restrictions on |y describe various notions of an equilibrium
distribution.

v(A) - V(A\En) - U(En)
NNS: (Non-negative Surplus) For any {En}’ lim A(E) > 0
n

CORE: For all E € A, W(E) > v(E).

WE: For all m = {Ei} and o, >0, o u(E,) z_f(Zaiin).

v(a) - v(A\E ) - H(E )
NS: For any {En}, 1im "(E ) = 0.
n

For the definition of the value, Kannai's asymptotic approach [1966]
is followed. A 1 = {Ei} defines a game-theoretic characteristic function
v on Aﬂ, where A1T is the set of elements of A formed by unions of

elements in 7 and v is the restriction of v to AT. The value for
[

v, 1s demonstrated by Shapley [1953] to be

(m-[E)!(JE]- 1)1

w(E) = [v(E) - V(E\Ei)],

EeA n!

T
where IEI is the cardinality of E as a element of A1T and |A| = n,

To extend M. to a measure on A, let
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. , NS S , c e
uﬂ(L) A(L)A(Li) Uﬂ(Li)’ E C L1

VALUE: 1y is the (asymptotic) value if for all sequences T(n) = {E?}, where

max {A(ED) } \ 0, 1if up is the value for v
i i m(n)

m(n)?

lim Hr(ny (B) = R(E).

The NNS condition represents an obvious weakening of NS. Since
v(A) - v(A\E) > u(A) - u(A\E) = p(E) when u 1is in the core, the core
condition implies that there is NNS for all groups not only small ones.

In fact, the core and NNS conditions are equivalent, provided v(E) = 0

whenever A(E) = 0, as is the case when v 1is derived from (g,T).

The definition of | as a WE dis justified by Theorem 1. Tt
makes transparent the well-known result that a WE is in the core. The
definition of NS is identical to that given above.

According to the core (value) criterion the game V- is perfectly
competitive if the set of distributions in the core (value) coincide with the

WE distributions.
: E) = * .
b @ = pxp, p e THOg (TX O]}
Since the value 1s unique, a necessary condition for value equivalence is
* =
T [agT(TXA)] Vf(xA).

It follows from Kannai's results that if the range of T is finite-

dimensional and Vf(xA) exists, the value coincides with the unique WE.

This conclusion can be extended to operators whose range is not finite-dimensional.
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PROPOSLTION 5: & T has separable range in Y and T*[BgT(TXA)J = VY(XA),

there is value equivalence.

PROOF: Let Tk : X>Y be a finite-dimensional operator such that

TkxA = TXA; let vk be the game defined by vk(E) = g(TkXE); and,
vk the game defined by the restriction of vk to the elements of A .
m(n) m(n)
By hypothesis T*q = Vf(XA) if q € ag(TxA). If q ¢ Bg(T\A) then
q € dg k(Tk)(A) and therefore T*q = ka(XA), where fk is defined by

T

fk(x) = g(Tkx), X € X+. Kannai's result is that for fixed k, if ui(n)

k

is the value for Vﬁ(n) and T*q = ka(XA) then uk defined by uk(E) = qT “r

is the value for vk, i.e.,
k k.
1im|uﬁ(n)(E) - qT XEI = 0. (1)

Because T 1is separably valued, there is a sequence {Tk} such that
for any x € X, lim HTx - Tkxll = 0, Therefore, letting 11 be defined

v L(E) = qTx, where T*q = Vf(XA),

k k
lim |0 (E) - w(B)| = lim [qT'X; - qTxg| = 0 (2)
k
Further, {1¥} may be chosen such that for k = n the range of *

n . .
tains the convex cone spanned by {TXE}, E € Aﬂ(n). Thus, Vﬂ\n) coincides

with v which implies that their respective values u;(n) and pﬁ(n)

w(n)
coincide. Combining this with (1) and (2),

lim Iuﬂ(n)(E) - qTXE| = 0.

Therefore 1Y such that u(E) = qTXE is the (asymptotic) value of the game

defined by (g,T).
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The relation between NS and core and value equivalence is summarized

in

PROPOSITION 6: Assume that T has separable range.

(i) If v exhibits NS there is core and value equivalence.

(ii) Neither core nor value equivalence implies that v exhibits NS.

(1ii1) If T 4is compact, then v exhibits NS iff there is value equivalence

and this implies core equivalence.

PROOF: (i) If u 1is NS then by Theorem 2 u(E) = pXE where p = Df(XA).
Thus, Vf(xA) = Df(XA) and by Proposition 5 there is value equivalence.

If p is in the core it is NNS. But if v contains an NS distribution
everv NNS distribution is NS,

(ii) Example 1 in Section IV satisfies the hypotheses of Proposition 5

and therefore exhibits value equivalence but it is mot NS. If T is
finite~dimensional, Lyapunov's Theorem shows that T[x] = <T[x]> (see

step 3. in the proof of Theorem 3) and it is well-known that this suffices
for core equivalence. However if T*[BgT(TXA)] # Vf(xA) = @, then

Df(XA) = @ and by Theorem 2 there is no NS distribution.

(iii) By Proposition 1 and step 1 in the proof of Theorem 3 T* 1is compact

and Df(xA) exists. Repeat the argument of part (i).

REMARK 9: From part (iii) of Proposition 6, it might appear that value
equivalence 1s closer than core equivalence to the NS characterization
of perfectly competitive equilibrium. 1In fact, it is more nearly the
opposite.

A perfectly competitive environment was defined in Remark 6 as any
space such that DgT(TXA) exists for "most" g and T. Applying the same

1
criterion to value equivalence would lead to the conclusion that L~ was
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a perfectly competitive environment since a concave, Lipschitz function is
Gateaux differentiable on a dense Gs set of its domain. ! is, in Asplund's
terminology, a weak differentiability space but not a strong differentiability
space.

Core equivalence makes no direct demands on differentiability as does
value equivalence (Gateaux) or NS (Fréchet). What 1is required of an
environment for it to be classified as perfectly competitive according
to the core criterion (applied to bounded operators) is that Y be a
Lyapunov convexity space. (See Remark 6.) From condition (*) defining
such a space, it may be shown that if u 1is in the core of (g,T) and
Bg(TXA) # @, there is a qls Bg(TXA) such that u(E) = qTXE, i.e., there
is core equivalence. L1 is not a core equivalence enviromment. In Example
1, it may be verified that the core is larger than the unique WE. If (?)
strong differentiability and Lyapunov convexity spaces coincide the classificz-
tion of perfectly competitive environments according to the core equivalence

criterion would be similar to the NS classification.
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VIII. THE NO-SURPLUS CONDITION AS A REFORMULATION OF THE MARGINAL PRODUCTIVITY
THEORY OF DISTRIBUTION

The theory of value is concerned with the pricing of commodities under
perfectly competitive conditions. The connection between the pricing of
commodities and the pricing of persons is made through the marginal pro-
ductivity theory (MPT) of distribution. According to MPT there is a basic
asymmetry between the pricing of commodities and the pricing of persons.
‘Factor incomes are determined, and therefore persons are "priced," by
the theory of commodity prices, but the theory of commodity prices
‘cannot be derived from MPT. Three well-known properties of MPT make
this clear: (i) It is a theory of the demand for factors, not their
supply; (ii) It takes prices of products as given in the determination
of demand for factors; (iii) Like the cost-of-production approach to the
theory of value, it cannot be applied to the determination of values in an
exchange economy.

With the NS approach there is complete symmetry. In mathematical
terms this symmetry is based on the duality between the operator T and

its adjoint T#*. Unlike MPT, the NS theory of distribution implies the

competitive pricing of commodities,

This difference belies the obvious parallels between MPT and the
NS approach listed below.
MPT NS
marginal product of a factor marginal product of a person

product-exhaustion with respect to factors no-surplus condition

constant returns to factors population constant returns



MPT is based on the marginal product of a factor, an argument of a
production function. Essential to its logical validity is the concept
of product-exhaustion: after each factor is paid the marginal product of
the last unit employed the sum of the payments exactly exhausts the quantity
of output produced. Constant returns to factors is necessary to guarantee
product-exhaustion.

NS is based on the marginal product of a person. To extract
all the surplus, a concept that is well-defined even for ordinal exchange
economies, is the same as obtaining one's marginal product. The NS condi-
tion is precisely product-exhaustion with respect to persons. Population
constant returns seems to be a necessary condition for an environment
:o te serfectly competitive. (See Theorem 3 and Remarks 6 and 7.)

Treatment of "labor" illustrates that the marginal product of a factor
and the marginal product of a person can coincide. The last, infinitesimal
unit of labor and an individual worker have traditionally been regarded
as identical. Indeed, it is difficult to see how marginal analysis would
apply unless buyers and sellers operated on a small scale. Why would a
person supplying a large-scale quantity allow an infinitesimal marginal product
to determine the price received for all units?

"Capital" has been treated differently, as a factor disembodied
from the person supplying it. One of the issues in capital theory is whether
or not its marginal product can be defined. With the MPT perspective, an
inability to define its marginal product would imply that a capitalist’s

income need not be determined by the same principles as those governing

the income of a supplier of labor. This amibugity can only arise because



52

of the asymmetry in MPT in which a person's price, or factor income, 1is
determined by the marginal product of the input supplied.
The NS approach establishes a direct connection between the prices

of persons and the prices of commodities without any explicit reliance on

the marginal products of disembodied factors. Whether or not meaning can

be given to the marginal product of an aggregate called "capital," the NS
characterization of perfectly competitive equilibrium says that if there
is perfect competition the same theory of income determination must

apply to all suppliers of inputs. Any differences are attributable to the

presence of monopoly power.

Both MPT and WE are sensitive to increasing returns to factors, depend-
ing upon non-increasing returns for their existence. What they fail to

provide is a sensitivity to increasing returns to persons, in which the

sum of the marginal products of persons exceeds the total product. This

may be illustrated for an economy with a finite number of persons. If

m={E,} and MP(E,) = £f(x,) - f(x ), the homogeneity and superadditivity
i i A A\Ei

of f 1imply
ZMP(E,) Z.f(XA)-

Since equality is exceptional there is the rather obvious conclusion that
economies with large-scale suppliers are typically not perfectly competitive.
In the nonatomic direct market (f,I) assume that for any {En} such

that E = {a},
n

f(x,) - f(xA\E )
1lim LI p(a) = MP(a).
A(En)
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I1f, as above, f is homogeneous and superadditive,

PX, = JMP(a)dA > f(xA).

There is equality iff f is Fréchet differentiable at Xy

Of course, these inequalities would apply if f exhibited increasing
returns and that is exactly the point. For perfectly competitive equilibriuz
to fail to exist, it does not matter whether the source of the inequality
is increasing returns to factors or constant factor returns without dif-
ferentiability with respect to persons.

The importance of differentiability was recognized by the early marginal-
ists. Fixed-proportions production functions were known to create diffi-
culties for MPT. But this absence of what might be called micro-differentiability
is probably not, by itself, an important source of imperfect competition.

For example, Houthakker [1955] showed that if firms in an industry do not
have the same fixed-proportions technologies the aggregate production func-
tion of the industry will exhibit macro-differentiability.

What the early marginalists may not have fully recognized is that when
the number of complementary factors/commodities is sufficiently large --
large enough so that the economy does not exhibit PCR —-- then even if there
is micro-differentiability and constant returns to factors there may be
increasing returns to persons. This would preclude the MPT-NS approach to
perfectly competitive price determination. Perhaps it is this formulation
of increasing returns through commodity heterogeneity that underlies

Chamberlin's [1962] vision of monopolistic competition.
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