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Asset Trading Volume in Infinite-Horizon Economies with

Dynamically Complete Markets and Heterogeneous Agents:

Comment

Abstract

In a recent paper, Judd, Kubler & Schmedders (2003) study asset
trading in a version of the standard Lucas infinite horizon economy
with heterogeneous agents. They report the surprising finding that
(for generic economies in their class), in equilibrium, there is no trade
in (long-lived) assets after the initial date. This note points out that
the conclusions of Judd, Kubler & Schmedders (2003) are artifacts
of the assumption that asset dividends and individual endowments
follow the same stationary finite state Markov process. Without this
assumption — and even if asset dividends and aggregate endowments
follow the same stationary process — there will necessarily be trade
at many histories.
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In a recent paper, Judd, Kubler & Schmedders (2003) (hereafter JKS)

study asset trading in a version of the standard Lucas (1978) infinite horizon

economy with heterogeneous agents. They report the surprising finding that

(for generic economies in their class), in equilibrium, there is no trade in

(long-lived) assets after the initial date. They conclude that their result

“indicates that other factors considered in the literature, such as life-cycle

factors, asymmetric information, heterogeneous beliefs, and incompleteness

of the asset market, play a significant role in generating trade volume.”

The formal JKS no-trade result is correct, but we find the interpretation

misleading. The standard Lucas (1978) model posits a finite number of as-

sets whose dividends follow a stationary finite state Markov process and a

representative agent whose endowment follows the same stationary process.

JKS introduce heterogeneous agents but require that individual endowments

also follow the same stationary process. It seems to us that the more natural

heterogeneous agent version of the model should require only that aggregate

endowments be stationary but allow for individual endowments that are not

stationary. The latter assumptions yield the same conclusions about equi-

librium prices and consumptions — stationarity in particular — but, as we

show below, are consistent with portfolio trades at many dates, and even

with portfolio processes that are not stationary, but rather depend on the

entire history.

I. The Asset Market Economy

Our notation, model and assumptions are almost as in JKS; we recall

them for the convenience of the reader. There is a single consumption good

and an infinite horizon. Time is indexed by t = 0, 1, . . . Aggregate uncertainty

follows a stationary finite state Markov process M with state space S =

{1, . . . , S} and transition matrix Π; the initial state is 1. We assume all

entries of Π (the transition probabilities) are strictly positive. A history of

length t is a sequence σt = (y0, . . . , yt) of realizations of M; yt is the underlying

state in the history σt. We write σ−t = (y0, . . . , yt−1) for the unique history

that immediately precedes σt. Write Σt for the set of histories of length t,

Σ =
⋃∞

t=0 Σt for the set of all histories, and 0 for the initial history.

S long-lived assets are traded; dividends on these assets (which may be
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viewed as the outputs of unmodeled firms) are stationary (that is, follow the

Markov process M): the dividend dj(σt) on asset j in history σt depends only

on the underlying state yt in the history σt. Hence, with no ambiguity we can

write dj(y) for the dividend on asset j in any history in which the underlying

state is y. We assume the vectors d1(·), . . . , dS(·) of state-dependent dividends

are linearly independent.

The economy is populated by H investors (or types of investors). A

consumption plan for an investor is a bounded function x : Σ → R+. Investor

h maximizes expected discounted utility of consumption

Uh(x) = E

{
∞∑

t=0

uh

(
x(σt), yt

)}

where utility uh for consumption may depend on the underlying state of

the Markov process. We assume uh(·, y) : R+ → R is smooth, strictly in-

creasing, strictly concave, and satisfies the Inada condition ∂u
∂x

(0, y) = ∞.

Investor h’s endowment eh : Σ → R+ is assumed to be bounded above and

away from 0. Note that agents may have different endowments and utility

functions, but share the common discount factor β. In addition to claims

to consumption, agents are endowed with portfolios of assets (shares in the

firms); θh(0
−) is agent h’s endowment portfolio. Assets are in positive net

supply, so
∑H

h=1 θh(0
−) � 0.

If θ is a portfolio, we write divσθ =
∑S

j=1 θjdj(σ) for the dividends of θ

in the history σ. By assumption, dividends depend only on the underlying

state, so we frequently write divy instead of divσ if y is the underlying state

in history σ.

We differ from JKS in assuming only that the aggregate endowment

e =
∑H

h=1[eh +div θh(0
−)] is stationary, so that e(σt) depends only on the un-

derlying state yt. For the moment we make no assumption about individual

endowments.

Given asset prices q : Σ → RS, agent h’s budget set consists of consump-

tion plans xh : Σ → R+, and portfolio plans θh : Σ → RS such that:

xh(σt) = eh(σt) + divσtθ(σ
−
t ) + q(σt) · θh(σ

−
t )− q(σt) · θh(σt) (1)
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and supσt
|(q(σt) · θh(σt)| < ∞. (The latter requirement eliminates doubling

strategies.) A financial markets equilibrium consists of prices q : Σ → RS,

consumption plans xh : Σ → R+, and portfolio plans θh : Σ → RS such that

each agent optimizes in his/her budget set and markets (for assets and hence

consumption) clear.

II. Portfolio Trades

As JKS observe, at an efficient (Pareto optimal) allocation, all agents’

marginal rates of substitutions are equal. Because the aggregate endow-

ment is stationary if follows that, at any efficient allocation, individual con-

sumptions must also be stationary. (See Lemma 1 in JKS or Section 20 in

Duffie (1988).) It follows that, at any efficient financial markets equilibrium

q, (xh), (θh), asset prices q must also be stationary. If individual endow-

ments are stationary — as assumed by JKS — it follows that agents achieve

their equilibrium consumptions by trading assets only at the initial history:

thereafter agents do not trade, but only consume their endowments and the

dividends of the portfolio θh(0).

What JKS do not observe is that the converse of their no-trade result is

true as well: if individual endowments are not stationary then there must

be trade after the initial date. To see this, observe that if agent h does not

trade after the initial date, then his/her consumption at history σt will be

the sum of consumption and dividends on the constant portfolio θh(0):

xh(σt) = eh(σt) + divσtθh(0) (2)

By assumption, asset dividends are stationary, and efficiency guarantees that

equilibrium consumptions are stationary, so (2) entails that h’s endowments

must be stationary as well.

III. A Numerical Example

A simple example may make the point more clearly. The underlying

Markov process is a fair coin toss; that is, S = {1, 2}, the initial state is 1,

and all transition probabilities are equal to .5. There are two assets, with

dividend processes

dj(s) =

{
1 if j = s

0 if j 6= s
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There are two agents, with log utility and a common discount factor β = 2/3.

Individual endowments depend on the underlying state and on whether the

date is even or odd:

e1(s, t) =


4 if s = 1; t even

6 if s = 2; t even

2 if s = 1; t odd

9 if s = 2; t odd

e2(s, t) =


3 if s = 1; t even

9 if s = 2; t even

5 if s = 1; t odd

6 if s = 2; t odd

We abuse notation and write eh(s, E), eh(s, O) for h’s endowment when the

underlying state is s and the date is even/odd respectively. Initial portfolio

holdings are

θ1(0
−) = (0.4, 1) , θ2(0

−) = (0.6, 0)

Note that the aggregate endowment e =
∑

[eh + div θh] is stationary:

e(s) = e(s, t) =

{
8 if s = 1

16 if s = 2

There is a (unique) efficient equilibrium, which necessarily has the prop-

erty that portfolio choices depend only on the underlying state and on time.

To find the equilibrium, begin with the implications of the budget equations

(1) at the various state/time pairs. To simplify notation, write prices and

consumptions as functions of the underlying state and write endowments and

portfolio choices as functions of the underlying state and the parity (even or

odd) of the time index. For each history σ, there are budget constraints

at each of the two immediately succeeding histories, Because there are four

state/time-parity possibilities for σ — (1, E), (2, E), (1, O), (2, O) — we

obtain 4 pairs of equations. To ease the notational burden, we temporarily

suppress the agent subscript:
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x(1) = e(1, O) + div1θ(1, E) + q(1) · θ(1, E)− q(1) · θ(1, O) (3)

x(2) = e(2, O) + div2θ(1, E) + q(2) · θ(1, E)− q(2) · θ(2, O) (4)

x(1) = e(1, O) + div1θ(2, E) + q(1) · θ(2, E)− q(1) · θ(1, O) (5)

x(2) = e(2, O) + div2θ(2, E) + q(2) · θ(2, E)− q(2) · θ(2, O) (6)

x(1) = e(1, E) + div1θ(1, O) + q(1) · θ(1, O)− q(1) · θ(1, E) (7)

x(2) = e(2, E) + div2θ(1, O) + q(2) · θ(1, O)− q(2) · θ(2, E) (8)

x(1) = e(1, E) + div1θ(2, O) + q(1) · θ(2, O)− q(1) · θ(1, E) (9)

x(2) = e(2, E) + div2θ(2, O) + q(2) · θ(2, O)− q(2) · θ(2, E) (10)

There is also an initial condition, the date 0 budget constraint:

x(1) = e(1, E) + div1θ(0
−) + q(1) · θ(0−)− q(1) · θ(1, E) (11)

Observe immediately that equations (3) and (5), (4) and (6), (7) and (9), (8)

and (10), taken together in pairs, imply that portfolio dividends, and hence

portfolio choices, depend on time (parity) but not on the underlying state:

θ(1, E) = θ(2, E) , θ(1, O) = θ(2, O).

Efficiency entails that each agent consumes a constant fraction of the

aggregate endowment:

x1(s) = λe(s) (12)

x2(s) = (1− λ)e(s) (13)

Intertemporal consumption prices can be computed directly from marginal

rates of substitution, and asset prices can be computed directly from the fa-

miliar stochastic Euler equations:

q1(1) =
1

2
β[1 + q1(1)] +

1

4
βq1(2) (14)

q1(2) = β[1 + q1(1)] +
1

2
βq1(2) (15)

q2(1) =
1

2
βq2(1) +

1

4
β[1 + q2(2)] (16)

q2(2) = βq2(1) +
1

2
β[1 + q2(2)] (17)
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To solve for equilibrium, first recall that β = 2/3 and solve the stochastic

Euler equations (14) - (17) to conclude that equilibrium asset prices are:

q(1) = (1,
1

2
) ; q(2) = (2, 1)

Then use equations (3) - (10) to eliminate all the unknowns except λ, and

finally use the initial condition (11) to solve for λ. Straightforward algebra

gives λ = 1/2, so equilibrium consumptions are

x1(1) = x2(1) = 4 ; x1(2) = x2(2) = 8

and the equilibrium portfolio choices are

θ1(1, E) = θ1(2, E) = (+1.9,−1.2) ; θ1(1, O) = θ1(2, O) = (+0.1, +2.2)

θ2(1, E) = θ2(2, E) = (−0.9, +2.2) ; θ2(1, O) = θ2(2, O) = (+0.9,−1.2)

Notice that assets are traded at every history . For instance, consider a

history σ at which the underlying state is 1 and the date is odd. Agent 1

enters the history holding the portfolio (+1.9,−1.2) (i.e., long 1.9 shares of

asset 1 and short 1.2 shares of asset 2) and has an endowment of 2 units of

consumption. His portfolio yields a dividend of 1.9 units of consumption; he

finances an additional 0.1 units of current consumption, bringing the total

to 4 units, by his net portfolio trade of (−1.8, 3.4). Agent 2 enters the

history holding the portfolio (−0.9, +2.2) and has an endowment of 5 units

of consumption. From her endowment she pays the dividend debt of 0.9 units

of consumption on her portfolio, consumes 4 units in the current history, and

uses the remaining 0.1 units of consumption to finance her net portfolio trade

of (1.8,−3.4). Notice that (dollar) volume of trade is 1.8 for asset 1 and 1.7

for asset 2, and that the turnover ratios are large: 1.8 and 3.4, respectively.

IV. History-dependence

In the example above, individual endowments depend on the underlying

state and on time but not on the whole history, and as a consequence, port-

folios depend only on time. (We leave it to the reader to verify that this is a

general property and not an accident of the example.) However, if individual

endowments depend on the whole history then portfolios will depend on the
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whole history as well. To see this, fix histories σ, τ of length t such that the

underlying state is the same at σ, τ (say state 1) and the underlying state is

the same at σ−, τ−. By the usual arguments, prices p and consumptions x

depend only on the underlying state. Applying the budget equation (1) in

the histories σ, τ gives:

x(1) + q(1) · θ(σ) = e(σ) + div1θ(σ
−) + q(1) · θ(σ−)

x(1) + q(1) · θ(τ) = e(τ) + div1θ(τ
−) + q(1) · θ(τ−)

Subtracting and collecting terms gives

e(σ)− e(τ) = q(1) · [θ(σ)− θ(τ)]

− q(1) · [θ(σ−)− θ(τ−)]

− div1

[
θ(σ−)− θ(τ−)

]
If e(σ) 6= e(τ) then the left-hand side is not 0 so the right-hand side cannot

be 0 either. Hence it cannot be that both θ(σ) = θ(τ) and θ(σ−) = θ(τ−). In

either case, we conclude that θ depends on the history and not just on the

date and underlying state.

V. Conclusion

Working in a heterogeneous version of the Lucas asset-pricing model, JKS

show that if asset dividends and individual endowments are stationary then

there is no trade after the initial date. This paper shows that if asset divi-

dends and aggregate endowments are stationary but individual endowments

are not stationary then there will be trade after the initial date, and there

may be trade at every history.

JKS also compare their no-trade result with the conclusions of continuous-

time models such as Merton (1971) that imply a great deal of trade. However,

the comparison does not seem an apt one to us. In the continuous-time model,

trade takes place because information about the future of the dividend is

revealed gradually (this is equally true in general equilibrium settings such

as Duffie & Huang (1985) and Duffie & Zame (1989) as in more common

partial equilibrium settings). In the Lucas framework, stationarity means

that all information about the future of the dividend process is known at the

initial date.
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