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Abstract

Most theoretical or applied research on repeated games with imper-
fect monitoring has restricted attention to public strategies; strategies that
only depend on history of publicly observable signals, and perfect public
equilibrium (PPE); sequential equilibrium in public strategies. Although
public strategies are attractive due to their simplicity and tractability,
they are restrictive. The present paper sheds light on the role of pri-
vate strategies; strategies that depend on players’ own actions in the past
as well as observed public signals. Our main finding is that players can
sometimes make better use of information by using private strategies and
efficiency in repeated games can often be drastically improved. We first
study a simple repeated partnership game with two public signal, for
which Radner, Myerson, and Maskin (1986)’s anti-folk theorem holds.
For this game, we explicitly construct a symmetric sequential equilibrium
using private strategies, whose equilibrium payoff lies outside of the set
of PPE payoffs and Pareto-dominates the best symmetric PPE payoff.
This equilibrium based on private strategies, which we call private equi-
librium (PE), sometimes even achieves full efficiency. Then, we extend
our construction of private equilibrium to more general stage games.

We also offer several examples to emphasize the importance of private
strategies. In the first example with two public signals, we show that a
private equilibrium achieves almost efficiency as players become patient
while the only PPE is the repetition of the one-shot Nash equilibrium.
This example suggests that the difference between the PPE payoff set
and the sequential equilibrium payoff set is potentially quite large. We
also provide an example with a richer information structure where the folk

*This paper stems from the two independent papers: “Check Your Partner’s Behavior
by Randomization: New Efficiency Results on Repeated Games with Imperfect Monitoring”
by Michihiro Kandori and “Private Strategy and Efficiency: Repeated Partnership Games
Revisited” by Ichiro Obara. The second author is grateful to George Mailath and Andrew
Postlewaite for their advice and support. All the remaining errors are ours.
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theorem holds. We show that whenever ther exists a nontrivial PPE, there
exists a PE which is strictly more efficient than any PPE. In another word,
PE approximates the efficent payoff profile faster than PPE as players
become patient.

JEL classification: C7, D8.
Keywords: imprefect monitoring, mixed strategy, private equilib-
rium, private strategy, repeated game.

1 Introduction

The theory of repeated games under imperfect monitoring provides a formal
framework to explore the possibility of cooperation in long term relationships,
where each agent’s action is not directly observable. It has been successfully
applied to a number of economic problems; cartel enforcement, internal labor
market, and international policy coordination, to name a few. However, almost
all existing works focus on a simple class of strategies, known as public strate-
gies. In the present paper, we illustrate that players can make better use of
information by using non-public strategies, which we call private strategies, and
show that efficiency in repeated games can often be drastically improved.

In public strategies, each player’s current action only depends on the history
of publicly observable signal, such as market price. In other words, the players
disregard their past actions. In contrast, we allow the possibility that the players
condition their actions on both the public signal and their past actions.

A rough intuition for the improved efficiency comes from the following obser-
vation. It is often the case that a player has a costly action that helps to monitor
the other players’ behavior more accurately. For example, under decreasing re-
turns to scale, observable output becomes more sensitive to an opponent’s effort
when a player’s effort is low. Hence, if the costly “monitoring” action is played
with a small probability and the opponents are rewarded/punished only after
such an action is taken, opponents’ moral hazard problem can be resolved in
a more efficient way. Note that in this story it is vital that the players’ future
behavior (punishment/reward) depends on their past actions.

Let us explain our point in more detail with an explicit example. Consider
a simple repeated partnership game with two actions {C, D}, two public signals
{“good”, “bad”} , where the stage game (expected) payoff matrix has the same
structure as in the standard prisoners’ dilemma. We assume that “good” is
more likely to be observed when one player plays C than when no one plays C,
but another C does not increase the probability of “good” that much (decreas-
ing returns to scale). In another word, Pr (“bad’|C, C) + ¢ = Pr (“bad’|C, D) =
Pr (“bad’| D, C) << Pr(“bad”|D, D). We restrict our attention to strongly sym-
metric strategies and perfect public equilibrium (PPE).!»?

1A public strategy profile is strongly symmetric if both player plays the same behavior
strategy after any public history. Perfect public equilibrium is essentially a sequential equi-
librium in public strategies.

2This restriction to strongly symmetric strategies can be formally justified if the sum of



First, note that any level of cooperation cannot be sustained in strongly
symmetric pure strategies when ¢ is very small. The public signal is insensitive
to a deviation when (C, C) is played. Now let players play the inefficient “mon-
itoring” action D with small probability. Although the stage game payoff is less
than the efficient level, now the public signal becomes more informative about
players’ actions. This allows players to use a mutual punishment after the public
signal “bad” to sustain a certain level of cooperation.3 The level of punishment
can be adjusted so that players are actually indifferent between choosing C' and
choosing D. This construction works, for example, when Pr (“bad”|CC) is small
and players are patient enough. Note that the efficiency is improved even within
the class of strongly symmetric (public) strategy profiles by mixing D to improve
the quality of monitoring.

However, we can improve efficiency further by allowing more flexible strate-
gies. In the above strategy, the observed public signal conveys almost no in-
formation about the opponent’s action when a player is playing C. Whether a
player starts punishment or not after playing C and observing “bad” does not
matter much in terms of keeping the other player’s incentive to be cooperative.
Given that the punishment occurs with positive probability, this is a pure waste
of efficiency. Hence, players potentially improve efficiency by punishing the op-
ponent only after playing D and observing “bad” 4 This explains why private
strategies can help to improve efficiency.’

In the present paper, we take as a starting point a simple repeated partner-
ship game with two public signals. As shown by Radner, Myerson, and Maskin
[16], the folk theorem does not hold for this game with public strategies. In
particular, the set of PPE payoffs is bounded away from the efficient frontier.
For this game, using private strategies, we explicitly construct a symmetric se-
quential equilibrium with a payoff that Pareto-dominates the best symmetric
PPE payoff. This equilibrium based on private strategies, which we call private
equilibrium (PE), sometimes even achieves full efficiency.

In order to emphasize the importance of private strategies, we offer several
examples. In the first example with two public signal, we show that a private
equilibrium achieves almost efficiency as players become patient while the only
PPE is the repetition of the one-shot Nash equilibrium. This example suggests
that the difference between the PPE payoff set and the sequential equilibrium
payoff set is potentially quite large. We also provide an example with three
public signals where each player’s deviation from (C,C) is statistically distin-

the payoffs from the asymmetric profile is very low. See Proposition 3 and Lemma ?? in the
appendix A.

3We allow players to use a public randomization device for PPE. So, the mutual punishment
would be to play the one-shot Nash equilibrium forever with some probability.

4The equilibrium strategy will be still symmetric with respect to private history; history
of past public signals and actions.

5 At this point, it is worth recalling that any pure strategy is realization equivalent to a
public strategy with full support monitoring (cf. Abreu, Pearce, and Stacchetti [2]). This
implies that, to support any payoff profile which cannot be supported by PPE, any such
private equilibrium must be based on mixed strategies as in this example.



guished and the folk theorem holds.® While the PPE payoff set approximates
the individually rational and feasible set as players become patient, a private
equilibrium is always (strictly) more efficient than any PPE for any (large) dis-
count factor in this example. In another word, PE approximates the efficient
payoff faster than PPE as players become patient. This example clearly illus-
trates that our main message remains valid even under a richer information
structure.

It is not an easy task to construct an equilibrium based on the idea described
above. Players’ continuation strategies are not common knowledge after the
signal “bad” is observed. Since players continuation strategies depend on their
private information once “bad” is observed, the continuation game after “bad” is
equivalent to an incomplete information repeated game, where players “type” is
either “played C” or “played D” in the previous period. This implies that each
player has to update his/her belief about the opponent’s continuation strategy
over time. It is a highly complicated task to find an equilibrium profile which
is sequentially rational with respect to the dynamics of belief, which in turn is
generated by itself. This observation in fact explains why there has been few
works on private strategies in repeated games with imperfect monitoring.

Another contribution of the present paper then is the construction of equi-
librium itself. Private strategies are constructed in such a way that players
are indifferent among all the repeated game strategies. This makes a player’s
belief about the opponent’s continuation strategy irrelevant. This construction
provides a way to deal with the endogenously generated private information
described above.

The idea of this strategy is indeed very powerful in dealing with private
information. It can deal with not only private information about past actions
but also private information about private signals if any. A similar idea was
first applied by Piccione [14] in the framework of repeated games with private
monitoring.”

The structure of the paper is as follows. We give a simple efficiency result
in Section 2. In a repeated partnership game in which the public signal distrib-
utions have moving supports, we construct a PE which approximates efficiency
as & tends to 1, while any PPE payoff is bounded away from the efficient frontier
independent of the discount factor. In Section 3, we take a monitoring structure
with full support which is more natural for partnership games and was studied
by Radner, Myerson, and Maskin [16]. We first derive the upper bound of all
the PPE payoffs, including the mixed strategy PPE payoffs. Then, we construct
a symmetric PE based on a two state machine, which Pareto-dominates the best
symmetric PPE payoff. Section 4 provides an example to emphasize a potential

6To be precise, this is the case where the distributions of the public signal given
(C,C),(C, D) and (D, C) are linearly independent, that is, the pairwise full rank condition is
satisfied at (C,C). This condition guarantees that the folk theorem holds for this case. (cf.
Fudenberg, Levine and Maskin [7]).

7Two-state machine strategies used in this paper were first independently found by Ely and
Valimiki [6] in repeated games with private monitoring and Obara [13] for private equilibria
in repeated games with imperfect public monitoring.



difference in efficiency implications by PPE and PE. We also discuss an example
with three public signals to argue that our substantial insight does not depend
on the assumption of two public signals and extends to a richer information
structure. The construction of PE based on two state machine is extended to
more general games in Section 5. We first show that adding more states does
not help to improve efficiency. Thus, restricting our attention to two state ma-
chines is without loss of generality. Then, we characterize such PE based on two
state machines, discuss when they can be constructed in general, and, finally,
provide a sufficient condition for the existence of PE which Pareto-dominates
PPE. Section 6 discusses related literature and concludes.

2 An Efficiency Result

In this section we look at a particular type of repeated prisoners’ dilemma game
with imperfect public monitoring. There are two players, and two actions, C
and D, are available for each player. Actions are not observable, but there is
a publicly observable signal w € € which takes on two values, X or Y. The
expected stage game payoff profiles are summarized by the following table.

C D
C 1,1 “h1+d
D|1+d,—h| 0,0

Each entry of the table denotes the row player’s payoff followed by the column
player’s. We assume that this is a prisoners’ dilemma game; d,h > 0 (D is
dominant) and d — h < 1 ((C,C) is efficient, that is, it Pareto-dominates the
equal (public) randomization between (C, D) and (D, C)). This is a simplified
version of the model examined by Radner, Myerson and Maskin {16).2

Let p(w|a1,az) be the probability to observe w given the action profile
(a1,az), and assume the following information structure; 0 < p(X|C,C) < 1,
0 < p(X|D,D) < 1, and p(X|C,D) = p(X|D,C) = 0. The last equalities
represent a “moving support” assumption, but note that this does not help to
support the efficient payoff profile (1,1) by public strategies. Also note that
the prisoners’ dilemma payoffs in the above table can be generated by suitable
choices of realized payoffs u;(a;,w) so as to satisfy;

1 = w(C X)p(X|C,C)+u(C,Y)pY|C,C)
—-h = ui(C, Y)
1+d = (DY)
0 = ui(D,X)p(X|D,D)—l—u,-(D,Y)p(Y[D,D)
We first examine roughly what could be supported by PPE. A more detailed

analysis of PPE will be given in Section 4. It is not difficult to show that the
best strongly symmetric PPE can be achieved by the following simple strategy:

8The action set is continuum in Radner, Myerson, and Maskin [16].



(1): Play (C,C) in the stage game.
(2): If X is observed, go back to (1)
(#) If Y is observed, start playing (D, D) forever with probability p and
go back to (1) with probability 1 — p.

Note that Y is the “bad” signal given that players are playing (C, C) . Since
the punishment occurs with positive probability, p is reduced up to the level
where players’ incentive constraints are binding. Here we allow players to use a
public correlation device to coordinate their behavior to minimize the punish-
ment.?

The equilibrium conditions are

v=1-6)+6{1-pp(X|C,C)}v

v=(1-86(1+d)+6{1—-pp(X|D,C)}v

Then, the equilibrium payoff is given by the following formula, which is first
derived in Abreu, Milgrom, and Pearce [1]:

1 d(deviation gain)
(cooperative payoff) — p(3]D,C)

p(IC.0) (likelihood ratio)

Note that the discount factor and p do not appear in the formula.!’ This
formula is interesting because its second term provides a clear expression of the
efficiency loss in terms of the primitives of the stage game. In particular, we
call your attention to the likelihood ratio in the denominator. The quality of
signal about the opponent’s defection is a crucial factor to determine the upper
bound of strongly symmetric PPE payoffs. Although there are other asymmetric
equilibria such as alternating (C, D) and (D, C), their payoffs are also bounded
away from the efficient frontier as we will show in Section 4.

Now we show that the efficient payoff profile can be approximated by a
private strategy. Consider the following strategy. In the initial period, each
player mixes between C and D. Action D is chosen with a (small) probability
q € (0,1). If the realization of the signal at the end of the current period
is X and she played D, then she will play D forever. Otherwise, the player
repeats the same action plan as in the initial period. Note well that (i) the
players’ future actions partly depend on their current actions and (ii) thanks
to the assumption p(X|C, D) = p(X|D,C) = 0, when a player chose D and
observes X, it is common knowledge that the other player also chose D (and

9This is an innocuous assumption because our purpose is to show that there exists a
private equilibrium (PE) which Pareto-dominates the best symmetric PPE payoff profile, and
we construct our PE without any public randomization device. This assumption is rather an
additional burden in deriving our result.

10This formula of the best strongly symmetric PPE payoff is valid for any discount factor
above some critical dicount factor § € (0,1).



of course observs X). A strategy such as this, which depends on one’s past
action in a nontrivial way, is called private strategy. Formally, a strategy o; is
private if there exists A7 and h{* such that o; (h}*) # o; (h{"*) while the public
history of k¥ and h/® being the same.!! Private equilibrium (PE) is a sequential
equilibrium in private strategies. The equilibrium conditions are

v=(1-6)(1-qg—qh)+bv o))

v=(1-6)(1-q)(1+d)+8{1-gp(X|D,D)}v (2)

Equation (1) represents the average payoff at the beginning of the initial
period when the player under consideration plays C (while the opponent is
employing the above strategy). In this case, the current payoff is either 1 or
—h depending on the opponent’s action, and punishment is surely avoided (as
defection is triggered if and only if both players play D and the signal is X). On
the other hand, equation (2) shows the average payoff when the player chooses
D. The current payoff is either 1+ d or 0, and the punishment will be triggered
when the opponent also chooses D and the signal is X. This happens with
probability gp(X|D, D), so with the complementary probability, the player will
enjoy the original average payoff v at the beginning of the following period.
Equation (1) and (2), taken together, imply that the player is just indifferent
between choosing C and D (the condition for a mixed strategy equilibrium).

From (1), we have
v=1-g—gqh @)

Also, by (1) and (2) we get
(1-6){(1 - g)d + gh} = 6gp(X|D, D). (4)
This and (3) result in a quadratic equation in g;
(1 = &) {(h — d)g +d} = 8qp(X|D, D)(1 - q — gh) (5)

It is easy to show that there is a root of this equation in (0, 1) which tends to
0 as § — 1. Equation (3) then implies that, as ¢ tends to 0, the average payoff
tends to 1, the payoff from full cooperation. This leads us to the following result.

Proposition 1 In the repeated prisoners’ dilemma game defined above, there is
a private equilibrium that approzimately attains the fully efficient average payoff
(= 1) as the discount factor tends to unity, while any perfect public equilibrium
average payoff is bounded away from 1 independent of the discount factor.

HNote that there always exists a realization equivalent public strategy to any strategy
(see Amarante [3]). So, any pure private strategy is not essentially different from a public
strategy. However, for some mixed strategies, there does not ‘exist a realization equivalent
public behavior strategies (although there does exist an realization equivalent mixed public
strategy). Hence any interesting private strategy is necessary a mixed strategy, and our
definition of private strategies is based on behavior strategy representation of mixed strategies.



Proof. To show the efficiency of the private equilibrium given above, we
need to prove that a root of equation (5) lies in (0,1) and tends to unity as é
tends to 1. At g = 0, the left hand side of (4) is strictly positive but the right
hand side is equal to zero. Now let ¢ be any number ¢’ € (0, H;h) and let 6
tends to 1. The left hand side of (4) tends to zero, while the right hand side
tends to

¢p(X|D, D) {1 - (1 +h)} >0 (6)

Thus equation (4) has a solution in (0,¢’) as é tends to 1, where ¢’ is any
number close to 0. It can be shown that any perfect public equilibrium payoff is
bounded away from 1. The details are similar to Radner, Myerson and Maskin
[16] and therefore omitted. ®

Since it is much easier to detect the other player’s defection when one defects
herself, it is more efficient to trigger a punishment only after such a (private)
history. Private strategies allow players to condition their strategies on the
combination of action and public signal. Each player punish the opponent only
at the state where the likelihood ratio with respect to the opponent’s defection
is maximized. This efficiency result is based on a simple principle: the efficient
use of information, which is one of the main theme underlying in any moral
hazard model. With public strategies, a player can use this high likelihood ratio
to punish the opponent only if she is playing D with high probability at the
cost of reducing efficiency. Note that basically we avoid this trade-off between
efficiency and detectability by utilizing private strategies.

You might wonder why these private strategies, based on a simple intuition,
have rarely appeared in literature. The answer hinges on the assumption of
the moving support in this particular example. It allows players to coordinate
their punishments after playing D and observing X. However, this cannot be
the case for a monitoing with full support. Suppose that X is observed with
probability € when (C, D) or (D,C) is played. Then the strategy described
above is not an equilibrium. The problem is that, once X is observed, a player
is not sure about the opponent’s continuation strategy any more. Since a player
is indifferent between playing C and playing D only if she believes that her
opponent ‘is cooperating with probability 1, she cannot stay in the cooperative
phase after she chose C and observes X. Indeed, it is not difficult to show that
any strategy which is close to the above strategy fails to be an equilibrium with
this perturbation.

This endogenous private information and uncertainty is the most difficult
problem associated with private strategies. We address this issue in the next
section.

3 Repeated Partnership Games

In this section, we study a partnership game with a more typical information
structure. We assume that

0 <p(X|CC) < p(X|DC) = p(X|CD) < p(X|DD)



The idea is that the “bad” signal X is more likely to realize as more players
defect. This is similar to the information structure in RMM [16}.

There are two important points which are worth emphasizing here. First,
we do not expect to approximate full efficiency in this setting, at least with our
private strategies. Likelihood ratio is a very important factor to determine the
efficiency loss as seen in the last sections. Since the likelihood ratio is bounded
above here, there should remains a significant efficiency loss. This results in
more subtle comparison between PPE and PE because both equilibrium pay-
offs are bounded away from the efficient frontier. This calls upon a careful
characterization of the PPE payoff set. Second, we need an assumption on the
information structure to make our private strategies more efficient than pub-
lic strategies. The advantage of private strategies we saw was that they made
it easier for a player to detect the opponent’s defection when a player defects
herself. We impose the following condition to apply this insight in the current
setting.

Assumption
p(XID,C) _ p(XID, D)
p(X|C,C) " p(X|C,D)

Note that this implies decreasing returns to scale: p(Y|C,C)—p(Y|D,C) <
p(Y|C,D)—p(Y|DD). Let us denote p (X|CC) = po, p(X|CD) = p(X|DC) =
p1, and p(X|DD) = ps in this section. Let L7 = %:—3-);(‘)_";1’——3%% be the likelihood
ratio of the signal X with respect to the defection when a player is playing C
and D with probability 1 —q and q. We first derive the upper bound of the PPE
payoff set in the next subsection. It is an analogue of RMM inefficiency result

for this discrete version of partnership games.

3.1 Upper Bound of PPE

The upper bound of the pure strategy strongly symmetric PPE payoff is easy
to obtain. Let Tps be the best pure strategy strongly symmetric PPE payoff.
Since there are only two signals available, it is not possible to “reward” one
player when the other player is “punished”. Both player has to be punished
at the same time when the signal X is observed. So it is efficient to set the
punishment level as small as the level where players are indifferent between C
and D. When the signal Y is observed, it is efficient to use Tp; again. These
observations lead to the following recursive equation:

Tps = (1 —6) + 6 (1 — ppo) Vps )

where p is a probability to trigger punishment given that X is observed. The
indifference condition is given by:

Tpa = (1= 8) (1+d) + 6 (1~ pp1) Tps (®)



Solving equations (7) and (8) for p, and p, the following formula is obtained.

d
Ups =1 757 9)
as described in the introduction.

The best strongly symmetric PPE can be a mixed one. It is sometimes
necessary to use mixed strategies to achieve the maximum efficient payoff even
within the class of strongly symmetric public strategies.!? In such a case, the
best mixed strategy symmetric PPE is obtained just by mixing C and D with
probability 1 — ¢ and g instead of using the profile (C,C) in (#). Solving a
recursive equation and an indifference condition similar to (7) and (8), we can
obtain the equilibrium payoff of such a mixed PPE:

(-gd+qh

—qg—qgh—
l-g—g¢q 711

The interpretation of this formula is the same as before. Note that if ¢ =0,
then this is equivalent to (9) . Why can mixing help to improve the best strongly
symmetric PPE payoff even though it reduces the efficiency in the stage game?
It is because the efficiency loss associated with the punishment might decrease.
We can see from the above formula that (1): deviation gain can become small
if d > h or/and (2): the likelihood ratio may increase as g increases. Let
¢* = argmaxgeo,1) 1 —9—gh— Q—_L—q}f;—qh. The following is the formal statement
with respect to the bound of strongly symmetric PPE payoffs including mixed
ones.

Proposition 2 The bound of the strongly symmetric PPE payoffs of this re-
peated partnership game is given by Vs, = max {1 —q¢*—q¢*h— Q:g%@*_h, 0} .

Proof. See Appendix. B

This bound is a tight one. Either the stationary strategy described above
obtains 1—g*—q*h— Qﬂi%.d_uﬁ or any level of cooperation cannot be sustained.

In order to get the bound of all the symmetric PPE payoff, we also need to
take care of the cases where the optimal strategy pair is asymmetric. If that
possibility is taken account, the upper bound has to be modified in the following
way:

Proposition 3 The bound of the symmetric PPE payoff of this repeated part-
nership game s given by vs; = max {1 —q*—q*h— (1‘222“‘_’;‘1"’, 1"";_",0} , and
Ty = YJ:;—VZi for any PPE payoff profile (V*,V5").

12)\ixed public strategies have not been investigated systematically in Radner, Myerson,
and Maskin {16] or Abreu, Milgrom, and Pearce [1].

10
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Figure 1:

Proof. See Appendix. ®

Interestingly, it turns out that when an asymmetric strategy achieves the
best symmetric payoff, at least one player has to play D with probability 1 in the
first period. The equilibrium in which each player uses a different nondegenerate
behavior strategy in the first period is not an efficient one. Given this, it is clear
that —+—— is the upper bound for PPE when it is achieved by asymmetric public
strategles Figure 1 illustrates that if the best symmetric PPE (denoted by V5)
with (D, C) played in the initial period achieves more than -:"—— then the
continuation payoff profile (denoted by W) cannot stay in the PPE payoﬁ set.!3

It is easy to find a set of parameter profiles for which L is really the
upper bound obtained by an asymmetric PPE where players play (C,D) (D,C)
alternatively. However, this bound may not be always tight. When p(X|a) is
linearly increasing in the number of defections, which is the case analyzed in
detail by Fudenberg and Levine [8], the bound in Proposition 3 is tight in the

sense that one of the three numbers {1 —¢* — ¢*h — & qu)d"% Lrd-h o

the upper bound and there exists a strategy which achieves this upper bound.
Otherwise, there may exist the best symmetric PPE payoff achieved by some
asymmetric strategy, which does not hit the above bound.

13Note that the PPE payoff set is convex because players have an acesss to a public corre-
lation device.

11



3.2 Constructing Private Equilibrium

In this subsection, a PE is constructed and compared to the bound of the sym-
metric PPE payoffs obtained in the last subsection. Let us introduce a formal
description of machines here because every private strategy in this paper can be
described as a simple machine. A machine M; is a quadruple (0,00, ;) -
For this quadruple, ©; = {0i7"}i:=0 is the set of states of the machine with 6;¢
being the initial state. The level of mixture between C and D at each state is
determined by a function ¢; : ©; — [0,1] . For example, g; (6;5) is the proba-
bility of playing D when player i is in the state 8; . The transition function is
Hi ©; x A; x Q% Q — 91’, where A; = {C,D}, Q= {X,Y}, and ; = [0, 1] .
The last coordinate w; € €); is introduced to allow random transitions over
states given (6; »,@;,w). Assume a unifrm distribution on Q; = [0, 1] without
loss of generality. Each machine M; induces a mixed strategy, which may or may
not be a behavior strategy when the transition is random given (6; », a;,w). We
denote by o; (M;) the behavior strategy corresponding to the mixed strategy
generated by a machine M;.14:15
The (symmetric) private strategy we employ in this section is as follows:

e State R (Reward State):
Choose D with probability gr (a small number). Go to state P if D was
taken and X was observed (otherwise, stay in State R).

e State P (Punishment State):

Choose D with probability gp (a large number). Go to state R with
probability p € (0,1) if D was taken and Y was observed (otherwise, stay
in State P).

This is just a machine with two states ©; = {R, P} with R being the initial
state, and the transition function for this machine is formally given by

- Rif (a’ivw)#(DvX)
i (Ryasywyw3) - = { Pif (a;,w) = (D, X)
P if (a,:,w);é(D,Y)
Hi (P7ai7wawi) = P if (a;,w) = (D,Y) and w; € (p,1]

R if (a;,w) = (D,Y) and w; € [0, p;]

Figure 2 describes this machine graphically.

First note that this private strategy has the same feature as the one in
Section 2. A player moves to state P (Punishement State) only after (D, X);
the most informative action-signal pair. Second, note that there is a strategic
undertainty we described before. A player is not sure whether the other player is

14 Aumann (1964) (4]

15This machine can be “purified” by introducing more (private) inputs and expanding the
state space with an appropriate transition function.

12
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Figure 2:

state R or state P after X is observed (and never will). How can we check if this
machine is playing a best reponse strategy at every history given such a ever-
changing belief? To resolve this problem, we choose (gr,¢p,p) in such a way
that no matter which state player 2 is in, player 1 is always indifferent between
choosing C and choosing D. This means that any repeated game strategy is a
best response to the machine, hence so is the machine itself.

Since the strategy is symmetric, subscript ¢ is omitted after here as long
as it does not cause any confusion. A set of parameters (¢g, gp, p) is chosen to
satisfy the following four equations. When player 2 is in state R , the equilibrium
conditions for player 1 are

¢ (player 1 plays C today)

Ve =(1-6)(1—-qr—grh) +6{(1—qrp1) Vr + grp1Vp} (10)

and

e (player 1 plays D today).
Ve=(1-6)(1-qr)(1+d)+6{(1 —qrp2) Vr +qrp2Vp}  (11)

When player 2 is in state P , the equilibrium conditions for player 1 are

13



e (player 1 plays D today)

Vp=(1-6)(1—qp—qpB)+§6 [ + {1q£(q];,z1p—1)pp11)/};} Ve ] 2

, and

e (player 1 plays C today)

Ve=(1-6)(1-gp) (1+d)+‘$[ +{1qfi?1p3)p’l)v’3} Ve ] 1)

where V, can be interpreted as the discounted average payoff for player 1
when player 2 is in state s = R, P.

Equation (10) and (11) imply that player 1 is indifferent between C and D
when player 2 is in state R and if her continuation payoff is completely deter-
mined by her opponent’s state. Similarly, (12) and (13) imply that player 1 is
indifferent between C' and D when player 2 is in state P. A system of these
equations indeed implies that player 1 is completely indifferent among all the
repeated game strategies and player 2’s state determines player 1’s continua-
tion payoff completely as we assumed. Any payoff difference one can make in
the current period is exactly offset by the difference of the continuation payoffs
caused by the change of the other player’s transition probability. Let us em-
phasize again that a player never knows what is the opponent’s continuation
strategy or which state the opponent is in during the game. However, players
do not have to know them because their expected payoffs cannot be affected
by their own strategies. Note that this logic is somewhat similar to the one
for a totally mixed strategy equilibrium in a finite normal form game. What is
interesting here is that the same thing is done for an infinite game with only a
finite number of equations and some value functions.

If the solution (g§, g5, p*) of these equations are in [0, 1], then these num-
bers can be used for the function f and the transition function p, generat-
ing a behavior strategy o (M) which is a sequential equilibrium. The fol-
lowing main proposition shows that for § close to 1, we can find a solution
(g (6) 9% (6),p™ (6),V (6), V5 (6)) parameterized by 6 for the above equa-
tions (10) - (13), where ¢ (6)(>0) — 0 as § — 1 and g5 (6) = 1 with an
appropriately chosen p* (§) € [0,1].!% Since V3 (6) = 1 — qx(6) — g (6) h —
(1—_‘13(—?@3@, the payoff arbitrary close to 1 — 174:1 is achieved as a PE as
6 — 1. Note that this formula uses the likelihood ratio L! (> L°) instead of L,
but otherwise it looks exactly like the best strongly symmetric PPE payoff.

Proposition 4 Suppose that ps — p; > p1d+ (1 — p2) h.}7 Then for any n > 0,
there exists a § such that for all § € (6,1), there exists a symmetric private
strategy pair (o (M (6)),0 (M (6))) parameterized by 6, which is a sequential

168ince there are five unknowns in four equations, we can choose a value of one variable.
17This assumption is equivalent to Vg (8§) > Vp (6), where Vg (6) and Vp (6) are derived
from the equations (10) - (13).
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equilibrium with a compatible belief system and generates the symmetric equilib-
rium payoff (V (8),V (6)) such that V (§) > 1 — %5 — 7.

Proof. Given that 0 < § < 1, we can derive the following system of equa-
tions equivalent to (10) - (13).

(1—gqr)d+grh

VrR=1-qr—qrh—- 11 (14)
(1-gp)d+gphl—p;
—1_ _ 1
Vp=1-gp —qph+ 11 - (15)
(1-6){(1 ~qr)d+ qrh} = bqr (p2 — p1) (VR — VP) (16)
qrd an

= rd—h) +p{(L —gqr)d + arh}

Once gg is obtained, then Vg and Vp can be obtained from (14) and (15)
respectively. Since p can be an arbitrary number between 0 and 1, it is set to

be F_—;}%‘LW € [0,1] so that gp = 1. Substituting (14), (15) and ¢p =1 for
Vg, Vp and gp in (16), we get a quadratic equation, whose solution can be used
for qg :
F(z,8)=co(6)z® +c1(8)z+co(6) =0
with
c2(6) =6{p2(1+h)—p1 (1+d)}
c1(6) =(1—8)(h—d)+6{prd+ (1-p2)h— (p2 — 1)}
0 (6) = (1-6)d
One root of this quadratic equation is clearly (z,6) = (0, 1). Since 4E|(;.5)=(0,1) #
0 by the assumption ps — p1 > pid + (1 — p2) h, the implicit function theo-

rergﬁ [can be applied to get a C! function gg (§) around § = 1 with gg%l) =
x,8)=(0,1

d . . . .
—m = SraT=p)F—ts—py)» Which is negative by assumption. So,
there exists a qg (6) € (0,1) for large enough & such that gr (§) - 0as é — 1.

- - X R
Hence we get a parametrized solution (qR 6),1, ———J—;-(l_qué))i _": R VR (6),Vp (6))
for (14) - (17). Now (o (M (6)),0 (M (6))) with f (R) =qr (6), f(P) =1, and
p(6) = (1—ng$) = _"_'qR s 18 @ sequential equilibrium with a compatible belief.!8

The equilibrium payoff is Vg (§) , which converges to 1— ffd—_l as § — 1. For any
n > 0, we can pick § such that for all § € (§,1), (¢ (M (6)),0 (M (6))) generates
the equilibrium payoff V' (§) more than 1 — 125 —7. =

With more conditions on the parameters in addition to L' > L% and ps—p;1 >
p1d + (1 — pa) h, we can actually show that the PE Pareto-dominates the best
symmetric PPE obtained in the last subsection.

18Belief can be simply derived by Bayes rule at any history. Since any deviation is not
observable to the opponent, a player always updates her belief assuming that the opponent
has never deviated.
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Proposition 5 If L' > L% ps —p; > p1d+ (1 —p2) b, h > d, and 1 — 2 >
1—"";;", then there exists a § such that for all § € (8,1), the equilibrium payoff
generated by (o (M (6)) ,0 (M (6))) is larger than Ts.

Proof. See Appendix. m

Although many restrictions are imposed on the structure of the stage game
to get this result, there still exists an open set of parameters which satisfies all
these restrictions. The first example in the next section satisfies this restriction.

4 Examples

We provide two examples in this section. In the first example with two public
signals, a PE is shown to be much more efficient than any PPE. The second
example suggests that our insight about private strategies is also valid in cases
where the public signal takes on more than two values.

Example 1:

It is assumed that d =k >0, h=1+k > 0, and

p(X|CC) =
p(X|CD) = (X|DC) +e€
p(X|DD)=1-¢

where ¢ is a small positive number.!?

Note that the assumptions for Proposition 4 or 5 are satisfied for small ¢ if
k < 1. As e becomes small, it becomes more difficult to detect the opponent’s
deviation when (C, C) is played.

It is easy to see that any strongly symmetric PPE does not work. A player
has to mix D to monitor the opponent effectively, but the stage game pay-
off decreases significantly if both players do so. This negative effect over-
comes the positive effect which comes from the improved monitoring, hence
any cooperation is not sustainable in strongly symmetric strategies. This is
clear from the formula for the best (nontrivial) strongly symmetric PPE pay-
off. When € is small, the formula 1 — ¢ — gh — gl;L‘f,)-‘-i—“ng—@ is approximately
1-¢(2+k)~- MMH_'Q = —q(2+ x) — %, which is a negative number.

Another candldate of the upper bound for symmetric PPE payoffs is simply
H'2— = 0 by Proposition 3. So there exists a € such that for € € (0,€) the only

19When a player is playing C, the distribution of the public signal is not so sensitive to the
other player’s action. This implies that the realized payoffs have to vary large to generate
the fixed expected payoff matrix as € becomes small. In particular, u(C,X) — —oo and
u(C,Y) — oo as e — 0.

Also note that we need € to be strictly positive. Otherwise, we cannot recover the expected
payoff matrix assumed here.
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PPE is the repetition of the one shot Nash equilibrium independent of discount
factor.

On the other hand, the private equilibrium payoff approximates 1 — L_ld-_i =
1—k as § — 1 when € is small. Since & is an arbitrary small positive number,
we can construct an example where the PE approximates the efficient outcome
arbitrarily closely and the only PPE is the repetition of the one-shot Nash
equilibrium.

Example 2:

The next example shows that even when the folk theorem holds, a PE does
better than any PPE for any discount factor § < 1. It is a version of the prisoners’
dilemma, whose expected stage game payoffs are given by the following table.

C D
C| 1,1 |-62
D |2 -6] 0,0

The public signal w takes on three values, X, Y1, and Y3, and the probability
distributions are given below.

X Y Yz
cc 1/3 173 1/3
(D,C) 0 1/24¢ 1/2—¢
(¢,D) 0 1/2—€¢ 1/2+¢
(D,D) 1/3 1/3  1/3

Note that, as long as € > 0, the pairwise full rank condition (PFR) is satisfied
at (C,C), that is, the first three rows are linearly independent.2’ This means
that each player’s defection at (C, C) is statistically discriminated (player i’s de-
viation makes signal Y; more likely, ¢ = 1,2). So Fudenberg-Levine-Maskin Folk
Theorem applies, and the efficient payoff (1,1) can be approximately achieved
by a PPE as § — 1. Also note that this model is similar to the model in Section
2, where signal X arises only when both players take the same action. There-
fore, the efficient payoff (1,1) can also be approximately achieved by a PE as
6 — 1 as in Section 2. In summary, both PPE and PE asymptotically achieves
efficiency as § — 1 in this example. We can show, however, that the PE in
Section 2 does better than any PPE for any é < 1 for small enough e.

Formally, we derive the following upper bound of the best symmetric PPE
payoffs.

Proposition 6 For any (large) H > 0, there is a (small enough) value of the
signal distribution parameter € > 0 such that
max {1 - (-l—g—é)H,O}

s an upper bound of the best symmetric PPE payoffs under 6.

20When € = 0, PFR fails at any (possibly mixed) action profile, because at most two rows
in the above table are linearly independent.
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Note that, when H is large, the upper bound is a steep (almost linear)
curve for § sufficiently close to 1 (and otherwise it is 0). The proof is given
in Appendix B. Intuitively, this bound is derived by the following observation.
It turns out that in our example positive payoffs cannot be sustained if we
punish the players simultaneously. However, as long as € > 0, we can utilize an
asymmetric punishment where we “transfer” player ¢’s future payoff to player
J, when player i’s defection is suspected (i.e., when Y; arises). Hence to support
a payoff profile by a PPE, we must require the future payoffs to vary in the
northwest/southeast directions around the payoff profile to be supported. As
the players’ defections become indistinguishable (¢ — 0), however, we need
huge payoff transfers to support cooperation, and for those transfers to be in
the equilibrium payoff set, the discount factor should be sufficiently large. This
observation provides a lower bound of § to support the given payoff profile,
which in turn provides the upper bound of the PPE payoffs in Proposition 6.

On the other hand, our private equilibrium relies onlly on the assumption
p(X|D,D) > 0 = p(X|D,C) = p(X|C, D), not the level of e. As in Section 2,
we can derive the equilibrium probability ¢; of defection for each player i by
solving the following quadratic equation in g;

(1—6){(h - d)g+ d} = 6gp(X|D, D)(1 — q — qh) (18)

Note that, in the current example, we have h = 6, d = 1 and p(X|DD) = 1/3.
Hence (18) becomes

f(q) = 78¢* + (15 — 166)q + 3(1 — 8) = 0.

As f(0) = 3(1—6) > 0 and f(1) = 18 — 126 > 0, if we have real solutions they
both lie in [0,1]. As we are interested in the most efficient equilibrium (hence
the one with the smallest ¢), we choose the smaller root

~15 + 166 — /225 — 5646 + 34062
q(6) = 145

Computation shows that this solution is real when § > 0.992. The associated
symmetric private equilibrium payoff for each player is v (§) = 1 —7q(6). Figure
4 plots this and the upper bound of symmetric PPE payoffs in Proposition
6: 1— (l-gﬁ)H , where H is set to be 500 by choosing a suitable small e. The
horizontal axis represents the discount factor 6. The solid curve represents the
private equilibrium payoff, while the thin dotted line is an upper bound of all
PPE payoffs.
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Hence a PE does better than any PPE for each § < 1 when information is
close to symmetric (e > 0 is small).

5 Generalization

5.1 Two State Is Enough

We generalize our construction of private strategy equilibria to more general two
player games. First, we introduce general machines with many states, which
share the same property with the simple two state machines in the previous
sections, and show that they can be reduced to two state machines. This implies
that we can focus on two state machines without loss of generality.

Let a; € A; be a pure action of player ¢, and g;(a) be player i’s payoff
associated with the action profile a € A = A; X Az. Denote ¢’s mixed action by
a; € A;, and with an abuse of notation, let g;(a) be player ¢’s expected payoff
associated with mixed action profile & € A; x Az. Let p(-|a) be probability
distribution on public signals given oo € A; x Aa.

Now we formally define generalized machine with many states. A machine
M; for player i is {{0?}5:20 ,ai,,u,-} (4,7 = 1,2 can be 00), where {0?}2;0 is

the set of player ¢'s states with 9? being the initial state. Player i’s behavior
strategy at the state 07 is a; (67) € A, and p,; (87| (a;,w), 0} is the probability
to transit from ;' to 8;" when a; is played and w is observed.

Let supp(a?) be the support of af. Suppose that (M;, Mz) satisfies the fol-

lowing conditions for some bounded sequence of real numbers V' = ({Vf‘}i;o AV }ill=o) :

Forn = 1,..,l (19)
Vai € A, V' =(1-6)gi(as,03) +

Iz
§ > D" ap(a2)p(wlar, az) pp (65'] (a2,w) ,63) V™

0268,‘1,1,(0‘5:) weQ m=1

19



Vap ¢ AL, "2 (1-6)gi(a1,03)+

Iz
§ Y DY a5 (a)p(wlar,az) py (67 (az,w) ,65) V™
agEsupp(a;') wetm=1
Forn = 1,..,
Vay € A Vi'=(1-6)ga(af,a2)+

Iy
5 S af (an)p(wler, az) g (6] (a1,0), 67) VP

a1 Esupp(ay) wER m=1
Vao ¢ A3, V7' 2 (1-0)ga(az,07) +

I
5 S 3 S af (@) pwlar,a2) py (671 (a1,w) ,67) V3™

a1 Gsupp(a;-) we m=1

A = Ui;'___lsupp(a;'),i=1,2

It is not difficult to see that (M7, My) constitutes a sequential equilibrium
with payoff (V, V) as in the two state case if the above conditions are satis-
fied. This machine is basically an n—state analogue of the two state machine
in previous sections. We can show that, when a sequential equilibrium consists
of a pair of machines which satisfies the above equations, there exists a sequen-
tial equilibrium with a two state machine which is payoff equivalent to such
equilibrium.?!

Proposition 7 If a pair of machines (My, Mz) with many states (I3, 12 > 2) sat-
isfies (19), there exists a pair of two state machines which constitute a sequential
equilibrium with the payoff profile (V1,V2) = (supno,.. 1, {(VP'} »8uPn_o... 1, {VZ'})-

Proof. See Appendix. m

The intuition of the proof is very simple. Player i’s state 67 determines player
j's continuation payoff completely. If the number of player ¢'s states is finite,
then there exists player i’s state §; which maximizes player j’s continuation
payoff and 6, which minimizes player j’s continuation payoff. Then, player ¢
can always generate player j’s payoff at any other state ] by randomly moving
to 8; and 6, when she is supposed to move to 7. Hence, she needs only two states
to generate any payoff of player j associated with her states. When the number
of the states is not finite, we may not be able to find such 6; and @;. However, we
can still find a sequence of the states (and mixed actions associated with them)
to approximate V; = sup,_o _;, {V;*} and V; = infn—o,..1; {V;*}, and we can

21Remember that Piccione [14] used such a machine with countable states in the context
of repeated games with private monitoring, and Ely and Valimaki [6] succeeded to simplify it
to a two state machine. The following result provides an algorithm to reduce the number of
states to two in more general settings.
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construct a two state machine whose states correspond to sup,,_q ., {VJ"} and
infr=o,... 1, {VJ"} 1,7 = 1,2, by choosing a convergent subsequence.

Remark 8 Indeed any payoff profile (V1,V2) € [V4,V1] x [V, V2] can be
supported by using the two state machine we constructed. For example, if player
i chooses 0; and 9, with probability (1 — A, \i) as an initial state, then this pair
of machines still constitutes a sequential equilibrium and player j’s expected
average payoff is (1 — X))V + AV, G #14.

5.2 General Two State Machine

5.2.1 Characterization

Now we can focus on two state machines. We use R and P to denote the
two states as before. Let AZ* = supp(af?) for Z = R, P, and F be the set
of (a,z,V,A*) (a=(af,af,aflal) and so on), that satisfies the following
conditions for each player ¢ and her opponent j.

Va; € A} VR = g,-(ai,af) - E[a:,ﬁ(w, a;)|as, af] (20)
Va; ¢ AY Vi® 2 gi(ai,af) — Elzf(w, a))|a;, of] (21)
Y(w,a;) R (w, a;) >0 (22)

Va; € A: ViP = 9i (aia a]}’) + E[mf(wa aj)lai7 af] (23)
Va; ¢ A:‘ V;P ..—>_ gi(aiaa;’) + E[xf(w, a’j)laia af] (24)
V(w,aj) sz(w7a’j) >0 (25)

Al = Af* U Af)* (26)

VR > VF (27)

This system of (in)equalities turns out to be equivalent to (19) with two
_states, hence characterizes two state machine equilibria which satisfy it.

Proposition 9 (i) If there is a two-state machine egquilibrium which satisfies
(19), then (a,z,V,A*) € F. Conversely, if (a,z,V,A*) € F, then there is
a two-state machine equilibrium where (19) is satisfied for V, provided that
discount factor 6 is close enough to unity. (ii) The (constrained) Pareto efficient
asymptotic values (as § — 1) that can be supported by such two-state machines
are found by, for each welfare weight vector ~ € §R3_,

W)= sup (1 VE +7Vh).
(@, V,A*)eF
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Let us introduce some more notations. Let g;(a, af) be the vector of player’s
i's expected payoffs given af. Let P (;) be a positive | A;[x €] matrix whose k, !

element is p (w'|af, ;) and define P (A}) by P (A}) = (P (a),.., P (alAgl))

VAN

for A} = {al ..,al-Agl} C A; (JAi| x |Q}|Ag| matrix). Finally, let xZ(a;) =

B 7
of (a5) (27 (@, a5, oy 27 (@, ;) for Z = R, Pand x;(A4}) = (xi(a}), ...,x,'(al-Ajl)) .
Then, conditions (20)—(21) and (23)—(24) can be compactly expressed as

gi(a,af)~VE-T+hF = P(43)-xF(43) (28)
gi(@,af) — VP -T+hf = —P(45)-xF(4})

where I =(1,...,1)’ € ®4:l and h? > 0 denotes non-negative slack variables,
which correspond to the difference between the left and right hand sides of
incentive constraints (20) - (24) (hence h¥ is 0 if the corresponding action profile
a¥ is in A?). Geometrically, this means that the left hand side is contained in
the cone generated by the column vectors of P (A}) (or — P (A3})), which we
denote by cone (P (A})) (cone (—P (43))) .

This system of equations is more than just another representation of two
state machines. It provides us with a deeper insight into their nature. We first
review the two state machine used for partnership games in light of this new
representation and discuss its geometric interpretation.

5.2.2 Review of Partnership Game

First, let us write down the first equations of (28) for the partnership game.

9:(C, qf’)) (VR)
— .. )= (29)
<gi(D,qf) VR

(1 - q;:) .’l:f%(Y, C)
_ l—-m m9 1—m1 m (1—q-gx?(X,C)

- l—-7m; m l—my m qfz}(Y, D)

qj CL‘?(X, D)

zf(w,a;) > Oforall 2,{w,a;) and:=1,2
3 J

The best two state machine for player i is represented by a pair of (qf,wf)
which maximizes V% (ignoring the existence of V¥’ which satisfies the feasibility
condition (27)). Note that the best (public) trigger strategy equilibrium can also
be expressed in these equations with additional restrictions such as zF (v, C) =
zf (w, D) for w = Y, X. So, we can compare the best two state machine (private)
equilibrium and the best (public) trigger strategy equilibrium using this system
of equations. The best trigger strategy equilibrium payoff V.7 is obtained by
maximizing V;? with respect to (¢, z®) with constraints = (v, C) = z (w, D)
for w = X,Y. The best two state machine equilibrium payoff V;** is obtained
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by maximizing V;¥ with respect to (¢, z) without such constraints, so it is at
Y g V; P q;,;

least weakly larger than V7. However, as an additional constraint, we need to
find V;P* to satisfy the second equations of (28) and (27).

gi(C,q}’)) _ (V,»R
9i(D,gR)y  \VE
by (1‘”0), (), (1_’”) and (:;) Suppose that the assumption we employed

1—m; Ty 1-7g
(3 < 22) indeed holds. Then, we can verify that G::;) and (7!) are the
extreme vectors which span the cone as in Figure 3. Similarly, if % > X2 then

These two equations mean that ( ) is inside of a cone spanned

wl?
1—-7\'0

1_m) and (:‘]’) are the extreme vectors of the cone.

R R
(giC.ah.9i@.q}))

)
(10,115}

((1-1).(1-m, )

R R
qi xi(X,D)

(1=, ).(1-m, )

Figure 3
We have a couple of interesting observations.

1. The equations (29) means that VR is equal to the length of the vector

) R
I from (:'((g’,zfjﬂ))) to a point in the cone. This clearly shows that the

right hand side of (29) has to be on the face of the cone when VF is
mazimized (Figure 3). First note that qf needs to be strictly positive

because otherwise we can only use a smaller cone generated by (i::‘l’), ()

(although q]R should go to 0 as § goes to unity as we see later). Second,
. R

(ggf((g";’;q))) is above the 45° line as shown in Figure 1 because g;(D, q]R) >
k3 b ]

gi(C, q]B) for small qf. So, only 2F(X, D) should be strictly positive and
all the other zf(Y, C), zf(Y, D), 2R (X, C) have to be 0. This implies that,
provided that V; < V;F exists, the best two state machine which satisfies
(29) has to be a private strategy. Note that, for the public triger strategy
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equilirbium, zF

;* is necesarily in the interior of the cone, hence does not
maximize V.

2. Note that the only reason to play D is that it makes a larger cone available.
Hence, if 7L > 7%, then there is no reason to play D anymore. So,
only zF(X,C) should be strictly positive and zF(Y,C) = z£(Y,D) =
zP(X,D) = 0. Clearly, the usual (public) trigger strategy is (weakly)
better than any two state machine in this case. Combined this observation
with the last one, we can conclude that we can construct a two state
machine private equilibrium which satisfies (29) and is Pareto superior to
the best trigger strategy equilibrium as § — 1 if and only if <2

71
provided that V;¥ (< V;®) exists.

3. We can interpret a wider cone as a better information structure. Fix the
expected payoff structure and change the information structure to a better
one associated with a wider cone. The left hand side of (29), which is con-
tained in the cone generated by the current information structure, would
be contained in the cone generated by the better information structure
(Figure 4). Hence, when signal becomes more informative in this sense,
a two state machine equilibrium continues to be a sequential equilibrium
(and achieves a larger payoff) after with the new information structure.

Figure 4

. i(CgR .
4. Since (j 4((D ';JR;) moves toward to (; i 4) 88 g decreases and V;® increases
3 r j

toward V®* as shown in Figure 5, we need to minimize qf for a given
4, (but not 0). Remember that z7(X, D) = %pf‘(X, DY(VE ~ VP (cf.
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Proof of Proposition 9). We can derive two implications from this formula;
(1) This formula suggests that qf can converge to 0 as § — 1 because z
can take arbitrary large values as § — 1. (2) Since q]’-2 should be as small
as possible at the optimal level, p]R(X ,D) has to be 1. Otherwise, we
can choose smaller g7 and larger z7(X, D) to satisfy (29) by increasing

pf‘(X , D). This tmplies that a player has to move to the punishment state
with probability 1 after (X, D) as we constructed.

R R
(9i(C.qj)gi(0qj))
(1.1+d)

Figure 5

Some of these insights will be useful in the following sections.

5.2.3 Construction of Two State Machine

Next we examine when and how we can construct a two-state machine equi-
librium. First, we show that a majority of the relevant constraints (20) - (27)
(more precisely, all but the last condition (27)) can be satisfied under a mild
condition.

Since the number of rows for each state in (28) is equal to |A;|, for any
(Af,af) and hZ (i = 1,2), (28) has a solution xZ(A}) if P (A}) has full row
rank:

rank P (A}) = |A;l. (30)
Note that if such xZ (A3) is nonnegative, then we can find zZ(w, a;) to satisfy
(20) - (26) by setting (z7(w!,a;),...,zZ (W, a;)) = xi(a;)/a? (a;) for a; €
AjZ* and, say, zZ(w,a;) = 0 for a; ¢ AJZ*. Hence, we only need to show that
such xZ (A}) can be taken to be nonnegative to prove the following lemma.
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Lemma 10 (Full Rank): If (|| — 1)|A7| + 1 > |A;] for 4,5 = 1,2, then, for
a generic choice of signal distribution p(wlay,as), the following holds: for any
(A*,a®, oP), which satisfies (26), conditions (20)— (25) can be satisfied for some
(VR,VP,:L'R,xP).

Proof. See Appendix m

Remark 11 A sufficient condition for (| —1)|A|+1 > |A;| to be satisfied is
that the signal space ) contains sufficiently many outcomes. However, this is
not necessary, when [Aj|, the number of actions taken on the equilibrium path,
is large. For ezample, (|| — 1){A}| +1 > |A;| s always satisfied if |A1| = |Aq|
and all actions are taken with positive probability on the equilibrium path (as
long as §) is not a singleton set).

Given Lemma 10, we now seek conditions under which the last condition
(27) is also satisfied. From the non-negativity conditions (22) and (25) for the
punishments z® and rewards 2, we clearly need

: R P
arirélfr‘l: gi(ai, 05%) > max g; (ai, aj ) (31)

for (27) to be satisfied. This imposes a certain restriction on the actions that
can be taken on the equilibrium path (i.e., the supports of af* and of). To
see this, let us introduce the notion of separation, which is a stronger version of
domination:

Definition 12 A mized action «; is separated above by another mized action
o; if

min g;(a}, a;) > max g; (o, @;).

a; @

Let us compare this definition with domination. If ¢; is (strongly) domi-
nated by a}, we have
Vay gi(of, ;) > gi(ai, o).
In contrast, under separation, we have a number ~ (that is independent of aj)
such that
Vaj g,-(ag,aj) > > gi(ai,aj). (32)
Lemma 13 If a; is separated above by a mized action, then it cannot be played

on the path of play in a two-state machine equilibrium.

Remark 14 We can immediately see that a; cannot be in A} to satisfy (31).
Below we provide more direct proof.

Proof. Suppose, on the contrary, that a; is separated above by a mixed
action o} and the former is played on the equilibrium path. Then (32) is
satisfied for @; = a;. Since each player 7 is always indifferent between the
actions played on the equilibrium path, she obtains the equilibrium payoff when
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she always plays a;. By (32), the average equilibrium payoff is less than . On
the other hand, if she always chooses o, the average payoff is greater than ~.
This means she can profitably deviate, a contradiction. m

Finally, we check when the last condition (27) is satisfied for a profile of
mixed actions (A* af',aF) that satisfy condition (31). We define a partial
order in the space of cones in ®} by A < B if and only if cone A is included
in cone B. Consider a sequence of information structure P, (A}),n = 1,2, ...
such that P, (A}) < Pn41(A}) and P, — R} (in Hausdorff metric) for i = 1,2,
keeping expected payoffs fixed. Then we can find n* such that there exists a
solution for (28) for all n = n*(See figure 3 for the partnership game). This
means that a two state machine can be constructed for arbitrary (4*,a%,aF)
which satisfies (31) if information is close to perfect. Next, take two different
information structures P’ and P"” such that P’ < P"”. If we can find sz (Af) for
(28) with P’ (A}), we can also find the solution for (28) with P” (A}) as well.
This means that, for each two state machine equilibrium with P’, there exists
a similar two state machine equilibrium (with the same (A*,a®, aF)) as the
signal becomes more informative (as the cone gets wider). The next proposition
summarizes these results.

Proposition 15 (i) Suppose that (A*,aF, o) satisfies (81). Then a profile
of two state machines (a,z,V, A*) can be constructed if cone (P (A})) is close
enough to le g fori=1,2. (i) Suppose that a profile of two state machines
(o, z,V, A*) is an equilibrium for P'. If cone (P’ (A})) = cone(P" (A})) for
i = 1,2 for another information structure P", then there exist x’, V' with which
(a,2', V', A*) is a two state machine equilibrium for P and achieves o (weekly)
larger payoff when players are patient enough.

Proof. See Appendix. m

Corollary 16 If P’ is a garbling of P in the sense of Blackwell, then, for any
two state machine equilibrium (o, z,V, A*) for P, there exists a profile of two
state machines (a,z’,V', A*) which is an equilibrium for P’ and achieves a
larger payoff when players are patient enough.

Proof. Note that p’ (wla) =3 , q (w|w') p” (w'|a) where g (-|o') is a density
function on (2 for each w’ € Q. This implies that cone (P’ (A})) = cone (P" (4}))
for any A} C A; and any 7. Hence, the result follows. m

Remark 17 Note that public signal itself does not have to be close to perfect
information. We only require that combination of private action and public
signal convey almost perfect information. This would be the case, for example,
if one of available actions is some sort of monitoring activity.
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5.3 When Can We Find a PE Better Than a PPE?
5.3.1 Generalized Trigger Strategy Equilibrium

Let (ViT,V{) be a pair of real numbers which satisfy the following system of
(in)equalities for some o and z7(w) > 0;

Va; € AT VT = gi(ai, o)) — E[z] (w)lai, a ] (33)
Va; ¢ AT* VT 2 gi(ai,af ) — Elz] (w)las, o] ] (39)
Vw zF(w) >0 (35)

where A7* is the support of af as before. Note that this condition corre-
sponds to (20), (21), and (22) with additional restriction; z;(w,a}) = zi(w, a})
for a,a] € A;. Indeed, if these conditions are satisfied and there exists an
equilibrium whose payoff V is lower than VT for ¢ = 1,2, then there exists a
trigger strategy equilibrium with payoff V.7, in which players play T in the
cooperative phase and use V/ as mutual punishments after certain realization
of public signals. We call (V7,V)l) the efficient generalized trigger strategy
equilibrium (EGTE) payoff if there does not exist (V{,Vy) which satisfies the
above condition and (V{,Vy) > (ViT, Vi) . (One is strictly larger at least.)

In the following, we examine when we can construct a private two state
machine equilibrium which Pareto-dominates EGTE, as we did for the simple
partnership game.2?? Because of the similarity between (20), (21), (22) and (33),
(34), (35), it is clear that there exists V;? along with z;(w,a;) and af such that
VAR > VT i =1,2 by definition. So, if (i) there exists V;” such that V;? > V;F
and (ii) V;# > VT for at least one player, we can construct a private equilibrium
whose equilibrium payoff Pareto-dominates (VlT, V:,T) .

5.3.2 Construction of a Pareto-Improving PE

We first write down (33), (34), and (35) in a simple form similar to (28);
gi(a,al) —VT . I-hl =P(a])-x] : (36)

where x7 = (z] (w'),..,z] (w'm))'.

Let ;1\]- be the set of player j's indifferent actions for the best trigger strategy
equilibrium, which might not be chosen with positive probability. (Hence, A7 C
Zj C A;). Remember that for the partnership game, we constructed a better
PE by using an action (D) which a player does not play for the best PPE. The
advantage of using such an action came from the fact that it provides a better
information to detect the other player’s deviation. Similarly, a player might

22Note that the best EGTE payoff is typically bounded away from the efficient frontier even
if players are very patient. We don’t consider the best PPE which is not a trigger strategy.
Folk theorem (Fudenberg, Levine, and Maskin [7]) implies that the best PPE is unimprovable
at the limit § = 1 in general. However, as the example in the last section suggests, private
strategy may improve the best PPE for each level of 8, if not asymptotically as § — 1.
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benefit from using an action in ﬁj but not in A} because it allows player j to
use cone (P (A\J)) rather than cone (P (A;)) .
Suppose that P (2,) is full row rank, then cone (P (;1\])) has a nonempty

interior in %LA‘I. If the right hand side of (36) is in the interior of the cone
generated by P (A}) , that is, if

P(a]) -x eint (ccme (P A\J))) (37)

holds, then we can find xf (2,) € int (czme (P (A]))) and VE > VT to
satisfy

gi(a,a]) = VR-1-1nf = P(4;) -xF (4))

Note that this is not quite the same as (28) yet, because the support of a;-r
may be strictly smaller than Ej. However, we can construct a sequence of o
converging to af, whose support is ;f,-, associated with a sequence of V" and

Xy (A}) which converges to V;#* and x? (2]) respectively and satisfies

gi(a,a}) - V*-I-hi =P (ﬁj) - X7 (Zj)

R
For each n, af, V", and xJ (ZJ) satisfy (the first half of) (28), so for n
large enough, a two state machine which corresponds to o} achieves a higher

This is because x (KJ) is chosen from the interior of the cone generated by P.

payoff than V;T as long as there exist (af ,xP VP ) such that suppaf C Zj and

VR > VP (fessibility (27)).

Proposition 18 Let (aT,xT, VT, }1\) be an EGTE. Suppose that full row rank
condition (30) is satisfied for A. Then, there ezists a two state machine (a, x,V, Z) €
F which Pareto-dominates (aT,xT, VT, ;1\) if (i) the condition (37) holds and

(1) there exists (aP,xP, VP) such that suppal € A; and VI > VP fori=1,2.

Remark 19 We restricted our attention to the construction of a two state ma-
chine where the support of o is A;j. It might be possible to construct a Pareto
improving two state machine whose support of mized actions is not contained
in A even when (i) or/and (i) is violated.

Remark 20 There are many conditions to guarantee that P (aJT) x] € int (cone (P (ZJ)))
holds. Let * be the set of w such that ¥ (w) > 0. Since P(aJT) cxF =
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Ea,- > p{wlaj) aJT (a;) zT (w), if any p (|-, a;) for (w,a;) € X A} is in the
interior of cone (P (Z,)) , the interior condition (37) holds. Even if all such
p (Wi, a;) for (w,a;) € * x Aj are on the boundary of cone (P (2,)), it can be
shown that the interior condition (37) still holds if cone ({p (w|-,a;) | (w, a;) € Q*

. C Al
has nonempty interior in R

6 Related Literature and Comments

There are few works on private strategies. As far as we know, our paper provides
the first example of infinitely repeated games with discounting in which the use
of private strategies makes a significant difference. Recently, Mailath, Matthews,
and Sekiguchi [12] found examples of finitely repeated games for which there
exists a PE which is better than any PPE. Lehrer [10] uses private strategies as
endogenous correlation devices in repeated games without discounting,.

There are a couple of comments on the robustness of the private equilib-
ria. First, when the parameters such as (d, h,p (X|CC),p(X|CD),p(X|DD))
change slightly, there exists a PE close to the original PE. Secondly, suppose
that each player can observe additional signals which are informative about the
other player’s current state. Our PE still continues to be a sequential equilib-
rium in that setting because a player does not have to know which state the
other player is in. These facts suggest that our private equilibria is robust to
some extent. Finally, note that our private strategy works even if there is no
public signal at all. On the other hand, PPE does not have any bite by defini-
tion in such situation. To see this, suppose that the stage game is perturbed in
the following way. The public signal has the same distribution as before, but it
is not observable to players. Instead, each player observes a public signal plus
a private noise. Players observe the true public signal most of the time, but ob-
serve the wrong one with a small probability. The private strategy works even
in this setting. Since players do not have to know the other player’s state, it
is not important whether a player could observe the signal which her opponent
receives. ’

Formally, this modified model belongs to repeated games with private mon-
itoring. The method in this paper to deal with private information is indeed
applicable to this wider class of model. Ely and Vilimé#ki [6] independently
found a similar two state machine strategy in repeated games with private mon-
itoring. As in this paper, a player is indifferent among all the repeated game
strategies whatever state the opponent is in.23 However, there is a critical dif-
ference between our paper and Ely and Vilimiki [6). In Ely and Vilimaki,
a player plays a pure action at each state and, as in this paper, it does not
matter whether a player knows the opponent’s state (henceforth action) or not.
On the other hand, it is important for us that a player does not know what

23The idea behind these strategies goes back to Piccione [14], where the equilibrium strategy
is basically a machine with a countably infinite number of states.
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action the opponent is choosing. If a player knows the opponent’s action, she
is more tempted to defect when C is being played and more likely to cooperate
when the “monitoring” action D is being played. Since players need to use the
action-signal pair without being noticed for the efficient punishment, they need
to play a mixed action at the reward state in our paper. This efficient use of
the signaling structure is the key to our efficient private equilibria. The idea of
efficient monitoring is not new, rather a familiar one. It is an old and simple
idea which lies at the heart of any moral hazard model. One contribution of
this paper is to find a way to apply this idea to private information in repeated
games or dynamic moral hazard models.

Another point we should make about the above model is that it is not a
model with almost perfect monitoring, which has been the main focus of private
monitoring literature (such as (5], {6], [14], [17]). The game we described above
is a repeated game with almost public monitoring (Mailath and Morris [11]).
Hence our PE can be regarded as one of the first example of sequential equilibria
which works with private monitoring which is not almost perfect. Observe how
the private strategy is related to the conditions suggested by Mailath and Mor-
ris [11]. They suggested the conditions under which a particular PPE remains
a sequential equilibrium with an almost public monitoring when a public sig-
nal structure is perturbed slightly with private noise. Their conditions require
players to have almost common knowledge about the other players’ continuation
strategies all the time. Our PE clearly does not satisfy this sufficient condition.
On the contrary, its property is rather orthogonal to such requirement. Players
do not have to have any additional knowledge about the opponent’s continuation
strategy through the course of the game.

There is one important open question left. Although we could show that a
PE can be much more efficient than PPE, we have not characterized the best
symmetric sequential equilibrium payoff yet. A further insight is needed to see
whether a version of the inefficiency result by RMM extends to the whole set of
sequential equilibria or some efficiency result stands out surprisingly.
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Appendix A: proofs

Proof of Proposition 2 .

Let us first prove a useful lemma which generally holds for the best symmet-
ric PPE payoff with public correlation devices. We are looking at symmetric
payoffs, but in the lemma we do not restrict our attention to strongly symmetric
equilibria. Also note that the best symmetric PPE can be found by maximizing
the sum of two players’ payoffs over the set of PPE payoff profiles.

Lemma 21 Let (v*,v*) be the best symmetric PPE payoff in a repeated part-
nership game. Then, there erists a PPE which achieves the same total payoff
2v* and do not use any public correlation device in the initial period. Further-
more, the sum of the expeceted stage payoffs in the initial period is no less than
2v*.

Proof. When the best symmetric PPE payoff is achieved by public random-
ization over some PPE, each of them must obtain the same, non-negative total
payoff 2v* (otherwise, we can just pick up (vi,v;) with the highest total pay-
off and achieve a higher symmetric payoff by equally randomizing over (v;,v2)
and (vg,v1), a contradiction). Pick up any one of those PPE. By definition, it
does not use any public randomization in the first period, and therefore it is
achieved by a current (possibly mixed) action profile a and continuation payoffs
(V1(w), Va(w)). The sum of payoffs satisfies

20" = (1-6)(91(@) + g2(a)) + 6E [Vi(w) + Va(w)]e] ,

where g; is player i’s payoff function and E [ |«] is the expectation under a. If
g1{a) + g2(a) < 2v*, the sum of payoffs associated with this PPE would be

E [Vi(w) + Va(w)|o] > 20*

This contradicts our assumption that (v*,v*) is the best symmetric PPE payoff
profile. Hence gy () + go2(a) > 2v*. m

Note that this proof only relies on the fact that (0,0) is the mutual mixmax.
In particular, the space of public signal can be arbitrary. We use this lemma
later when we analyze a partenrship game with three public signals.

Let 75 (> 0) be the best symmetric PPE payoff in the current repeated part-
nership game. Lemma 21 implies that (i) there exists a PPE payoff profile
(v1,Tq) such that 2v, = Ty + Ty, (i7) players do not use a public correlation
device in the initial period, and (ii7) at least one player is playing C in th eini-
tial period. Suppose that both players play C with positive probability in the
initial period for now. We come back to the case where one player plays D
with probability 1 when we deal with all the asymmetric strategies in the next
proposition. Let ¢; < 1 be the probability for player ¢ to play D in the initial
period.
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71 and g5 satisfy the following inequality derived from the recursive equation:

71 £ (1-8)(1-g-¢h) (38)
+6 [ (1-g2) {1 —po)vi +po (1 = p1) v} ]
+g2 {(1 = p1) o] +p1 (1 = p1) i}
where p; € [0,1], and the incentive constraint:

(1-6){(1— g2)d+ g2h} = 6{(1 — g2) (1 — po) + g2 (P2 — P1)} p1v]  (39)

v} is player 1’s continuation payoff after signal Y. Equation 39 means that
if the continuation payoff after signal X decreased by p;v}, then player 1 would
be indifferent between C and D. Since the true punishment associated with 7;
should be as harsh as this hypothetical punishement, we have the inequality 38.

Similar inequality and equation hold for player 2:

Tg & (1-6)(Q—-a—aqh) (40)

16 [ (1—q1){(1 —po)v3 +po(1—py)vi}
+q1 {(1 —p1)v3 +p1 (1 — pa)v3}

1-8){1-q)d+qaht =6{(1—q) (@1 —po) + @ (P2 —P1)} p2v3 (41)
Adding (38) and (40) and using v} + v3 < 71 + U, we get

§{(1—q1)po + q1p1} pov3

T1+7 S l-q—qh-

1-9
§{(1~ + v}
+1— g5 — goh — {( q2) po + @2p1} P17
1-6
Substituting (39) and (41) into this equation ,
-, = l—q)d+aqh 1—go)d+goh
U1+’02§1—¢I1—Q1h—————-( a)dtaq +1—q2—q2h——-———( @)d+ g

Lo —1 Lo —1

Note that the bound of player 1’s (2’s) payoff only depends on ¢z (1) -
Then, g1 = g2 = q* gives the optimal bound of ¥; + 72 and

_ T +T . .. (—g)d+qh
R R R R e

It is clear that this bound is achieved by the strongly symmetric strategy
PPE where mixing C and D with (1 — ¢*, ¢*) is used instead of (C,C) in (#)
and that 7, =71 = 75.10

Note that the above proof shows that the best strongly symmetric PPE
payoff achieves the best symmetric payoff even among a large class of asymmetric
strategies(i.e. both players play C with positive probability.). This implies that
if any asymmetric profile is used to support s, then one player has to play D
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with probability 1 in the initial period. This fact makes the proof of the next
proposition simple.

Proof of Proposition 3

We only need to consider the case where one player plays D with proba-
bility 1 in the initial period. Suppose that this player is player 2 without loss
of generality. Then, Lemma 21 immediately implies that the best symmetric
PPE payoff is bounded by %’—‘. Combining this observation with the previous
proposition, the result is obtained.

Proof of Proposition 77

Proof. We just need to show that 1 — L‘ 7 > Us.
d

1.1-5%5>0

By p2—p1 >mmd+(1—p2)h,

d >(1—p2)h>

]___
L'-1" p—m

2. 1— oty > Lg=k
This holds by assumption.
31— >1-q—qh— U=gdigh g5 all g € 0, 1].

La—-1

Let g(q) =1—q—qh— (A-9)d+eh gince it is easy to show that ¢’ (g) < 0

La—1
for all g € [0,1] with L! > L% and h > d,
d
l-777 > 17

1-q)d+qh
> 1—geoh Lz@)dtqh
2 l-—q-gqh Te_1

for all ¢ € [0,1]. These imply that 1 — 2 > Ts.

Proof of Proposition 7

Proof. Suppose that both M; and M has only a finite number of states. We
first focus on the value functions of player 1; {V:l o- Then, there exists player
2’s state which corresponds to the largest Vi*. Suppose without loss of generality
that = = 0 is such state. Similarly, let n = 1 be the state which minimizes the
value function of player 1. We modify player 2’s machine in the following way.
When player 2 is supposed to move to 63 from 63 or flafter some action and
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signal is observed, she instead move to 69 and 63 with some probability 1—A3and
7 where A3 is the number between 0 and 1 to satisfy V;* = (1 — A3) V2423V
Then, we obtain the following system of (in)equalities;

Forn = 0,1,
Va; € ’{, 1":(1-—6)91(0,1,03)'*'

1
5 Y Y3 of (an)p(wlaraz) s (951 (az,w), 05) VE

azesupp(ag) w€EN k=0
Va; ¢ Aj, V{" > (1-68)gqi(a1,a3) +

1
5% 33 o (a)p(wlar,az) p (6] (az,w) 03 VI

az Gsupp(a;‘) weN k=0

where for n =0,1

i2

ph (03] (az,w),03) = Y pa (65| (az,w),63) (1-)%)
m=0
Iz

ph (03] (a2,w),03) = Y pa (65 (a2,w),63) AT
m=0

We can repeat the same procedure with the roles of the players being reversed
to obtain the two state machine M = {{0?}31:0 , Qg ,u:} .i = 1, 2. This pair of
machines clearly satisfies (19), hence constitute a sequential equilibrium which
supports the payoff profile (V, Vi) with the initial state (63,63) .

If the number of the states is countable, we might not able to find the
best state and the worst state. In such a case, we construct them in the fol-
1owin$ way. Suppose that M, has a countable number of the states. Since
{V*},2_, is bounded by assumption, there exists a least upper bound V; =
Sup,—o,..1, {Vi"} and a’largest lower bound V; = infn—o,... 1, {V{*}. Since V{*

(hence, Zifmo po (07| (az,w),03) V™) and of are in the compact sets ([V1, V4]
and Aj; respectively), we can find a sequence ngk),k = 1,2,.... such that
VP o7y, af® — @, and 2o pp (07 (a2,0), 057 ) Vi = Vi (az,w)

as k — oo. Then, V1,az and i (az,w) satisfy

Va; € A}, Vi=(1-6)g(a,32)+
Iz
5 Y Y ) wm(a)p(wlar,a) Vi (az,w)

az€supp(az) wENR m=0
Va; € A}, Vi>(1-6)gi(a1,m2)+

35



l2
5§ Y Y wm(a)pwlar,a) Vi (ag,w)

agEsupp(az) w2 m=0
Similarly, we can obtain

Vay € ALV, =(Q1-é8)g(u,02)+

Iz
5y ZZ%(az)p(wlahaz)Vl(az,w)

a2€supp(ﬂ) weR m=0

Vai ¢ ALV, >(1-6)gi1(a,a2)+

8 Z Z Zﬂ(aZ)P(Mal,az)"}l(az,w)

azesupp(ﬂ) weN m=0

for some ap and Vi
Now we can replace i (ag,w) and 171__(a2, w) by a randomization between v,
and V, as before. Define p, (8,| (a2,w),02) and p, (8, (a2,w) ,8,) by equations;

‘71(027‘0) = {1—#2 (Qzl(a2aw),§2)}v1+#2 (Q2|(02,W),§2)K
Vi(az,w) = {1—py(8s(az,w),05)} V1 + pg 8y (a2,w),8,)Vy

Then, we obtain a two state machine My = {{62,0,}, {0z, a2}, 42} to satisfy
(19) for V; and V. We can construct a two state machine M; in a similar
way and (M, M) constitutes a sequential equilibrium with the payoff profile

(V1,Va). m

Proof of Proposition 9

Proof. (i) Consider the following transition rule for player j in the two-state
machine (or Markov) strategy: go to state P with probability p%(w,a;) when
the current state (for j) is z = R, P and the current signal and j’s action are w
and a; (otherwise, go to state R). Consider the dynamic programming equation
for the average payoff for player i when j is in state z = R.P,

Vi > (1= 6)gi(ai, 0f) + SE[(1 — p}(w, ai)) Vi + pf(w, 0))Vi las, 03], (42)

where the equality should be satisfied for a; € suppalUsuppal’. Consider first
the case z = R. Subtracting §V# from both sides and dividing through by
(1 —§6), we obtain

é
VE > gi(ai,af) - E[i__—épf(w, a;)(Vi® — ViP)las, oY,

where equality holds for a; €ésuppafUsuppal. A similar manipulation for state
z = P shows

é
VP > gi(ai,af) + E[m’(l — pF (W, a;))(VF = VP)las, of),
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where equality holds for a; € suppafUsuppa’ . Hence, if we have an equilibrium
in the two-state machine strategy, conditions (20)—(27) are satisfied with
(w,a5)(V;R — VF) and (43)

6
R R
z; (w,a;) = T3

2F (0,5) = 1o (1~ pF 0,8V — VP, (44)
Conversely, suppose that conditions (20)—(27) are satisfied. Then, (43) and (44)
can be satisfied for p?(w,a;) € [0,1], z = R, P, for sufficiently high 6. Hence
we obtain the equilibrium condition (42) and the two-state machine equilibrium
to support payoffs (V,V/F) for i =1,2.

(ii) Directly follows from (i). m

Proof of Lemma 10

Proof. Let us examine the maximum number of column vectors in P that
can be linearly independent. Recall that the kth row in P (a;) corresponds to
the probability distribution of w under (a¥,a;). This implies that the elements
of this row vector add up to one. As this is true for each row of matrix P(a;),
we have

1 1
P@j))| : | =1 : for each a; € Aj.
1 1

This means that among the ||| A}| column vectors in P (4}), |Aj| -1 of them
cannot be linearly independent. The rest of them can clearly be linearly in-
dependent by a generic choice of p(w|a), as long as the number of columns
(121143] = (1431 - 1) = (|2 — 1)| 47| + 1) is greater than or equal to the number
of rows (|4;]) in P (A}). Hence, if (| — 1)]4}| + 1 > |4;], matrixP (43)
generically has full row rank and the conditions (20) and (21) can be satisfied.
The same argument applies to conditions (23) and (24).

Thus we have shown that for any given A%, af, off, VR and VF for i, = 1,2,
we can generically find x; (A;f), xP (AJ*) that satisfy the incentive constraints
(20, (21), (23) (24) and (26). To satisfy the non-negativity conditions (22)
and (25) for the punishments and rewards, which have been ignored so far, we
choose a large enough numbers K;, L; > 0 so that

K;
(A =xFA)+]| : | =20and
K;
L;
xF(4) =xT(4)+] + |20
L;
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for i = 1,2. Also define N
VE=VR+ K, and
VP=vP+L

for i = 1,2. Then, we have x (4}), xf (43), IZRand "}ip for i = 1,2 that
satisfy conditions (20)—(26). m

Proof of Proposition 15

Proof. (i) When information is almost perfect with A* (cone (P (A})) is
close to %lf"l for i = 1,2), V;? is roughly a (signed) distance from g; (-,af") +h{?
to the face of %lfd (see Figure 4 below). Since we can make the slack positive
variables hF as large as possible for a; ¢ A}, this distance is Vnmingea; gi (a,-, af) .
Similarly, V;P is roughly a distance from g; (-,af) + h{ to the face of —§R|f"‘,
which is y/n max g; (a;, af ) (bf is 0 without loss of generality to minimize %8}
So, the feasibility condition (27) is satisfied if
. R P
min_gi (ai,077) > max gi (ai;,05)

i

when information is almost perfect. This is exactly the condition (31).
(ii) Straightforward from the equations (28). =

R R
(gi(@iqgj)gi@iqj))

R
>j/\“

P P
(gi@iqj)gi(@iqj))

R%

Figure 4
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Appendix B: Example 2

Let g; be the probability that player i chooses action D. Given g;, the
probability of X when player i chooses C and D are respectively 1(1—g;) and
%q]-, as X arises only when both players take the same action. Hence we have
the following simple but useful observation.

Lemma 22 When player i deviates from C to D while the opponent chooses D
with probability q;, outcome X becomes less likely iff ¢; <1 /2.

Let F be the sum of the expected stage payoffs under (q1,g2),

1+D)(1-g)(1—q2)+(2—-6)q1(l —g2) +(2—6)(1 - q1)q2
= 2—6g2 —6q1 + 10q192.

F

We note that this is positive only if both players choose D with sufficiently low
probability.

Lemma 23 The sum of the stage payoffs is positive only if q1,q2 < 1/3.

Proof. Note that F(qi,q2) is linear in g, and that both F(0,g2) = 2 — 6q2
and F(1,q2) = 4(ga — 1) are non-positive if g2 > 1/3. Hence F(q1,g2), which
is a convex combination of those values, is non-positive if g2 > 1/3. Symmetric
argument shows that F' is non-positive if g1 > 1/3. Hence F is positive only if
91,92<1/3. =

The following is a immediate corollary from the above two lemmata.

Corollary 24 When the sum of the stage game payoffs is positive, outcome X
becomes less likely if player i defects given player j’s mized action.

Combining Lemma 23 and Corollary 24 with Lemma 21, we have:

Proposition 25 For any parameter of information structure € € [0,1 /2), if the
best symmetric PPE payoff v* is not 0, then there is a (possibly asymmetric)
PPE with the same total payoff 2v*, where in the first period (i) no public
correlation device is used,(ii) each player chooses D with probability less than
1/3, and (iii) unilateral defection of each player makes outcome X less likely.

Now we use this fact to show the following.

Proposition 26 The best symmetric PPE payoff is 0 for all § € [0,1) when the
parameter of the information structure € is equal to 0.

Proof. Suppose v* > 0 and choose the equilibrium stated in the above
Proposition. When € = 0, we can regard Y; and Y, as a single outcome Y.
Note that as D is dominant in the stage game, a player always has a short-
term incentive to defect, irrespective of the opponent’s mixing probability g;.
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Then the above Proposition shows that both payers must be punished when
Y realizes. The associated likelihood ratio for player ¢ given player j's mixed
action is

g = 1=4) Pr(Y|D,C) +¢; Pr(Y|D, D) _(1-gj)+ 34 _3-4q
t T (1=¢)Pr(Y|C,C) +¢; Pr(Y|C,D)  2(1—q;)+q; 2+

, and by a similar argument to the proof of Proposition 3, we have

- 1+ 5g2 14+5¢

Note that 1 — 7q; is the stage payoff when player i plays C and player j is
choosing D with probability g;, and (1 —g;) x 1+ ¢; x 6 = 1+ 5g; is player ¢’s
current gain from defection in the same situation. As L < 2/3 for ¢; < 1/2,
we have

~ 1
1—7‘1j—1—+iq]‘<1—3——-=1—2<0fori,j=1,2andj;éi.

L% 1 31
which, together with (45), contradicts our presumption v* > 0. Hence we
conclude that best symmetric equilibrium payoff is 0 when e =0. =

Next we derive an upper bound the symmetric PPE payoffs. Let v*(6) be the
best symmetric PPE payoff under §. We suppress § when no confusion ensues.
If v* is positive, the Proposition 25 shows that there is a PPE achieving the
same total payoff 2v*, where a possibly mixed action is chosen (but no public
correlation device is used) in the first period. Let ¢; be the probability that
player i chooses action D in the first period (i = 1,2). The average payoff profile
of such an equilibrium, denoted (v9,v3), must satisfy the following ”dynamic

programming” conditions.
v 4+ 0] = 20* (46)

W= (1-6)(1-7g) +63 vi(w)p(w|C,g;), for i,j =1,2and j #i  (47)

W) = (1-6)(2—2g;) + 6 vi(w)p(w|D,g;), fori,j=1,2and j #i (48)

In the above expression p(wla,q) denotes the probability of w when a player
chooses action a (a = C, D) and the opponent chooses D with probability ¢
(note the symmetry of p(w|-,-)). The continuation payoff profile is represented
by (vi(w),v2(w)). Equations (47) and (48) respectively represent player i’s
payoff when she plays C or D in the first period. Together they imply that
player 4 is indifferent between C' and D.

By summing up (1 — ¢;) x(47)+¢;x(48) for i = 1,2 and using (46), we can
calculate the total payoff associated with the mixed strategy profile as

20" = (1 - 8)(2 - 6g2 — 6q1 + 10q1g2) + 6 »_(v1(w) + v2(w))p(wlar, g2)-
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Note that the first term is (1 —6) times the sum of expected stage payoffs, which
we formerly defined as F. Also note that p(wlqi, g2) is the probability of w when
players mix D with probabilities g1 and g. Subtract 26v* = 26(v9 + v9) from
both sides and divide by (1 — ) to obtain

20" = (2 — 6g2 — 6q1 + 10142) + 3 _(A1(w) + Ag(w))p(wlar, a2),  (49)

where (A;(w), Ag(w)) represents total (as opposed to average) future payoff
variations (around the ”best” PPE payoff profile (v9,49)):

Aj(w) = (vi(w) — 1), for i = 1,2. (50)

6
1-6
Note that the future payoff variations (A;(w), A2(w)) have to satisfy some
conditions. First, it must provide right incentive for each player. Subtracting
(47) from (48) and dividing through by (1 — §), we have (binding) incentive
constraints

1+ 5q] = Z Al(w)[p(wlc’ q]) —p(th, q,])]’ for 1’7.] = 15 2 and J ‘_)é Z. (51)

Note that the left hand side is the short term gain from defection, while the
right hand side shows the reduction of the future payoffs. Secondly, the future
payoffs (v1(w),v2(w)) should be chosen from the set of PPE payoffs, which we
denote by VPPE(§). By the definition (50), this condition is represented as

Voo L2281 0), a) + (68, 99) € VFPE(E) (52

Let us now summarize what we have found.

Lemma 27 Let v* be the best symmetric PPE payoff under discount factor 6.
Then, there exist q1,q2 € [0,1/2) and (A1(w), Az(w)) that satisfy the dynamic
programming value equation ({9), the incentiwe constraint (51) and the PPE
condition (52) for some feasible payoff profile (vQ,v9) such that v{ + v] = 2v*.

To get an upper bound for v*, we will relax condition (52). First, let V¥ be
the feasible payoff set, that is, the convex hull of stage payoffs

vF = Co{(1,1),(2,-6),(—6,2),(0,0)}.

Note that VFPPE(§) ¢ VF. As 2v* is the maximized sum of the two players’
payoffs over VPPE(§), we also have VPPE(§) C {v | v1 + vz < 2v*}. Hence
(52) implies

120 (), 2a)) + 08,08) CVT o [ 4w <207} (53)

The part of the efficient frontier connecting two payoff profiles (1,1) and (2, —6)

is given by
Tv; +vo =8,
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and by symmetry
v1+Tvg =8

is the other part of the efficient frontier connecting (1,1) and (—6,—2). Hence
any feasible payoff profile v in V¥ must satisfy 7v; + v, < 8 and vy + Tvy < 8.
Therefore, {(53) implies
Yw 1—6—6(A1(w),A2(w))+(vg,vg) c {v | vitvg < 20%, Tvi+vy < 8, v1+Tv2 < 8}
(54)
Let us now derive an upper bound of symmetric PPE payoffs. To this end,
we first find a lower bound of discount factor to support a symmetric payoff
v* € (0,1). Fix any v* € (0,1). Lemma 27 shows that there is a feasible payoff
profile (v9,v9) such that v + v§ = 2v*. Then, condition (54) implies (by the
first inequality on the right hand side) 138(A;(w) + Ag(w)) + v +v§ < 207,
which is equivalent to
Vw A4 (w) + Az(w) <0. (55)

Also the value equation (49) and Lemma 27 show

20" — (2 — 6gz — 61 + 1001q2) = ) _(A1(w) + Do (w))p(wlg1, g2)-

w

As (2 — 6g — 6g; + 10g1g2) is the sum of stage payoffs, it is less than or equal
to 2. This and 0 < v* imply

=2 <) (A1(w) + Ae(w))p(wlar, 42)- (56)

Let 7 be the minimum probability of outcome X when players choose D with

probabilities g1, g2 € [0,1/2]: v = ming, 4, P(X|g1, g2) subject to 1,92 € [0,1/2].

Note that p(X|q1,92) < p(Yilq1,q2), ¢ = 1,2 independent of € > 0. Clearly,

r > 0, and (55) and the definition of 7 implies 3__ (A1 (w) + Az(w))p(wlq1, g2) <

rmin,, (A1(w) + Ag(w)). Hence the condition (56) implies —2 < r min,, (A1(w) + Az(w)).Thus
we have another condition for (A;(w), A2(w));

Vw —2/r < Aj{w) + Ag(w). (57)

Now we present a crucial observation that we need large payoff variations of
(A1(w), A2(w)) in the northwest/southeast directions as € — 0. That is, as we
approach the information structure where the pairwise full rank condition fails,
we need large payoff transfers between the players to support a positive payoff
v*.

Lemma 28 For any (large) K > 0, there is (small) € > 0 such that for each
1,42 € [0,1/2], if (A1(), As2(")) satisfies conditions (51), (55) and (56), then
Vw Ay (w), Ag(w) < K cannot hold..
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Proof. Suppose that the assertion is not true. Then, there is a sequence
{e”, AT, A2, q7,qb} such that € — 0, as n — oo, which satisfies (51), (55),
(56), and Vw A;(w), As(w) < K. The condition (55), (57) implied by (56)
and Vw A;(w), Az(w) < K imply that the sequence lies in a compact set, and
we can choose a converging subsequence. Let (A, A3q?, ¢9) be its limit, where
(A9, AY) supports C with probability more than 1/2 for each player when € = 0.
However, since we can regard Y; and Y, as a single outcome Y when € = 0, the
following inequality holds as in Proposition 26.

2 - 6gz — 6q1 + 10q102 + Y _(AY(w) + A3 (w))p(wla1, 32)
1+ 5q2 1+5q1
< - L LY _ [ it L3
< (-te- g (1 )
which implies

> (AYw) + Ad(w))p(wlgr, a2)

w

14 5¢o _1+5q1
Li—1 Ly-1

< —6g1 — 6g2 — 10g192 —
< -4,
This contradicts the fact that the limit (A, AJ) also satisfies (56). ®
Note that given K > 0, the choice of € is independent of the initial choice of
(v9,v9) and v* in the above proof. If € chosen is small enough, then Vw Ay (w), Ag(w) <

K cannot hold for any (v9,v9) and v*.
Now define

A={(A1,A2) A1 + Ag <0 and —2/r <A + Ag}, and
B(K) = AN{(A1,42)]|81,A2 < K}.

Conditions (55), (57) and Lemma 28 implies that we can always choose (small
enough) ¢ in such a way that for some w, (A1 (w), Ag(w)) lies in the region A\ B.
Let us now summarize what we have found as follows.

Proposition 29 For any (large) K > 0, we can find a value of the signal
distribution parameter € > 0 for which the following holds: Let v* € (0,1) be
the best symmetric PPE payoff under discount factor 6. Then, there exists e
feasible payoff profile (v9,v3) such that v + v] = 2v*, where we have

Yw {-lg—é(A \ B(K)) + (v?,’ug)}ﬂ{v | vi+vy < 20%, Tvr+v < 8, v1+Tvy < 8} # 0.
(58)

As this condition (58) becomes more stringent as K — oo, if we choose
(small) e that corresponds to a large K, we need a fairly large discount factor é
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to support v*. Note that condition (58) is satisfied if 6 is sufficiently large, as in
Figure A. Hence, when we have the situation depicted in Figure B with small 6,
condition (58) fails for any feasible payoff profile (v}, v3) such that v +v) = 2v*.
Therefore, the value of § given by Figure B is a lower bound of the discount
factor that supports the symmetric PPE payoff v*.

V2

V1+7V2=8\
\ Vi)
((1-8)/8)B(K)+V /

Vi

vitva=2v*

vitve= 2v*-(1-8)2/8r

Tvitva=8
Figure A
V2

vi+7v2=§
((Q-8Y8)BXK)+ v — |

Vi

vitva=2v¥
vitv2=2v*- (1-8)2/0r

Tvitve=8

Figure B
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By the definition of B(K), points v’ and v” in Figure B must satisfy

1-6
vy —v) = —6—K. (59)
The value of v} is obtained by solving v; + vz = 2v* and v1 + Tvg = 8, and we
find v{ = =%, Similarly, v{ is determined by v1 + vy = 2v* - (%«Sﬁ and

T
vt (182
7v; + v = 8, and we find v{ = -S——ME(—j—)"—. By plugging those in equation

(59), we obtain a lower bound of the discount factor to support v*;

3K — 1

5(v*") = .
0= 3T s =)

(60)

Note that this is an increasing function with §(1) = 1 and 6(0) — 1 as K — oo.
This means that to support any positive value, we need a fairly large discount
factor when the signal distribution parameter € is small (hence K is large). The
inverse function of §(-),

— 1
() =1— (1—63)3K8 " (61)

is concave and depicted in Figure C.

70

/ 1 )
GK-1/1)/ (3K-1/r+8)

Figure C

By the definition of this function, the maximum symmetric PPE payoff under
8 must be located to the right of the graph of B(§), and hence T(6) is an upper

bound of the maximum symmetric PPE payoff under 6, whenever it is positive.

Proposition 6 is then given by defining H by H = §—KT—AL.
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