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1 Introduction

This paper applies techniques of intertemporal finance to insurance markets.
The essential concepts employed are the Harrison and Kreps [1979] charac-
terization of asset prices as martingales and the use of sequential trading to
achieve dynamic spanning as formulated by Kreps [1982]. General equilib-
rium treatments of insurance markets and financial markets share common
roots in Arrow and Debreu’s notion of a contingent commodity, developed in
the 1950’s. Since that time, however, the theories have gone their separate
ways. Competitive insurance theory has seen little further development, the
literature on insurance choosing instead to focus on problems of asymmet-
ric information (moral hazard or adverse selection) as potential sources of
market failure. The theory of financial markets, in contrast, moved from
the static model of Arrow [1953] to a fully developed intertemporal setting,
clarifying how dynamic trading of assets can facilitate the efficient bearing
of risk as information unfolds over time (see Radner [1972]).

A key contribution of the theory of intertemporal finance is the demon-
stration that, provided “uncertainty resolves nicely,” markets can be com-
pleted with far fewer securities than states of nature. With insurance, the
specter of incomplete markets appears in the simplest of settings. Con-
sider, for example, an exchange economy with n consumers and two dates:
0 (today) and T (tomorrow). Assume that all consumers have the same en-
dowments and the same preferences and all face the same risks. Specifically,
suppose that each consumer has endowment ¥ > 0 of today’s commodity
and an independent and identically distributed risk of an accident tomorrow
with probability p € (0,1). If no accident occurs, consumer i will have an
endowment Y of tomorrow’s goods; but, in the event of an accident, her
endowment falls to Y — L > 0. In this setting, the uncertain state of the
world in this economy can be represented by a sequence of n zeros and ones,
say

w = 10011010 --0110,

where a 1 in the it* place indicates that consumer i has an accident and
a 0 that she does not. The sample space 2 is the collection of all such
sequences, a total of 2" possibilities. The number of “natural” insurance
contracts, promises to deliver a unit of consumption in the event of an acci-
dent to a particular consumer, total only n: one insurance contract for each
consumer. Even if we add a riskless asset, we have only n + 1 “securities”
to cover 2" contingencies. Thus, even in the case of two consumers, markets



will necessarily be incomplete with three instruments asked to deal with
four possible contingencies. As the number of consumers increases, the “in-
completeness gap” will widen. Insurance markets, it seems, are necessarily
incomplete.

Fortunately, this conclusion is unwarranted, an artifact of a static formu-
lation. As we will show, once we allow for intertemporal trading of insurance
contracts, markets can be completed with far fewer assets: one contract per
consumer plus a riskfree asset. Just as in Kreps [1982], this conclusion re-
lies on a hypothesis that uncertainty resolves “nicely.” What justifies this
hypothesis in our model is an assumption that accident arrivals are gov-
erned by a counting process, a characterization which captures the intuition
that, on a sufficiently fine time scale, accidents are few and far between.
Returning to the simple example described above, what we are doing in
effect is to “spread” the terminal date T over many time periods, keeping
the total number of accidents (essentially) the same. If time periods last
only a nanosecond, at most dates there will be no accident and at no date
(to a reasonable approximation) will there be more than one. These are
the assumptions underlying use of the familiar Poisson process to model
accidents. Counting processes generalize the Poisson process to allow for
“hazard rates” which vary over time, vary across individuals, or depend on
past history while retaining the property that markets can be completed
with one insurance contract per customer plus a riskfree asset. As an im-
portant byproduct, it is then possible to price a wide variety of insurance
contracts under a wide variety of accident generating mechanisms, suggest-
ing a role for insurance far broader than traditional insurance theory would
seem to imply.

Our ultimate goal is to develop this theory of intertemporal insurance
in a continuous time setting. However, in this paper we treat only discrete
time. Section 2 applies “standard finance,” as represented by Dothan [1990],
Duffie [1988], or Huang and Litzenberger [1988], to insurance markets. We
begin with a formal description of a discrete time counting process, a spe-
cial type of event tree. Using a counting process as the basic source of
uncertainty, we then describe an intertemporal exchange economy on the
event tree generated by the accident process and characterize the Walrasian
equilibrium involving trade in Arrow-Debreu-Radner (ADR) time-event con-
tingent commodities on this tree. The corresponding ADR time-event con-
tingent prices allow us to price insurance contracts, which are not standard
ADR contracts, as redundant securities. A transformation of the underly-
ing probability measure gives an alternative characterization of insurance
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contract prices plus accumulated payouts as martingales in the fashion of
Harrison-Kreps [1979]. With this standard Walrasian equilibrium in place,
we then “remove” the ADR contingent commodities, leaving only the insur-
ance contracts to deal with risks. A direct application of the usual dynamic
spanning argument (as presented, for example, in Huang and Litzenberger
[1988]) demonstrates that these insurance contracts suffice “generically” for
dynamic spanning.

In Section 3 we give a detailed illustration of this theory applied to a
simple setting with two consumers. While dynamic spanning and martingale
pricing may be unfamiliar to most readers, this example should demonstrate
that the implications of the theory developed here are straightforward and
reasonable. In this “Edgeworth box” economy, consumers tend to buy and
hold the same insurance portfolio over time whatever the realization of the
accident history, and the martingale pricing formula generates pricing rules
for insurance assets with surprising ease.

A concluding section points to future directions for this research.

2 The model

We confine attention to a model of pure exchange in discrete time with a
single commodity available for consumption at each date. We begin with
a representation of the underlying source of uncertainty as a discrete time,
multivariate counting process.

2.1 Characterizing the accident process

Let 7 := {0,1,...,T } represent the time set. Accidents happen between
dates, and the information that an accident has occurred between dates
t — 1 and ¢ is known to all traders prior to trade at date t. As a shorthand
convention, an accident happening between dates ¢t — 1 and ¢t is said to
happen “at date t.” Accidents at any date can be classified into one of a
finite number of types indexed by J := {0,...,K } with j = 0 signifying
“no accident.” All uncertainty in the economy is captured entirely by the
probability space (2, F, P) with state space 2 := JT, o-algebra F = 2% and
probability measure P. Throughout this paper, we assume that P(w) > 0
for all w € Q.

Figure 1 illustrates for the case T = K = 2 which contains nine sample
points. The point wag, for example, corresponds to the realization



=0 t=1 t=2

Figure 1: The sample space.

e accident of type 2 at date 1;
e no accident at date 2.

For j > 0, let
NJ':TXQ—*Z.;,.

represent the stochastic process which counts the number of accidents of type
J: i.e., Nj(t,w) is the number of accidents of type j which have occurred
up to date t. N; is nondecreasing, and N;(0,w) = 0 for all w € Q. The
Zf -valued stochastic process defined by

N(t,w) = (Ni(t,w), ..., Ng(t,w))

is called a discrete time, K-variate counting process. Figure 2, which imi-
tates a similar figure for a continuous time counting process in Brémaud!,
illustrates a typical realization for an economy with two accident types:

e accidents of type 1 occur at dates 1 and 4;

¢ accidents of type 2 occur at dates 3 and 5; and

!See Brémaud [1981], p. 20.



Figure 2: A realization of the accident process.

e there is no accident at date 2.

Note that there is never more than one accident of any type at any given

date.
In the usual way, the stochastic process N generates a filtration? F, a

non-decreasing sequence of o-algebras
FoCFRHCFC--CFr=F

with the property that F; is the coarsest o-algebra with respect to which
the random variable
N(t):Q — Z4

is measurable. Let f; denote the partition of 2 which generates the o-algebra
F:. By definition of the accident process, fo = {2} and fr = {{w} |w €
Q1 }, corresponding to the absence of information at date ¢t = 0 and complete
information at date T. In Figure 1, the partition f; at date 1 consists of the
three sets

a1o := {woo,wor,wo2 }, a1 = {wio,wi,wiz}, a12:= {w20,wa, w2}

2 As is common in the literature, we use the same notation for the o-algebra F and the
filtration F. The proper interpretation should always be clear from the context.



corresponding to the events
e no accident at date 1;
o accident of type 1 at date 1;
e accident of type 2 at date 2

respectively.

2.2 Describing the economy

Consumers in this economy are indexed by the finite set I = {1,...,n}.
For each consumer i € I, a consumption process r; is a function

z;: T xQ - R
and an endowment process w; a function
wi:T x Q2 — R.

adapted to the filtration F generated by the accident process N. Let L
denote this vector space, the set of all functions

2T xQ - R

such that z71(G) € F; for every Borel subset G of R and for every t € 7.
Equivalently, processes adapted to F are constant on the sets {t} x a;.

Contingent commodities provide a convenient way to represent these
consumption or endowment processes. The (¢, a;)-contingent commodity,
representing one unit of consumption in event a; € f; at date t, is represented
by the indicator function 1(¢,a:): T x Q — R defined by?3

oot , '
1(t, at)(t/,w’) = { 1 ift'= t and W’ € ay;
0 otherwise.

Using these contingent commodities as a basis, a consumption process z; € L
has the representation

3We write 1(t, a;) rather than the more usual 1(t,a,) for typographical convenience.



and an endowment process the representation

T
w; = Z Z wi(t,at)1(t, ay).

t=0 ateft
Similarly, consumption at date ¢t can be written
zi(t) = Z zi(t,a)1(t, at)
atE ft
and endowment at date ¢t as
wi(t) = Z wi(t, at)1(¢, at).
atEft
Letting

L+:={x€L|x(t,at)20Vt€T&at€ft}

represent the nonnegative orthant of L, assume that each consumer i € I
has consumption set X; = L4, endowment w; € L, and preference relation
>; on X; x X; which is a complete preordering and strongly monotonic.
Walrasian prices are given by a linear functional p: L — R with representa-

tion
piz)=mr-z= Z Z 7 (t,at)z(t, at)

teT arEfe
where 7(t, a;) is the price of a (¢,a¢)-contingent commodity. Just as for
consumption processes r, we can also view m € L, as a stochastic process
m:T x @ — R adapted to the filtration F. With respect to the Walrasian
price system m, consumer  has budget set?
ﬂi(ﬂ') = {171' EX,’|7T'.’E1'§_7T"wi}
and demand set
¢i(77') = {1:1; € X; l ,@i(r) ﬂPi(:L‘i) = @}
where
Pi(zi):={z; € Xi |z} =i zi }

is the strict preference set of consumer i. An allocation z: I — L is feasible

if

o= we

el i€l
A Walrasian equilibrium for this exchange economy consists of a feasible
allocation z and a price system 7 such that z; € ¢;(x) for all i € I.

4The notation adopted here is that of Ellickson {1993].
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2.3 The pricing of insurance

The Walrasian equilibrium described above requires a large number of con-
tingent commodities, one such commodity for each date-event (¢,a¢). Sup-
pose that, in addition to this complete set of ADR contingent commodities,
we introduce a set of redundant assets, one for each type of accident j # 0.
Associated with each security j # 0 is a dividend process d; € L, where
d;(t,at) represents the payout of insurance policy j at date-event (t,a:),
measured in units of the consumption good at (t,a:). We assume that
d;(0,92) = 0 for all j # 0. As for ADR prices and consumption processes,
each dividend process d; can be viewed as a stochastic process adapted to
F, reflecting the fact that payouts on an insurance contract must be based
only on accidents which have already happened and not on those which are
yet to come. In addition to these insurance policies, we also assume there
exists a riskfree asset available at each date-event (¢, a;) which costs one unit
of the consumption good at (t,a:) and returns do(t, az+1) = 1 + r(¢,as) of
the consumption good at each successor event at+1 C at, at+1 € fry1. We
will refer to r(t,az+1) as the riskfree rate.

From now on, we adopt the price normalization® 7(0) = 1 so that the
Walrasian price functional has the representation

+ZZ (t,at)z(t, az).

t=1at€ft

Given the ADR prices =, define for each event a; € f: and at41 € fiy1,

where aty1 C at, the martingale conditional probability
(t +1, at+1)

EaH.lCa, (t + la at+1)

Assuming that prices of all insurance assets are ex dividend, we define for
each t < T the price process S; for asset j according to the relation

m(t, as)S;(t, ap) = Z Z (s,as)d;(s,as),

s=t+1 as€fs
asCat

Qaty1 ] ar) := (1)

5Because the initial and terminal information partitions have a special structure,
fo={Q} and fr={{w}|we},

it will often be convenient to abuse notation slightly, writing 7(0) in place of 7(0,(2) and
z(0) in place of (0, ).



the Arrow-Debreu valuation of the dividend stream following the date-event
(t,at). At terminal nodes, S;(T,w) = 0. Note that S; € L so that security
prices can also be viewed as nonnegative stochastic processes adapted to
the accident filtration F. As with payouts, the security price S;(t,a¢) is
measured in units of the (¢, a;)-consumption good.

As a simple consequence of the tree structure of the filtration,

m(t, as)S;(t, at) = Z m(t+ 1, ae41) [Sj(t + 1, ae41) + d;(t + 1, a¢11)]
at+1Cat
(2)

where the sum is over events a;y1 belonging to the partition f;y; and con-
tained in a;. In the special case of the riskfree asset, which costs one unit of
the consumption good at (¢, a:) and pays 1+r(t, a;) at each of the immediate
successor nodes, the above condition specializes to

71‘(t, at) = Z W(t +1, at+1)(1 + T(t, at))

at41Cae
or, equivalently,

7 (t,at)
(3)
Zat.HCat 71-(t + ]" a’t+1)

1+ T(t, at) =
for all t < T. Using the definitions of the martingale conditional probability

and the riskfree rate, equation (2) can now be written

S(t a ) _ Zat+1cat [Sj(t -+ 17 at+l) + d](t + 1, at+1)] Q(at+1 I a’t)
e T+t a)

Letting r(t) denote the interest rate at date t,

r(t) ;== Z r(t,at)1(t, at),

at€ ft

and S;(t) the price of the 7P asset at date t,

Sj(t) = Z Sj(t, at)l(t,at),

at€ ft

we have
_ EQ[S;(t+1)+d;(t+1) | Fi

1+ r(t)

55(t)



where Eq[- | Fi] denotes conditional expectation relative to the filtration F
under the martingale measure Q.

Using the riskfree rate to discount insurance asset prices and their pay-
outs, define

*(g) . S;(t)
S0 = )
and
21(t) = eyt

s=o(L +7(s))
Define the cumulative discounted dividend process for security ;j as

From equation (4) it follows that

S} + D}(t) = EQ[Sf<tj=10>(:jr<€S; 1) | 7

= EQ[S;j(t+1)+ Dj(t) +d;(t+1) | ]
= EqQlS;(t+1)+Dj(t+1) | Fils (5)

+ Dj(¢)

i.e., the sum of the discounted insurance asset price and its discounted cu-
mulative payout is a martingale with respect to the martingale measure Q.

2.4 Dynamic spanning

Although the machinery is rather elaborate, the basic idea behind dynamic
spanning is quite simple. In an event tree context, the key to dynamic
spanning is the index of the filtration, the maximum number of branches
leaving any node of the event tree: the number of accident types plus one
in our model. As shown by Kreps {1982], the number of securities required
for dynamic spanning is no greater than the index of the filtration. Thus,
in addition to the riskfree asset, one insurance contract for each type of
accident is all that is necessary for dynamic spanning.

Let o represent an arbitrary event a;_; € fy—1 and

Bt(a) = {at € at-1 | at € ft} = {ﬁ()’IBl"" )5K}
the collection of its immediate successors (see Figure 3). Let

0:(t,a) = (89(t, @), 0}(¢, @), ..., 0K (¢, a))T

10



Figure 3: Event o and its successors

represent the portfolio of securities purchased by consumer i at date-event
(t —1,a) and
0:i(t+1,8) = (02(t +1,8),01(t +1,8),...,0{(t +1,8))"

the portfolio acquired at date-event (¢, 3), 8 € B¢(a) where T denotes trans-
pose. Note that, by definition, the trading process 6; is not only adapted
to the filtration, but also predictable: i.e., for each ¢, 8;(t) is measurable
with respect to F;_1. Requiring predictability captures the economically
natural restriction that a consumer must buy insurance prior to acquiring
knowledge whether the insured event will occur. Finally, let

Ayzi(t, B) := z;(t, B) — ws(t, B)

represent the net trade of consumer i at date-event (¢, 8). For each g €
Bi(a), budget balance in the spot market at date-event (¢, 8) requires

Auzi(t,B) = S 61(t,@)[S;(t, ) + d;(t, 8)] — >_ 01 (¢ + 1,8)8;(t, B).

jeJ jeJ
which, letting
ci(t, @, B) := Awzi(t, B) + Y 01(t +1,8)S;(t, B),

jedJ
can be written

36 (t, @)[S;(t, 8) + d;(t, B)] = eilt, @, B). (6)

jed

11



For each event «, there are K +1 such equations, one for each of the successor
events 8 € Bi(a), and K + 1 unknowns, the portfolio

0:(t,a) = (69(¢,a),0M(¢, ), ..., 0K (2, a)).

For each date-event (¢, ), define the K + 1 by K + 1 matrices

So(t,B0) Si(t.,Bo) ... Ski(t, Bo)

So(t,ﬂl) Sl(t,ﬂ1) SK(t,ﬁl)
S(t’a) = . . t. .

So(t,Bk) S1(t,Bk) ... Sk(t,Bk)

and

do(t,B0) d1(t,B0) ... dk(t,Bo)

do(t,81) di(t,81) ... dg(t,B1)
D(t,a) = : : . :

do(t,Bk) di(t,Bk) ... dk(t,Bk)

The system of equations of type (6) at date-event (¢, @) then takes the form
[S(t,a) + D(t,a)]0i(t, @) = c;(t, @) (7)

where
Ci(t,a) = (C’i(tv «, 160)9c’i(t1 «, /31)’ oo ,Ci(t, «, /BK))T

An ADR equilibrium allocation is said to be dynamically spanned
by the set of securities J provided there is a portfolio 6;(¢, «) which solves
equation system (7) for every date-event (¢, @) in the filtration F and every
consumer : € I.

If T is finite and the matrix S(t,a)+ D(t, @) is invertible for every date-
event (t,a), then finding a set of dynamically spanning portfolio trades is
straightforward. Using system (7), we solve first for the portfolios purchased
at date T — 1 and then work back recursively to the initial holdings at date
0. Assuming that securities are priced ex dividend, for each security j we
have S;(T,w) = 0 for all w € Q Consequently, for t = T and a € fr_i,
system (7) reduces to

D(T,a)8;(T,a) = ci(T, a).

Since consumers will carry no portfolio holdings beyond date T, ¢;(T, , 8)
is simply the net trade Ayuz;(T,3) at the successor node 3. Therefore,
provided the dividend matrix D(T, &) is invertible, the equation system can

12



be solved for a unique portfolio 8;(T, o) for each @ € fr_; and each consumer
1€ 1.

Moving back a date, consider an event & € fr_s. From the computations
at date T, the required portfolios 8;(T,3) are known for each successor
event 3 € B¢(a) and consequently ¢;(T — 1, a) can be computed. Therefore,
provided that the matrix S(T — 1,a) + D(T — 1, «) is invertible, system (7)
can be solved for a unique portfolio §;(T — 1, «) for each a € fr_a.

Continuing recursively in this fashion, portfolios 6;(t, ) can be computed
for each consumer i € I and date-event (¢, «) until finally we reach t = 0.
Since the initial partition is trivial, fo = {2}, we can write 8;(1, ) = 6;(1).
Assuming that consumers have no initial endowments of securities, 8;(0) = 0.
System (7) then reduces to the requirement ¢;(0,a) = 0 or

Awzi(0) + 3 67(1)8;(0) =0 (8)

jeJ

which requires the initial purchase of assets at date 0 to offset the net trade
at date 0.

3 A Cobb-Douglas illustration

In this section we illustrate our model of intertemporal insurance with a
simple example close in spirit to traditional models of insurance markets:
consumers face an accident process with hazard rates which are independent
of the past history of the accident process and constant over time. We begin
by deriving the general equilibrium results: the Arrow-Debreu-Radner prices
and the equilibrium net trades in contingent commodities. Two insurance
regimes are then considered, one providing short-term insurance on next
period’s events and the other providing long-term contracts paying a unit
of the consumption good every time an accident occurs in the future.
Assume that consumer i € I has von-Neumann Morgenstern utility

ui(z;) = Inzi( +Zat 3" P(ar)Inzi(t, ar) (9)

t=1 a€fe

where 6 € [0,1) and P(a;) is the probability of event a; € f;. Let

tat Z‘Uhtat

el

13



denote the aggregate endowment of the (¢, a;)-contingent commodity and

w(0) := Zwi(O)

i€l

the corresponding endowment at date 0. Using the normalization = (0) = 1,
ADR market clearing prices are given by

6'w(0)P (ar)

w(t, at) (10)

7T(t, at) =

Specializing to the case of two consumers, assume that in each period,
e no accident occurs with probability 1/4;
e an accident occurs to consumer one with probability 1/2;
e an accident occurs to consumer two with probability 1/4.
Thus, we take the set of accident types to be J = {0,1,2} where
j = 0 means “there is no accident;”
7 = 1 means “an accident happens to consumer 1;” and
j = 2 means “an accident happens to consumer 2;”

and hazard rates are constant over time: i.e., if a; € fi, at+1 € fi+1, and
at+1 C ag, then

1/4 if j =0 at date t + 1;
Pag+1 |ag) =< 1/2 if j =1 at date ¢t + 1;
1/4 if j =2 at date ¢t + 1.

Assume each consumer is endowed with Y units of the single commodity
at each node gross of any loss to accidents and that an accident at date ¢
results in the total loss of the endowment at that date. Formally,

0 if j =1 at date ¢;

wi(t,at) =Y — YAN'i(taat) = {Y if j ?é 7 at date ¢.

Under these assumptions, aggregate endowment w(0) = 2Y and aggregate

endowment
2Y if j =0 at date ¢;

w(t,as) = {y if j # 0 at date ¢.

14



From equation (10), ADR prices are

(b a) = {6tP(at) if j = 0 at date ¢;
t 26'P(a;) if j # 0 at date ¢.

Equilibrium wealth for consumer i is

Tow; = +ZZ (t,at)wi(t, at)

t=1a:€fs

T
= Y+2Y26t Z P(at)wi(t, at)

t=1 at€ ft ’ll)(t, at)

T
- v+orye S0 %:“t—)

t=1 at-1€ft—10tCat-1

T
wilt, a
=Y +2Y26t Z P(at—l) Z P(at | at_l)—lz(t_t))'
t=1 as_1€f—1 atCat—1 wit, at
For consumer 1,
wi(tbag) 1 Y 1 0 1Y 3
P gwilbay) LY 2 2 2 2
at§—1 (at]at 1)w(taat) 4 2Y+2 Y+4 Y 8
while for consumer 2
wit,as) 1 Y 1Y 1 0 5
P l—=—‘_ — - —_ —_——= —
athazl (o as-1) w(t,ar) 4 o T2 YT Y8
Therefore,
§(1 - 6T
T ”_Z‘st S
and .
Y&(l-6
i wz—Y+5Y26t—Y+54 S

Consumer 1, the more accident prone, has as a consequence lower wealth in
equilibrium.
Equation (1) gives as the martingale conditional probabilities for a; € f¢,
at+1 € ft+1, and apy1 C ag:
1/7 if j =0 at date t + 1;

Q(at+1 | at) = {4/7 if =1 at date t + 1;
2/7 ifj =2 at datet + 1.

15



Table 1: Equilibrium trades and net trades: T = 2

7| z1(t, agy) | za(t, aj) | Awz1(t, aty) | Awza(t, arj)
0 1,148 1,456 -154 154
1 574 728 574 -574
2 574 728 -728 728

Table 2: Equilibrium trades and net trades: T = oo

Jj .’rl(t, atj) xg(t, atj) wal(t, atj) wag(t, atj)
0 1,116 1,488 -186 186
1 558 744 558 -558
2 558 744 -744 744

Thus, the “risk neutral” martingale conditional probabilities compensate for
risk aversion in the economy by increasing the risk of accidents relative to
the actuarial conditional probabilities P(a¢y1 | at).

Equation (3) yields

1+r(ta) = {g;;g

For computational convenience, we set the discount factor § = 4/7 so that
the riskfree rate becomes

r(t az) = {O if there is no accident at date t;
’ 1 otherwise.

if j = 0 at date ¢;
if 7 # 0 at date ¢.

From now on we assume Y = 1,302, chosen to yield integer results for
security prices and net trades in the computations which follow. We consider
two horizons: a finite horizon, with T = 2, and a horizon which is infinite.
In the finite horizon case, equilibrium wealth for the two consumers becomes

104

2
Tow) = (%) 1,302~ 2,179 and 7w = <4—9-> 1,302 = 2,763
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while for the infinite horizon
7wy =2,604 and 7 -wo=3,472.

Equilibrium allocations in this example have a very simple structure:
zi(t,at) depends only on the accident type j at date ¢t which functions as a
“state variable.” Letting a;; € f; denote an event in which an accident of
type j occurs, Table 1 shows for each possible event the equilibrium trades
and net trades for T = 2 and Table 2 the corresponding trades and net trades
for T = co. For example, in the case T = 2 consumer 1 consumes 1,148 if
there has been no accident at date-event (¢, a;) and 574 if an accident has
happened to either consumer 1 or consumer 2. Note that gross trades depend
only on the “macro risk” in the economy, i.e., whether the total endowment
is Y or 2Y, while net trades also depend on who has the accident.

We consider how these ADR equilibria are implemented under two insur-
ance regimes, one offering short-term insurance to consumers and the other
offering long-term contracts.

3.1 Short-term insurance

We know that to achieve dynamic spanning, it is necessary to offer a separate
insurance contract for each type of accident. In the first regime we consider,
insurance contracts are short-term: one unit of insurance issued at date ¢
on accidents of type j at date ¢ + 1 returns a payout at ¢ + 1 of

di(t + 1, ae41) = { 1 ifan at?cident of type j occurs at date ¢ + 1;
0 otherwise.
Because security prices are ex dividend and this contract is short-term, it
is worthless at date t + 1: S;(t + 1) = 0. According to the fundamental
equation (4) of asset pricing, the price of this asset depends both on the
riskfree rate and on who is being insured. For consumer 1,
1 1 4 2
S1(t ar) = ————— | =(0) + =(1) + =(0
1t at) 1+ r(t, ar) [7( ) 7( ) 7( )

and so

S1(t, as) = 4/7 if there were no accidents at date ¢;
15 6t/ = 2/7 otherwise;

Similarly, for consumer 2,

S, ar) = 2/7 if there were no accidents at date ¢;
297 1 1/7  otherwise.
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Equation (6), the budget balancing condition in the spot-market at date-
event (¢, a;), must be modified slightly to account for the fact that the in-
surance securities are short-term. At date ¢ there are two securities of type
J in existence: the “old” contracts issued at ¢ — 1 and paying off at ¢ and
the “new” contracts issued at ¢t and paying off at ¢t + 1. Since contracts
issued yesterday are worthless today (i.e., their ex dividend price is zero),
we reserve S;(t, as) to represent the price of contracts issued at date t. With
this modification, equation system (7) becomes

D(t,a)0i(t,a) = c;(t,a)

where
ci(t, @) = (ci(t, a, Bo), ci(t, a, B1), . . ., ci(t, a,,@K))T
and
cilt, o, B8) = Duai(t, 8) + 3 01(t +1,8)S;(t, 8)
jeJ
as before.

Suppose first that the horizon T' = 2 so that the event tree of Figure 1
applies. For the date 1 node a = a9 at which no accident has happened,

1+7(1,a10) d1(2,wo0) d2(2,wpo) 1 0 0
D(2,a10) =11 +r(1,a10) d1(2,w01) d2(2,w01) =111 0
1+7(1,a10) d1(2,wo2) d2(2,w01)

and so for consumer 1 the modified equation system (7) becomes

1 0 0\ [69(2 a10) —154
1 1 0] |6}2a10)| =] 574
1 0 1/ [62(2,a10) ~728

where the right hand side is simply the vector of net trades for consumer 1 at
the terminal nodes { wop, wo1, woz }. Since the matrix D (2, a1g) is invertible,
this equation system has as its unique solution the portfolio

~154
61(2,a10) = | 728 |.

1 01

-9574

For nodes a = aj; or @ = a2 at which an accident has happened to
consumers 1 or 2, the equation system becomes

2 0 0\ [6%(2,a) ~154
2 1 0] |6{(2,a)] =| 574
2 0 1/ L6%(2,0) 728
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where the shift of the leading column of the dividend matrix from 1’s to 2’s
reflects the higher riskfree rate when an accident occurs. Solving gives the
portfolios

77
61(2,a11) = 01(2,a12) = | 728 |.
—-574

Shifting back one date and using the information generated by the first
step of the recursion, at the initial date-event (0,ag) the equation system

becomes
1 0 0\ [691) —56
11 0)[6l)]|=] 623 |,
1 0 1/ L6231 —679

yielding the portfolio
—-56
61(1)=1 679 |.

—-623

Since

2
~Ayz1(0) = 154 = Y 6(1)8;(0),
j=0

equation (8) is satisfied: the initial purchase of assets by consumer 1 at date
0 is exactly offset by her negative net trade at date 0.
Consumer 2 holds precisely the opposite portfolio from consumer 1,

02(t, at) = —01(t,at) for all (t,at),

as can be easily verified. Each consumer purchases insurance on herself
at each date and sells insurance to the other consumer with the portfolio
adjusting over time in response to accident history.

In the infinite horizon case, the trading portfolios are stationary:

0 0
01(t,at) = |: 651 ] and 92(t,at) = [—651}
—651 651

for every date-event (t, a;) with each consumer buying 651 units of insurance
on herself and selling the same amount to the other consumer. The riskless
asset is not held in equilibrium.
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Verifying that (modified) equation system (7) is satisfied is straightfor-
ward. At a date-event (¢, o) at which there has been no accident, we have

for consumer 1
1 0 ONT 0 7 [0 7
1 1 0 651 | = | 651 |,

1 0 1/ L-651] | —651
while, if there has been an accident,

2 0 ONT O 7 [ 0 ]

2 10 651 | = | 651 |.

2 0 1/ L-651] | —651 |

Finally, since

2
~Ayz1(0) = 186 = Y 6}(1)8;(0),
=0

the initial purchase of assets by consumer 1 at date 0 is again exactly offset
by her negative net trade at date 0.

It is also easy to verify that the martingale equation (5) is satisfied for
these short-term insurance contracts. For contract j issued at date ¢, the
discounted price

Si(t)
5L +7(s)

while S7(t + 1) = 0. Because the contracts are short term, there is no
accumulation of dividends over time and hence

Si(t) =

dj(t +1)

D;(t) =0 and D;(t + 1) = m

Thus, equation (5) reduces to

1

= mEQ[dj(t +1) | F

S5(t)
which is equivalent to equation (4).

3.2 Long-term insurance

Although short-term insurance contracts substitute perfectly for ADR con-
tingent contracts, they seem only slightly more realistic than their ADR
counterparts. Taking a step closer to reality, we now consider long-term
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insurance contracts. Specifically, an insurance policy on an accident of type
j is a long-term obligation which, at a price S;(t,a:) at date-event (¢, at),
returns one unit of the consumption good at each subsequent date-event at
which an accident of type j occurs.

To make matters more interesting, we also replace the riskfree asset with
a bond which pays one unit of the consumption good at every date-event
(t,as) from time one forward. For a; € f: let 85 € fiy1 be the immediate
successor event in which an accident of type j occurs. From equation (4),
the price of the bond at (t,a;) for t < T is

L11So(t +1,80) + 1] + 3[So(t + 1, 81) + 1] + 3[So(t + 1, 62) + 1]
]. + ’l‘(t, at)
1+ 3So(t +1,80) + 3So(t + 1, 81) + 2So(t + 1, B2)
1+ r(t,at) '

So(t,at) =

Letting ; € f; be an event in which an accident of type j occurs, we

conclude that
So(t, a0) = 2So(t, a1) = 250(t, a2)

and similarly
So(t +1,80) = 2So(t + 1,81) = 2So(t + 1, B2).

Substitution gives

1

4
i+ Zst+1,80)
T ay LT 750+ 1A0)

Solt,at) =

If the horizon T = 2, then So(2,w) = 0 for all w € Q. Letting a1; € f1 if
an accident of type j occurs at date t, we conclude that

So(l,a10) =1 and So(l,a11) = So(l,a12) =1/2

and hence 1 9 1 11
=1 422 ==
So(0) =1+ [7 +5+ 7] -

When the horizon T = 0o, we can use the fact that the price of the bond
will clearly be stationary to conclude that

4
So(t,ap) =1+ 750(75, ap)
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and hence that

Solt, a) = 7/3 if there is no accident at date ¢;
Oih &t/ = 7/6 if there is an accident at date ¢.

Turning now to the insurance contracts, equation (4) implies that for
t<T

1So(t +1,080) + 3[So(t +1,81) + 1] + £So(t + 1, B2)
1+ T(t, at)

4+ 1So(t +1,80) + $So(t + 1,81) + 2So(t + 1, B2)
1+ 7(t,at)

Sl(t7 at) =

and

15o(t +1,80) + $S0(t + 1, 81) + 2[So(t + 1, B2) + 1]
1 +r(t,at)

2 4+ 150(t +1,80) + 2S0(t + 1, 81) + $S0(t + 1, B2)
1+ 7r(t,a¢)

52(t7at) =

Using the same notation as for the bond, we conclude that
S;(t, @) = 255(t, o1) = 25;(t, a2)
and similarly
S;(t+1,80) = 25;(t +1,B81) = 25;(t + 1, B2).

Substitution gives

1 4 4
Sl( 7at) 1+7‘(t,at) |:7+ 7 0( + 750)]

and 1 5 4
¢ - - |z, Zz 1 .
Sa(t, a) Tt a) [7+ 7So(t+ ,ﬂo)]

If the horizon T = 2, we use the fact that §;(2) = 0 for j = 1,2 to
conclude that
S1(1,a109) = and Sl(l,all) = 51(1,a12) =

So(1,a10) =

TR RSN
NTESRNIEN

and 52(1,a11) = 52(1, 012) =

22



and hence m 99
S = — = —,
1(0) I and S»(0) I

When T = oo, we can use stationary of the insurance asset prices to

conclude that 1

4
Si(t,e0) = 7 + -7-51(t,ao)

and

2 4
52(t7a0) = 7 + ?Sl(tvaO)

and consequently

S1(t, ar) = 4/3 if there is no accident at date ¢;
1148 = 1 2/3 if there is an accident at date ¢

and ) )
2/3 if there is no accident at date ¢;

Sa(t,ae) = { 1/3 if there is an accident at date ¢.

Because the insurance contracts are long-term, equation (6), the budget
balancing condition in the spot-market at date-event (t, a;), now requires no
modification: S;(t, a;) is the price at which an insurance contract of type j
can be bought or sold.

Assuming first a horizon 7 = 2 and applying equation system (7) to
the date 1 node @ = ajp at which no accident has happened, we have for

consumer 1
1 0 0\ [69(2 a10) —154
1 10 9%(2,a10) =| 574
1 0 1/ L63(2,a10) ~728

which has as its solution
' —154
01(2,a10) = | 728 |,

—-574

just as in the case of short-term insurance.
For nodes o = a1; or @ = a2 at which an accident has happened, the
equation system becomes

1 0 0\ [692 ) —154
1 1 0] (6i2,a)| =1 574
1 0 1/ [62(2,e) 728

23



with solution
—154
61(2,a11) = 01(2,a12) = | 728 |.
—574
At date 0, the matrix
1 4/7 2/7 1 0 0 2 4/7 2/7
S0)+D(0)=|1/2 2/7 17 +(1 1 0>=(3/2 9/7 1/7),
1/2 2/7 1)7 1 0 1 3/2 2/7 8/7

so equation system (7) becomes

2 4/7 2/7\ [69(1) —56
(3/2 9/7 1/7) 8l(1) | = [ 623 }
3/2 2/7 8/7 —679

yielding the portfolio
[—1547
61(1)=1 728 |.
| —574 |

Since

2
~Ayz1(0) = 154 = " 6}(1)S;(0),
j=0

equation (8) is satisfied: the initial purchase of assets by consumer 1 at date
0 is exactly offset by her negative net trade at date 0.
Once again, consumer 2 holds precisely the opposite portfolio from con-

sumer 1,
2(t, at) = —01(t,a¢) for all (¢, a¢).

As in the case of short-term insurance, each consumer purchases insurance
on herself and sells insurance to the other. However, in contrast to the
market with short-term insurance, here consumers buy and hold the same
portfolio at all dates regardless of the accident history.

In the infinite horizon case, the trading portfolios are also stationary:

—186 186
Ol(t, at) - 744 and 02(t, at) = | -744
—558 558

for every date-event (t,a;) with each consumer buying insurance on herself
and selling insurance to the other consumer. Consumer 1 also goes short
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186 units of the bond while consumer 2 goes long. For any date-event (¢, a),
equation (7) for consumer 1 becomes

10/3 4/3 2/3\ [—186 0
(13/6 5/3 1/3) { 744 ‘ = [ 651 }

13/6 2/3 4/3/) [ —558 —651
Since 9
—Ayz1(0) = 186 = S 69(1)5;(0),
=0

the initial purchase of assets by consumer 1 at date 0 is again exactly offset
by her negative net trade at date 0.

Verifying the martingale equation (5) for these long-term insurance con-
tracts is straightforward. Suppose that we arrive at date-event (¢, a) having
experienced m accidents, 0 < m < t. Then the discounted price for security
j at dates t and t + 1 respectively is

530 =249 ana S;(t+1)=2—1;9—(%

while the cumulative dividend for security j at date t + 1 is

dj(t + 1)

D]*(t +1)= D;(t) + m—r—(t—))

Thus, equation (5) becomes

Si(t) = mEQ[Sj(t +1) +d;(t+1) | 7]

which is the same as equation (4).

3.3 Earthquakes and the law of large numbers

What happens as the number of consumers increases? We consider two
cases. In the first, which we call the earthquake case, the number of acci-
dent types remains the same; in the second, the number of accident types
increases in direct proportion to the number of consumers.

In case 1, suppose there are now n consumers but only three types of
accident: J = {0,1,2} as before. For the sake of interpretation, imagine a
world consisting of two regions, either of which can experience an earthquake

25



at date t. There is never more than one earthquake at a given date, and
there may be none. The set of consumers is divided into two equal subsets:
I1 who reside in region 1 and Iy who reside in region 2. For each i € I :=
I U I, preferences are once again represented by equation (8). However,
the endowment of consumer ¢ € I is now given by

wi(t, at) = {

In other words, if an earthquake strikes at date ¢t and consumer : resides in
the region in which it strikes, the consumer loses her entire endowment at
that date; otherwise, she is unaffected. It is easy to see that in this case our
results remain essentially unchanged: in particular, ADR prices, equilibrium
net trades, and security prices (short or long term) remain the same.

In case 2, suppose once again there are two types of consumer with equal
numbers of each type, but accidents happen only to individuals. As in our
two-person economy, assume there is a chance 1/2 that an accident happens
to some consumer of the first type and a chance 1/4 that an accident happens
to some consumer of the second type. Assuming consumers of the same type
share equally in the risk to their type, let pi(t) represent the probability®
that an accident happens to any specific consumer of type 1 at date ¢ and
po(t) the corresponding probability that an accident happens to any specific
consumer of type 2 at date t. Since we assume all consumers of a given type
are equally at risk,

0 ifj# 0andie€ I;at date t;
Y otherwise.

o fln ifj=1;
Pi(t) = {1/2n if j = 2.
The probability there is no accident at date ¢ is

as before.

In contrast to the case of earthquakes, in this case increasing n does alter
equilibrium trades and prices. In particular, from equation (10) we conclude
that the ADR price associated with date-event (¢, at) is

(t ar) = 8tP(ay) if there is no accident at date t;
T e = L-6'P(as) if there is an accident at date ¢.

6p;(t) is really the conditional probability P(a; | a:—1) that the event “an accident
happens to consumer i at date t” occurs conditional on event a¢—_1, but we are exploiting
independence to simplify notation. A similar remark applies to the martingale probabilities
q;(t) defined below.
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Letting q;(t) denote the risk neutral or martingale probability that an ac-
cident happens to a consumer of type j at date t and go(t) the martingale
probability there is no accident at all, it follows from equation (1) that

1

) = 3w oD

while the ratios
q(t) _gt) _ _4n/(n—1)
pi(t)  p2(t) 14+3n/(n-1)

As n — oo, the martingale probability

q0(t) — po(t) = 1/4

and the ratios

t ¢
q1()_~)1 and ‘”()—+1.

pa(t) pi(t)
Thus, we obtain a result similar in spirit to those associated with an appeal
to the law of large numbers in the traditional insurance literature: as the
number of consumers increases, the risk neutral (martingale) probabilities
converge to the true, actuarial accident probabilities or, stated in more fa-
miliar terms, the pooling of risk lowers the risk premia charged to individual
consumers.

4 Conclusion

As will be apparent to those familiar with the finance literature, the research
reported here only begins to tap the potential for applying the tools of
intertemporal finance to insurance markets. Insurance contracts are clearly
more complex than the simple instruments captured here, typically insuring
a variety of types of accident over varying periods of time with options to
renew and the like. All such contracts are “redundant assets” in this setting
and, as such, can be priced using martingale measure. Insurance contracts
also typically pay out in real rather than nominal terms, a distinction we
have not addressed in the single commodity version of the model presented
here.

Tools developed in finance for analyzing the structure of risk and return
apply directly to assets such as ours. In particular, if we employ a Dobb-
Meyer decomposition of realized return for each insurance contract into a

.
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predictable part and an innovation, a CAPM-like relationship emerges link-
ing excess returns for each security to the covariance between the likelihood
ratio process,

2(t)=Ep [% | ft]

and the innovation component of the security. Development of some ver-
sion of a mutual fund theorem would also be appealing in which consumers
buy insurance on themselves and invest in a market portfolio of insurance
contracts on others.

As the theoretical discussion clearly shows, there is no reason to assume
hazard rates are independent of the past history of the process and constant
or that the effect of an accident is confined to the date at which it occurs.
When one medical problem strikes, it may announce the increased chance
of other problems arising. And an accident today may put a worker out of
commission for months or years to come.

Finally, perhaps the top priority in this research agenda is extension of
the results to continuous time. The assumptions underlying the counting
process, that at most one accident happens at each date, are only an ap-
proximation in discrete time. As our “earthquake example” illustrates, a
suitable interpretation of accident type takes much of the sting out of this
assumption: any one earthquake can affect a large number of people, but
earthquakes are discrete events. Nevertheless, the clearest justification for
our hypothesis comes in continuous time. Much of the formalism of this
paper is aimed at making the transition from discrete to continuous time as
effortless as possible.
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