Department of Economics
University of California

Los Angeles

Adjustment Dynamics and Equilibrium Selection
in Coordination Games

Youngse Kim
UCLA

March 1992
Revised July 1992
Working Paper No.667

1 wish to thank my supervisor, David K. Levine, for valuable advice and tireless encour-
agement. Comments from Costas Azariadis, Joe Ostroy, John Riley, Ivo Welch, and Bill
Zame proved beneficial. Financial support from the NSF and the UCLA Academic Senate

is gratefully acknowledged. The usual caveats apply.



Adjustment Dynamics and Equilibrium Selection in Coordination Games

Abstract

We consider symmetric multiperson coordination games in a perfect foresight determin-
istic dynamic framework with a costly adjustment. Strong doubt is cast on the equiva-
lence between risk dominance and learning outcomes formerly alleged in two person games.
Equilibrium selection is fully characterized as a function of friction, which in turn depends
upon players’ discount rate and the duration of action commitment. Some limiting results
obtain and their links to static equilibrium concepts based on perturbation are clarified.
Surprisingly enough, the limit as the friction gets smaller coincides with the selection from
~global perturbation and strict iterated admissibility. In any pure coordination game, a
much stronger result obtains supporting the Pareto efficiency as long as friction is suffi-
ciently small, regardless of the number of players and of the initial states. We also provide
numerical results that have substantial implications for the well known experiments on
coordination failures.
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1 Introduction

We study the problem of equilibrium selection in coordination games with two strict
Pareto-ranked Nash equilibria. This class of games represents, in a stylized fash-
ion, the types of interactions prevalent in network externalities such as compatibility
of computer softwares, video tapes, typewriter keyboards, and language, as well as
many recent Keyensian macroeconomic models of coordination failures, geographical
formation of core and periphery (Krugman [1991]), social convention, etc. Consider-
ation of these games is also motivated by the simple game theoretic issue of selection
in games with multiple equilibria in which the existing refinements are powerless.
For instance, the most stringent solution concept proposed in the literature on re-
finements of Nash equilibria, such as the strategic stability of Kohlberg and Mertens
[1986], are silent about selection among strict Nash equilibria. Some recent studies on
learning and evolution have also addressed the question of how a particular equilib-
rium will emerge in a dynamic context. A very partial list of this literature includes
Fudenberg and Kreps [1988], Canning [1990], Milgrom and Roberts [1990,1991], and
Fudenberg and Levine [1991]. Although some convergence results are obtained, these
studies do not offer an equilibrium selection criterion, since all strict Nash equilibria

share the same dynamic properties in their models.

A number of researches since Blume [1990] have tried to discriminate between
strict Nash equilibria and, as a consequence, relate adaptive or evolutionary dynamic
learning equilibrium outcomes to Harsanyi and Selten’s [1988] static notion of risk
dominance. Kandori, Mailath, and Rob [1991] consider evolutionary models for a
finite population in discrete time with constant flow of mutations, which generate
Markov processes in the behavior patterns. Fudenberg and Harris [1992] study a
version of the replicator dynamic in continuous time on a large population. The
random perturbation of the system is introduced by a Brownian motion. Both works
obtain the same result: for 2 x 2 games, as the mutation rate and noise go to zero, the
distribution becomes concentrated on the risk dominant equilibrium. The Matsui and
Matsuyama [1991] model, from which the present paper heavily borrows, shows an

equivalence between risk dominance and dynamic stability in a two person bimatrix



game of common interests.

We apply a costly adjustment dynamics to symmetric binary action multiperson
coordination games with two strict pure strategy Nash equilibria. Doubt is cast on
the alleged equivalence between risk dominance and learning equilibrium outcome.
In other words, two notions “happen” to coincide only in two person bimatrix game.
Equilibrium selection is provided in terms of the friction parameter which in turn
depends positively on the discount rate of players and negatively on the mean arrival
time of the action switches.

We not only fully characterize the equilibrium outcomes prescribed by the adaptive
learning dynamic, but attain some interesting limiting results. Surprisingly enough,
the one limit as the friction approaches to zero turns out to coincide Carlsson and
Van Damme [1990,1991] equilibrium selection from perturbing the original game in
such a way that each player receives a private signal for payoffs but is unable to fully
disentangle the true payoff realization and purely private noise. Lack of common
knowledge among players comes into play, which make it possible the remote areas
of strictly dominated strategies to exert an influence. This fact suggests solving
the resulting incomplete information game using an iterative elimination of strictly
dominated strategies. It is shown that either the good or the bad equilibrium will
be globally attractive according only to the static payoff matrix but irrespective
of the initial conditions. The other limit as friction gets infinity is closely related to
concepts of evolutionary stability, especially as of Swinkels [1992a] and Matsui [1992].
Remind that any ESS-like notion comes from a “local” perturbation, whether it is
made on actions or on payoffs. Both strict equilibria are simply ESS, in which the
payoff structure does not matter at all and-only initial conditions do. Our results
might shed a light on the connection between adaptive dynamic learning outcomes
and static equilibrium notions based on perturbational methods. So to speak, the
dynamic outcome attained as players become more concerned about the future seems
to correspond to a static equilibrium that is based on a larger perturbation, and vice-
versa.

The present paper may have a substantial implication for recently developed ex-

perimental results, such as Van Huyck et al. {1990, 1991] on coordination failure



and Cooper et al. [1990] on the predictability of Nash equilibrium. In particular. we
provide a theoretical and numerical evidence that can explain the following obser-
vations: weak dominance, a wide dispersion of initial effort choices, a trend to drift
in small group treatments, a rapid convergence to a bad Nash equilibrium regardless
of initial strategic uncertainty in large group minimum treatment, a strong history
dependency in large group median treatment, and Pareto efficiency in pure coordi-
nation problem. To recapitulate, coordination failures and history dependencies are
the most remarkable features, respectively, under minimum rule and median vote,
when the group size is large.

The balance of the paper is organized as follows. Section 2 offers an intuitive ex-
position of the basic idea in a simple example. Section 3 formally defines the game of
our interest. Section 4 sets up the dynamic model and then characterizes its dynamic
equilibrium outcomes. Section 5 calculates important static equilibrium selections,
namely global game perturbation and risk dominance. The same section proposes
the equivalence between the limiting adjustment dynamic outcome and the static
equilibrium selection based on global perturbation. Section 6 study two interesting
subclass of games, that is, a pure coordination and a stag hunt game. Section 7 offers
numerical evidence in the framework of stag hunt game on the experimental studies.

The last section concludes with some suggestions on future research.

2 An Exposition

Consider the highly stylized game as follows. A forest is inhabited by a stag and
a number of hares. Identical hunters of group size n simultaneously and without
communication have to choose between stag and hare. If one hunts rabbit, his payoff
is § z no matter what his opponents’ choices are. If he decides to pursue stag then his
payoff would be determined not only by his own choice but by the summary statistic
of what others are doing. Roughly speaking, stag hunting is successful only when
enough number of hunters cooperate. Minimum rule refers to the situation where
even a single defection from full cooperation results in a failure. Under median vote,

half cooperation is sufficient for a successful stag hunting. A successful stag hunting



yields $100 to each of the participants, whereas a failure brings about nothing. The
normal form game described by the above data is called a stag hunt game. which can
be traced to Rousseau [1755] in his discussion of the origin of the social contract.
This game may have a lot of practical applications, as enumerated in the introducing
paragraph.

We first study the dynamic evolution of the social equilibrium played by a large
population. Each and every hunter is randomly and repeatedly matched to form a
group of n players and play the stage stag hunt game. Players are perfectly rational
so as to maximize their discounted average expected payoff, and the dynamic path
on which they condition to calculate their expected payoffs is perfectly foreseen.
However, there is a friction: Not every player is able to switch his or her own action
every period. While this assumption will be incorporated in a highly stylized manner,
its interpretation as transaction costs can be intuitive in many contexts. For the
example of stag hunt game, the reader might want to consider it as costs to switching
from arms and tools needed for stag hunting to those for rabbit catching. Given the
opportunity to move, each and every hunter chooses an action that maximizes his
expected utility conditioned on the perfect foresight equilibrium path. The dynamic
equilibrium outcome will be fully characterized as a function of group size, n, and
the effective discount rate, 8. The effective discount rate already takes full account of
both real time discount rate and the cost to switching actions. The long run steady
state of the social equilibrium must end up with either everyone’s hunting stag or
everyone’s catching hares. While not regretting their individual choice in both states,
people in rabbit hunting society are neverthless unhappier than those in stag hunting
community. Struggling by a single individual or a negligible number of people is
simply in vain. In other words, all hunters may give a best response, but implement
a Pareto inferior equilibrium.

To take a concrete example, let n = 2 and § = 0.5. It can be shown that the
“good” stag (respectively “bad” hare) equilibrium could be obtained regardless of
the initial population fraction of rabbit hunters if the sure return to rabbit hunting,
z, is smaller than $40 (resp. greater than $ 60). In the case where z is between $40

and $60, the historical accident of initial fraction of hunter types plays a crucial role



in determining exactly which long run equilibrium the society would settle down.
Now as players become more patient in the sense that & approaches to zero. the
middle region of history dependency vanishes, and the limiting threshold value of r
is calculated as $50. For another example, let n = 3 and § = 0.5 under minimum
rule. Then the history dependent region is between $23 and $43, which will shrink
to an infinitesimal area around $33c33 if people care very much about their future.
Put it another way, in the limit as people are extremely patient, the society is likely
settle down on the stag (resp. hare) equilibrium if z is smaller (resp. greater) than
$33c33 in the long run. Just believe me for all the numbers here!

We discuss two important static equilibrium selection concepts in turn, Harsanyi
" and Selten’s [1988] risk dominance and Carlsson and Van Damme’s [1990,1991] global
perturbation. Imagine a hypothetical situation where it is common knowledge that
all players think that either the stag equilibrium or the hare equilibrium must be
the solution without knowing which of both equilibrium points is the solution. Risk
dominance tries to capture the idea that in this state of confusion the players enter a
process of expectation formation that may lead to the conclusion that in some sense
one of both is less risky than the other. A plausible chain of reasoning has led us to
a complete theory an outsider observer should have on the player’s behavior in the
hypothetical situation. The preliminary theory can be summarized as follows: (i)
Each player 7 believes that either the all the other players hunt the stag or all other
players catch hares; he assigns a subjective probability 2; for the former possibility
and its complementary probability for the latter; (ii) Each player i plays his best
response to his belief.(iii) The z; are independently and uniformly distributed over
[0, 1]. Unfortunately this simple theory will not work because this best reply strategy
combination will generally not be an equilibrium point of the game, and therefore it
cannot be the outcome chosen by a rational outcome selection theory. The second
order best reply to the first order vector is iteratively calculated, and so forth. Asthe
tracing procedure progresses, both the prior vector and the best response strategy
combination are subjected to systematic and continuous transformations until both
of them finally converges to a specific equilibrium point of the game. Thus at the

end of the tracing procedure both the players’ actual strategy plans and expectations



about each other's strategy plans will correspond to the same equilibrium point.
representing the risk dominant outcome. Fortunately the tracing procedure will be
accomplished in one round in the present stag hunt game. For the two person game.
stag hunting risk dominates hare catching if z < $50, and vice-versa. For the three

person game under minimum rule, the critical value will be $38¢20.

Global perturbation approach is based on the idea that players are uncertain
about the payoffs of the game. Trembling the game is made in such a way that
payoffs are almost but not perfectly common knowledge, and that there is a small
but non-negligible chance that each of the actions can be a dominated strategy. To
be specific, there is a real possibility that z < 0 where rabbit hunting is strictly
dominated and z > $100 where stag hunting is striclty dominated. Each hunter
receives a private signal that provides an unbised estimate of the common value z,
but the signals are noisy so the true value of z will not be a common knowledge,
and then chooses whether to hunt stag or rabbit. Assume that the noise can be at
most $1. For instance, if the true value of z is, say, $70 then all the private signals
must be somewhere between $69 and $71 from the outsider’s viewpoint. Imagine a
situation where a particular hunter 7 just observed his private signal z; equal to, say,
$50. Even if he knows upon having observed $50 that the true x lies between $49
and $51 and that all other z;’s between $48 and $52, this is in fact not common
knowledge between hunter i and j. Now suppose that hunter j observes z;, say, $48,
then he knows that the true z lies between $47 and $49, and z; between $46 and
$50. The problem is that hunter i does not know that hunter j knows that his
z; lies in the interval [$46, $50]. Lack of common knowledge expands all the way
down, and therefore enables remote areas of dominated strategies that z is negative
or greater than $100 to exert an influence. This argument may well be applied to all
the other less extreme realizations of z; in the interval [$48, $52] and any smaller size
of the maximum noise, say, a penny instead of a dollar. Equilibrium is charaterized
using iterative elimination of strictly dominated strategies and is shown to have a
cutoff property. Finally, we are interested in what happens at the payoff realization
corresponding to the original game in order to select an equilibrium. For a two person

stag hunt game, equilibrium selection based on global perturbation prescribes that



each hunter should hunt a stag (respectively, a hare) if his private signal is smaller
(resp. larger) than $50. For another example of a three person game under majority
vote, a hunter should choose a rabbit only when his private signal about the riskless
return from hunting rabbit is bigger than $66¢67.

Table 1 provides some calculation examples of the cutoff values for the limit-
ing adjustment dynamic outcome, risk dominance, and global perturbation in the
case of minimum and median rules when the number of players is n = 2,3,15,99,
respectively.! The reader may be aware that the dynamic equilibrium outcome se-
lection in the limit as the effective discount rate § goes to zero coincides with static
equilibrium selection based on global perturbation but not risk dominace. This is no

luck ! We are to verify this equivalence in coordination games in general.

3 The Game

We consider a symmetric n person coordination game with binary actions, denotéd

High and Low. The normal form game denoted by G(n,II) has 2" number of cells,

but due to symmetry only 2n cells need to be taken into account. Considering a

strategy profile in which k¥ number of persons choose H with the remaining (n — k)

persons choosing L, we denote 7 and 7L_, to be a player’s payoff who is taking H
¢ ¢

and L, respectively, where k = 1,2,...,n. Let a vector ¢ = (73,75, ...,7%), for ( =

H, L, and I = (I1¥,11*) € R*". The games of our interest belong to:

N={Ile §Rz"|7r,‘;+1 > n$,¥¢, Yk with strict inequality for some k;
7rf1>7r{‘,7r,’j>7rf{;7r,’1{27rf}. (1)
The first set of inequalities in (1) imply that a player taking a particular action is
no worse off when the number of opponents taking the same action increases. The

next two inequalities require that everyone playing a common action is a strict Nash

11t is interesting to note that under the minimum rule, global perturbation is more conservative
than risk dominance, in the sense that there is a portion of = such that zgp prescribes subjects to
choose the secure action but zgp the risky payoff dominant one. Under the median rule, on the
contrary, risk dominance is more conservative. These observations imply that coordination failures
and history dependency are more severe in global perturbation than in risk dominance.



equilibrium. The last inequality means that the equilibrium where everyone plays H.
denoted H. is better than where everyone plays L, denoted L. Figure 1 depicts an

example of three person coordination games with payoff specification:

nf=3, 7r2H=1, =1

k=2, 1f =0, rl =0.
Now the following preliminary result is straightforward:

Lemma 1 IfII € Q then the only pure strategy equilibrium of G(n,IT) are two strict
Nash, viz. H and L.

Proof. It suffices to show that none of k=1,2,...,n—1satisfies both x> 7r£’+1
and 7T > 7L_, ., since otherwise the pure strategy profile of k players choosing H’s

and (n — k) players choosing L’s would be Nash. Adding the above two inequalities

yields
L L H H
—(ﬂ.n—k+1 - Trn—lc) > 7r1c+1 )
which contradicts the definition of the {2 set. 1

As suggested before, any of the Nash refinements including the strategic stability as
of Kohlberg and Mertens is powerless in selecting between two strict Nash equilibria.
Pareto efficiency is compatible with equilibrium play, so neither an incentive problem
nor conflict exists. However, it is not clear whether players will be able to reach this
outcome in a noncooperative situation where no direct communication is allowed. In

short, a strategic uncertainty matters.

4 Adjustment Dynamics

4.1 The Model

Time is continuous from t = 0 to co. The game G(n,II) is played repeatedly in a

society with a continuum? of identical players. At every point in time, each is matched

2Boylan [1992] verifies that, if the population is countably infinite, there exist a probability space
and a sequence of random variables which correspond to a random matching process such that the
law of large numbers can nicely apply, i.e., there is no aggregate uncertainty. Green (1989] offers
some big enough probability space to encompass the continuum model.

10



to form a group with other n — 1 players, randomly drawn from the population, and
they play the game anonymously. All players are highly rational and choose a strategy
to maximize the expected discounted payoffs. Because of the anonymity, they are
engaged in this maximization without taking into account strategic considerations
such as reputation, punishment, and forward induction.

The key assumption is that not every player can switch actions at every point
in time. Every player needs to make a commitment to a particular action in the
short run. Following Blume {1991] and Kandori and Rob [1992], we assume that the
opportunity to switch actions arrives randomly; it follows the Poisson process with the
parameter A being the mean arrival rate. Furthermore, it is assumed that the process
is independent across the players and there is no aggregate uncertainty. The strategy
distribution in the society as of time ¢ can be thus described as y., the fraction of
the players that are committed to action H as at ¢. Due to the restriction mentioned
above, the social behavior pattern y, changes continuously over time and its rate of
change belongs to [— Ay, A(1 —y.)]. Furthermore, any feasible path necessarily satisfies
yoe M <y, <1 —(1 —yo)e™™, where the initial condition yo is given exogenously or
“by history.”

When the opportunity to switch arrives, players choose the action which results
in the higher expected discounted payoffs, recognizing the future path of y as well as
their own inability of switching actions continuously. The value of playing action H
instead of L as of time ¢ is equal to

n n—1 L n-—1
O(y) = Y ( . ) yE (1 =yl = ( ) ) yrR(L -y
k=1

-1 k=1 -1

[}
~—

k=1 k-1

rfn-1

Z ( ) ye (1 - ye)" " b, (:

where ¢ = mf —nL_, _, is nondecreasing in k. Given the opportunity, players commit

to take H if V, > 0 and to L if V; < 0 and are indifferent if V; = 0, where

Vo= (A 47) [ @yers)em s (3)
()

with 7 > 0 being the discount rate. We define § = £ to be the effective discount

rate or the degree of friction. Therefore, {y:}2, is an equilibrium path from yq if its

11



righthand derivative exists and satisfies

. {A(l—yn if Vi > 0, "

y':
‘ Ay itV <o,

for any t. This states that all players currently playing action H (respectively L), if
given the chance, switch to L (resp. H), when V; < (resp. >)0.

4.2 Characterization

We borrow from the Matsui and Matsuyama model the following terminology: A state
yis called accessible from y', if an equilibrium path from y’ that reaches or converges
to y exists. It is called globally attractive if it is accessible from any y € [0,1]. A state
y is called absorbing 3 if a neighborhood U of y exists such that any equilibrium path
from U converges to y. It is fragile if it is not absorbing. The definition does not rule
out the possibility that a state may be both fragile and globally attractive, or that a
state may be uniquely absorbing but not globally attractive. However, we will show
that these situations will not occur in this model.

We will show that the parameter I characterizes the game to be in one of three
sets o, O, and Qo;, where the state y = 0 is globally attractive in {lo, the state 1 is
globally attractive in €, and both states are absorbing in (g,. For this purpoée, we
need the coefficients

onln, ) = - [[(2) and il 8) = @uckna () (5)

For notational simplicity, we suppress (n, §) whenever possible. We denote the vectors
a = (0q,Qg,...,a,) and 8 = (B, B2, ..., Bx). The reader might be embarrassed with the
complicated forms of the coefficients ay’s and By’s. According to the lemma below,
however, they play a role as weights, putting higher (resp. lower) weight on larger k
in a(resp.B). The weight equally spreads over all k’s as the friction disappears, while

it concentrates on an extreme k as the friction grows without bound.

3Although this is the same concept as asymplotically stable according to standard terminology
in dynamical systems, we simply use absorbing for brevity. It should be emphasized that this is
nothing to do with the Markov processes.
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Lemma 2 For any n given, (a) Si_, ok = Yjp=y Sk = 1, V6,

(b) aps1 > o and 341 < 3k VA, 6 € (0,00): (c) (lsin(l) Q= ljna 3, = —1- Yk
- i 1n

(d) ojim a=(0,....0,1) and 6lim 8 =1(1,0,...,0).

Proof. (a) Via mathematical induction. Checking the case of n = 2 is trivial.

Supposed that it holds for n — 1, i.e. Z;% ;;/:(;i_g) = 1+5, then for n
Z":a 146 &
k =
k=1 k= 1;—1:]'*'6
3 1+6[ n n— ln-l
T n n+5 n+5k el ]
l+6 n n-—1
= 1 1.
n n+6[ +1+6]

The fact that $7_, B¢ = 1 is trivial since the elements of the vector B are just a

rearrangement of those of a. To check (b),(c) and (d) is straightforward. ]

The - denotes the i inner product of two vectors. For example, o - II¢ = £¢_; s,

etc. We attain proposxtlon 1 together with the definition of the sets:

Qo = {1 € Qla- N < g T}, (6)
0 ={Meqg-N¥ <a 0}, (7)
Qo =Q\(QOUQI)- (8)

Proposition 1 The state y is globally attraciive iff I1 € Q, for eithery =0 ory = 1;
bothy = 1 and y = 0 are absorbing iff IT € Qo;. Moreover, if an absorbing state, y,
is globally attractive, then it is a unique absorbing state in [0,1] and any other state

must be fragile.

Proof. First of all, notice that ®(0) = 7 — 7L < 0 < ®(1) = xH — rl and that
® is strictly increasing, since

n—2

?'(y) n—l)Z ( "_2) v (1 — )" bhy2 — Srar] >0

13



by the definition of ¢ function and the nondecreasingness of m; sequences.

The outcome H can be upset when the players have an incentive to deviate for a
feasible path from y = 1. Because of the monotonicity of @ function, the incentive
to deviate is the strongest if all players are anticipated to switch from H to L in the

future, i.e. y; = e~*'. Hence, the condition for y = 1 being fragile is
Vo=(A+r1) /oo d(e )e~M2ds < 0,
0
which would be by the change-of-variable technique
! 5
(1+ 5)/ ®(y)y'dy < 0. (9)
0

Using eq (2), the definition and properties of the Beta and Gamma function,?, and

some algebraic manipulations, the eq (9) becomes

n n-1 1
0 > (146 kH6=1(] — y)mkd
> )g;(k_l)mjoy (1= y)dy

n

= (1+6)Z(

n—l) C(k+6)(n—k+1)
P

= Y akds,
k=1
or equivalently
Sl < Yok i =Y Beri, (10)
k=1 k=1 k=1

which corresponds to the condition defining the Qo set. We claim: y =0 is globally
attractive if and only if IT € Q, and that y = 1 is absorbing if and only if IT € Q\Qo.
To prove the if part of y = 0 being globally attractive and the only if part of y =1
being absorbing, it suffices to show that, if eqn (10) holds, i.e. I € Q, a feasible
pathfromy=1toy =0,y = e~ satisfies the equilibrium condition, i.e. V; <0Vt
along the path. This can be checked as follows:

Vi = (A+7) /0 ®(yeys)e~ M ds

< (A+1) /Ooo @(e"\s)e'(“")’ds < 0Vt

4Refer to any text on mathematical statistics.
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To prove the if part of y = | being absorbing and the only if part of y = 0 being
globally attractive, it suffices to demonstrate that, if 1 € Q\Qy. the equilibrium path

is unique and converges to y = 1 for yo sufficiently close to 1. Reminding that any

At

feasible path from yo satisfies y, > yoe™", we get

Vo> (A+7) /0 " B(yoe)e M+ ds,

Since the righthand side is strictly positive at yo = 1 and continuous in yo, it 1s still

positive for yo sufficiently close to 1.
Similarly, the condition for y = 0 being fragile combined with the change of

variable technique will be

o0

Vo = ()\+r)/0 Q(l—e"\’)e_(”’)’ds
= (1+6) [ o)1 -yfdy 20 (1)

Again by the definition of ® function, the properties of Gamma and Beta function,

and some algebraic manipulation, we have

( n—1 ) ¢k1‘(k)l‘(n—k+6)

0 < Y

n

T g\ k-1 F(n+1+9)
= Zﬁk(bk’ (12)
k=1
or equivalently
3 Bemf < > Bemh jpr = 3 oy, (13)
k=1 k=1 k=1

which is the condition defining Q;. A symmetric argument as before shows that y = 1
is globally attractive if and only if Il € 2, and that y = 0 is absorbing if and only if
e Q\Q,.

Combining all those facts proven thus far yields the desired result. 1

Proposition 2 (a) In the limit as § — 0, the state y = 1 (resp. y = 0) is globally
attractive iff 1Y i > (resp. <) 1Y L
k=1 k=1

(b) in the limit as § — oo, both states are absorbing and no state globally attractive.

15



Proof. Part (a) is clear from Lemma 2(b) and (c). As § goes to infinity. Lemma
2(d) together with eqn (1) implies that both Qg and Q; becomes empty. while the

Qg eventually occupies the whole Q. [

Keep in mind that the smaller (larger) size of § implies the more (less) patience
and/or a shorter (longer) duration of an action commitment.® The smaller the degree
of friction 6 gets, the more the long run equilibrium tends to rely on the parameter
specification and the less on the initial position of strategic uncertainty, and vice
versa. As players are more and more patient and/or able to switch their choices,
the steady state will be the good Pareto efficient equilibrium as long as the “static”

unweighted average from H exceeds that from taking L.

On the other extreme case of § approaching to infinity, sometimes called best
response dynamics, both states may obtain in the long run and exactly which one
would come out depends solely upon what the initial state was. In fact, Matsui [1992]
verifies an equivalence between the best response dynamics and a static equilibrium
concept attributed to Swinkels [1992a]. This notion, called an evolutionary stability
with equilibrium entrants, imposes an additional restriction on the qualification of
mutants, thus is weaker than the traditional evolutionary stability. Notice that the
connection® of “myopic” replicator dynamics to strategic stability or rationalizability
would be vacuous in coordination games, because both Nash equilibria simply survive

the strict iterated admissibility.

5 Equivalence to Global Perturbation

The global perturbation approach of Carlsson and Van Damme [1990, 1991] is based
on the idea that players are uncertain not only about the payoffs but also their

modeling of the game itself. Each player : will receive a private signal 8, that provides

5Indeed, § — 0 implies that players are more concerned about the future. That A — oo might
have two opposite effects: players are less concerned about the future whilst the current strategy
distribution becomes less important. Nevertheless, a strictly positive § guarantees the second effect
always dominating the first one. Therefore, the smaller § gets, the more players worry about the
future.

6Refer to Swinkels [1992b] and Samuelson and Zhang [1992].
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an unbiased estimate of #, but the signals are noisy so the true value of § will not be
common knowledge. Let © be a random variable and let {£;}"_, be an n tuple of
i.i.d. random variables, each having zero mean. The E; are independent of ©. allow
a continuous density and have support within [—1,1]. For ¢ > 0, write Of = O +<E;.
Notice that ¢ measures perfectness of the common knowledge.

Given this structure, we formally define the incomplete information game G*(n, IT)
described by the following rules: A realization (0,6, ...,0,) of (0,04, ...,07) is drawn.
player ¢ is informed only about 6; and chooses between H and L, each player ¢ receives
payoffs as determined by G(n,II(6)) and the action taken. Even if player : knows
upon having observed 6; that the true 8 lies in [f; — €,0; + €] and that all other
| 0;’s in [0; — 2¢,6; + 2¢], this fact is not common knowledge. Now suppose that §; is
realized as, say, 8; — 2¢, then player j knows that @ lies in [; — £,0; + €], thus in
[6;—3¢,6;+¢], and that §; must be in [0; —2¢, 8;+2¢], thus in [6; —4¢, 6;]. The problem
is that player ¢ does not know that player j knows that 6; lies in [f; — 4¢,8;]. This
argument applies also to all the other less extreme realizations of ;. Lack of common
knowledge expands all the way down, and thus enables remote areas of dominated
strategies (—o0,8) and (f, 00) to exert an influence, however tiny ¢ might be as far

as it is strictly positive.”

We confine our attention to perturbation pff (resp. pZ_,) that satisfies two condi-

tions as follows:

Assumption 1 (a) They are continuous, monotonically increasing (resp. decreas-
ing) in 0, and unbounded above and below, Vk; (b) the original unperturbed game
obtains with § = 0, i.e. p$(0) = 7¢ for ( =H,L.

Let @ (resp. 8) the infimum (resp. supremum) of 8’s such that H (resp. L) is a strictly
dominant strategy in a game with payoff realization §. By assumption 1 above, it is

obvious that —0o < 8 < 0 < 8 < +o.

Assumption 2 The © is uniformly distributed over an interval D [6,6].

7Such a remote area plays an important role in Rubinstein [1989] as well.
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This would play an important role, since only order but not location of the realizations
of random noise variable matters. We believe that main points would still emerge
without this restriction, but we have not verified that this is the case. A guess on
relaxation of this assumption will be made in the last section.

Under these assumptions, an iterative elimination of strictly dominated strategies,
namely strict iterated admissibility, will be applied. The next lemma shows that the
Bayesian Nash equilibrium is of the cutoff property, and that the game considered

here is indeed dominance solvable.

Lemma 3 If assumption | and 2 hold, then the equilibrium is characterized by cutoff
Ocp such that player i optimally chooses H (resp. L) iff 6; > (resp. <)0gp. Further-
more, Op is a unique root of the equation 1 5, pfl(6) = 1 T, pk ().

n

Proof. Notice that the existence and uniqueness of such gp are guaranteed by
assumption 1(a) and 1(c). As was suggested, we maintain the assumption that no
player will choose strictly dominated strategies. Player i will certainly choose H if
9; > 8: Since the expected value is E(O|0f = 6;) = 0;, player 1 knows that H is
strictly dominant at each such observation. Consider an observation ; of player 1
slightly below 6. More precisely, it must be that |0 — ;] < 2¢. Player ¢ knows that his
opponent will play H if §; > 9, hence i’s payoff if he chooses H at 6, is approximately

n

Y Pr(8; > 0 for exactly k — 1 opponents|®f = 8)p (9) (14)
k=1

= 2 Pr(E; > E; for exactly k — 1 opponent)pf(ﬂ-) (15)
k=1 -
1l S~ Hia

= =) pc(6): (16)
o

Assumption 2 allows us to conclude that the probability in the eqn (14) is independent
of 8,, at least as long as 8; lies ¢ inside the support of ©. This observation allows us
to conclude that this probability must be equal to the a priori probability that E; is
the k + 1th smallest among the errors. Thus, the eqn (15) ensues, the probability in
which is clearly the same for all players. This fact, combined with the assumption

that the i.i.d. of E; has a continuous density, yields eqn (16).
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A similar reasoning shows that the expected payoff to action L is at most approx-
imately %22;1 pk(8). which is strictly lower than DIy pH(0) calculated above by
the monotonicity assumption 1(a). Hence, if gp < 0, there exists §' such that H is
strictly dominant for any 6; > f! in the reduced game where player j is constrained
to play H when 0; > f. In a similar way one can construct 62 < 0! and continuing

inductively we find sequences 8™ such that H is iteratively dominant for 6; > ™.

On the other hand, starting from the maintained assumption that action L will
be chosen when 8; < 8, we inductively find a sequence §™ such that L is iteratively
dominant for §; < ™. By the definition of fgp, it is obvious that 8™ | 8gp and

0™ T 0gp as m — oo. |

Remind that the perturbed game will correspond to the original unperturbed game
when 8 = 0. We are interested in what happens at § = 0 in the limit as the common
knowledge about payoffs becomes arbitrarily perfect, i.e. & goes to zero. Recall that
6;] < eif 8 = 0. So if 8gp > (resp. <)0 for ¢ small enough then 8; < (resp. >)0gp for
all i when 8 = 0. We say that the equilibrium H in the unperturbed game is robust
with respect to global perturbation if Ogp < 0, and that L is robust if §gp > 0. Remind
that the state y be the fraction of population taking action H. Arguments thus far
would yield:

Main Theorem The y = 1 (resp. 0) is the unique globally attractive state in
the limit as § — 0 if and only if action H (resp. L) is robust with respect to global

perturbation.

A couple of previous literature deserve mention. Harsanyi [1973] uses a similar
perturbation to justify mixed strategy equilibria. His formulation requires, however,
that the value of # be common knowledge so observing 6; implies knowing the real-
ization of E;, but not E_;’s, and that the payoff of player i depends on 6; rather than
on 0. Fudenberg, Kreps, and Levine [1988] argues that an equilibrium that is unrea-
sonable (in the sense of being eliminated by Nash refinements) in a given game may
not be unreasonable in nearby games. They assert that every strict equilibrium 1s

reasonable and they roughly show that every normal form perfect equilibrium can be
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approximated by strict equilibria of nearby games, hence, that any such equilibrium
is reasonable as well. Their paper differs from global perturbation in the definition
of nearness of games and in the assumption that only the analyst does not know the

payoffs, the payoffs are, however, common knowledge among the players themselves.

We discuss selection on the basis of Harsanyi and Selten’s [1988] risk dominance,®

and refutes its equivalence to global perturbation, thus to limiting adaptive dynamic
outcome. The definition of risk dominance is based on a hypothetical process of ex-
pectation formation starting from the initial situation where it is common knowledge
that either H or L will be the solution but where players do not yet know which one
is the solution. Consider a process in which players first, on the basis of a prelim-
inary theory, form priors on the strategies of their opponents. Thereafter, players
gradually adapt their prior expectations to final equilibrium expectations by means
of the tracing procedure. The players’ prior beliefs ¢; about player i’s strategy should
coincide with the prediction of an outside observer who reasons in the following three
steps about the game: (i) Player ¢ believes that his opponents will either all choose
H or L; he assigns a subjective probability z; to the first event and the complemen-
tary probability to the second; (ii) Player ¢ chooses a best response to his beliefs;
(iii) The beliefs of different players are independently uniformly distributed on [0, 1].
From (i) and (ii), the outside observer concludes that player ¢ takes H according to
iz + (1 -z)> rlz + L1 - ), or

L L
Tn — M

(n —nff) + (nf = 71)

;> p =

Using step (iii), the outside observer forecasts player i’s strategy as ¢; = (1 — w)[H] +
u{L], with different g; being independent. The tracing procedure to find a distin-
guished path in the graph of the correspondence from a linear combination of the
naive G(q) and G(n,1I) to the set of Nash equilibria is simple in the case at hand.
Player i’s expected payoff difference associated with H and L in G(n,IT) when each
of the opponents follows the strategy ¢_; will be

8Payoff dominance principle a 13 Harsanyi and Selten [1988 p.80- 1] selects H whereas the security
a la Luce and Raiffa [1957 p.61-7] prescribes H (resp. L) according to 7H > (resp. <)wf. Note that
the number of players, n, is totally irrelevant like in most of the Nash refinements.
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n n—1 n n—1 .
( ) (L= p) b =50 ( ) P = )
1

i1 \ A =1

= i ( ! ) (1= p)e " oy
= &1 - p). (17)

Recalling that ®(0) < 0 < ®(1) and ® is monotonic increasing, write urp the unique
root of the equation ®(1 —u) = 0. Hence, each player’s best response against ¢ would
be H (resp. L) iff g < (resp. >)urp.

Now it is not difficult though tedious to verify the nonequivalence part, since the
payoff I satisfying the condition DI = % T, £ does not generically satisfy the
risk dominance solution ®(1 — g) = 0, for n > 3. In this course, one can be aware

that they just happen to be equal when n = 2.

6 Applications

6.1 Pure coordination

Consider a two person pure coordination game. It is often argued that, even without
preplay communication, introspection alone will lead players to coordinate on the
Pareto optimum. This intuition is confirmed as reasonable even in broader definition
of pure coordination games. A pure coordination game specifies the payoff parameters

to be
a (resp.b) fors <k<n

# (resp.my) = {

0 otherwise

where k£ may be any of 2,3,...,n.

Corollary 1 There ezists § > 0 such that the only uniquely absorbing and globally
attractive state is y = 1 for any n, yo, and § € (0,8). Equivalently, the only equilib-
rium selected based on the global perturbation must be the Pareto efficient H for any

n.
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Proof. Since %Zk i = %a > n;:il = %Zk rL always holds. it is straight-
forward that, as § — 0, the Q; set will ultimately occupy the whole @ and the
remaining region (o and Qo be empty sets. The second part is direct from our main

theorem. |

6.2 Stag hunt

The most general payoff specification that includes the game discussed in the expos-

itory section will be as follows:
e =z€(0,1)all k

0=7rf1§7rf§...§7rf=1.

Besides its practical applicability, this game has a couple of merits to analyze. First,
the Pareto optimality is at odds with the security, so which outcome would actually
appear may be controversial. Second, it reduces the Q sets to a one dimensional
space, which makes the results extremely intuitive and facilitates numerical studies.

Recalling that - denotes a dot product of two vectors, we define
u(n,8) = a-M" and {(n,6) =5~ e (18)
where a,’s and B,’s are as in eqn (5). Directly applying proposition 1 and 2 yields:

Lemma 4 (a) The state y = 1 is globally attractive iff z 2 u(n,8); y = 0 is globally
attractive iff z < €(n,6); bothy = 1 and y = 0 are absorbing iff €(n,8) <z < u(n,d);
(b) in the limit as § — 0, the state y = 1 (resp. y = 0) is globally attractive iff

z < (resp. >)1Y° 7 = zap; (c) in the limit as § — oo, both states are absorbing.
k

The AD in the expression of z 4p stands for ‘adjustment dynamic’. We now discuss
selection on the basis of risk dominance and global perturbation in turn. Carefully
following the linear tracing procedure described in section 5.1, one can reproduce
Carlsson and Van Damme [1991] result that: each player’s best response against q_;,

where ¢; = (1 — z)[Stag] + z[Rabbit] with different g; being independent, would be
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to hunt stag (resp. rabbit) if and only if z < (resp. >)rpp, where rgp is the fixed

point of the mapping

B(x)zﬁ: ( n-l ) (1 —z)tegn*rl, (19)
k=1 k—1

For the study of global payoff uncertainty, consider a specific perturbation. That is,
we assume that all data of G(n,z, I17) are common knowledge, except for the payoff
r associated with the safe action L. Remind that the X is uniformly distributed over
an interval containing [0, 1]. Denote zgp to be the cutoff calculated through the strict

iterated dominance, we are ready to state:

Corollary 2 .
Top = 1 S n =zcp # zrD (20)

M k=1
Proof. 1t suffices to demonstrate that %ZLI 78 is not a fixed point of B()
mapping defined in eqn (19), ie. B(1¥Yr ) # LTk 7 forn > 3. All the
remaining proofs are nothing but a duplicate of the proof of proposition 1 and 2 and

the main theorem, which is available from the author upon request. ]

7 Experimental Implications

A brief survey of Van Huyck et al. [1990; 1991] experimental results is offered. Each
treatment typically lasts ten stages but the number of stages was not announced
in advance in some experiments. A summary statistic of subjects’ strategy choices
was publicly announced after each stage. At the end of each experiment, subjects
were paid the sum of their payoffs in the games they played. In each of the games,
each player i chooses a pure strategy, denoted e; and called effort, from the set
{1,...,7}. In each stage, each player’s payoff was determined by his own effort and
a simple summary statistics of those of the players in his group. This statistic was
either minimum or median of group effort choices. The parameter values were given

for these normal forms® to be of coordination games with seven strict Pareto ranked

9Van Huyck et al.1990 article for minimum treatments and 1991 research for median ones contain
parameter values actually used in the experiments and the resulting normal forms.
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symmetric pure strategy Nash equilibria. In every game, the payoff dominance selects
all players’ choosing the highest effort. i.e. 7, irrespective of the number of subjects
in a group. Finally, a large group consists of 14 to 16 players whilst a small of only
two persons.

Despite payoff dominance, in large group minimum treatments subjects initially
choose widely dispersed efforts and then rapidly approached the lowest effort, e = 1 :
up to 84% of the subjects reached that effort within a few stages. In one treatment
in which the parameters were adjusted so as for the highest effort e = 7 to be weakly
dominant, approximately 96 percentage reached that effort by the fifth stage. This
result may justify our maintained assumption that no strictly dominated strategy will
be played at all.'® In small group experiments, subjects’ initial choices varied sub-
stantially and then drifted over time with no clearly discernable trend. By contrast,
subjects in every median treatment converged completely and promptly to the N ash
equilibrium determined by the “historical accident” of their initial stage median, de-
spite considerable variation in the initial median across treatments. In brevity, it
exhibits a strong history dependency. Finally, in large group median experiments
with pure coordination game, players move swiftly to the Pareto best equilibrium
action. This last observation can be at least partially explained by our corollary 1

and the fact that subjets were allowed to switch their choices every period.

Our simple model captures many salient features that were reported above. To

see this, we consider a stag hunt game as follows:

'ﬂ'k:

° {1 ifx<k<n

0 otherwise,

where & denotes the minimum number of players necessary for a successful stag hunt.
Note that the minimum rule specifies £ = n and that the median vote does k = 41,

Plugging into eqn (19) gives rise to

u=2ak and f:Zﬂk,
k=xr

k=x

10No conflict arises with Cooper et al. [1990] experimental evidence, which just asserts that any
addition or deletion of dominated strategies may affect the equilibrium actually selected.
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with oy and 3¢ as defined in eqn (5). Remember from lemma 4 that the steady state
could be H and L regardless of the initial state, respectively, according as + < { and
r > u. Certainly there might exist an equilibrium path converging to, say. H when
z > u, if the initial population fraction of stag hunters is very high. However, we
execute the numerical analysis as if the globally attractive state was globally stable.
This is silly but can be tolerated reflecting the fact that the two regions of global
attraction roughly offset each other. If z € [¢,u], exactly which equilibrium will be
obtained in the long run hinges on yo, the historical accident of initial states. For
the sake of calculation, we impose the monotonicity requirement, that is, only the
paths monotonically converging either to H and L will be taken into account. We
rule out any cyclical path. Deterministic nature of the present dynamic together with
monotonicity implies the existence of a unique critical value of z, below which the
path converges to H, and vice-versa.

We assume throughout that z is uniformly distributed over [0, 1]. Two remarks are
in order. First, the strategic uncertainty as has been understood should imply the
distribution over the initial yo with z being fixed. It causes analytically little problem
to consider yo as deterministic and instead z as uncertain. Another justification
might be the uncertainty on the part of the experimenter about subjects’ subjective
evaluations of the fixed monetary compensation z. Second, relaxing reasonably the
uniformity of the z-distribution here only seems to make our result stronger. As in
Van Huyck et al.’s experiments, we let n = 2 for a small group and n = 15 for a large
group.

Let y(z) denote the inverse function of

i ( nol )y""(l—y)""‘=w,

k=x k'“‘].

where the left (resp. right) hand side is the expected payoff from H (resp. L). From
deterministic nature of the present model, it is clear that a player should choose
action H (resp. L) if yo > (resp. <)y(z) in the intermediate history dependency
region, given an opportunity to switch. The probability that the steady state be the
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Pareto inferior Nash L will be at least approximately:

Pr(L is a steady state) = Pr(r>u)+ Pr({ <z <u,yo < y(r))
= (l—u) +/ (21)
In small group treatment, the threshold value will be
1496 1
U=09 = +6 and€=ﬂ2=m.

The probability that the steady state is L would be (1— %)-{-[Z‘ zdz = 0.5 regardless

of . Under a large group minimum rule, we have

146 14!
U= s 5+6 an Hrs ;iz(j+6)’
thereby the probability that L obtains in the long run would be expressed as:
u 14 14, 15 1
- / Hdr = Sl - o,
(1w} + ), atids = g + (v — )

Table 2 provides several simulations according to varying parameters.!’ The range of
£ in which the Pareto inferior equilibrium L could be selected irrespective of the initial
states is very broad, unless subjects are extremely impatient. On the other hand,
with a big 6 value, the portion of which both strict equilibria are absorbing is large.
But even in such a situation, the basin of attraction with respect to initial strategic
uncertainty is much larger for L than that for H under maintained assumption of
the path monotonicty. These are reflected on the fact that the steady state is likely
to settle down on the inferior equilibrium L with probability of at least 93.3 percent

and up to 97 percent.

Table 3 analogously analyzes the large group median treatments. The probability
that the superior Nash equilibrium H will be selected as the long run state is shown
to be stable around 54 percent. For each § given, a relatively wide range between ¢
and u indicates a strong dependence on the initial state, or put differently, “historical
accident.” For instance, with § = 1 and large group, the history dependence region
[.008,.125] of a minimum rule is in sharp contrast to (.300,.767] of median vote. We
should mention that our results are fairly robust to the somewhat arbitrary parameter

é size.

11All the simulations were carried out using Mathematica.
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8 Concluding Remarks

Consider a “weakest link” model where people have to decide whether to contribute
to a public good, non-contributors are excluded from consuming the public good.
contributions are not refunded, and if the public good is provided only when enough
people contribute. In contrast, the best shot refers to the case where only one’s
provision or success is enough for all, such as rats trying to bell the cat. Harrison
and Hirshleifer [1989] convincingly argues that the ‘free-rider’ problem would be less
(more) serious, thus cooperation would be more (less) likely to obtain, in the Weakest
Link (Best Shot, respectively) model. Reflecting the fact that the Weakest Link is
strategically equivalent to the stag hunt game under the minimum rule, their insight
and the basic theme here seemingly contradict each other. This is not the case.
Take the example of military units defending segments of the front against an enemy
offensive. If all other units are successfully defending their own segments and if this
fact is common knowledge then it certainly would be in my interest to defend my
own. However, once even a single segment is broken through, running away will
be everyone else’s best response. How does one know the others are doing well ?
As an obvious guess, it seems likely that some means of signalling, such as cheap
talk and sequential move structure, could enhance the possibility of cooperation.
On the contrary, the actual failure of or little doubt about the perfect defense will
make the good equilibrium collapse.'? We view this as an underlying reason for
HH'’s experimental outcomes, in which subjects show a substantial cooperation with
the sequential protocol while little clearcut evidence on cooperation or behavioral
pattern is perceived with the sealed bid protocol. Related to experimental results as
of Harrison and Hirshleifer and Cooper et al. [1992], the other direction of research
will be to introduce a cheap talk argument, thus to see whether the possibility of
cooperation could be enhanced through a costless preplay communication with more
than two players.

The present paper of course has shortcomings, especially its critical dependence on

a somewhat arbitrary parameter 8, the effective discount rate or friction. Uniformity

121t is a conlagious equilibrium in Kandori [1992] sense.
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of the distribution of random noise variables looks also restrictive, although a scrutiny
of the proofs in Carlsson and Van Damme [1990] might suggest a relaxation of this
assumption. Our conjecture is as follows: under a general distribution with compact
support and given ¢ > 0, there exists n(¢) > 0 satisfying lim,_on = 0 such that player
i optimally chooses action H (resp. L) if his private signal 8; > gp + n (resp. <
f8cp —n). Moreover, this almost dominance solvability in the limit is reduced to exact
dominance solvability under uniform distribution.

It needs to be generalized to encompass multi actions and/or asymmetric payoffs.
Technical difficuties arise from a huge amount of case distinctions and calculations.
With m actions, we have to consider 2™ — 1 number of () sets, where only a is
globally attractive if I € Q, and only a,, a,, ..., @; are absorbing if M€ Qs a,.a
for 2 < i < m. Payoff asymmety in n person m action game requires considering n™
dimensional space. While there is, at least in principle, no reason why adjustment
dynamics or global perturbation fails to be well-defined even in the general setting,
it is known that risk dominance may well be troublesome because of intransitivities.
In view of our corollary 1, this line of research seems to include as a special example
the former part of Kandori and Rob [1992], which abandons risk dominance even in

a two person m action coordination game.
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n 2 3 15 99

rule mim | med | min | med | mim | med
Limiting Adjustment Dynamics | 50 | 33.3 | 66.7 6.7 | 53.3 1 1.0 | 530.5
Global Perturbation 50 | 33.3 {66.7| 6.7 | 53.3 | 1.0 | 50.5
Risk Dominance 50 | 38.2 [61.8 | 13.4 | 52.6 | 3.4 | 50.1

Table 1: Cutoff z in Stag Hunt Game.
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3331 10,1 || 1,1,0 |-1,0,0

0,1,1{0,0,-11}0,-1,0 | 2,2,2

—

Figure 1.
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§1 0 |01]05]| 1 |10 |10°| o
u | .067 | .073 | .097 | .125 | .440 | .878 | 1.000
¢ | .067 | .053 | .020 | .008 | .001 } .000  .000
H | .067 | .056 | .035 | .030 | .053 | .066 | .067
L |.933 | .944 | .965 | .970 | .947 | .934 | .933
Table 2: Large Group Minimum Rule

§1 0 |01 )05 1 10 | 10? 00
u |.533|.566 | .673 | .767 | .997 | 1.000 | 1.000
¢ | .533].502 | .398 | .300 | .183 | .000 | .000
H |.533|.536 | .541 | .544 | .534 | .533 | .533
L | .467 | .464 | .459 | .456 | .466 | .467 | .467

Table 3: Large Group Median Vote
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