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For many centuries auctions have been a common form of selling procedure.
Although auction methods vary across country and product, the two most
frequently observed are the open, ascending bid (or English) auction and the
sealed bid auction. Recent theoretical research has led to a theory of equil-
ibrium bidding in these two auctions and a wide range of alternatives as well.
As a result it has been possible to compare the revenue extracted by the
seller under different auction methods and even to characterize the revenue
maximizing auction.

The Revenue Equivalence Theorem (cf., Vickrey [1961], Myerson [1981], and
Riley and Samuelson [1981]) asserts that when each bidder's reservation price
for a unit of an indivisible good is an independent draw from the same
distribution, and bidders are risk neutral, the sealed bid auction generates
the same expected revenue as the open auction. Much recent research has
involved weakening each of the main hypotheses —- risk neutrality, identically
distributed values and independence of values —— in turn. We shall illustrate
some of the principal conclusions of this work by considering the properties
of open and sealed bid auctions in a model of two bidders whose reservation
prices can assume only two values and by comparing these auctions to the

“optimal” or revenue-maximizing auction.

I. Revenue Equivalence

Imagine that the reservation price of bidder 1 (i = 1,2) can assume the
values vy (with probability pg) and vy (with probability l-pH), where
vg > vy, » 0. Bidders' values are private information and independently

distributed. Bidders are risk neutral, i.e., they maximize the expression.

(1 (probability of winning)v - expected payment



We suppose that an open auction proceeds by the auctioneer's continuously
raising the asking price. The auction concludes when one of the bidders drops
out. The remaining bidder is the winner and pays the dropout price (if both
bidders drop out simultaneously, a coin is flipped to determine the winner).
Given these rules, one can easily confirm that a bidder's unique (perfect)
equilibrium strategy is to drop out when the asking price reaches his reserva-
tion price. (There are other "nonperfect” equilibria, cf., Maskin and Riley
[1983a}). Thus the expected payoff of a vj-bidder (a bidder whose reservation
price is vy) 1is zero, and his probability of winning is %(1-p). The
expected payoff of a vy-bidder, by contrast, is his surplus if the other
bidder is "low" (since then the asking prices only reaches vy, rather than
vyg) times the probability of that event, i.e., (1-p)(vyg-vy). Since a vy
bidder wins when the other bidder has a low value and wins half the time when
the other bidder has a high value, his probability of winning is %p + (1-p).

In the sealed bid auction, bidders submit bids simultaneously. The
higher bidder is the winner (ties again are resolved by coin flips) and he
pays his bid. Consider a symmetric equilibrium. Because the distribution of
values is discrete, the equilibrium will involve mixed strategies. Notice
first that a vy-bidder (one whose reservation price is vy) will never bid
more than vy, because, if he did, the maximum of such bids (if bidders use
mixed strategies, that randomize over a variety of alternative bids) would win
the auction with positive probability, inducing a negative expected payoff.
Let b, be the infinum of all bids submitted.

Suppose first that EL < Vi Then bidders bid below vy, with positive
probability and so a v;-bidder's expected payoff is positive. Suppose
furthermore, that bidder 1 bids by with positive probability. Then bidder

2's chances of winning increase discontinuously if he bids just more then PL



while his payment if he wins scarcely rises, thereby raising his expected
payoff., But this is a violation of symmetry. On the other hand, if EL is
not bid with positive probability, then bids near EL have almost no chance
of wining, contradicting the positive expected payoff.1

Next let b, be the infimum of bids made by a vy-bidder. If by > vp»
then a bid strictly between by and vy has the same chance of winning as

b and so is preferable. Thus EH = Vi and a vy-bidder's expected payoff

H’
must be (vg=vy)(1-p). In equilibrium, any bid b made as part of a mixed
strategy must generate the same expected payoff. Therefore if F(b) 4s the

cumulative distribution function of a vg~bidder's bid, it satisfies
(2) [PF(b) + 1-p](vg=b) = (1-p)(vy—vy)

By symmetry, a vy-bidder's expected probability of winning is %p + (1-p),
whereas that of a vy~bidder is %(l—p). Because a given type of bidder's
probability of winning and expected payoff are the same in the open and sealed
bid auction, formula (1) implies that his expected payment is the same in the
two auctions. We have established the Revenue Equivalence Theorem for our
model. Indeed, we obtain the same expected revenue from any other auction in
which the high bidder wins, the expected payoff of a vy~bidder is zero, and
the expected payoff of a vyg~bidder is (l—p)(vH-vL).

It 1s of some interest to compare the open end sealed bid auctions with a
revenue-maximizing auction (cf., Myerson [1981] and Riley and Samuelson
[1981]). Suppose that bidders were offered the choice between bidding vy or
by = (%-vH +-% (l-p)vL)/(%-p + 1-p), with, as always, the high bidder
winning. Because by 1is greater than vL» a vp~bidder will bid vy. Since
(%-P + 1-p) (vy—by) =-% (1-p)(vg=v;), a vy-bidder is indifferent between bid-
ding by and vy, and so might as well choose the former. Sinee a vy-bidder

bidding by has the same probability of winning as in an open or sealed bid



auction (%-p + (1-p)) but has a lower expected payoff, (%-(I-P) (vg-vy)
rather than (l-p)(vH-vL), his expected payment must be higher. Thus, this
alternative auction generates higher expected revenue. Indeed, it is optimal
if vy > pvy. (If vy < pvg 1t is optimal to set a reserve price at \' 0
thereby rejecting all lower bids.) In either case, the optimal auction
differs from the open and sealed bid auctions by prohibiting bidders from
making certain bids. This conclusion generalizes to more complicated models,

including those with a continuum of possible reservation prices.

II. Risk Aversion

Let us modify the model of Section I only by supposing that bidders are
risk averse. Let u be a strictly concave von Neumann-Morgenstern utility
function, normalized so that u(0) = 0. A v-bidder's payoff if he wins and
pays t 1is wu(v-t); his payoff if he loses and pays t is u(-t).

Risk aversion does not alter bidders' behavior in the open auction; it is
still optimal for a bidder to drop out exactly when his reservation price is
reached. Hence expected revenue is as before. In the sealed bid auction, vi-
bidders continue to bid vy, and if Fp 1is the c.d.f. of a vy~bidder's bid,

it satisfies the analogue of condition (2):

(3) u(vg=b) [(1~p) + pFR(b)] = u(vy=vy)(1-p).

u(v,~v.) v _-v
H'L H 'L
u(vH~b) < VH-b for VL <b < vy.

Hence, (2) and (3) imply that Fp(b) < F(b) with strict inequality for bids

The strict concavity of u implies that

greater than vy but less than the maximum. That is, Fp stochastically
dominates F, and so the expected bid by a vy—bidder is higher with risk
aversion than without. We conclude that, with risk aversion, a sealed bid
auction generates greater expected revenue than an open auction (cf., Butters

[1975] and Holt [1980]). Intuitively, increasing a bidder's risk aversion



heightens his fear of losing and so, in a sealed bid auction, induces him to
bid higher. Viewed alternatively a sealed bid auction, unlike an open
auction, insures a winning bidder against fluctuations in the amount he has to
pay, and a risk averse bidder is willing to pay a premium -- in the form of a
higher bid — for this insurance.

By requiring payments even of losing bidders, an optimal auction (cf.,
Maskin and Riley [1984] and Matthews [1983]) can exploit the fact that a risk
averse bidder's marginal utility of income depends on whether he wins or
loses, Let my be the probability of winning and bi and ay the payments

by a winning and losing bidder, respectively, of type i (i = L,H)., An

optimal auction chooses LA bi’ and a; to maximize
(4) p(ngH + (l-nH)aH) + (l-p)(anL + (l—nL)aL)
subject to
(5) nHu(vH-bH) + (l—nﬁ)u(-aﬁ) > "Lu(vH-bL) + (l-nL)u(-aL)
(6) wLu(vL-bL) + (l-nL)u(-aL) >0
1 -
(7) 7P+ A-p) < my
(8) LN pr, + (1-p)=
2 H L
and
(9 L 0 and L3 > 0.

Constraint (5), a self-selection constraint, ensures that a vg~bidder is at
least as well off making a high as a low bid. We have omitted the analogous
self-selection constraint for a vL-bidder since, as we shall see, it is satis-
fied automatically. Constraint (6) guarantees a vy-bidder a nonnegative
expected payoff from participating. (Given (5), a vg-bidder's payoff will

also be nonnegative,) Condition (7) says that a vg~bidder can win with at



most probability 1 if the other bidder has a low reservation price and,
given the symmetry of the model, with at most probabiliy %- is the other
bidder's reservation price is high. Constraint (8) requires simply that each

bidder's probability of winning, unconditional on his reservation price, not

1
exceed e
Letting o and B be the Lagrange multipliers for (5) and (6),

respectively, we obtain the first order conditions

{ Py ~ aﬂHu'(vH—bH) =0

(10)

p(l-nH) - a(l—nn)u'(-aH) =0
and

(1'P)ﬂL + awLu'(vH-bL) - BwLu'(vL—bL) = 0
11 {

(1-p)(1-m) + a(l-n )u'(-a;) - B(1-m du'(-a ) = 0.

From (10) we find that vg - bg = -ay, i.e., a high bidder is perfectly
insured; he receives a monetary transfer —aH(>0), as compensation if he

loses. From (11) and the fact that u'(vH-bL) < u'(vp=by),
(12) (B-a)u'(-aL) = 1-p > (B-a)u'(vL-bL)

Thus a vy-bidder is better off winning then losing (vy = by > -a). More-
over, since (from (12)) (6) is binding, he must actually pay a penalty if he
loses (aL > 0), which we can interpret as an entry fee. Because (5) is
binding and Vg - by, > —a;, we have vg - bg < vg - by, i.e., a vH-winner
pays more than a vy~vwinner. If (8) is binding, as it will be if p 1is small
enough, we can solve for . and rewrite (4) as an(bH-aH—bL+aL) + pay +
(%--p)aL. From the above argument, by - ay - by + aj, > vg - vy, » 0. Hence,

constraint (7) is binding: ™ =-% p + (1-p).



We conclude that an optimal auction with risk averse bidders resembles
that for risk neutral bidders. Bidders are offered the choice between two
prices by and b; (if, as before, p 1is not too high) and the high bid
wins. However, if a bidder loses with a bid of by, he 1is compensated for
losing, whereas if he loses with a bid of by, he is penalized. Intuitively,
introducing a penalty heightens a risk averse bidder's fear of losing and
therefore increases the revenue that can be extracted from a vy~bidder. Of
course, this penalty, by increasing risk, reduces the payment that a vy-bidder
makes. But the penalty has no effect to the first order, since, with no
penalty, a vi~bidder is perfectly insured.

It remains only to show that the solution to the program of maximizing

(4) subject to (5)-(9) satisfies
(13) "Lu(vL-bL) + (l-wL)u(-aL) > nHu(vL—bH) + (l-nH)U(‘aH),

the self-selection constraint for vy-bidders. But (13) follows immediately
from the facts that (5) holds with equality and nHu'(v-bH) > nLu'(v-bL)

(since Ty > . and by > bL) for all v.

111, Aszmmetrz

Let us revert to risk neutrality but now drop the assumption that
valuations are identically distributed. - Specifically, assume that bidder 1's
reservation price is distributed as in Section I but that bidder 2's
reservation price is either Wy or w with probabilities q and 1-q,
respectively. Continue to suppose that the two bidders' distributions are
independent. For convenience, let us suppose that vy =W = 0. Then the

expected revenue generated by the open auction is

(14) Pq min{vH,wH}.



We wish to compare the difference in revenues, A, between the sealed
bid and open auctions.2 To do this we shall consider two polar cases of
asymmetry: (i1) both bidders have the same probability of being high but have

different high values, i.e., p=q and v, #w,, and (ii) both bidders

H
have the same high values but different probabilities, i.e., vy = wg and

P # q.

It i1s not difficult to see that in case (1), A is positive. We know
from Section I that when Vg = Wy, A 1is zero. Now imagine raising wy
above vge This does not affect revenue from the open auction since there is
no change in the distribution of the second highest reservation value. How-
ever, with a higher Wy, the optimal response in the sealed bid auction by
bi&der 2, when v = Wy, to bidder 1's equilibrium strategy, is a higher bid.
Bidder 2's higher bid, in turn, induces bidder 1 to bid higher than before
(for details see Maskin and Riley [1983b]). Hence, revenue from the sealed
bid auction rises, and A becomes positive.

In case (ii) expected revenue in the open auction is PqVy. In the

sealed bid auction, the equilibrium c.d.f.'s, F; and Fy, of the bids of

bidders 1 and 2, when their reservation prices are vy, satisfy the analogue

of (2):

(15) (14q+aF (b)) (vg=b) = (1-q + qF5(0))vy
and

(16) (1-p+pF; (b)) (vg-b) = (1-p + pF}(0))vy.

Notice that right hand sides of (15) and (16) allow for the possibility that a

vy—bidder will bid zero (actually, infinitesimally more than zero) with

positive probability. This will be the case if p # q since both bidders

must make the same maximum bid SH3 when their reservation price equals vys



and (15) and (16) can be satisfied for b = SH only if one of F;(0) and
F2(0) is nonzero. For example, if p > q, then (15) and (16) imply that
by = qvy = pv,(1-F, (0)),

and so Fy(0) =1 - q/p. Integrating (15), we obtain qzvy as the expected
payment by bidder 1 if his reservation price if Vy> Where z =
]Fz(b)dFl(b). Similarly, from (16), the expected payment by bidder 2 is
(p(1-z) + q-p)vy. Hence total expected revenue is qsz, which is less than
the open auction revenue, pqvy. Therefore, for case (i1i1), A 1is negative.

Roughly speaking, the sealed bid auction generates more revenue than the
open auction when bidders have distributions with the same shape (but differ-
ent supports), whereas the open auction dominates when, across bidders,

distributions have different shapes but approximately the same support.

IV. Correlation

Let us return to the model of Section I except now assume that
reservation prices are correlated across bidders. Specifically, let rij
(1,3 ¢ {L,H]}) be the joint probability that bidder 1's value is vy and that

bidder 2's value is Vye Correlation implies that

(17) rHHrLL - rHLrLH + 0.

As usual, behavior in the open auction remains the same, and so expected

revenue 1is
(18) TaHVH + (l"l‘HH)VL.

Making the obvious modifications in the analysis of Section I, we conclude
that expected revenue for the sealed bid auction is also (18). This equi-
valence between the two auctions does not generalize to distributions with

more than two point supports because, in general, with correlation, a higher
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reservation price does not imply a higher bid for the sealed bid auction
(although it does for the open auction).4 Any condition sufficient to
guarantee that bids are monotonic in reservation prices, however, ensures
equivalence. One such condition 18 that the reservation prices be affiliated,
that is, pairwise positively correlated across bidders (cf., Milgrom and Weber
{1982]).

When (17) holds, an optimal auction extracts all surplus from bidders
(cf., Crémer and McLean [1985]). To see this let cg3 h3 e [L,H]) be the
payment the bidder 1 makes when his v = vy and bidder 2's v = Ve To

extract all surplus the cij's must satisfy

(19) %'rLLvL T Tie®e T TunCum < O
(20) (%'rLH+rLL)VL ~ TpChr T ToelaL < O
(21) (%'rHH+THL)VH ~ TmrCmn T THoCEL < ©
(22) 1. v - Ty <0

2 "HLVL T THeCLE T THLCLL
Equations (19) and (21) require the surplus of vy~ and vg-bidders,

respectively, to be zero. Inequality (20) ensures that a vi-bidder is not

better off bidding as a vg~bidder, and (22) imposes the coresponding

constraint on a vy~bidder. But from (17), we can solve for cij's that

satisfy (19)-(22)).

V. Concluding Remarks

We have discussed three major hypotheses of the Revenue Equivalence
Theorem, but there remain two more implicit in our formulation. One is the
assumption that only a single item is sold. If buyers have downward sloping

demand curves and there are multiple units for sale, the Revenue “Equivalence
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Theorem again fails. Extrapolating from some simple examples we conjecture
that open bidding will tend to dominate sealed bidding in this environment.
The second assumption is that a bidder's reservation price does not
affect the reservation price of any other bidder. This is the "independent
values™ hypothesis: the assumption that reservation prices are a matter of
taste rather than a reflection of information about the intrinsic value of the
good. In the latter case, the "common values" model -- the open auction tends
to produce higher revenue than the sealed bid when our other hypotheses are

maintained (cf., Milgrom and Weber [1982]).
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Footnotes

*We are indebted to William Samuelson for very helpful suggestions. We
thank the Sloan Foundation and the NSF for financial support.

1Our argument here presumes that the equilibrium in the sealed bid
auction is symmetric. One can show (Maskin and Riley [1983a]) that there is
no asymmetric equilibrium.

2As our model is formulated, an equilibrium in the sealed bid auction may
not exist. The nonexistence problem, however, is an artifact of our allowing
literally a continuum of possible bids. In fact, we can restore existence
even with a continuum by allowing the possibility of positive but
infinitesimal bids, which we implicitly assume in our analysis.

3If, say, bidder 1's maximum bid were greater than that of bidder 2, 1
could lower his bid without reducing his probability of winning.

4Suppose, for example, that v can take on three possible values: vy >
VM > vpe Assume that if v = vy for one bidder, then it is very likely
that v = v; for the other bidder. Assume furthermore that if v = vy for
one bidder then the other bidder in all likelihood has the same reservation
price. In this case, a vy~bidder will bid higher on average than a vy-bidder
in the sealed bid auction. Furthermore, the sealed bid auction, at least for
some parameter values, generates strictly more revenue than does the open

auction.
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