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Abstract

The paper presents a theory of multiperson preference based on
the ability of some pairs of individuals to agree on a joint preference.
If such pairs form a spanning tree of the set of players, then the accep-
tance of the Pareto rule is enough to determine a unique preference for
the entire group. Moreover, there is a set of positive weights, unique
up to a positive factor of proportionality, such that the utility for the
group can be expressed as the weighted sum of the individual utilities.
Those ideas shed light in the theory of transferrable utility and the
concept of interpersonal comparisons of utility.
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1 The Theory of Incomplete Preferences

1.1 The prospect space

The underlying domain of prospects over which the preferences are given will
be denoted by M. It will be assumed that M is a “mixture space” (see
below), which means intuitively that any two prospects can be combined
into a third prospect depending on a variable “mixing parameter” drawn
from [0,1]. Formally, a mizture space is a set M equipped with a mizing
operation (z,y,a) — zay from M x M x [0,1] to M, such that for all
z,y,2 € M and «, 8 € [0,1]:

(M1) Ifa+B8=1, zoy =yBz
(M2) Ifv=a+p~af>0, then za(yBz) = (z2y)yz
(M3) zaz =z
(M4) If zaz=yazanda #0, thenz =y
We observe that zly = z and z0y = y. To see this, we have

rly = zl(yay) = (zly)ly (1)

by (M3) and (M2). Then, zly = z follows from applying (M4) to both
sides of the expression (1). A trivial use of (M1) produces z0y = y.

One easily verifies that any convex subset of a vector space is a mixture
space, with the mixing operation interpreted in the obvious way as weighted
average, thus:

Forallz,y € M and all a € [0,1], zay = az + (1 — a)y (2)

Conversely, the following unsurprising but very useful “embedding” theorem,
due originally to Marshall Stone [16], shows that every mixture space can be
represented in this way:

Theorem 1.1 The elements of any mizture space M can be identified with
the points of a convex subset of a suitably chosen real vector space V in such a
way that (2) holds. One can further stipulate that the origin of V is in M and
that no proper subspace of V' contains M. Moreover, with these stipulations
the embedding is unique up to a linear transformation.
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A consequence of this result is that M and V can be made to have the
same cardinal dimension. We shall call such embeddings efficient.

A basic example of a mixture space is the set of probability distributions
over a set P of “pure” prospects, giving M the form of a probability simplex
if P happens to be finite. But there are other possibilities. For example,
the pure prospects might be a set of physical states, described in terms
of numerical parameters, and we might be willing to assume that only the
expected values of these parameters are significant. Then, M would take the
form of a more or less arbitrary convex set in the parameter space, which
could have significantly lower dimension than the set of probability measures
on the physical alternatives themselves. Or in another example, there might
be no pure prospects at all, M being an open set.

1.2 Incomplete preference relations

In this section we shall axiomatize the preference relation so as to obtain a
mapping of M into a risk-neutral utility scale which is “cardinal” yet only
partially ordered or incomplete in general. We shall write “z 2 y” to mean
that prospect z is preferred or indifferent to prospect y, and denote the
relation itself by the distinct symbol =.

Here are the axioms for an incomplete preference = —they are asserted
for all z,y,z,w € M and all « € [0, 1]:

(P1) z 2z (Reflexivity)
(P2) Ifz2yandy 2z, thenz 2 2 (Transitivity)
(P3) If z 2y, then zaz 2 yaz (Independence)
(P4) The set {a: zay 2 zaw} is closed. (Continuity)

The first two of these axioms establish = as a partial ordering, while the
other two relate it to the mixing operation. If both z 2 y and y 2 x we say
that = and y are indifferent and write z ~ y. If neither z 2 y nor y 2> = we
say that z and y are incomparable and write z|y. Finally, if z 2 y but not
y = x, we say that z is strictly preferred to y and write z > y. If M has no
incomparable pairs then 3= is said to be a complete preference; this can be
expressed axiomatically by strengthening (P1) to

(P1’) For all z,y € M, eitherz 2 yory 2« (Completeness)
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The independence axiom (P3) asserts the “conservation of preference”
under the equal admixture of a third prospect. The continuity axiom (P4)
eliminates the “non-Archimedean” phenomenon of two prospects that are
so apart in the scheme of preferences that the gap cannot be bridged con-
tinuously by probability mixes. Specifically, the possibility that for some
z,y € M, z 2 zay might hold for all & > 0 but not for o = 0 is eliminated.
The continuity axiom used by von Neumann and Morgenstern [18], as well
as by Marschak [9] and Herstein and Milnor [7], required merely that the
set {a : z 2 zaw} be closed. The added strength of our (P4) allows us to
state!,

Lemma 1.2 If a > 0 and par 2 qar, then p 2 g

Proof. Let 7 = sup{«a € [0,1] : zaz 2 yaz}, that is well defined since we
always have 20z 2> 30z, by z0y = y and (P1). By (P4), we have z72 2 yrz,
and by (P3) we have (z72)8z 2 (y7z)Bz and (z72)By 2 (y72)By for all
B € [0,1]. Setting 3 = 3= and using (M1) and (M2), we calculate

(a72)By = yB(z7a) = <y§z>ﬂx = (yr2)fe (4)

writing 3 for 1 — (3, etc. and using the fact that 3+7 — 37 = 8 > 0. By (P2)
it follows that (z7z)Bz = (y7z)By, which reduces by (M1), (M2), (M3) to

2T > 27
T z
147 Nyl-i-T

z (5)
By the definition of 7, this implies that 7 > 12+—TT, which is equivalent to the
inequality 72 > 7. Thus, 7 is either 0 or 1. But 7 = 0 is excluded by the
hypotheses that « > 0, so 7 is 1 and (5) reduces to z 2 y by zlz = z and
ylz = y, as was to be shown. =

Observe that the foregoing proof made no use of Theorem 1.1, nor of
the cancellation law (M4). Nevertheless, Lemma 1.2 implies the weaker
cancellation law

If zaz ~yazand a >0, thenz ~y (6)

1An alternative route is to adopt the continuity axiom in this second form and
strenghten the independence axiom to

zZyif andonlyif raz 2 yaz, if a #0 (3)

thus avoiding the lemma altogether.



This would allow us to carry out the embedding without benefit of (M4) if
we were willing to collapse M into its indifference classes. But it is better
to retain (M4) in order to avoid having to make the embedding of M in V
dependent on the preference relation, since in our application we shall be
defining many different preference relations on the same mixture space.

1.3 Representation of incomplete preferences by dom-
ination cones

From this point forward we shall omit citation of the individual axioms
(M1) — (M4) in our proofs and take the efficient embedding of M in V
for granted, using vector-space terminology freely, with the use of zay or
az + (1 — a)y interchangeably. We avoid possible confusion by using only
Greek letters to indicate the mixing parameters.

Lemma 1.3 For all z,y,z,w € M, if z — y = Mz — w) for some scalar
A >0, then

zZyiffz2w (7)

Proof. (See Figure below) Setting @ = 15, we have zaw = yaz by
simple calculation (note the similar triangles). By independence and Lemma
1.2 we then have z 2 y iff zaz 2 yaz iff zaz 2 zaw, as was to be

shown. =

xaw=yoz w

Y

Geometrically, z — y = A(z — w) with A > 0, means that the directed
segments 77 and zW are parallel and similarly oriented. Lemma 1.3 therefore
asserts that the “directions of preference” are constant throughout M.

The next lemmas establish further geometric properties of the relation =
and prepare the way for the first representation theorem. First, we define
the dominion of an element x € M by D(z) = {y € M : z 2 y}. It can
easily be verified by (P1) and (P2) that D(z) = D(y) if and only if z ~ y.
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Lemma 1.4 For each x € M, D(z) is a convex cone in M with vertez x.

Proof. (a) Convezity. Suppose that y and z are in D(z). Then, using
independence (twice) and transitivity, we have

T = zar 2 raz 2 yaz for all a € [0, 1] (8)

In other words, yaz € D(z). It follows that D(z) is convex.

(b) Cone property. It will suffice to show that y € D(z) if and only if
yazr € D(z), for arbitrary o € (0,1). But this is immediate from indepen-
dence and its converse, Lemma 1.2, taking z =z. =

Although a cone in M is not ordinarily a cone in V, it becomes one if we
extend it by scalar multiplication. Define the extended cone of D(zx):

D(z)={reV:r—xz=Xy—=z) for somey € D(z) and A >0}  (9)

However, despite the constant directions of preference promised by Lemma
1.3, even the D(z) sets may take on quite a variety of different shapes when
z is in the boundary of M (see figure below).

(Open boundary)

But there is a remedy. In the finite-dimensional case we can start with
any z in the interior of M (which is nonempty because we assumed an effi-
cient embedding), take its extended cone D(z), translate it to the origin by
subtracting z, and define thereby a cone, D, which we call the domination
cone of »=. By Lemma 1.3 D does not depend on which interior point of M
we started from. Moreover, for all x € M, we have

D(z) = (z+D)NM (10)



and so, for all z,y € M,
z2yiffy—z€D (11)

Thus the cone D completely characterizes the relation >=.
More generally, in the infinite-dimensional case where the existence of
interior points is not assured, we may define

D = Uzem(D(z) — ) (12)
and then (10) and (11) will still be valid.

A convex set in a vector space whose intersection with every line is a
closed interval (possibly empty or unbounded) will be called linearly closed.
It can be shown that this property implies that the intersection with any
finite-dimensional linear (affine) subspace is also a closed set in the ordinary
Euclidean topology.

Lemma 1.5 D is a linearly closed, convexr cone in V with vertex 0.

Proof. (a) Convezity: Given p,q € D, we can find z,y € M such that
p € D(z) and q € D(y). We claim that for any « € (0,1), both p and ¢ are
in D(zay). Since D(zay) is convex and a subset of D, the convexity of D
follows.

To prove the claim, let z € M be such that A\p = z — = for some positive
A. Then zay € M, by (M1), and we have

zay—zay=az+(l-a)y—az— (1 —a)y=alz—z)=rap  (13)

so p € D(zay). Similarly, ¢ € D(zay).

(b) Cone property: This is obvious from the fact that, by definition, p € D
if and only if there are z € M and A > 0 such that z + Ap € M.

(c) Linear closure: Let £ be any line contained in V. If £ N D is empty
or a single point there is no problem, so we may assume that we have two
distinct points z,y € £N D. If 0 € £ there is again no problem, so we may
assume that z and y are linearly independent. As shown in (a), there is an
element of M having both z and y in its extended domination cone, and by
Theorem 1.1 we may take this element to be 0. By (b), there are positive
numbers A; and As such that A\;z and Ay are both in M. By convexity, this
remains true if A\; and ), are replaced by A = min(\y, Ag). Moreover, since D
is a cone, £N D is a closed interval if and only if AN D is a closed interval.
So we might as well take A = 1, thereby reducing the problem to the case of
three, non-collinear points, 0,  and y, all contained in M.
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Now for the proof itself. We have
For all o € [0,1], az 2 yif and onlyif y —ax € D (14)

If o # 1, define v(a) = o/(1 — @) and z(y) = y + v(y — =), where the
domain of v is [0, 00). We then have

y—az=(1-ay+aly—z)=(1-0a)z(v(c)), (15)
for a € [0,1), and so
az 2 y if and only if z(y(«)) € D. (16)

Now consider two sets of real numbers, namely, A = {a € 0,1] : az 2 y}
and I' = {y € [0,00) : 2(y) € D}. The set A is closed, by continuity, and I is
convex, by (a). Also, both sets contain 0, by definition. If I" is bounded then
A is bounded away from 1, so I' is the continuous pre-image of a closed set
and hence closed. But if " is not bounded, then it is exactly the set [0, 00),
by convexity, and hence again is closed. Since z(y) = y + v(y — =) sweeps
out that portion of £ marked £, in Figure above, we have shown that £,
meets D in a nonempty closed set, including y. Similarly, £5 meets D in a
nonempty closed set including x. As the intervening points between z and y
are all in D by convexity, we conclude that £ itself meets D in a closed set.
This completes the proof. =

We have now arrived at the main result of this section, the First Repre-
sentation Theorem for incomplete preference relations.

Theorem 1.6 (First Representation Theorem) Let = be an incomplete
preference defined on a mizture space M efficiently embedded in a vector space



V with 0 € M. Then there exists a linearly closed convex cone D in 'V, with
vertex 0, such that for all x,y € M

z2yiffy—xeD (17)

Conversely, let D be any linearly closed convexr cone in V and let M be any
mizture space efficiently embedded in V. Then the relation = that 17 defines
is an incomplete preference.

Proof. The first part is covered by the preceding lemmas. The converse
can be verified by direct reference to the axioms and definitions. m

1.4 A generalization of utility functions

If our theory were concerned only with complete preferences, the next step
would be the introduction of what is sometimes called a “measurable utility.”
(Compare Herstein and Milnor [7].) This is a linear function u from M to
the reals that characterizes the preference relation > by means of the rule:

z 2 yiffu(z) > u(y). (18)

To correspond to this device, in our incomplete system, we shall now develop
the notation of a “utility set” U, which is a family of utilities which represent
> by means of the rule:

z2yiffulz)>uly) foralluel. (19)

Proceeding with the formal development, let us denote by M* the set of all
real-valued functions on M that are both linear, in the sense that always

u(zay) = aul(z) + (1 — a)u(y) (20)

and homogeneous, in the sense that they vanish at some prescribed point
0 € M. It is convenient to take 0 as the origin of an efficient embedding space
V. Then, M* coincides with V*, the space of homogeneous linear functions
on V. In any case, M* is a linear space in its own right, of dimension equal
to that of M in the finite-dimensional case?.

%In the infinite-dimensional case, M* is bigger than the ordinary dual space because
we have not required that its elements be continuous with respect to some stated topology
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Let D be the domination cone of some 3=, and let D* be its polar cone in
M* defined by

ue D iff u(z) <0 forallz e D (22)
Similarly, the “polar” of D* may be defined:
z€D™iffu(x) <0 forallue D* (23)

The weak inequalities in these definitions ensure that D* and D** are both
linearly closed, convex cones with vertex 0; they are of course both convex.
It is evident that D C D**. If equality were guaranteed here, the two polar
mappings would be mutual inverses, and D* could be used unambiguously to
represent the incomplete preference . In the finite-dimensional case equality
is indeed always assured, from the fact that D is linearly closed, and hence
closed. In the infinite-dimensional case, however, linear closure is not enough
by itself; some further condition must be fulfilled. The one presented in the
following lemma has the virtue of not involving any topological structure in
M, beyond what is already implied by the idea of linear closure.

A point z in a linear space V is called internal to a convex set F if, for
every y € V, there is a ¢y € E with z = yay’ for some a € (0,1). z is
called relatively internal if the above holds with y restricted to E. Every
finite-dimensional convex set has a relatively internal point.

Lemma 1.7 Let D be a linearly closed, convex cone in an arbitrary linear
space V.. Then, if D has a relatively internal point, D = D**.

Proof. As already remarked, we have D C D**. To show that D** C D,
let V1 be the smallest subspace of V' containing D and let y be any point
in V\V,. A linear function u can be found that vanishes on V; and has the
value 1 at y. By (22), u € D*, and by (23), y ¢ D**. Hence D** C V;, and
we can confine our attention to that subspace. Now let z be any point in
V1\V, and let z be a relatively internal point of D. Since D is linearly closed,

on M. This extra discriminatory power ensures that any two distinct points in M can be
separated, i.e.,

If x#£vy, then u(z) # u(y) for someu € M* (21)

and will enable us to extend linear functions defined on lower-dimensional subsets of M
(or V) to the whole space.
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we can find on the segment zy a point 2z’ # z that is not in D. Since z is
actually internal to D in the subspace Vi, a standard separation theorem can
be applied that asserts the existence of a nontrivial linear function u; on V)
that is non-positive on D and nonnegative at z’. But u;(z) is easily seen to
be strictly negative, from the internal situation of z, and consequently u;(z)
must be strictly positive. If we now extend u; to the full space V', we see
that the extended function is an element of D*, by (22). Hence z ¢ D**, by
(23) and we conclude that D* C D. m

Assuming that the internal-point condition is met, we have in a sense
achieved our announced aim of producing a “utility set” D*, which is capa-
ble of reproducing the ordering = via the rule (19). However, the number
of inequalities to be considered —the cardinality of D*— is far greater than
necessary. For example, we clearly do not need to verify u(z) > u(y) for
functions u that are nonnegative multiples, or convex combinations, of func-
tions that have already passed the test. In some cases, at least, we should
expect that a few extremal elements of D* would be sufficient.

Accordingly, let us make the following formal definition: A wutility set of
an incomplete preference > with domination cone D, is any nonempty subset
U of M* such that (z) the polar of U (in the sense of 23) is precisely D, and
(i1) the origin 0 of M* is not in U, unless U = {0}.

For want of a better term, let us call > proper if its domination cone
contains a relatively internal point. Lemma 1.7 then assures us that every
proper incomplete preference has at least one utility set —namely, either
D*\{0} or {0}. We emphasize that all incomplete preferences on a finite-
dimensional prospect space are proper.

In order for a set U (not containing the origin) to be a utility set for a
proper incomplete preference, it is necessary and sufficient that the linear
closure of the set of positive multiples of convex combinations of elements
of U be equal to D*. A great many preference relations —they might be
called “polyhedral”— possess finite utility sets. If M is finite-dimensional,
the utility set need be at most countable infinite. But note that even in
a minimal utility set, there may have to be included some non-extremal
elements. For example, if U is a half space, then three points are required,
one of them internal. A one-point utility set of course implies a complete
preference, and vice versa.

We sum up the principal result of this section:

Theorem 1.8 (Second Representation Theorem) Let = be a proper in-
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complete preference defined on a mixture space M efficiently embedded in a
linear space V with 0 € M. Let M* be the space of all homogeneous, lin-
ear functions from M to the reals. Then, there exists a nonempty subset
U C M*, not containing 0 unless U = {0}, such that for all z,y € M,

zmyiffulz)>uly) foralluelU (24)

Conversely, given any such set U, the relation = defined by (24) is a proper
incomplete preference, in the sense of axioms (P1) — (P4).

Proof. Only the converse remains to be established. Since U* is easily
seen to be linearly closed, convex cone in V with vertex 0, it follows from the
first representation theorem that = is an incomplete preference in the sense
of (P1) — (P4). To show that it is proper, we must show that U* = U**,
since these are the “D” and “D**” of the ordering. We have U C U** and
U* C U** immediately from the definitions of “polar,” (22) and (23). But
it is obvious from (23) that “polar” is a monotonic decreasing function from
subsets of M* to subsets of M; hence U C U** implies U* D U***. =

1.5 Examples of incomplete preferences

We close this section by describing the preference relations associated with
certain special types of domination cones D and their corresponding polar
cones D* and utility sets U. The following are equivalent ways to characterize
several incomplete orderings.

1. When D is a half space, D* consist of a ray defined by nonnegative
multiples of some u # 0 and U = {u}. In this case, > is a nontrivial
complete preference.

2. When D is a subspace of V, D* is a subspace of M* and U is any
base for such subspace. In this case, > has no strict preferences and
M decomposes into a collection of mutually incomparable indifference
classes. Two extreme sub-examples are:

(a) D=V, U= {0} and > is trivial; forall z,y € M, z ~ y.
(b) D ={0}, D* = M* and = is the empty relation; for all z,y € M,
T #y, zly.

3. When D contains complete lines, D* is less than full-dimensional and
> contains segments of indifference.
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2 Multiperson Utility

Having developed a theory of incomplete preferences, we now proceed to
utilize it to establish preferences for coalitions of agents. Before proceeding,
a word on notation.

We will consider a finite set of individuals N = {1,...,n}. Nonempty
subsets S of N are called coalitions. Since we will working with coalitions,
we will usually denote an individual ¢ € N as {i}. Collections of coalitions
will be written with calligraphic characters, like the set of all coalitions P or
the set of single member coalitions A = {{i} C N :4 € N}. Finally, we shall
reserve “C” for strict inclusion.

2.1 The Pareto rule and its representation

We begin by assuming a set of preferences =(;;, possibly incomplete, for the
individuals in N. How are we to define preferences for coalitions? We might
want to say that a coalition S prefers z to y if and only if all of its members
do. However, this preference will in general not be complete unless all the
individuals in S have identical complete preferences. Therefore, we want to
require that

Ifx gy y foralli €S, thenz Zsy (25)

We will impose a more general condition that we call the Pareto rule. Given
a collection of incomplete preferences =g for each coalition S, let A and B
be any two disjoint coalitions. Then,

(P5) Forall z,y € M, if © =4 y and x = y, then * —aup vy (Pareto
Tule)

If Q is a partition of S, the Pareto rule requires that if z =4 y for all
A € Q, then z 7Zs y. In particular, (25) holds. By the first representation
theorem, we see that the Pareto rule also imposes the following relations on
the domination cones and the polar cones. For any two disjoint coalitions A
and B, we have:

DsNDg C Dyyp (26)
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Since (D4 N Dp)* = Co(D% N D3)? we also have that,
Djyup € Co(Dy U D) (27)

For (27) to have some power we need to have some control on the size of
Co (D} U D). Recall that Dy;, are cones in M*. If the individual preferences
where extremely different and spring in all directions, then Co (D% U D¥)
would grow and even be identical to M*. On the other extreme, if an in-
dividual ¢ is totally indifferent, then Dj;, = {0} and he does not have any
influence in (27). We can therefore set those individuals apart and suppose
that individuals have non-trivial preferences.

We will impose two conditions to control the size of the convex hulls.
First, we assume that individuals have non-trivial complete preferences so
that the Dy, are rays. Second, we assume the existence of at least one
direction of common preference. Formally, we say that the members of N
minimally agree if there are two prospects xg, 21 € M such that

(P6) Foralli€ N, zy gy 7o (Minimal agreement)

Without loss of generality, we can set the origin of M to be zy and define
the following projection hyperplane in M*

W={ue M :u(z;) =1} (28)

Since u(z1) > 0 for all u € D};;\0 all the rays Dy, intersect W in a single
point that we can take as the utility set. Thus, for all i € NV, we let

Uiy = Ding NW = {ugy} (29)

where ugy (z1) = 1.
To summarize the previous discussion, we present the following represen-
tation theorem for the Pareto rule.

Theorem 2.1 (Third Representation Theorem) Given a collection of
incomplete preferences =g for each coalition S, let A and B be any two
disjoint coalitions. Then, the following are equivalent to the Pareto rule:

1. DaNDg € Dy

3Gee, for example, Rockafellar, page 149-151.
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2. D%p C Co (D UD})

Moreover, if we have non-trivial individual preferences and minimal
agreement we may define for all coalitions S, Wg = DENW, and the
equivalence extends to

3. WALJB Q Co (WA U WB)

Proof. The first two equivalences follow from previous remarks. For the
third, note that the individual preferences are characterized by uy; given
in (29). From (3) it easily follows that Dg C Co(UsesDy;). Since Dy, is
characterized by uy,; it follows that DY is also characterized by Ws and we
conclude that (3) is equivalent to (4). m

From the previous section, we recall that the “size” of Wy reflect the
incompleteness of 5. The coalition preferences are the more incomplete
possible when Wy g = Co (W4 U Wp) for all disjoint coalitions A and B.
This is precisely the case when all the »g are defined as:

rZsyiffrzumy foralies (30)

For a given coalition S, there are 2°-1 — 1 ways to divide S in two
coalitions. If if Wy 5 C Co (W4 U W) for some disjoint coalitions A and B
with AU B = S, then we can control the size of W (See figure below).

W

Wiy

Note in the figure that since W13 = {ugy} and Wygy = {up} then
Wiy € Co (W{l} U W{g}) = {ugaup : 0 < a <1} (31)

The restrictions in Wy can be such that it forces Ws to be empty (See
figure below). We then conclude that there is no preference for the coalition
S that is consistent with the Pareto rule, something that we want to avoid.
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Wey

2.2 Building preferences for coalitions based on bilat-
eral agreements

Consider N = {1,2} and utilities u(;},usy € W. The only restriction that
the Pareto Rule imposes on Wy 9y is Wy 9y C lgyuqe). Since our aim is to
build complete preferences for the group, we have to require that individuals
1 and 2 agree on a common preference represented by some utility u; o) €
fiiyuqay. We then say that the pair {1,2} has reached a bilateral agreement.
In this case, there is a unique A € [0,1] such that uy ;3 = ugdugy. If
A € (0,1) we say that the pair {1,2} has reached a compromising agreement.

At this point, an important conceptual or “philosophical” point arises:
the notion of transferrable utility depends essentially on the ability of two
persons to communicate and agree on a common preference. In other words,
we have an intrinsic relational aspect in building a joint preference.

For z,y € W, z # y, we denote by Ty the open segment {zay :0 < a <
1}, by 7 the half line starting at z and passing through y not containing z
and by zy the line that connects z and y. If z = y then Ty = Ty = 7y = «.

Now, consider N = {1,2,3} with utilities uq}, ugoy, ugsy € W. Suppose
those utilities are non-collinear, i.e., there is no line that contains them.
Assume that {1,2} and {2, 3} have both reached compromising agreements
represented by ug9y € Uyyuqzy and u(z 3y € Upyus; respectively (see figure
below where “12”, for example, indicates u 23). By the third representation
theorem, Wy 23) is contained in both f1yuqs 3} and Ugsyugi o). If these two
segments intersect in a single point ug; 233, then Uy 23y will be a singleton.
In other words, the group has a complete preference!
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U3 C st NUEuggg = {upes )

If XA and p are such that ug 2y = upydugey and ugo sy = ugaypugsy, then
we obtain by calculation that

U123} = oo Py + (0= Npuggy + (1= X1 - pug]  (32)

The representation theorem also imposes that Wiy 231 € Co(uqay, Wiy 33),
or

uq1,2,3) € Colugay, Wi ay) (33)

therefore, if we denote by wug; 3, the intersection point of wpyuri23; and
Tq1yugsy, then we conclude that for (33) to hold we require ug 33 € Wy 23}
Calculation shows that

w13 = mraomasm e + (1= (1= plug] (34)

If ugy 3y & Wii23) then Wiy o3y = 0, as illustrated before. Also, observe that
the fact that A, p € (0,1) guarantees that the denominator 1 — A(1 — p) in
(32) and A+ (1 — A)(1 — p) in (34) do not vanish.

Continuing with our presentation, we have seen that with two bilateral
agreements is possible to build complete preferences for a set of three agents.
How are we to generalize the previous analysis to the case of any N7 First, it
is clear that if bilateral agreements are the main ingredient, then all the indi-
vidual agents have to be involved in some agreement. Otherwise, there is no
way to construct utilities for coalitions involving a “disconnected” individual.
Second, we cannot allow the bilateral agreements to form cycles, otherwise
we encounter inconsistencies. For example, the figure below illustrates how
the bilateral agreements {1, 2}, {1, 3} and {2, 3} lead to Wy 23y = 0.
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Wi 23y C Uaytqes; N Ugyus; N igyuge; =0

We can think of the individuals and the agreements as nodes and edges
of a graph, respectively. Our conjecture is that he need to form a connected
and acyclic graph, i.e., a spanning tree of compromising agreements.

To test the conjecture, consider the case of N = {1,2,3,4}, with the
spanning tree of compromising agreements being {1,2}, {1,3} and {3,4}.
Assume that the triples wuy, w9y, uqsy and that triple uqy,ugsy, ugqy are
both not-collinear. We can repeat the previous analysis to obtain uy; 2 3; and
U{2,3,4}- Now, we can use any two of three segments U1,2,3}U{4}, U{11U{2,3 4}
and {23 u{34} to obtain uy. The obvious question is whether or not these
three line segments have a point in common (see Figure below). Otherwise,
we should conclude that Wy = ), a fact that would frustrate our theoret-
ical development. The problem is manifestly non-trivial as the size of N
increases, since the number of segments passing through uy is 2/V-1 — 1.

AN

.
.
4 #

Are the segments U123 4}, U{1}U{2,3.4; and Uy 23 U4} concurrent?
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2.3 A geometrical theorem

Fortunately, the Desarques Theorem, a result due to the 17th century French
mathematician Gerard Desargues, will dissolve this difficulty. We use the
theorem to prove the following geometric result.

Lemma 2.2 Suppose that p1, ps, ps and q1, g2, g3, are two sets of non-collinear
points in a vector space W satisfying p; # q; (i = 1,2,3). Assume that the
intersection of the segments prqi and D3q3 define a point w. Also, consider
the three points s1o = P1pz N qigs, S13 = P1P3 () q1G3 and Sa3 = Paps N Gags3.
Then,

if 813 € 512523, then w € P s (35)

Proof. The Desargues Theorem involves lines and asserts that the three
lines p;q; (¢ = 1,2,3) are concurrent at some point w if the three points
S12, S13 and sg3 are collinear. In the proof of the theorem we obtain
W = p10nq) = P3®3q3 = PaQage, for some unrestricted a;. Those values
are algebraically linked by A = %]f:_gi or

az =Xaz+ (1 — Nag (36)

where A\ comes from s13 = s19A893. If w = P1qi N P3q3, then both a7 and a3
are in (0,1). If s15 € 513523 then A € (0,1) and we conclude that as € (0,1),
which implies w € §7G3.

For the proof of the Desargues Theorem, see Appendix A. =

We apply the result to the previous example. Let p; = ugo), 1 = 41,34},
P2 = Uf12}, 92 = U{34}, P3 = U{1,2,3} and gs = ugqy. By definition, w = p1gi N
p3q3. From the Figure below we also observe that s13 = p1pz N 1z = uq1,2},
813 = P1P3 N q1G3 = uq1,3) and Sp3 = Paps N G2g3 = ugsy. Clearly, s13 € §12523
since ugp3y € Uggyusy. Therefore, we conclude that w € {1 5tg34; and
define U{1,2,3,4} = W.
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» 3(553)

4(q3)
The Desargues Theorem shows that w9343 € ﬂ{lyg}’UJ{;;A}).

The location of u; 534 imposes restrictions on the utility sets of other
coalitions. For example, since u{ 234 € Co(ugsy, Wii243), it must be the
case that

U(1,2,4) = Uf1,2y0(a; N UBEYUG 2345 € Wiio4g (37)

Again, we have to use Desargues Theorem to check that wu(; 54 belongs also
to the segments fiyugz4; and U7 45uz;. A similar argument applies to the
coalitions {2,3}, {1,4}, {2,4}. In the next section we will determine for
which coalitions can find a ug and for which we can find a ug.

2.4 Spanning tree and connected coalitions

We start by formally defining the notion of a spanning tree. Given N, let
7T be some family of two-member coalitions. Two individuals 7,5 € N are
adjacent if {i,7} € 7. Given two individuals 1,5 € N, a path from % to j
is a sequence (ig)5_, with 49 = 4, iy, = j and such that the pairs {i,_,4,}5_;
are distinct and belong to 7. If such path exits, we say that ¢ and j are
connected in T. T is a spanning tree of N if any two distinct individuals
are connected and no individual is connected to himself. It follows that 7
contains precisely n — 1 coalitions.
A coalition S is connected in a spanning tree 7 if the sub-tree

Ts={{i,j} €T :1,j €5} (38)

is a spanning tree of S. By vacuous implication, we consider that the in-
dividual coalitions are connected. The only connected coalitions of size two
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are the elements of 7 and N is always connected for any 7. We denote
by C the collection of connected coalitions. In the previous example, besides
the individual coalitions and the pairs in 7', the other connected coalitions
where {1,2,3},{2,3,4} and {1,2,3,4}. Observe that we were able to assign
definite utilities for precisely those coalitions. As the main theorem of this
section will show, we will be able to obtain complete utilities for precisely
the connected coalitions.

The number of connected coalitions will vary according to the shape of
the tree. The two extreme cases are

A connecting line and a full centralization spanning tree, respectively.

In the case of a connecting line, there are n — k + 1 connected coalitions
of size k that amount for a total of 2n(n+1) connected coalitions. In the full
centralization case, there are n connected coalitions of size 1, (2:%) connected
coalitions of size k > 1. Since Y ;_ (}) = 2", we conclude that the total
number of connected coalitions is 2"~! + n — 1. Besides the The connected
coalitions are all those that contain

Before presenting the theorem, it is convenient to comment on collineari-
ties. In the previous geometric examples, it is clear that if the three utilities
forming a triangle in the tree are collinear, then we cannot use the represen-
tation theorem. Fortunately, that is all we need, i.e., that for any connected
coalitions of size three, the utilities of its members u(;y, uy;; and ugy be
non-collinear. In that case, we say that the avoid collinearities. If some
utilities are collinear (See figure below), we have to be careful in defining
a spanning tree that avoids collinearities. It is part of the current research
to find necessary and sufficient conditions to determine the existence of a
tree that allows the construction of utilities for all the connected coalitions.
Obviously, if any three utilities are non-collinear, then any spanning tree of
N avoids collinearities.
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2

The coalition {3,4,5} on the left is collinear. On the right, all connected
coalitions of size three are non-collinear.

Theorem 2.3 Fori € N, let =y be a family of non-trivial complete pref-
erences satisfying minimal agreement. Let T be a spanning tree of N that
avoids collinearities and assume that each pair in T reaches a compromis-
ing agreement. Assume the existence of incomplete preferences =g for each
coalition S in N satisfying the Pareto rule. Then,

1. If S is connected, =g exists and it is a uniquely determined, complete
preference.

2. If S 1is disconnected, then =g exists, although it may be incomplete, and
1t contains a uniquely determined complete preference

Proof. We will prove by induction that there is a unique set of utilities
ug such that for any two disjoint coalitions A and B, ug € {igup. Moreover,
Ws = {us} for the connected coalitions and us € Ws for the disconnected
coalitions. For the induction, we start by sequentially labelling the individ-
uals and making sure that the next member to be labelled n is adjacent to
one and only one already labelled member k < n. The theorem is trivially
true for N = {1}. For N = {1,2}, (1) holds since u(; 9y € lg3ugz, all the
coalitions are connected and their utilities uniquely given and there are no
disconnected coalitions.

Consider an arbitrary N with |N| > 3 and suppose that the result is true
for N\{n}. Let ugs be the collection of utilities for coalitions with n ¢ S
given by the induction hypothesis. Let j be the unique adjacent of n and
i the unique adjacent preceding j. We are given ug,}, ugjn} € Ugpuga; and
Uiy € TEyug)-

Since we assume that wu;, ug;; and ug,) are not collinear, we can use (32)
to obtain uijny = Ufisylifny N UGGy a0d Upny = U} O UGYEN)-
Consider the line g ug,y. For a connected coalition, note that j € S and
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us\(j,n} € a{i}“S\{i,j,n}~ If it happens that us\{jn} € Uf;}Ufn} then it is the
case that ug\(ijn} & Uln}Us\{n}, Otherwise ug;y = ug;) (See figure below).

We then define for the “new” connected coalitions S:

1. us = UnyUs\(n} VUG n}Us\ (5} if Ugs}, Ugsy and ug () are non-collinear.

2. us = URYUs\{ay N Uli,j,n}US\{i,5,n} Otherwise.

Note that all the utilities involved are known by the induction hypothe-
ses. Also, observe that S\{n} and S\{j,n} is correct since all the “new”
connected coalitions will contain both n and j.

For a coalition S, consider the line g uy,) and suppose that ug\ ().}, usugj) €
Uiy If 1 € S, since us\(in) € Uginytig, we have that ug\jn} € Ug1Uiny
and ug\(in} & Un}Us\{n}, Otherwise ug;y = ugqy (See figure below). If ¢ ¢ S
then we are guaranteed that usygy € Ustp) and usugy € Unyus\iny-

We then apply the following definitions in descending order of the number
of members of S:

L. us = Uppyus\(n} N UG a Us\(Gmy if J € S and ugny, ug;y and ug ;) are
non-collinear.

2. ug = Un}Us\{n} M UL}USU} if 5 ¢ S and Uln}, U5} and US\[j,n} are
non-collinear.

If the previous definitions fail, we can apply:
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3. us = UnyUs\(ny N UinyUs\iny if ¢ € S.

4. us = UnyUs\(n} N Uysof i 4 ¢ S.

The descending order guarantees that SU{j} or SU{:} has been defined.

We have already defined utilities for all the coalitions. We have to check
that the Pareto rule works. Let A and B be any two disjoint coalitions such
that AUB = S. By induction hypothesis, if n ¢ S then we already have that
ug € Waug. To prove that this also hold for n € S, assume wlog that n € A.
Denote by k the element used to define S, i.e., k is either ¢ or j. For the
case of connected coalitions defined with ug = UnyUs\{n} N UL jn}US\ (i}
we provisionally redefine them using ug = Un}Us\(n} N Ui a1Us\(in}. The
application of the Pareto rule will imply that both definitions are equivalent.
Then, depending on the case, define the following points:

Case p1 P2 D3 T g2 qs
keSand ke A U{n} U{kn} UAQ US\{n} US\{k;n} UB (39)
ke S andk ¢ A Ufn} U US\{k} US\ {n} up ULk}
kg Sandk¢g A upy up ug Usu{k} US\{n} UB

The case k ¢ S and k € A does not occur since A C S. We are guaranteed
that ug\(kn} # U(kn) and usugry 7 ugry. The case ug,y = ug\(n) and us = up
can be solved by geometrical consideration. Also, if the pis or the ¢ s are
collinear, then there is nothing to prove. The s;; of the Desargues theorem
are

Case 812 S13 523
keSandke A  upy  uain)  Ua\(kn} (40)
keSand kg€ A usin} US\{kn} US\(AU{E})
kg Sand k¢ A wupny  wau UA\{n}

In case 1 and 2 Up\{n} € W and ug\(kn} € Ua\[n}Us\(Au{k}; and
none of the coalitions contain n. The induction hypotheses implies that
813 € 512523 In the third case, n belongs to the three coalitions involved, but
by definition uaugk) € Uk qy1ta\(n} since k € AU{k}. We then conclude that
ug € L up.

Now that we are guaranteed that the ug are defined in a consistent way,
we just check that for the connected coalitions we have Wg = {ug}. This is
the case since they have been defined with sets of the form

us = UipyUs\{n} N UnyUs\ (G} OF Us = UlnyUs\(n} N Uijm)Us\(igm)  (41)
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For the coalitions not connected, to see that us € Ws we distinguish two
cases. If S = N\{:} for some i, then it divides in two disjoint connected
coalitions and we have

Ug = Uaug N ULHYUSU{i} (42)

which forces ug € Ws. If S has two missing elements with respect to N, then
let

us = UgyUsufiy N UGYUSO() (43)

which again forces ug € Wg. m

2.5 Cardinal measurable and full comparable utility

We have build a theory that allows us to construct utilities for a group if
only some pairs agree on a joint preference. If such pairs form a spanning
tree, then the sole acceptance of the Pareto rule implies a unique preference
for the entire group. In this section we will prove the existence of a set
of positive weights, unique up to a positive factor of proportionality, such
that the utility for the group can be expressed as the weighted sum of the
individual utilities.

We recall from the first section that we where able to choose a origin
in the prospect space. This means that we can translate the origin of our
utilities by a common factor. Similarly, we can multiply them by any positive
constant. Formally, if (ug)sep is a profile obtained in the previous theory, so
is (Qs)sep where tig = a + bug for some a and b > 0. Technically, our model
belongs to the group of cardinally measurable and full comparable utilities.

A different approach to obtain a representation of a utility for such group
is presented in Maskin [10]. His is a “top down” approach. By defining
properties of a desired welfare functional f : R* — R applied to the vec-
tor of individual utilities he concludes that f = .\ u;. In his case, the
informational requirement in utilities is also cardinally measurable and full
comparable. In our case, we follow a “bottom up” approach: we derive the
social functional starting from the individual utilities and joint agreements
between members of the group.

If those agreements can be interpreted as a measure to compare utility
between the pair, then we have shown that the interpersonal comparisons of
utility extend to the whole group.

For the theorem:
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Theorem 2.4 Let ug be the utilities obtained in Theorem 2.3 for all coali-
tions S. Then, there is a vector A = (Aq,...\,), unique up to a positive
factor of proportionality, with A; > 0 and such that if vy = (Zies )\i) ug
then,

ug = Zu'{i} for any coalition S (44)

€S

Proof. (Sketch) In the proof we normalize ),y A; = 1 so that ujy = uy.
We will use an induction with the same labels as in the proof of Theorem
(2.3). In the step k, when N = {1,...,k}, we denote by \f the weight for
agent 1, with ¢ = 1,... | k. By defining )\% = 1, the theorem is trivial for
N = {1}. For N = {1,2}, we set A\? and AJ such that u(; 9 = ug3Aiugy,
with 0 < A¥ < 1 and A\ = 1 — X2 > 0. Suppose it holds for N\{n} =
{1,...,n — 1} with n > 3. Since uy € lp\(njtign; We set 0 < A7 < 1 so0
that uy = U A un () and let A = (1 — )\2))\?_1 fori=1,... ,n—1. By
"1 and we obtain

induction hypothesis, un\ (3 = Y . APyt
\{n} teN\{n} ™ (]

t€EN\{n} 1EN

Next, for S with n ¢ S, we just observe that

Zies)‘?—lui _ Zies(l—/\Z)’\?_lui _ Yies M i (46)
Ties M Yies(I=AMAFT! Yies A

ug =

If k is the pivotal agent of coalition N, since ugn) = ufnyoupy and uy €
UN\{n}U{n} N UN\{k,;n}U{k,n}» WE have

An An P Vi (47)

O T T T (AT T Xa+ag

and conclude that the theorem holds for S = {k,n} (See Figure below)
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Now, in descending order of the size of the coalitions, let S be such

N by induction
S )\En—l) y DY
hypotheses, us\(n} = Ufr}0Us\(k,n} and the 7 such that ug = unymus\(n} 18

given by /\Z/ilf\}; = — 5 (See Figure below).

that ug € UG\ {n}U{n} M US\{k,n}U{k n}- If 6 =

After solving this equation we obtain m = <2a__  Since US\{n} =
ZiES A‘t

; Alug . . .
%%%}}7, we substitute both expressions and obtain
i€ n i

n
A" AT\ Dies\[n} M Ui D ies i i

Us = = 2w U + (1 — == = 48

o Pies M {n} ( Yies A Xies\(n} M Zies )\;’ ( )

n

Finally if ug € U\ [n}U{n} N USU{K}U{K} let 6 = ZiES\{n} A

, 0 = —4— and
§+AL

7 = 573%"“@' Then, by induction hypotheses, usu(r})\{n} = Uik} 0 Ug\ {n}-
Also, by previous definition, ugygxy = y{n}w’u(gu{k})\{n}. The o' such that
Us = Ufn}0'Ug\(n} 18 given by o/ = ——— (See Figure below)
After solving this equation we obtain o = 5 ’V"; = and, as before, conclude
i€ i
_ 2icsAiwi
that Uug = S s AT n
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A Desargues Theorem

Theorem A.l (Desargues) Let W be a vector space. Suppose that p1,pa,p3
and q1, o, g3, are two sets of non-collinear points in W satisfying p; # ¢ (i =
1,2,3). Then, the three lines p;q; (i = 1,2,3) are concurrent at some point
w if the three points s1o = P1P2 N q1q2, S13 = P1P3 1 q1q3 and Sa3 = DsP3 N q2q3
are collinear.

Proof. First, observe that if for some ¢ < j the lines p;p; and g;g; are
parallel, then the theorem is obvious since the line defined by the other sy
always intersects with oo. Therefore we can assume wlog that for ¢ < j, the
lines p;p; and Gq; are not parallel and s;; # oo for @ < j. In that case, the
(845);<, are different.

For i < j,let z;; = pig;NP;q; and define a1, oy, a3 and o, a2, oy such that
Z12 = P11 = P20iaqz, 213 = P11 = p3aiaqs and zo3 = P20hGa = P3Q3G3.
By calculation, we have that

512 = D ;la;m = 1 (49)

513 = D1 a—_l(gpa =q ﬁ% (50)
= = _al

523 P2 a’z—aép3 2571 93 (51)

If the (s,;), <; are collinear, then s;3 = s12As93 for some A. By the previous
con81derat10ns we can suppose A # {0, 1}. Using this fact in (49) and letting

oy
vy =A+ a,2_a,3 — )‘ag— - we obtain:

Qg

P12 Ps = <p1 g’g@) A (mﬁza—éps) = (10 mp2) Tps (52)

Similarly, if v, = A + al % A% we get,

—a Az —Qy

1—a} —al a
Nogmal B3 = (mﬁ%) A <Q2;1§—_73§(J3> = (%z%rz‘)(h) Y293 (53)

For (52) to hold we require % (a1 oy = land 7y, = —~1—_ Similarly, for (53)
to hold we need WJ’\(;—D‘;I—) =1and vy, = —I—L Usmg the first two equations

we obtain o = wag,, that can be substltuted in the first and third equation
to obtain cg = a2 Substltutmg those results in the first and fourth equation
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gives (a1 — of)(a1a3 — p0) = 0. If o = Z2as we obtain A = 1, that is
ruled out. Therefore, we easily conclude that o) = o}, a2 = o) and a3 = 3.
Furthermore, A = %E%i and conclude that the three lines Z;7; (i = 1,2,3)
are concurrent. m
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