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1 Introduction

In the past decade there has been a vast increase in the literature on the theory of
auctions. The interested reader is referred to two comprehensive surveys — McAfee and
McMillan (1987), and Wilson (1987). A question that is often addressed in this literature
is which of several common auction mechanisms yield the greatest revenue to the auc-
tioneer under different informational assumptions.! In an important paper, Milgrom and
Weber (1982) ranked the auctioneer’s revenue at the symmetric equilibrium of three com-
mon auctions under fairly general conditions. They established that expected revenue in
an open ascending bid auction tends to be higher if a seller is able to impose the constraint
that exit from bidding is irreversible. That is, once a bidder becomes inactive, he is not

allowed to reenter the auction.

Since, in the common “English” auction, buyers take pains to conceal the fact that they
are still interested parties, the implication is that a seller would be better off if the bidding
process were to proceed as follows. All potential bidders are asked to stand. Bids are then
taken in the usual manner. However, when a bidder wishes to exit, he does so by sitting

down again. Further bids are accepted only from those still standing.

Despite the apparent similarity of the two auctions, we shall argue below that there is
an important difference which casts doubt upon the superiority of what we call here the

“open—exit” auction over the common English auction.

Milgrom and Weber established the existence of symmetric equilibria for the two auc-
tions and then contrasted expected revenue for these auctions. They did not, however, ask
whether there might be other equilibria as well. In this paper we show that, in general,
there is a very large family of asymmetric equilibria for the open—exit auction. On the
other hand, by imposing a moderate restriction upon beliefs, we are able to derive a strong

uniqueness theorem for the common English auction.

Such an inquiry is interesting for several, not unrelated, reasons. First, it helps delineate

the set of equilibria and identify conditions under which there exists a unique equilibrium.
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Second, in comparing the auctioneer’s revenues from common, symmetric, auctions the
auctioneer’s revenues are computed at the symmetric equilibrium. Although a focus on the
symmetric equilibrium in symmetric auctions is an appropriate starting point, we think that
it is also important to investigate other equilibria. Third, as argued in Bikhchandani (1988),
in the class of equilibria in increasing and continuous strategies, the symmetric equilibrium
in an open—exit or English, common value, auction with two bidders is unstable under small
departures from symmetry of the players. Therefore, a first step towards investigating
the stability of equilibria in such auctions, when there are more than two bidders, is to

characterize the equilibrium set.

If, as we have argued, the only information available to the other bidders in the English
auction is that there is at least one other active bidder, this auction is equivalent to a sealed
bid auction in which the winning bidder pays the second highest of the bids received. It is
the equilibria of the sealed “second-price” auction which we formally analyze and contrast

with those of the open—exit auction.

The other common auction is, of course, the sealed “first—price” auction. In a related
paper, Maskin and Riley (1986) prove that the symmetric equilibrium in first-price and
second—price auctions with private, independent, values, is unique.? They also establish
that in first—price auctions with affiliated values, the symmetric equilibrium is unique when
there are two bidders. As shown in Milgrom (1981), there exists a continuum of asymmetric
equilibria in common value, second-price or open—exit auctions with two bidders.®> We find
that this result generalizes to open—exit auctions with more than two bidders. In the second-
price auction there can also be a continuum of equilibria when there are more than two
equilibria. We present an example illustrating this possibility and then establish conditions
under which there are no asymmetric equilibria in the class of equilibria with increasing
and continuous strategies. Under these same conditions we can also rule out equilibria with
step—function strategies. However, it remains to determine whether there exist asymmetric
equilibria in discontinuous, non—decreasing strategies in second-price auctions with more

than two bidders.



Given the multiplicity of equilibria in the open—exit auction, the question arises as to
whether the seller’s expected revenue is higher or lower if the bidding is asymmetric. Our
initial intuition about this went as follows. If one bidder is aggressive and stays in the
auction until the asking price is high relative to his signal, opposing bidders will be more
passive in response. The aggressive bidder will then tend to win big, as his opponents
drop out relatively quickly. Given this behavior, the expected selling price will tend to
be lower than under symmetric bidding. Surprisingly, however, we are able to show that
this intuition is incomplete. For some examples it is true that expected seller revenue
is highest under symmetric bidding. On the other hand, we also present an example in
which expected seller revenue is minimized under symmetric bidding. We do, however,
provide plausible sufficient conditions which guarantee that the seller’s expected revenue is
maximized at the symmetric equilibrium. An example in which the auctioneer’s revenue
at the symmetric equilibrium in a second-price auction is strictly greater than the revenue
at many asymmetric equilibria in the corresponding open—exit auction is provided. Thus
Milgrom and Weber’s revenue ranking between second-price and open-exit auctions at the

symmetric equilibrium cannot be extended to other equilibria.

In the next section we present the model. In section 3, we investigate equilibria of
the second-price auction with more than two bidders. We investigate equilibria in open—
exit auctions in section 4. In section 5, the auctioneer’s revenues at the symmetric and

asymmetric equilibria are compared. Section 6 contains concluding remarks.

2 The Model

Consider a common value auction with n symmetric, risk-neutral bidders, indexed 1 €
N, where N = {1,2,..n}. The true value of the object being auctioned is the same for
all bidders and is an unknown random variable, V. Each bidder ¢ has a common prior
on V, and observes a private signal, X;, about the true value. The signals are identically

distributed.

Let f(v,x) denote the joint density function of V and the vector of signals X =
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(5(1,)?2, cey Xp). It is assumed that f is symmetric in its last n arguments. Let [V, V] x
[X, X]" be the support of f. Further, it is assumed that all the random variables in this
model are affiliated. That is, for all x, x' € [X, X", and for all v, o' € [V, V],

f ((v:x) v (', %)) £ (0, %) A (V,xT)) 2 f(v,%) (¥, %) (2.1)

where V denotes the componentwise maximum, and A denotes the componentwise min-
imum. Affiliation implies that E[V|e; < X; < d;, i < n] is a non—decreasing function
of ¢;, d;. See Milgrom and Weber (1982) for some implications of affiliation. Where it
simplifies proofs we shall assume that affiliation is strict. That is (2.1) holds everywhere
with strict inequality. Then E[Vlc,- < X; < d;, ¢ < n] is strictly increasing in ¢;, d; over
(X, X). It is also assumed that E[Vlc,— < X; < d;, 1 < n] is continuous in ¢;, d;. A sufficient
condition for this is that the joint density of the random variables, f(v,x), is continuous in

the last n arguments.

One much discussed example of a common value auction is bidding by oil companies for
off-shore oil-field tracts. In this example, each bidder’s signal is interpreted as the outcome
of seismic testing, sample boring, etc. Given relatively small and homogenous tracts, it is

natural to assume that signals are strictly affiliated.

However, more generally, in the bidding for extraction rights, suppose a tract is large
and that the location and scale of the mineral deposits being sought are very heterogenous.
In this case it becomes a reasonable first approximation to assume that each potential
bidder samples from different parts of the tract and that estimates are independent. Under
these alternative assumptions, each X; is an independent draw from some c.d.f. F(z)
and the expected value of the entire tract, conditional on a vector (z1, 2, ..., zn) of signal

realizations is

n
E[V|X; =21, X2 = 22,., Xn = za] =+ B _ X;.
—~

This may be seen as a limiting case of the common value model. Given its analytical

simplicity, it is especially useful for illustrative purposes.
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3 Second-Price Auctions

In a second-price, sealed bid auction, the bidders submit sealed bids, after observing
their private signals. The highest bidder wins the auction and pays a price equal to the
second highest bid. The other bidders pay nothing. All this is common knowledge.

As shown in Milgrom (1981), when there are two bidders there exist many asymmetric
Nash equilibria in common value, second-price auctions. The easiest way to see this is
to define b;(z), = 1,2 to be the equilibrium bid functions and ¢;(b) = 5;}(b) to be the
equilibrium inverse bid functions.* Also define V(jfl,l?z) to be the expected value of the

object given signals X; and 5(2, that is
V(:tl,a:z) = E[Vlj(l = 11,5(2 = :L'z].

If bidder 1 bids b he wins as long as bidder 2's bid b; is less than b. His expected payoff,

given X; = z,, is therefore

b [}
U =/0 (V (21, $2(b2)) — b2)G;(bz|z1)dbs

where G3(bs|z;) is bidder 2's equilibrium bid distribution, given X; = z;. Bidder 1's best
reply is therefore to choose a bid by(z;) to satisfy

ou;

= |,,=M,1) = (V (21, 2(8)) — b)Gz(bztxl)l,,z,,l(,l, =

Since ¢;(b1(z1)) = b;*(5(z1)) = 1, this equilibrium condition can be written more simply

V($i(8), ¢2() ~5=0, Vb, (3.0.1)

By symmetry, the analysis of buyer 2’'s best reply yields the same condition. Clearly there
is a continuum of equilibrium inverse bid functions satisfying (3.0.1). To be precise, for any
increasing functions ¢;(b), ¢2(b) we can implicitly define an increasing function h(-) such

that
¢$2(b) = h(¢1(b)).
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Then from (3.0.1) we can invert ¢;(b) and @2(b) to obtain

bi(z) = V(z,h(z))
by(z) = V(h7'(2),2)

As long as h(-) is increasing and surjective, these are equilibrium bid functions.

We now turn to the case of more than two bidders. First we illustrate, by example,
the possibility that there can again be a continuum of equilibria. We then establish that
the example is somewhat special and present conditions which rule out asymmetric, in-
creasing, and continuous bidding strategies in equilibrium. This condition also rules out
equilibria in which the players’ strategies are step-functions. However, whether there ex-
ists an asymmetric equilibrium in discontinuous, non—decreasing strategies remains an open

question.

3.1 Asymmetric Equilibria with n Bidders

Suppose each of n bidders has a common prior on the true value of the object, given by

the ma.rginal density function
f", (v) = —1 exp ‘(: veE [0 oo]
Zo ? ! ’

Bidder  observes a signal X; which is a random draw from the conditional density function
v =
Fxo(@lv) = zexp™, =i €[0,00].
1
The corresponding conditional distribution function is
Fg v (zilv) = exp*, z;€[0,00].

Further, it is assumed that the signals are conditionally independent, given the true value.

Hence the joint density function is

10x) = £3(0) Tl S (ailo)

. —vAp(x n 1
= zqu" exp~¥4An( )Hi.—_o =3

6



where A, (x) = 20, -zl.- It is readily confirmed that the n+1 random variables V, X;, X,..., Xn
are affiliated. The posterior density of V, given signals X1, Xa, ..., Xm and the knowledge

that the remaining signals are no greater than z,,41,...,Z, respectively is

fogxlXi=zi, i<m, X<z, j>m)

Zm+1
. ({ f(v,x) dzm41...dzn
= [ ] ZTm+1
J [ f(v,x) dzpmty...dz,dy
v=0 0
Zm 41

Zov™ exp~VAn(x) ITieo ;1; dzmyy...dz,
L]

Tm41
of Zou™ exp~v4n(X) T ;l'g dzmt1...dTpdy

o o8 oy oy |

i—g

o™ exp“”“" (x)

= .
[ v™exp~vAn(X) dy
v=0

Next define Vin (21, 22, ...,Zm; Zm+1, ..., Zn) to be the expected value of v given the knowl-

edge that the first m signals are z;, z3, ..., T, and that the remaining signals are no greater

than zm,41,...,Zn respectively. We have

V(21,22 s Zm; Tmt 1y -9 Zn) = fooo vf‘;p-((v|5(.- =zi,4 <m, 5(,- < zj, > m)dv

7‘0 ymtl1 exp—vAn(x) dv
v=0

(o]
[ v™exp=vAn(X) dv
v=0

l

-1
= 28 (=) 7] (3.0)
Note the bracketed expression is the harmonic mean of the signal levels z;,z2,...,zn and

the prior expected value of V. Therefore the conditional expectation Vj, is just a fraction

of the harmonic mean.

For the two buyer case, the inverse equilibrium bid functions must satisfy

Va(#1(b), 42(8)) = b
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that is .
1 1 1 -
- — =b.
3(5+ ON @(b))

We now show that, with n buyers, the equilibrium inverse bid functions must satisfy

Va(¢1(b), 62(b); 8s(b)..., 4n(b)) = b

that is
1

1 1 ..
3(;6+$;(—b)'+...+m) 1=%

To see this, suppose that all buyers adopt strategies (¢y, ¢, ..., ¢n) satisfying (3.1.2). Sup-

(3.1.2)

pose buyer 1 were to find out that the maximum of his opponents’ bids was b and that this -

is a bid made by buyer §. Buyer 1's expected return is then

n -1
Va(21, $5(8); $2(8), - $i-1(8), dis1(B), s b (8))—b = 3 (—1; 4o ¢—1@ +3 ﬁ,;) -5
=17t

From (3.1.2) this is positive if and only if ¢;(b) > z;. Therefore, even with this information

about his opponents, buyer 1's best reply is to bid b satisfying

¢1 (b) = .

It follows that ¢;(}) is his equilibrium bid function as claimed.

As before, if we implicitly define increasing functions h;;(-) to satisfy®

¢;(b) = hji(¢i(®)), 4,5=1,2,...,n

and, for all 1,7, h;;(-) as a mapping from [X, X] onto itself, then buyer i's equilibrium bid

function can be written as
-1
b; =3
(zt) ( Z h,.(.’t.))

From (3.1.1) we see that this example satisfies
Va(z1,22,; 238, ..., zn) = Va(21, Zi) ; 28, .- Ti-1, 22, Tit1, -, Tn), VT1,Z2...,Zn (3.1.3)
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Consequently, in any of the asymmetric equilibria in this example, if, after learning the
price he has to pay, the winner also learns the identity of the second highest bidder, his
valuation of the object does not change. This seems to be a necessary condition for an
equilibrium in a second-price auction, and is clearly satisfied at the symmetric equilibrium.
When there are only two bidders, this condition is trivially satisfied, and hence we have
multiple equilibria.

We prove that the (3.1.3) is sufficient to imply the existence of multiple equilibria. First,
in the next lemma (proved in Appendix I) we obtain a sufficent condition for (3.1.3) when

the signals are conditionally independent, as in the example. It is shown that (3.1.3) is

satisfied if T3y p(=11%)

Fr ol is multiplicatively separable in z; and v. Clearly, this will not usually
1

be the case.

Lemma 1: Suppose that the signals X; are conditionally independent given V. That is
the joint density function of the random variables is
n
$(02) = 176 T gt
Let Fx,p (z|v) be the conditional distribution function of X; givenV . If there exist functions
K;:[X,X] — R and K, : [V,V]| — R such that

din inlf,(ﬂv) _ f)-('_l‘-,(:tlv)
oz 5{,-|f'(z|”)
= Ki(z)Kz(v), Vz,v
then (3.1.3) is satisfied.

The example satisfies the conditions of Lemma 1 with K1(z) = % and K,(v) = v. More

generally, we have the following lemma.

Lemma 2: If (3.1.3) is satisfied then there exists a continuum of equilibria in second-price

auctions.



Proof: Let ¢1(b),#2(b),...,$n(b) be inverse bidding functions satisfying

Va($1(b), $2(b); #3(b)-., 6 (b)) = b, (3.1.4)

We show that ¢1(b), ¢2(b),...,$n(b) are equilibrium inverse bidding functions.

Suppose that all buyers adopt strategies (¢y, ¢2,...,$5) satisfying (3.1.4). Suppose
buyer 1 were to find out that the maximum of his opponents’ bids was b and that this

is a bid made by buyer i. Buyer 1's expected return is then

Va(z1, 6i(b); #2(b), ..., $i-1(b), #i+1(b), .., dn (b)) — b

which, from (3.1.3), is equal to

Va(z1, $2(0); #s(b), ..., $i-1(D), #:(b), bi+1(D), ..., #n (b)) — b

Since by affiliation V; is increasing in all its arguments, it follows from (3.1.4) that the
buyer’s expected return is positive if and only if ¢;1(b) > z;. Therefore, even with this

information about his opponents, buyer 1's best reply is to bid b satisfying

¢1(b) = 2.
Thus ¢, (b) is his equilibrium bid function. 1

3.2 A Sufficient Condition for Uniqueness

While Lemma 2 establishes the possibility of multiple equilibria, (3.1.3) has a feature
which seems unlikely to be satisfied in many applications. We believe that in most cases
the two conditional expectations in (3.1.3) will not be equal. In particular, (3.1.3) implies

that forz >> ¢ >0
EViXi=z, X2 < X+ =E[V|X1 <z, Xo=X+4.

Plausibly, especially for small ¢, one would expect the left hand expression to be strictly

greater. We now consider distributions which satisfy
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Assumption 1: If a > § then

E[“}lkl:a) 5(25/9: Cisj(iﬁds‘, i.>_3] >
EViXi<a, X3=8, ;< X;<d;, i >3], Vei,d;.

While it would be useful to provide conditions on the underlying distributions which
are sufficient for Assumption 1, this is not a straightforward matter. For the borderline
case discussed in section 2 where the signals are independent, we provide such conditions.

When V = 5(1 +5(z + ...+)~(,., and each 5(.- is independently distributed with c.d.f F(z),

Assumption 1 is equivalent to
a+E[X;)X, < 8] > f+EXi| X1 <a], Va>8

Define
D(a) = a -E[X;| X, < o

For this example, Assumption 1 is equivalent to requiring that D(a) be everywhere in-
creasing. The following lemma (proved in Appendix I) provides sufficient conditions for
the monotonicity of D(a). These conditions can be used to confirm that D'() is positive
under a wide range of alternative assumptions. For example, the first condition holds if

F(z) = (z — X)° and the second condition holds if X is normally distributed.

Lemma 3: Suppose X has support (X, X) and c.d.f. F(-), and density function f(-) € C*.
If (i) In F(z) is strictly concave

or

(ii) In f(z) is strictly concave

then D(z) = z — E[X|X < 2] is strictly increasing on [X, X).

Milgrom (1981), and Milgrom and Weber (1982) have established that a symmetric
equilibrium in the second-price auction is b;(z) = E[V |X; = z, rglg‘x{j( i} = z]. In Proposi-

tion 1 we show that for n > 3, when Assumption 1 is satisfied there do not exist any other
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equilibria in continuous and increasing strategies.

Proposition 1: If there are three or more bidders in a second-price auction, and Assump-
tion 1 is satisfied, then the symmetric equilibrium is the unique equilibrium in increasing

and continuous strategies.

Proof: Define
Nij(b,2) = E[V|X: = 2, X; = ¢;(0), X3, < (b),k #i,5] - b.

N;j(b,z) is player i's expected profit if he wins the auction, X; = z, and player 7, the
second highest bidder, submits a bid b. Since the player’s strategies and the conditional
expectation of V are increasing and continuous, N;;(b,z) is continuous. Without further

loss of generality we may assume that for some bid b

$1(8) > $2(8) > ... > $a(b). (3.2.1)

By Assumption 1, and given that signals are identically distributed, Nij(b,z) > Nu(b,z)
for all ¢, and all § < k. In particular

Nia(b,41(b)) > Nis(b,41(8)) > ... > Nya(b, 61(b)) =

(3.2.2)
an(b, ¢n(b)) Z Nn2(b; ¢n(b)) 2 e 2 Nn,n—l(b’¢n(b))-

Let p;;(b, z) be the probability that j is the highest bidder among N\{i}, given that X; = z
and that the highest bid among N\{i} is b. If player 1 wins the auction at a price b and
his signal is X; = z, his expected profit is

n

Hl(b, x) = Z plj(b, :B)Nlj(b, z).
i=2

This must be zero for b = b;(z), for if IT; (b, ¢1(b)) > O, then player 1 is better off bidding
a little higher than b;(z) when X, = z, and if II;(b, $1(b)) < O, he is better off bidding a

little less. Therefore we have,

Xn: p15(b, 61(b)) N1;(b, 41()) = 0. (3.2.3)

i=2
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Similarly, the optimality of b,(-) implies
n—1
>~ Pnj(5,8a(8) Nnj(b, 6 (b)) = 0. (3.2.4)
J=1

From (3.2.2) N1n(b,$1(b)) > 0 implies N1;(¢1(b)) > O for all 5. But this contradicts (3.2.3),
and 8o Nin(b,41(b)) < 0. Again from (3.2.2), Nin(b,61(5)) = Nni(b, #n(b)) < O implies
Np;(b,6n (b)) < 0, V5. But this contradicts (3.2.4). It follows that Ny,(b, $,(b)) = 0. Using
the same argument iteratively, one can conclude that N1 n_1(b, $1(b)) = Np-1,1(b, $n-1(b)) =
0, and so N;;(b,4i(b)) = Ofor all4, 5, j # i. In particular, N12(b, $1(8)) = Nn2(b,4n(b)) =0
implies |
E[V|X1 = ¢1(5), X2 = ¢2(b), X;<4;(0), 5#1,2=
E(V|Xn = ¢a(8), X2 = 62(8), X; < 6;(b), 5 # 2,m].

Given Assumption 1, and (3.2.1), it follows that

$1(b) = $2(b) = ... = ¢n(b). (3.2.5)

The only strategies which satisfy N;;(b,4:i(b)) = 0 and (3.2.5) are bi(z) = E[V|X; =
z, mg.x{j(j} = z]. Thus the symmetric equilibrium is the unique equilibrium in increasing
I#s

and continuous strategies. |

In Appendix II we generalize this result and show that when Assumption 1 is satisfied
there do not exist any partially poolling equilibria, i.e., equilibria in step-function strate-
gies. On the other hand, if (3.1.3) is satisfied there exists a continuum of partially pooling
equilibria. .Whether an equilibrium bid function must be strictly increasing and continu-
ous when there are three or more bidders in a second—price auction and Assumption 1 is
satisfied, that is, whether the symmetric equilibrium is the unique equilibrium, remains to

be established.

4 Open-Exit Auctions

There are several variations of an open—exit auction. The variant examined here is

the same as the one in Milgrom and Weber (1982). Starting with a very low price, the
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auctioneer raises the price continuously. The bidders indicate whether they are active at
the current price by depressing a button. The current price and the identities of the active
bidders are posted on an electronic display. Once a bidder withdraws, he cannot reenter
the auction. The auction can end in one of two possible ways. If at any time there is only
one active bidder, then this bidder is declared the winner and the auction ends. Else, if at
any instant the remaining active bidders withdraw simultaneously, then the auction ends
and one of the last active bidders is randomly chosen as the winner. The winner gets the
object and pays the current price. The other bidders pay nothing. At each point, it is
common knowledge whether a bidder is active or not, and if inactive, the price at which he

dropped out is also common knowledge.

Each player’s pure strategy specifies the price level up to which he will remain active,
given his private signal, and given the number and identities of the bidders who have
dropped out, and the price levels at which they quit. Thus bidder 1's strategy consists of
a vector of n — 1 functions, by = (b; 0, i 1,52, --bi k) .., i n-2), Where b; ; : [X, X] x R¥ —
R, k =0,1,2,..n — 2. When bidders 1,13, ...,6; quit at price levels p; < p2 < ... < py,
and X; = z, then bidder i will remain active till the price reaches b k(z; p1, P2, ---s Pk
If bidder fk+; quits before the price reaches this level, then b;x+1(z;p1,p2,..., Pk, Pk+1)

specifies the new price level until which bidder ¢ remains active.

A symmetric equilibrium for an open—exit auction has been obtained by Milgrom and
Weber [1982]. In the next section this equilibrium is shown to be the unique symmetric
equilibrium. In section 4.2, we show that there exists a continuum of asymmetric equilibria
in open—exit auctions with n > 3 bidders. Thus, the existence of asymmetric equilibria in
open—exit auctions with two bidders generalizes. Note that after n — 2 bidders drop out in

an open—exit auction, it is identical to an open—exit auction with two bidders.

4.1 The Symmetric Equilibrium

A symmetric Nash equilibrium in the open—exit auction has been obtained by Milgrom

and Weber (1982). In this equilibrium, each player’s strategy isb* = (b, b1, b3, ...b;, ..., b5 _3),

14



where,

b3(z) = E[V|X; =z, vj],
bi(2;p1,p2,-5px) = E[V|X; =z, Vi€ N\{in,iz,...,0x},
by 1 (Xiyi P1y P2y s Ph-1) = Piy - b8(Xiy) = P1)s
k=1,2,..,n-2. (4.1.1)

As proved in the next lemma, this is the unique symmetric equilibrium.

Lemma 4: The strategies specified in (4.1.1) constitute the unique symmetric perfect

equilibrium in non—decreasing strategies.
Proof: The proof is by induction on the number of players, n.

Suppose n = 2, and player 1 uses a strategy b(z). It is shown that player 2's best
response is b(z) only if b(z) = E[V|X; = z,X; = z], Vz. Suppose b(z) < E[V|X, =
z, X; = z] for some z. Then if X; = z and player 2 bids b(z) + €, € small, positive,
instead of b(z), then since b(z) is non—decreasing his expected payoff increases by at least
E[V1{5(=)<b(i{1)<b(z)+e}|5{2 = z] - b(z) — e. Thus b(x) is not a best response. Similarly,
if b(z) > E[V|X; = z,X; = 2], player 2 is better off bidding b(z) — ¢ rather than b(z),
when X; = z. Thus the unique symmetric equilibrium for n = 2 is, as specified in (4.1.1),
by(z) = E[V|Xy = z,X, = 2.

Suppose the equilibrium in (4.1.1) is the unique symmetric perfect equilibrium in non-
decreasing strategies. when there are n — 1 bidders. Consider an open—exit auction with n
bidders. After one bidders drops out at a price level p;, we have an open—exit auction with
n—1 bidders. By the induction hypothesis, the unique symmetric equilibrium is as specified
in (4.1.1), with the prior on V updated to take into account that a bidder dropped out at
a price level p;. Thus in any symmetric equilibrium, (30, 51, 82, ...,3,...2), in an open-—exit
auction with n bidders, by, k= 1,2,...,n — 2, must be given by (4.1.1).

Consider by. Suppose 80(1:) < E[Vl)?, = z, Vj], for some z. Let y > z be such that
I;o(y) = E[f)]j(, = 2, Vj]. Suppose X; = z, the price has been bid upto bo(z), and no bidder
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has dropped out. Player 1 can profit from the following deviation. He stays in the auction
until the price reaches I;o(y). If someone else drops out before the price reaches this level,
he plays according to I;k, k=1,2..,n -2, as before. Suppose that 5(,- =2z, V3 =2,3,..n,
for any z € (z,y). This is a zero probability event when n > 3, but must be considered
in a perfect equilibrium. If all other bidders quit at a price bo(z), z < z < y, he wins the
auction and obtains a positive expected profit equal to E[V|X; = 2, X;=2,7>2] - bo(2).
Thus bg(z) cannot be a perfect equilibrium strategy unless bo(z) > EV|X; = z, Vi,

Vz. By a symmetric argument we must have 30(1') < E[V|5(, = z, VYj], Vz, and thus
bo(z) = E[V|X; = z, Vj], Vz. 1

4.2 Asymmetric Equilibria

As we have seen in section 3, when there are two bidders, there exist many asymmetric
Nash equilibria in common value, second-price auctions. In a common value auction with
two bidders, second—price and open—exit auctions are equivalent. We show below that
there exists a continuum of asymmetric equilibria in open—exit auctions with more than

two bidders.

As in section 3.1, we define n — 1 independent functions, h;;(-) which map player 1's
inverse bidding strategy into player i's inverse bidding strategy. Let hy : [X,X] —
[X,X], { = 2,...,n, be increasing, continuous functions with h;;(X) = X and hi; (X)=X.
Let hyy(z) = z. Define

hii(z) = h..'ll(z), Vi=1,2,..,n,

hij(z) = hiy(hyj(z)), Vi,5=1,2,..,n.

Note that h;;(z) = z, h,i(z) = h'-'jl(x), and hy(z) = hij(hj(z)) for all ¢,7,l. As we shall

see, h;; maps player j's inverse bidding strategy into player i's inverse bidding strategy.
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For i € N define by = (b; 0, b1, -, Bi ky s Din—2) 28

Bio(z) = EV|X; = hyji(=), Vi,
bik(zip1op2s ) = EV|X; = hji(2), V5 € N\{in,d2,...,8k},
bipb=1(Xiyi P1,92, --esPi-1) = Pi,
Bi—yb-2(Xip 13 P1, P2, oo PE-2) = Pr-1,
very 8.-1,0(5(,-,) = p1),
k=1,2,..,n—2.

By affiliation 3,-';, is increasing in all its arguments. Also,

b k(23 P1, P2, - 1) = b a(hii(2); P1, P2, oo PE),
Wk =0,1,2,.,n— 2, Vp1 < 2 < oo < pby Vi, 1 € N\{i1,i2, 0y} (4.2.1)

Thus when the bidders play the strategy (b, ba, ...,bp) then bidder ! will drop out earlier
than bidder § if and only if {hi;(X;) > X;}.

Proposition 2: (f)l,f)g, ...,f)n) is an equilibrium in the open—exit auction.

Proof: It is shown below that no bidder could do better by deviating from his strategy,

even if he knew the other bidders’ signal realizations.

Suppose that for some realization of the bidders’ signals, bidders 1;,1%3,...,8k,...,8p-1
drop out in that order, at price levels p; < ps < ... < pt £ ... £ pn—1, when the strategies
(by,b3,...,bn) are played. Let the signal realizations of the bidders be 5(.-,‘ =z, k=
1,2,...,n. Since py, < pr, Vm < k, (4.2.1) implies that

hiii,. (=) < zi,, vm < k. (4.2.2)

Bidder s, wins the auction and pays a price p,—1 = E[l‘;'|)?.-,‘ =z, k=1,2,..,n -
1, Xi, = hi i,_,(%i,_,)]. He values the object at E[V|X;, = z;,, k=1,2,...,n—1, X; =
z;, |, which, by (4.2.2) and affiliation is greater than p,_;. Hence, B;n is an optimal strategy
for bidder 1,,.
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Suppose some bidder ;, I = 1,2,...,n — 1 deviates from his strategy Bil and bids as if
he observed a signal 5(.-, = y. He will win the auction only if y > hy;, (zi,), so we may as
well assume that. The object is worth E[V|)~{.-k = z;, k= 1,2,...,n] to him. The price
he will pay if he deviates and wins the auction is E[V|X;, = z;,, Yk # I, Xi, = hii, (2i,)],
which by (4.2.2) and affiliation, is greater than his valuation of the object. Hence Bil is an
optimal strategy for bidder 1;. 1

Remark: A larger class of equilibria is obtained if, at each stage k, we allow the func-
k

tions h;; to depend on (py,ps,...,px). For each 1,7, and each k, the functions, h;;, must
satisfy hfj(h;.-(x;pl,pg,...,pk);pl,pg,...,pk) = z. I;.-,,, is defined as before with h;f'- replac-
ing hj;. In addition, h;‘,- must be chosen so that if Sg,k_l(x; P1,P2, .-y Pk-1) > Pk, then

3,-,;,(:1:; P1,P2, .., Pk-1,Pk) = Pr- The proof of Proposition 2 easily generalizes.

5 The Auctioneer’s Revenues

Consider a second—price/open—exit auction with two bidders. In any Nash equilibrium

in weakly undominated strategies, the players’ strategies satisfy the following constraints
E[17|5(1 =z, X;= X] < bi(z), b3(z) < E[V|5(1 =z X, = X).

Also, bi(z) = E[V|X; = z, X, = X], bi(z) = E[V|X; = z, X; = X], is an equilibrium.
Since bidder 1 always loses in this equilibrium, the auctioneer’s revenues are b'{(j(l) =
E[f}l)"{ 1, Xp = X]. As noted earlier, there exist a continuum of asymmetric equilibria given
by bi(z) = E[V|X; = z, X; = h(z))], b(z) = E[V|X;y = h~}(z), X, = z|, where h(z) is
any increasing, surjective function. h(z) = z gives us the symmetric equilibrium.

When comparing the auctioneer’s expected revenues from an open—exit, a second-price,
and a first—price auction, Milgrom and Weber (1982) compare revenues at the symmetric
equilibrium in these auctions. Our results in the preceding sections point in the direction of
uniqueness of equilibrium for the second-price auction whereas we construct a continuum
of equilibria for the open—exit auction. Therefore, comparisons of the auctioneer’s revenues

at the asymmetric equilibria in the open—exit auction and the symmetric equilibrium in
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the second-price auction are also of interest. First, we provide sufficient conditions under
which the auctioneer’s revenue in an open—exit auction with two bidders is maximized at

the symmetric equilibrium.

Proposition 3: Suppose that in an open-exit auction with two bidders, the players’
signals are independently distributed conditional on the true value with conditional density

function f(z;|v) and conditional distribution function F(z;|v). If the decay rate

f(zilv)

1 — F(z;|v)
is non—decreasing in z; and if V (z1,22) = E[V|X; = z1, X2 = z,] is quasiconcave, then
the distribution of the selling price at the symmetric equilibrium first order stochastically
dominates the distribution of the selling price at any asymmetric equilibrium. Thus the

auctioneer’s revenue is maximized at the symmetric equilibrium.

Proof: Let $() be the inverse bidding strategy at the symmetric equilibrium. That is,
V($(5),4() =5, Vb
Suppose that ¢;(-), ¢2(:) is an asymmetric equilibrium. That is
V(¢1(b),2(b)) = b, Vb

Without loss of generality suppose that for some bid b, ¢1(b) = &S(b) - A, A 2 0. Since

V(-,*) is quasiconcave and symmetric
V($(0) = A,8(0) +2) < V($(b), (b))
= b

Therefore
$(5) + A < $2(b) (5.11)

Let P4 be the selling price at this asymmetric equilibrium and let P be the selling price at

the symmetric equilibrium. G4(b) and G¥(b) denote the respective distribution functions.
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The proof is complete if we can show that GA(b) > G5(b). We have

cAB) = Pr{PA<b)

1- /l,v(l — F(18) | 9))(1 — F($2(8) | v))fp (8)do

where f;(v) is the marginal density of V. Note that the right hand side is increasing in
$2(b). Thus

GAB) 2 1- [, (1= FG0)- M| o)L~ FGE)+ 3] o) fp(e)do

v
- 1- /y H(A,0,b)fy (v)dv

where
H(A\v,b) = (1= F($(b) = |v)(1= F($(b)+2]v))
> 0

Therefore

InH(Av,b) = In(1-F(¢(d)— Al v))+In(1—- F((b)+A|v))

18H _ _f®) -Xlv) S +2]v)

H 2A 1-F($()) - A|v) 1-F((b)+A]|v)

< o0

where the inequality follows from the fact that the decay rate is non—decreasing. Hence

H(0,v,b) > H()\,v,b), VA>0,Vv
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Thus

GAB) > 1- / Y B, 8)/ (v)do
= v Yy v
v
> 1- /V H(0,v,8)f(v)dv
S0

The following example, in which the auctioneer’s revenue is minimized at the symmetric
equilibrium, establishes that the assumption on the quasiconcavity of V (z;,z3) is crucial.
Although the signals are conditionally independent and I_-L(F%Eh is decreasing in z; in this
example, Proposition 3 does not apply because V (z;, z3) is quasiconvex. Each of the two
bidders has a common prior on the true value of the object given by the uniform density
function

f‘-,(v) =1, ve€E [0,1].
Bidder ¢ observes a signal X; which is a random draw from the conditional density function
1
f)-(.,“-;(z,'lv) = ;, T € [0,0].

Clearly V (z;, z2) = p(max{z;, z;}), for some increasing function p(-). Let R(h) denote the
auctioneer’s revenue at the equilibrium b,(z) = V(z,h(2)), b2(z) = V(h~!(z),z). Note
that R(h) = R(h™!). Then if h(z) > z, Vz, h(z) # z,

R(k)

E[V (X1, h(X1)) g, nzyy + V(A7 (X2), X2) i g, cngieany)
E{p(h(X1)) 1z, 5503 T P2z, nizay]

> E[P(h(kl))l{jf,zh(i{l)} + P(Xl)l{)'{,s)"(xh()?l)} + p(kz)l{}.f2<)-(1}]
Elp(X1)1z,5 1,3 + P(X2) (%, <5,)]

E[V (X1, X1)1(z,5 2,3 + V(X2 X2) 15, 2]

= R(x),
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where R(x) is the auctioneer’s revenue at the symmetric equilibrium. Also, it is easy to

show that if h,(z) > hy(z) 2 z, Vz, h.() # hs(-), then R(h,) > R(hs).

Next we establish that under assumptions similar to those made in Proposition 3, there
exists a continuum of asymmetric equilibria in an open—exit auction with three or more
bidders in which the expected selling price is less than the expected selling price at the

symmetric equilibrium.

Proposition 4: Suppose that in an open—exit auction with n > 3 bidders, the players’

signals are independently distributed conditional on the true value. If the decay rate

f(zilv)
1~ F(zi|v)

is non-decreasing in z; and if V(z1, z2,...,25) = E[f}|)2'1 =z, Xy = 29,..., X = z,) is
quasiconcave, then the expected revenue at the symmetric equilibrium is greater than the

expected revenue at a continuum of asymmetric equilibria.

Proof: Consider any asymmetric equilibrium in which all players play the symmetric
equilibrium strategy until there are only two players left, who then switch to asymmetric
strategies. It is easy to show that the symmetric equilibrium generates higher expected
revenues than the above asymmetric equilibrium.

Suppose that in equilibrium the first n —2 bidders to drop out do so at price levels which
imply that their signal realizations are y;,y2,...,Yn—2. The rest of the proof is identical to

the proof of Proposition 3 with V(-,+,y1,¥2,...,yn—2) playing the role of V (). |

Proposition 4 suggests that there might exist asymmetric equilibria in an open-exit
auction with n > 3 bidders at which the auctioneer’s revenue is less than at the symmet-
ric equilibrium of the second—price auction. We establish by example that this is indeed
possible.

Consider the example introduced in section 2 with the bidders’ signals, X;, drawn

independently from the uniform distribution on [0,1], F(z) = z. The true value is V =
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Xi+Xp+ ...+ X,. Since I'l‘{% = i- is decreasing, Lemma 3 implies that Assumption 1 is
satisfied. Therefore, for n > 3, there do not exist any asymmetric equilibria in continuous
and increasing strategies in the second—price auction. It is easily verified that the symmetric

equilibrium strategy is
n+2 i
2

Thus the selling price at the symmetric equilibrium of the second-price auction is

b(z) =

n+2-~
7 12

where f’k denotes the k—th order statistic of (5(1,5(2, ...,5(,.). Also, the selling price at the

B=

symmetric equilibrium of the open—exit auction is
Po =?2+?2 +?8+]74+-~-+?n

and thus
n+2

E(B)|V:] = Y

Hence the expected seller revenue at the symmetric equilibrium in the two auctions is equal.

Next note that V(z1,z3,...,Zn) = 21 + 23 + ... + Z» is quasiconcave and I—_L},.!();j = i—l;
is strictly increasing. Therefore Proposition 4 applies and there exists a continuum of
asymmetric equilibria in the open—exit auction which yield strictly lower® expected revenue
than the expected revenue at the symmetric equilibrium in the open—exit or the second-
price auctions.

Thus Theorem 11 in Milgrom and Weber (1982), which states that the auctioneer’s rev-
enue at the symmetric equilibrium of an open-exit auction is not less than at the symmetric
equilibrium of a second—price auction, cannot be extended to asymmetric equilibria. It is
not true that the auctioneer’s revenue at every equilibrium of an open-exit auction is at

least as large as his revenue at the symmetric equilibrium of a second-price auction.

6 Concluding Remarks

In this paper, we have analyzed bidding when the item for sale has the same value, ex

23



post, to all the buyers. In contrast to earlier papers which examine only the symmetric
equilibria of common value auctions, we characterize the set of equilibrium strategies for

two forms of the open ascending bid auction.

The first message is that, in general, there can be a continuum of equilibria. Whenever
asymmetric equilibria are feasible, one such equilibrium involves more aggressive bidding
behavior by a single buyer, relative to the symmetric equilibrium, and more passive behavior
by the other buyers. That is, one buyer stays in the bidding longer and the others for a

shorter time than in the symmetric equilibrium.

Intuitively, it is in the interest of any one buyer to establish a reputation for being
aggressive, as in Bikhchandani (1988). For the more passive equilibrium response of his
opponents increases his probability of winning, and decreases the price that he pays ui)on
winning. Intuitively, also, the more passive behavior of all but one buyer is not in the
interest of the seller since his revenue is just the expectation of the second highest price.

With all but one buyer behaving relatively passively, this expectation is reduced.

While the paper shows that seller revenue does not necessarily fall under asymmetric
bidding, the basic intuition holds under fairly mild additional restrictions. The second
message, then, is that the unambiguous revenue ranking of the sealed high bid auction and
the two open auctions does not hold for environments in which a buyer has been able to

establish a reputation for bidding aggressively (in previous auctions or otherwise).

Thirdly, we have established that the multiple equilibrium problem is much more severe
for the “open—exit” auction than the English ascending bid auction used so commonly in
auction houses. To be precise, while there is always a continuum of equilibria for the two
buyer case, only the “open-exit” auction has asymmetric equilibria with three or more
bidders, as long as the underlying distribution of signals satisfies an additional restriction

that seems likely to be met in many practical applications.

Having summarized the key results of the paper, it should be noted that they do depend

critically upon the assumption that private valuations differ only because of informational
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differences. That is, if all the private signals were to be made public, buyers would agree
on the value of the item for sale. Suppose, instead, that each individual ¢ observes two

signals, X; and 2;, and his valuation, 17;, is
Vi =V (X1, X,,... %) + Z (6.0.1)

That is, in addition to the common element V(j(l,jfg,...,j(n) there is a second private
element, Z;, which is an independent draw from some distribution. It is our strong con-
jecture that, under moderate assumptions, there are no asymmetric equilibria for either of

the open auctions analyzed here. The following example illustrates the point.

Consider the two buyer case and suppose that X, and X, are also independent draws

from some distribution. Define
h(y) = E[Xi|X; + Z = o] (6.0.2)
We introduce the further mild restriction that
O<h'(y) <1, Vy (6.0.3)

Finally, we assume that

V(xl,jfz) = 5{1 + 5(2 (6.0.4)

To solve for the equilibrium, (31(5(1,21), B, (5(2,22)), suppose that the asking price has
reached b. Buyer 1 is better off remaining in the auction if and only if he will make a
positive expected profit given that buyer 2 drops out at this price. Thus buyer 1 stays in
if and only if

E[Vi|X1,Z1) — b= Z1 + X1+ E[X2|B2(X2,22) = b - b > 0

Define
$i(b) = b— E[X;|B;(X;,Z;) = b, j #1] (6.0.5)

Then buyer 1's equilibrium bid function must satisfy
n(Bi(X1, Z)) =X+ 2
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or

Bl(il, 21) = ¢;1()~(1 + 21) (6.0.6)
Since exactly the same argument holds for buyer 2 we must have

B: (X2, Z2) = ¢3 (X2 + Z2)
Then

E(X,|By(X3,2) =b] = E[Xa|X2+ Z; = 42(0)]

= h(¢2(b))
Substituting this in (6.0.5) we obtain
$1(b) = b — h(¢2(b)) (6.0.7)
Arguing symmetrically for buyer 2, we have
$2(b) = b — h(¢1(b)) (6.0.8)
Subtracting (6.0.8) from (6.0.7) yields
$1(b) — ¢2(b) = h(41(b)) — h(42(3)) (6.0.9)

Given (6.0.3) it immediately follows that the only solution to (6.0.9) is the symmetric

solution
$1(b) = ¢2(b) = (%)
Finally, from (6.0.6) and (6.0.7), the unique monotonic equilibrium function is

Bi(X:,Z)=Xi+ Z; + h(Xi + %)

Of course the example is somewhat special. In particular the solution is greatly sim-
plified by the assumption that all signals are independent. It is therefore by no means a

trivial matter to go from the example to the general case of correlated signals.
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Assuming our conjecture is correct, that the addition of a private element to the common
element of each buyer’s valuation implies uniqueness of the symmetric equilibrium in the
two open auctions, the natural question that arises is whether it will be possible to rank
expected revenue from the two open auctions and the sealed high bid auction. While this
appears to be a problem which is mathematically difficult, we believe that the insights
gained from analysis of the one signal per buyer model are capable of generalization. That
is, the greater the amount of information revealed in the auction the higher the expected
revenue, given that bidders adopt a symmetric equilibrium bidding strategy.

Given the extent of uncertainty in the actual bidding process, it might be argued that
there would always be some private element in addition to a common value element in any
valuation. But if the private element is small, it is far from clear that it would of relevance
empirically. We believe that the pure common value model remains the appropriate ap-
proximation for applications such as oil lease bidding, except in those cases where it can
be argued that private elements are an economically significant part of each buyer’s total

valuation.

27



Appendix I
Proofs of Lemmas 1 and 3

Proof of Lemma 1:

Consider the following assumption
Assumption 1*: For all a, 8
foxlXi=a, Xa<B, < Xi<di,i23)=
ff'l)'{(vlj'{l La Xy = B, ¢ < 5{1' <d; 123), Vei,d;.
Assumption 1* implies that (3.1.3) is satisfied. It also implies that Assumption 1 (in-
troduced later in section 3.2) is violated.

By hypothesis the signals are independent conditional on the true value. Thus f(v,z)
satisfies Assumption 1* if and only if

foxlXi=a, X2<B a<Xi<d,i23)

_ Io (Mg, 9 (alo)Px, 5 (810) [T7_o (Fs v (dile)=F g 45 (cilv)
T 155, 19 (@lo)Fg 15 (B10) [ 17 (Fi o (dilo) - Fi g (eil0))dv

_ Ip(0) g0 (BI0F5 1 (alv) [T (Fie g (dilo) = Fg i (eile))
T T35 (05,9 (BI)F g1 (alo) TTi o (Fz, 1 (dile) —Fz, v (eilv))do

= ‘7]5{(9'5{1 <a, Xy=8, i <Xi<di, i >3).
Rearranging terms, we get

S, (2l0) Fgy i (Blv)
Is,17 (Blv) Fy 7 (alv)

for some function I{a, B, ¢;,d;). But the left-hand side is a function of a, f and v whereas

= I(ayﬂ>ci:di)’ Va,ﬂ,c,-,d;,v,

the right-hand side is a function of @, B, ¢; and d;. Therefore, both sides are functions of
a, B alone and we may write

f o (elv) Fy, 7 (Blv)
Iz, (BlV) Fg, 1 (elv)

=J(a,ﬂ)) Va’ﬂ’
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where J(a, 8) is some function. Since the signals are identically distributed, we may rewrite

this as

I olaly)  fxw(Blv)
Fg,w(alv)  Fg p(Blv)
Hence there exist functions K;(a) and Kj(v) such that

J(o,B8), Va,pB.

fkllp(alv) — alanlW(alv)
Fiﬁl?(al") - da

= Ki(a)Ka(v), Va,v.

Proof of Lemma 3: First we show that if In f(z) is strictly concave, then so is In F(z).
That is, if %ﬂ is strictly decreasing so must be 51—"32151.
Let

f(z) _ @l F(z)
F(z) dz

If f(X) > 0 then G(X) = oo. If f(X) =0, then f(z) is strictly increasing in some interval
(X,X+¢€). Then F(z) < f(z)(z — X) for all z in (X, X + ¢) and so again

G(z) = (4.1.1)

limG(z) > i
5 SRR T

=00

!
The first part of the proof is then complete if we can show that %(Lﬂ%l) < 0 implies that

there exists no z > X such that G(#) is a local minimum. Differentiating (A.1.1)

cﬂﬂ=%§mﬂ—wu)

Therefore, at %, with G'(2) = 0

¢
"

¢"@) = @4
< 0

=2

by hypothesis. It follows that G(z) does not, after all, have a local minimum at z = £ and

so G(z) is everywhere decreasing, as desired.
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Integrating by parts
Fly) g,
D(z) = / Al1.2
#)=Jx F™ (412
Since F(-) is increasing, for all z > X

0< D(z) < M}a)—-@-
Taking the limit as £ | X, it follows that D(X) is strictly increasing at z = X. Suppose
D(z) has a local maximum at & > X. Differentiating (A.1.2)
F(z)

D()—I-D() (=)

At %, with D' (2) = 0, we have

D'(2) = -D(&)4 ( )
> 0

z=%

by hypothesis. But then D(z) cannot, after all, have a maximum at z = % and thus D(z)

is everywhere increasing as claimed. |
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Appendix II
Partially Pooling Equilibria
in Second-Price Auctions

In section 3.2 we proved that if there are more than two bidders and Assumption 1 is
satisfied, there do not exist any asymmetric equilibria in increasing and continuous strate-
gies. We now turn to strategies which are discontinuous and non-decreasing. We restrict
our analysis to non—decreasing, step—function strategies, that is partially pooling strategies,
and show that there do not exist equilibria where all players use such strategies, if Assump-
tion 1 is satisfied. However, there exists a continuum of such equilibria for the example in

section 3.1 and other distributions which satisfy (3.1.3).

We assume that the number of players, n, is three. The same argument can be extended

ton > 4. Let z, = X, and let z; € ()_(,_)_{—], k = 1,2,3,..., be such that z} < zj4;.

Yk, k=0,1,2,...,and z, k=0,1,2,..., are similarly defined. Let
31(5(1) = b”, if 5(1 € [zr, zh+1), k=0,1,2,....
82(5(2) = bak+l, if 5(2 € Yk, yk+1), k£=0,1,2,....
33(5(3) = b3k+2, if 5(3 € [z,,,zk.,.l), k=0,1,2,....

where ..0%+2 > p3ktl 5 p8k 5 p3k-1 = The following are necessary conditions for

(b1, b2,b3) to be an equilibrium

b3k < B[V|X; € [zh, 2k41), X2 = yb, Xs € [20,2)], VE (A.2.1)

b3 > E[V|X; € [2h, 2es1), X2 € [Yortk), X3 = 2], Vk (A.2.2)

B3+ < B[V | X, € [0, Zk41), X2 € [ybs Yht1), X3 =z), Vk (A.2.3)
B > BV | Xy = 2k41, X2 € [Yb, yke1), Xs € [20,22)], VE (A.2.4)
b3*+2 < BV | Xy = 241, X2 € [0, Yht1), X3 € [2k,2541)], VK (A.2.5)
p3k+2 > E[V'f(l € [Zo, Th+1), X2 =ye11, Xs € [2k, zk+1], VE (A.2.6)
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If (A.2.1) is not satisfied for some k, player 2 would prefer to deviate from his strategy
and bid slightly less than 5%, when X, € [yk, yx + €), for some € > 0. If (A.2.2) is not
satisfied for some k, player 3 would prefer to deviate from his strategy and bid slightly more
than 5%, when X; € [z — €, 2;), for some € > 0. Inequalities (A.2.3)—(A.2.6) are similarly
derived.

Suppose Assumption 1 is satisfied. Then (A.2.1) and (A.2.2) imply that yp > 2, (A.2.3)
and (A.2.4) imply z; > zp41 and (A.2.5) and (A.2.6) imply zx+1 > yk+1. This implies
Yi+1 < Yk, Vk, which contradicts our assumption that yi;; > yi. Thus Assumption 1
implies that the above necessary conditions cannot be satisfied. Since z, yi, and z,
k=1,2,3,... were arbitrary, we have proved that there does not exist an equilibrium with
step-function strategies if Assumption 1 is satisfied.”

Sufficient conditions for an equilibrium are obtained by replacing the inequalities in
(A.2.1)-(A.2.8) with equalities. If we define b3, b3¥+1, p3*+2 equal to the right-hand
expressions in (A.2.1), (A.2.3), and (A.2.5) respectively, then (A.2.2), (A.2.4), and (A.2.6)
are satisfied provided (3.1.3) holds. Since z;, yi, and 2z, k = 1,2,3,... are arbitrary
increasing sequences, we have proved that if (3.1.3) holds there exists a continuum of

equilibria with step-function strategies.
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Footnotes

1 Matthews (1987), in which several auctions are ranked from the buyer’s point of view, is

an exception.
? Under private, independent values, second—price and open—exit auctions are equivalent.

3 In a common value model with two bidders, an open-exit auction is equivalent to a

second-price auction.

4 Assuming that b;(z) are increasing and continuous functions, ¢; : [b;(X), b:(X)] — [X, X],

are well-defined, increasing and continuous.

5 Actually there are only n — 1 independent functions h;;(-) mapping ¢; into ¢;, j =

1,2,...,n. Once these functions are defined we have hj;(-) = hj1(h7'(-)).
6 Since the Tﬂ%} is strictly increasing, the revenue ranking is strict.

7 There are other types of step—function equilibria that we have not considered. For in-
stance, the players need not bid successively higher, in turn. Using a similar argument

these can all be ruled by Assumption 1.
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