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The volume §f national saving in the Western countries has so far been'
regulated by fiscal conventions and beliefs; not by any ruling conception
of intergeneration Justice.l . o

Social welfare theoEists have neyértheless looked'éhead'to the time
when national saving, and the iﬁtertemporai,allocatidn of res;urces gen-
erally, might be put iﬁ the service of sbme express'conception of inter-
generationai justice. Among the rival standards of intefgeﬁeration opti-~
mality that have so far been considered, the uiilitirian notion is un-
doubtedly the foremost. From Ramsey [ ] to Koopmans'[ . ], the sequence

ofvgenerafions, 1, 2, ;.{, are each imagined to submerge their ggoistic

utilities, Ul, U2, +esy into an agreed-upon social-welfare functional,

W =W, Uy, ...). With the usual specifications of W end of tastes and
technology, the result is that the optimal sequence of generation utilities
rhwmm&mkﬂh:Ul<%<03ug

‘Utility rises in these utilitarian models because, at the efficient
intertemporal allocation affording (highest) equal utilities, the sacrifice
_of utility by the present generation must, up to a point, permit a reallo-

cation allowing increases in future utilities sufficient to increase the

1For a time the dogma of the balanced budget worked like a charm to ward

~ off the appetite for larger consumption. With fiscal orthodoxy now weaker,
some dubious fiscal theory and widespread opposition to high interest rates

and inflation, have kept a political 1id on the growth of the public dedbt.

.

2Provided that initial cepital endowments do not already permit the main-
tenance of the "maximum sustainable"” Golden Rule level of utility, a case
not considered realistic. Note that with the introduction of a finite

time horizon, as in Cass [ ] and Samuelson [ ], the utilitarian model
gtill displays rising utility under the same kind of initial conditionms.

\



resulting W(*) -- provided that W is increasing and symmetrical and pro-
vided that the social rate of return to investment is positive. The reason-
ing involves little more than ?isher's theory of saving by a two-period
 household facing a posit}ve rate of interest and having'zero pure time pfe-

-

ference. ,
Yet is it puizling that a Qulti-period-householé,:willing fd exehange
enjoymeﬁtS'in one period for larger oﬁes at another, should constitute
an allegory for the multi-generation society. The Fisherine household
_does not "sacrifice” enjoyment, it oniy defers enjoyment for the sake of
larger lifetime enJoyment. -Wh;.should a genération be expected to sacri-
fice lifgfime consuﬁptioﬁ for the sake of any other generation no less
fortunate merely on the condition that the investment pay a positive divi-
dend? The present generation might well éomplain that it was being madé
to suffer for the ﬁatural accident of its place in the merely chronological

generation ordering:

The time is out of joint; O cursed spite,
That ever I was born to set it right!

' The neo-utilitiariens' ansver to ?his complaint is that anyone would
have agreed to make some investment for future generatiohs if he had not
known which generation he would be born into and believed that one gen-
eration was as.prdbdble as another. But among wide numbers of pedﬁlé

that argument has not been persuasive: Adherenc; to the ethic of sharing

alike, where that is easy to interpret, is for many more satisfactory



than the egoistic ma.ﬁmiza.tion of hypothetical expected-utility, however
1mpa.rtial the choice setting is construed to be.3 | .

In his recent book on distributive Justice [ ], John Raﬂls has pro-
posed the substitution of the maximin criterion for thé utilitarian one of
MM W. Several papers have since appeared which utilize minimm utility
as the mgxlmand in the study of optimally redistributive tax-and-transfer
.poli‘cies for intragenerational Justice. In these studies the capital
stock is subject to certain constraints, if there is capital at all, in
order to abstract from intergene.ra.tional choices.h Offh’and, it would seem
equally #atural to eniploy the Rawlsien conception of social welfare,

W = min (Ul, U ), in the study of intergenerational justice. A

py e '
society dedicated to this sta.ndé.rd of justice would program its taxes and
transfers, and resulting stocks of capital and national debt, so as 'to
maximize the lifetimé utility of the generation (or gene_rations) having
least utility -- over all foreseeable générations. This paper is an
essay in thevtheory of maximin growth. |

Optimal growth under the maximin criterion has so far been the
subject of preconception more than hard ané.lysis. In the prevailing wis-
dom, "maximin growth" is no growth at ali_. The reasoning to that conclu-~

sion proceeds satisfactorily to a point. Suppose that individuals are

3or course, there are more interior difficulties with the neo-utilitarian
position. While we may be egoists, what if future generations are ascetics,
or intergenerational egalitarians or somehow rendered incompetent? Several
philosophers have doubted whether the neo-utilitarian thought-experiment is
a meaningful method to determine the rate of national saving. .

hIntragenerational lifetime justice with capital is the subject of papers
by Hamada | ], Ordover [ ], and Ordover and Phelps [  ].



giveﬁ 11m1‘>—smn grants (or other government benefits) which are differen-
t:l:ated according to the generation to which they 'b\elong.lj Then, barring
corner constraints (and none 'se?ms in order), any egoistic generation will
have its "utility" pulled up to the next-lowest utility level aimply_ by
being awarded a sufficiently large lump-sum grant —— at .the co.st of a iessér |
utility for some othgr generafions (unless .t'he previous allocation vas |
Pareto-iﬁei‘ﬁcient across generationa) . Hence, any allocation that |
offered a generation a smaller utility than the utilities alloted t(‘:‘all
other generations could not be an intei'generation ma;ad.min allocation. I'E
follows that maximin growth equ;lizes the utilities of all generations,
specifically, at the highest .level affordablg by initial conditions and
foreseeeble natural forces -- ‘at least in a deterministic nbdel #here the
terminal daté is known, or else never known beforehand.

It does not follow from the sbove argument, hawéver, that the maximin
cr:l_.terion at once freezes society into a steady state of equﬁl capital and
pational income per head over all generations. The intertemporal charac-
ter of the i.ntergenera.tiona.l utility functions needs to be very special,
and quite unrealistically so, for that implication to emerge. Solow [ ]
derives Such a result by meking the utility of the t-th "generation"

e function solely of "consumption" in thet-th period. Then equa.l utility

over generations enjoins constant consumption over time -- equal, in the

5Lump-8\m redistributions among persons of generally differing yet imperfectly
known earning powers do not provide & reliable device for maximizing mini-
mm (expected) utility within a generation of heterogeneous individuals, but
the opportunities for redistribution between generations are presumably

much more dependable.



case of en unbounded horizon, to (constant) national income. The task of
the maximin programmers, in Solow's model, is simply to meake those capital—
investment substitutions for other other capital goods, especially for =
dwindling natural resources, that maximize the steady-state level of
national income. A number of utilitarians, e.g. Brandt t ].and Solow,
while not at all averse to equality nf utilify, have regarded this alleged
zZero naxional gaving feature as a serious defect of the maximin criterion.
However, to establish the justice of positive national sawing,.at least

from some initial conditions, it suffices to recognize the generation

as itself "intergenerational", a bridge betveen old and young.

o e o - s g

N The following section describes a simple modei"of overlapping genera— ‘
tions, and shqws that the Rawlsian problem can be formulated in dynamic pro-
gramming terms. A prdblem~ovnr the eristence of & marimin solution is then
discussed. The iatter is formalized in section 2, where it is shown fhat,
'fpr initial conditions inside some domain, there is a uniqun optimal sequence
of intergenerational "trades". A generation that adds to the capital étock,

. receives in ernhange a moral claim to additional old age consumption. -A

: gnneration that receives added capital tovwork with, also tekes on an
obligation to work harder. B} | |

Section 3 focusses on the nature of the dynamic patn for the special‘

case of a fixed supply of labor. It is shown that the initial generation

increases the capital stock and 'trades' this for higher oldlage.consump-
tion. Ali other generations maintain this higher capital stock,trading
with their immediate descendants exactly as their ancestors traded with

" them.
The variable labor case is examined in section 4, It is showh that in



general the intergenerational trades differ over time. Moreover, under

a certain plausible condition on households' consumer preferences, we’

show that, from any-starting point off some stationary state locus, the

capital stock changes monotonically over time, and approaches asymptotically

" a stationary state appropriate to ‘the,starting point. . oL I' )
Then in section 5-, it is si:own how 'the“maximin allocation ‘program

can be supported" by a system of private wealth-ownership and perfect de-

centralized markets supplemented by the institution of public grants and |

public debt. | ~ -

SRS e P PITICIIIIIN ("___m“ >

Less constricted notions of the generation" and its interests, offer

other avenues of escape from the straight,jac.ket of zero saving (it a

straightjakket it is viewed). _ Bawls, taking the utilitarian critique

T . A bonoshunau

perhaps too nmch to heart, proposes that "ties of sentiment" will insure
that 2 poor generation will want to improve the well-'being of its successor
._ until some satisfactory level of well-'being is approached.6 We investi-
gate Rawls's suggestion in Section 6. )
There is another easy escape from zero growth. Rawls states that

each generation has a high obligation to preserve the society's art and
science for the next generation. It might mrther be maintained that a
generation takes pleasure in adding to society's knowledge and indeed to
society's aggregate capital and net national proo.uct. The point is conidered

i{n Section T.

61n one implementation of this suggestion, Arrow [ ] makes utility of
each one-period generation depend vicariously upon the consumption of the
next generation as well as its own. While his assumptions led only to a
regular two period cycle, Riley [ ] has shown that such an approach
may also yield long run growth of capital and income. :
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1. Formulation of the Problem and Outline of the Solution

By

At the beginning of each period a new generation of identical indivi-
duals is born into the economy.. Each generation cen work in its first
period and can consume at the end. of its first and second period. All gen-
erations are alike in size, tastes and technologr. Whether they will ha.ve

identical endowments of capital and obligations to the old, of cours_e, is

8 matter to be determined.

Consider the situation of thet-th genera.tion born under Justice,
.t = l, 2y cos It has availablé for use in current period production,

a stock of capital kt 7 left over by the previous generations (now o0ld).
It faces a predetermined claim 'by the older generation for second-period

consumption x 1 The two-dimensionsl des'criptiori of the state in terms

.

of (kt-l’ xt-l) reflects the .fact that two genemtions, joung and old,
co-exist in period &. | B

The optimal dynamic program must d.etermine the fraction of the period R't
in_which the youns are to work, a.nd what portion of the resulting gross

output, F(k 2. )s they are to consume, Cy» in ea.eh period t. The un-

t-1°
consumed output is the capital t’ of the next period:

k, = F(kt__l, zt) o S o - (i.l)

Gross output is related to Pigovian income, V> by

=Fk, . 8) -k E L ¢ 50

Yy . L1

where, from (1.1), Yy is the largest consumption possible if capital is
kept intact, i.e. k= kt-l' The production function F is linear ‘Thomogene-

t
ous, concave and twice differentiable, with first derivatives Fk(k,!,) and

L
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Fz(k- ;!.) 1?§sitive everyvhere. For ever;v L :there-mi;: #o;e -l;:-(%.) >0 ‘beyoxvl‘d which
the net marginal product of capital is zero or negative. Also Fk(k L) +
as k + 0. Finally we suppose F(0, %) = F(k,0) = 0. Note that all variables
are negative and in per capita form. '
Each generation's preferences are "identic'al" a:lld '"egoistic". ‘They are
" represented by en ordinal utility nmctiox‘l‘\‘rhich is (functionally) indepen-

dent of"_*g_ end in which only the generation's own experiences figure:

-U;fU(ct,x,lt) | o o o : - (1.3)
.The ut‘:llity function U Vis stric{?ly quaéi;concave, And_ tﬁice. aif;felr-
entisble with derivatives'uc(c,x,z) >0, Ux(c,x,!.) > 0 and Uz(c,x,l) <0
everywhere. Whenever it is desired to avoid corner solutions it will be
assuméd that U(+) + -= as eithef ¢ or x or "leisure", 1-%, goes ‘to zero.
Associated with each allocation {‘;t’ x s !.tft=l‘,2,...} is a corres-
ponding sequence of intergenerationally commensurate ordinal utilities
1> Ups ++-}. Such an allocation is feasible 1f the 1m§11gd (k,,x) 20
for allt = 1, 2, ..., given the initial state (kgsxy). Our maximin
pfob]em is, roughly, to find from the fg,as:lble allocations one that makes the

smallest of the utilities as large as possible.T

7In the above formulation of our problem, x, is arbitrarily given. It is
‘nevertheless possible utlimately to select X - in view of the past history
of the old, (c¢_,2 ), to set the lifetime utigity of the old, U , at what-
ever feasible fev@1 may be desired. In particular, one could 8hoose x

to maximize the minimm of (U , U., U., ...), thus extending maximin j¥stice
to the old. Certainly the orgginal eSpectations of the old should not be
ruling. ’



We a.dopt the infinite time horizon. Itisnot implied that so-oiety-v |
as we know it will surely go on forever; a Rawlsian interpretation is that
there is never a period t 80 fa.r in the future that the proba.bility of sur-
viva.l for another period is zero. The notive for the infinite horizon is
mthematical to maintain the time-independence (or stationarity) of the
optimiza.tion problem from generation to generation. But these analytical

) ga.ins come at the cost of some difficulties over the existence of a ma.ximin

pa,th, at least for some subset or.initial states. L o K

To ‘begin with, we seek the path or pa.ths which
maximize | inf U(c »X ,Zt) ' o : (.
’{ct’x’ t’ k} ~-'— -:'~-V~.

=F,(k,2.t)-c- >0

st. k, 6 7 Tl =

with. (ko, xo) given.
A property of the infimum ﬁmctioh 1s

231

4nf U(eT, xT £ ) = min[U(ct, X, s 2. ), inf U(cT, Xos Lo

™t T4

Thus, whatever the state (k b Xt ) that generation t leaves to its immediate
| descendants, the latter will maximize the infimm thereby made fea.sible,

from period t+l. Hence the max-inf pro‘blem in any period t =1, 2, ooy

can be descri'bed by the typical functional equation of Qynamic prog::-amming.8

8cer't;ail:lly the supremum exists. Moreover m(k,x) is continuous (see
" section 2), . hence the supremum is attained.
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N )

)= max {min[U(c S A ), m(k xt)j} -

i.e., m(kt_l, X, 1 2. ) v |
oo %e 2" o (L) '
: 1.5
sot. k =Pk o) = =% 520

— ' : ) : . . L SR

}'l'he 'return' st the first stage l"1(1‘0»1‘.0) is of course the solution o
(1.4). | .
‘Before discussing the solution to (1. 5) for arbitrary initial conditionms,
"4t is convenient to consider the "Golden Rule” state. Since the production
set is bounded from 'a.'bove, and U+ —» as x +l0 there exists a finite state
(k s X Gy which is maximal (and hence golden) over all stationary states
'{(k , X, ) = (x, x)}. That is, after choosing the optimal levels of ¢ fia.nd
%, it affords the highest (stationary) level of utility, denoted u
Suppose the initial state is (k, x ). Because the Golden Rule path is
_efficient, any path with Ut > UG for some t requires Ut' <UG for some '
| ofher period t' ana hence min{U., Ué, cee] < (f' Then all such paths are.
_ inferior to the stationary sequence’ {(kt’xt) = (kG,xG_)} Amplying
thet the latter is a Rawlsian allocation. | | _ |
Now if x .were larger (sma.lier) than xG, the utility possibility of
any generation — generation 1, for example -- would be decreased (increased),
given that other generations continued to én,‘joy Ut = UG. But up to a point
'ea.ch increase in x, could be exactly compensated by an increase in ko '
‘since Fk(k,!.) > 0. |

Hence we may define a locus of 'as-good—as-goldén' initial states

. (k (x ) x ) having the property that, for the given x s k (x ) is the

e 1 e 2 g A e
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smallest k° from which there exists some feasible path affording Ut = UG

__forall t=1,2, ... Fromsuch an initisl state, the latter path is

again a Ravlsian allocation. For if some generation could enjoy Ut > UG,
then it could have enjoyed UG with less kt-l; but then k»t o ‘couid have

been smaller, and so on, leading to the implication that k = kG(xo) was

B mecessaﬁly large for Ut = UG, a contradiction.

The é.s-good—aSegolden initial state locus is the upward-sldping cuﬁe
iabénéd m(k,x) = W in Figure 1. From our derivation of this locus, it
follows that all 1nitiél states lying to the 1eft must have a lower re'turﬁ.
Moreover, in section 2, it is den;onstrafed that for all kv< kG(x), the re-
turn m(k,x) is str.ilctly increasing in k, therefore all Miso-m contours"

in this region are "thin". b\

To the right of the as-good-es-golden locus the situation is quite’
different. In sectioﬁ L it is shown that at least oﬁe point on eany iso-m
.contour must be a stationary solutiqn. 3ut the value of the return for
stationary states is bounded from above by UG, therefore for any (k 4X)

* m(k,x) < ¢,  That is, u% is the maximum return from any initial state.

If in addition we assume free disposal, it is always posgible to

move immediately to the as-good~-as-golden locus, implying

a(k,x) = U¢  for all k > x%(x) o (1.6)

Suppose initial conditions are such that the latter holds. Clearly
generation 1 <can use k, - kG(xo) units of capital to increase its own
consumption, and hence utility, wvhile maintaining the infimjum, UG, for

all future generations. Alternatively, half of the 'surplus' capital can

L]
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be 1nves;:e‘d yielding a higher total output in the following periéd. Con-
tinuing this procéss indefinitély yields (sincé Fk > 0) a sequence of util-
ity levels all str;ctly greater 'than UG. But from the above discussiqn
thé' infimum of th;ls Aséquence. is UG, therefore we have a sequence with no
~m1n11irqm utility which is strictly fmferred by all generﬁtions'tqthe se;
quen‘ce"v{Ut} =" {u%)}. Thus, there is no Rawlsia.n 'maxi-min' solution.

For the remainder of the paper we focué on ipitial states striétly
vinfez"ior to the as-good-as-golden states, i.e. k, < kG(xo). ‘Here we
provide an outline of vthe éolution; with a more vigorous’ @iscﬁésion foilowing

in seétion 2.

Certainly the infimum for all generations beginhing with the second,

cahnof be léss than the infimm over all generations. o "
i.e. -(H’ﬁ) e [(x,x)]|m(x,x) _>_m(k°,x°)]

This set is the shaded region in Figure 1. All pointé in the interior
yield a return strictly greater than m(ko ,xo).
' Suppose the solution (k{,x;) is a point such as A. Since m(ko,xo)

is the infimum, we must have

U{Z_lf(ko,xg) DR - | - an

Then from Figure 1, there is another point B yielding an inﬁmuﬁ for all
future generations in excess of m(ko ,xé) and also & higher olld age consump-
tion for the first generation. But this contradicts the assumption that
m(k ,x ) is the infinm.
o’o
Thcrefore, the solution (k{,:{) must be a point such as C, lying on

the boundary of the feasible set.

\
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'i.e. m(k‘l',xi) = m(ko,xo)

From (1.7) Ug>, m(ko,xo). But if the inequality were strict, there would
be a point lying directly below C such that U? > m(ko,xo) . '
B B ' . :
and‘m(kl,xl) > m(ko,xo), agein a contradiction. Hence Ug = m(kq,xo).
‘Finally, since (kI,x{) 1ies on the boundary, the above 'arghments can

be repeated for period 2 and for all those following. We therefore have

Uf = m(k$,x¥) = m(k_,x,) " 1;-='_1,_ 2, .o B (1.8)

i

Thus, vhenever X ?kc(x;), the max-inf solution involves a sequence
of intergenerational trades which exactly maintain the first period return
m(k WX ). Moreover, the return is Jjust attained by all generations hence
a max-inf solution is also a Rawlsian maximin solution, distributing utility

equally a.mong all generations.

Intuitively one would expect a unique Ravlsian allocation, given that
tastes are assumed to be strictly quasi-concave. That such is indeed the

case, follows from the more formal analysis of section 2.

=7
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2,. The Return Function

We begin with a demonstration that m(k,x) is continuous, therebf
Justifying the assumption made in (1.5), that thevsolution to the dynamicv
programming problem is the maximnm rather than the supremum.

Suppose that the economy is- 1nitially in a state (ko,x ), thax is, it

begins with 8 capital stock of ko and & debt to the previous generation of

x Since the dynamic programming solution m(ko,x ) is an 1nf1mum, there

0.
exists, for any € > 0, a feasible sequence of vectors

{g,} = (G aky oKy o2 = 112,000) (2.1)
such that min {Ut} > m(ko,x ) - l - (2.2)
. +£>0 . -

From our assumptions about U and F, the sequence'{zt} is bounded from below
by a stiictly positive vector. In particular,>for sufficiently small §,
kt - 6> 0 for all t. Then it is feasible to reduce cepital by 6§ in al1 -

periods and follow a new sequence {Gt,xt,kt-G,lt} where Gt is given by:

(k,-8) - & -

X1

= F(k,_,-6 o) © (2.3)

Since c satisfies (2.3) with 6 = O and since F is concave we have,
c, =8 < [F, (x,_,=6:2,) - 1)6 o (2.b)

The right hand side of the expression approaches zero with 6. Therefore

for any € >0, there exists a 6§ > 0 such that

= U(Gt, t,9.1;) > U, -'-;- €, for all ¢
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implying nin {6} > min {v,} - -%- €
Y t>0 t>0

Combining this result with (2.2), and noting again that Ut is feasible
for the initial state (x -G,x ), we have finally
m(Xk -6,x ) > min {U > m(ko,x ) - ¢
Since m(k;x) is a non-decreasing function of k, the continﬁity of m with
respéct to k, is estdblished.

| ‘Arguing almost identicelly we can also gstablish'thgt #(k,x) 1s a con-
tihuoué function of x. | - | | '

lwe'next.prove_that mis e semi-strictly‘quasi-concave function. Since

m is alsb continuous, an:immediate.implicatioh is that m is quasi-concave, .

and hehce that iso-m contours have the general shape depicted in Figure 1.
Theorem 2.1. The return function m(k,x) is semi-strictly quasi-conceave.

It will be convenient to use the nbtation zv to mean the convex combina-
tion vz' + (1 - v)z" of any two vectors z' and z".
" Then for any two initial states (ko,x )y (k§,x0) such that m(k},x?) <

m(k",x") ve must show that
m(ko,x ) > m(k',xé) ] 0<v<l

COrresponding to (k",xg) is an optimal sequence of vectors

"{c;,x", ki,L} such that
' U(c ’ t.l") = U; >m" > m' . (2.5)

Similarly for (ké,xé) there is an optimal sequence {c%,x%.ké,lé}
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‘ - Bete Ul 2w , (2.6)

" Next consider the initial state (k:,xg). Since the production function

is assumed to be concave, the seéquence of vectors {c:,x:,k:.lz} is certainly
feasible, Moreover from (2.5), (2.6) and the assumption that U is strictly

quasi-concave, there exists ad=6(v)>0"

vo_ V.V Vv ' 4
s.t. Ug U(ct,xt,lt) > Uy + §(v) ‘
>m' + 8(v)
| | v Vi o oot a s
Then | m(kg,xy) 2 inf (U} > m' + 8(v)

t>0
| > m'
Q‘.ﬁ.D.

Note that Theorem 2.1 implies that there can bé no ‘'thick' iso-m‘
contours. Hovever, ve have. assumed that Fk(k,l.) exceeds unity only for
k <E(2), and 0 < 2 <1, Therefore there 15 some maximum sustainsble
(golden rule) utility level U, end for any given x, m(k,x) is a strietly
1néreas:_lng. continuous function of k,. ~ up to some point kG(x) where
m(k,x) = u®,

The previous section outlined the j.mplicationa of ﬁeginning to the
‘right of this 'good-as-golden' locus, therefore here we consider the alter-

native possibility,

G
i.e. ky<k (xo).

If the first generation is to leave its immediate descendents with a cé.pita.l

stock of k., and a debt of X9 the best it can do for itself is achieve a utility

1
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level _
l .

Clearly W is strict.;_ly increasing in ko and xl and strictiy decreasing in kl
and x. Mthermbre given the concavity of F a_nd strigt_ quasi~-concavity of
U, it is a straightforward matter to check that vW(kl,xl) is a strictly Quasi
conéave ﬁmcﬁon. Thus W-:I.nd:\.f:‘.‘ereuce~ curves must be as depictéd 1;1 Figure 2..
Sim;é the infimum over all gengra.t:lops beginning with the fTirst l, ga.nnot

exceed the infimum over all generations beginx_iiﬁg with the second, we also

)

have : '
m(klxl) > m(ky,x,) = m,

In addition, since m, is the infimum, we must have;

- A < ’ '> .
U, = W(kl’xl)_— m,

The_ éet of states

P, = [(kl”‘l)lm(k‘l”‘l)}-'mol

is the preferred set, under the Raylsian criterion, for all future genera-

tions taken together. Similarly the sét of states
Py = [ly,% )Wy 0%,) 2 mp)

‘is' the preferred set for the first gengra.tion. We know a solution exists,
therefore the intersection of these twé sets P “~P2..; is non empty.
Moreover, the indifference curves are “thin", thus any point in the interior
~ ylelds a first generation utility strictly greater than mo,and at the same

time raises the infimum for all future genefa.tions. But this contradicts



—

W: wm'»

w(R,2)= W’
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0
It follows that the indifference contour W(kl,xl) = m, must just

the assumption that m . is the infimum hence int (Plf\ P2 ) is empty.

touch the iso-m comtour m(kl,xl) = m, as shown in Figure 2. From the quasi-
concavity of m and strict quasi-concavity of W, the intersection (k{,g) is
wnique, But m(k',x{) = m, therefore the above arguments hold with (k;_,x.fl’_) '

as the new'initial' state and we have

#* = * yht) =
U m(k2,x2) m,

Finally, applying this arguﬁent inductively for all t, it must be true that
U * x¥) =
Up = mlkg,x}) = m,

Summarizing all these results ve have the following theorem.

Theorem 2.2, Given the assumptions of section 1, sbout U(ct,xt,ﬁ.t) and

F(kt ), & unique Rawlsian maxi-min solution exists

’£t+1
whenever the maximized infimum is less than the golden rule
utility level. Further, the optimal path‘{c;,x*;k;,z:}

distributes utility equally among all future generations.

-We conclude this section by noting that, while it fits with intuition
to draw the iso-m contours as sﬁooth curves, this is not implied by the

~ above results. Proof of differentiability follows from an examination of ‘
the left- and right-derivatives at any point (k,x,) on the iso-m contéur

n(k,x) = my. ‘ | |

Suppose the optimal first period vector for the initial state (ko,xo)

is (ci,xi,ki,!{). If k, is increased by 6k, no generation is hurt by an '
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increese in the debt to the past, 6x, which preserves the first period vector

= * - k¥ - ¥
i.e. x5+ 6x F(k0 + 0k, L. *) k% - cf

Since F is concave and

= %) o k¥ - o* .
xg = Flky,2%) 'kl_cl .

-we must have : | : o v .

8x CoxYy
-51-{-3_ Fk(k0+6k,£l)

The efficiént trade-off bejt}een initial capital and debt must be at

least as large as this feasible trade-off. Therefore, letting &k + 0, we

have ‘ L | o .
dx . [ 6x
) > lm (—) > F, (k_ ,4%)
& |ksky = gog \0E) = K 0710
m=m

Similarly it can be shown that the left side derivative must satisfy
ax < *®
& |k=k, Fy (kgs2)

m=mo

But if any‘; ::f the inequalitieé are strict, the iso-m contour' is strictly
quasi-convex in the neighborhood of (ko,xo), contradicting the results of
Theotem 24, Thus there can be no inequ;llities and the iso-m contour is
diifferentiablg, with slope Fk(ko,&]-_) equal to the optimal-‘gross marginal
product of capital

-d—'x— = : o # Co '
t.e.  ak|ke=kg Fy (ko,28) - (2.8)

m=m,
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We now analyse the nature of the optimal dynamic path. The discussion
begins with what turns out to Be a rather special case and then, in section b,

moves to the genefal solution,.

3. The Optimal Path with Fixed Labor.

¥
L

'v'In a simple over-lapping generation mod;al two typés of inter-genér&-
tional tz;ansfér aré possiblé. Today's young can trade either consumption
when young, or leisure vhen young in return for incrgased consumption when
old.‘ in 'b’oth cases the return to future generé,tions is the addi‘iﬁipna.l
capital stock thereby made ava.il.able.

It theréfore appears that even withod’ var:l.al_wle labor, it might be
optimal to make a sequence of inter-generational"i trades of capital for futurc
consumption. Hdwever it tu.msl out that the dypamics in the fixed lebor case
take on & particularly simple form. Specifically, after an initisl adjust-
ment in the capital stock, the Rawlsian economy settles into a stationary

state.

As outlined in section 1, the young (t+1l)-th generation make a decision

at the beginning of their working life based on a (kt'xt) offer by the old

t-th generation. However we can also describe the optimmal path as & seguence
of decisions made after production. Subtracting the previously determined

cla.imé'of-the old (xt),,the young have at their disposal total assets A

) - x (3.1)

= Flk +

8

t+l t ’nt-l-l

These assets can be used either for immediate consumption or as inputs

for next periods production.
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Lo Sl

The production constraint can then be rewritten as;

= Fla, - c,, R - .

81 =

e ——— e

arter production, their own (slave) ‘1sbor must have been determined by

the previous generation. Therefore the state of the world at the point of

decision can be described by the pair (a ). Generation (t+1)

+1’ t+l
must decide whether or not it is optimal to trade lower future leisure

(higher £%+2) for increased future assets (higher &

| t+2)° Forpally ve

have the following dynamic programﬁing prbblem

) = max (min [U(c ) r(a )

t+1’ +1’ t+1 b +2? t+2

subject to (3.1)"

r(a t+1? *en1

Just as it.has been shown that m(k,x) is strictly increasing in k,
for m <IF; s0 it:cenhbe demonstrated that r(a,%) is strictly increasing
in a over the same range. Therefore iflk is fixed, all trades for increased
future assets are eliminated,and as long as the return r(a b1 ? t+1) is

less than the golden rale level, the solutlon is simply

at.'_l = at t = 1’2,000 ] , (3.3)

That is, total assets received and total assets passed on to the
future must be identical. One can easily confirm that the optimal sequence

{ct, t,k lt 1,2,...} is also stationary.

Since in this view of the problem, the young do not make decisions until



pre-determined state (k
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It remains to a.na.lyze the initial period. Suppose, for simplicity, that .’

!

there a.re no generations prior to the Just era.q Then there is no initia.‘[

‘cla.im of the old (x = 0) and the production constraints in the first two
periods must be as follows-

Since it is optimal to maintain constant total assets, a.nd since
the optima.l consumption when old, t’ is strictly positive, it follows
imnedia't.ely that k. > k..

1 0°
initial debt, 11: is optimal to save during the first period of the Just

That is, with a fixed supply of labor and no

era., and from then on maintain the enlarged capital stock.

4. Optimal Growth - The General Case

Before discussing the case in which time worked is also a control

variable, it may be helpful to recapitulate. We have shown that for any

617 xt-l) lying to the left of the'as-good-as-golden'

locus, the optimal path lies on a smooth quasi-concave iso;-m contour

_)

n(k,x) = m(kt—l Xy

Since this contour is everywhere upward sloping in (k, x) space, it can a.lso '

be expressed in the form

N N (%)

9 . A
An alternative possibility - that the economy had previously been following

a Ramsey-Koopmans path - is discussed below.

\
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Furthermore, the‘optimal state at time t is the point of tangency of

this contour and a member of the family of derived indifference curves

W,(kt, xtlkt_l, "t-l) =¥V

For convenience, the gradient of the w-indifrerence curve through (k 1’ t-l)

is denoted by g(k 1, t—l)

| FYan ' |
i.e. glk x )= = |y = (4.2)
- t-1* Te-1 R AL

xt""t--:l.

'

As depicted in figure 3, g(k 1% ) is exceeded by the slope of the iso-m

contour at (kt l’xt 1). Hence, the optimal state at the_end‘of period.t

lies to the right. | - | |
Suppose we now allow kt 1 to vary, at the same time varying 41 i—

such a way that the return is held constant

ie. x5 fixm(kt_l) o o | (h.3)

Given the differentiability of U and F, the slope of the W;contour,
at (kt 1% (kt 1)) 18 certainly a continuous function of ky 3
Then either g(k 10 X (kt l)) <x' (kt 1) for all larger kt 12 oF

fthere is some point (k,x (x)) such thax

k() = x®) e (4.4)

1°Reversing inequalities the following argument goes through slmost iden-
tically if & 1 is smaller. _ , .
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If the former, ﬂkT, xT)IT >t} is increasing and unbounded.
But this is inconsistent with production conditions. Thus, the létter must
hold, that is, there is at least one stationary point on ény iso-m contour.
Ve can sumarize this result as follows:
Theorem 4.1  Among the initial states with the same Rawlsian ?eturn, there is at
least one for which it is optimal to rémain at the initial state.
To analyze non-stationary solutions we note again that,for any gen-
eration the predetermined and final states must lie on the same iso-m

contour, i.e. x = xm(k). Then substituting for X 3 and X, in the derived

), the decision for generation t can be

utility function w(kt’xtlkt-l’xt—l

represented sas,

max Wik ,x (k )|k x (e o))

K

From (2.7) this in turn can be written as:

vk = Max U(F(ky ;.80 = x (c 0) =X, x (k) 2))

)
gty

All the functions are differentiable and our assumptions preclude cor-

ner solutions, therefore the following first order conditions must be satis-

fied.

W - . ! = o
k, u, + U xm(kt) ) (k.5)

(4.6)

]
o}
=
+
=

n
o

we
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Fram\(2.8), the slope of the iso-m contour is the optimal gross mar-
ginal product of capital. Therefore, the necessary conditions for opti-

mality can be rewritten as:

'Uz U : . . , <

. . top y ()

== Flk, oo )s = = Felkeote y) o T
¢ | X4 .

_ Furthermore from Theorem 2.2 these conditions define a unique maximm, hence

the second order necessary conditions must be satisfied.ll
, | L% T % B -
keke S ek, | .
_ tt t ¢

Now consider an increase in kt_l’aloﬁg the iso-m contour. Differen-

tiating the first order conditions, fotally with reSpect to kf—l yields:

—T : WPW* -

Wk B 4 dk
koke kel Fk't' o R
| t-1 | L. . ,
ek g By | e (1.9)
t5¢ 7t ax, . Sl PR
. d L t-'l- | s .

% = ) !> V _‘ t
where W* (-U + uc < X m(kt)) [Fk x m(kt_l)]

£ -1 €% ¢ t-1

k

and W* =(u F, +U ,)IF -x' (k. )] +U F
heke1 €S % Ctly g @ ¥R ey Xpaty

One can extend the arguments of section 2 to show that along sny iso-m
contour, x'(k) is continuous. This leaves open the possibility of discon-
tinuities {h w* However, even if this were the case, (4.9) would yield

kk, ~
the same qualita%ive implications for both left- and right-side dérivatives.
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But (X ) 1ies on the iso=m contour, therefore from (2.8) the

£-1°"t-1
square bracket in the last two terms is zero. Then applying Cramer's rule

(4.9) can be solved as follows:

. J -U F LA = o o
“t— = % ke oy KRy . (kao)
t-1 ‘ ' SR '
-U_F W ,
&, c, ket By | - (k1)
. = A - - _
Bk

From (L.8) the right hand side of the first expression is strictly positive

and ve thereforé have: ) |
‘Theorem 4.2 It is optimal for generation t to increase the capital stock

if and only if 1t is optimal for the (t+1)—th genera.tion to

work longer hours .

"For the _implications of (k.11), it is necessary to examine W*k 2 .

Since x' (k ) = F o the first order condition ( L. 5) can be rewritten as:

vy
.ct
{ ] | an e—
Wy =U_ lzk T 1=0
t t t xt

U U
3 , % 3 %
Therefore W¥ =2 U [ (=—)F, + 5 (+—)]
ktzt‘ x, 3Ct Uxt !,t azt U | .
w ~swlle

and using (4. 8), (4.11) implies

dk ' » ! I-’c
. 1 0 if and only if a? (—2)> —%

2 t) (k.12)
t-1 < .
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" Given strict qu#si-concavity, the right hand side of this inequality

48 strictly positive. While theory does not sign the left hand sidé, it seems
reasonable to argue that the amount of future cénsmnpﬁion an individual is
willing to give up for one more wnit of present: consumption decreases, when
individuals work longer hours ii'; the first period. E_quivalen:l:ly the pre-
centage increase in the mﬁrginal uﬁility of present coﬁsumption is greater
than that.-i’or future consumption, as ‘a result of a one per cent increase in
1eisure time.12 ' _ ‘ , ' . s

If this additional assumption is sa.tisﬂed for a.ll feasible (c,x L),
the two terms are of opposite sign and it follows that

iy > 0. - . ‘ . ~(h.13)

dkt-l

~ at every point along any iso-m contour.

But if (4.13) is true evenrwhere,xﬁe have immediately

< ' : _
ktf.l < ke > X kt-!»l ‘ . (k.1k)

That is, the optimal path is either stationary or strictly monotonic.
Suppose, as in Figure b, thet k_1ies to the left of the (lowest) sta-
tionary solution K. From (4.1}), k, = k_ implies k, =k for all %,

coﬁtradicting our assumption that 1‘; is the lowest. stationary value of k.

12

R |
9/ ¢ 1 h d
BT " 'ﬁf {u—-ar“’ A S

wvhere h =1 -2 is leisure time.
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Then suppose k, <k . From (4.1)4) the optimal capital sequence {kt|t=1,2...}

is strictly decreasing. Since kt > 0 the sequence must approach some limit -
! A

k, again contradicting our assumption that k is the lowest stationary solu-
tion. ‘ |

Therefore kl > k and the optima.l path is a strictly increasing sequence
which approaches asymptotically the stationary point k. Arguing almost
“identically it can be established that, whs.tever the initial conditions,

the optimal path must approach monotonically a stationary a.symptote. We

therefore have the following theorem:

Theorem 4.3 If over the setof feasible consumption vectors

XU U o ‘U’
p .4 [+] c

the optimal sequence’ {(kt ,xt)lt > 1} | :ls strictly e mono*l;oni.c
sequence; apnroaching asymptotically some stationary solution
@ ». ] . |
' 'l'he ‘well 'behaved' cese in which the locus of stationary solutions can be
: expressed as a unigue function of k is depicted in figure ka. That such
cases exist is demonstrated in the appendix, vhere a special Cobb-Douglas
case is analyzed.

Multiple stationary solutions are depicted in figure 4., For all ini-
tial points to the left of S the optimal path follows a monotonic approach
towards S, and if the ihitial point is beyond S the optimal path approaches

R _
S. In the borderline case it is a matter of indifference as to which of these

points should be »approached.
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While we have argued that the assumption in Theorem 4.3 is plausidble,
it would be incomplete to ignore thé implications of reversing the inequality.
For concreteness we consider the special case '

U= x(c8 + (l—l)a) 0. <a <1

For B in (0,1}, U is strictlybquasi-concave.. Moreover, since the feasible
region ié bounded, it is possible to apply a continuity afgument and shoy
.tha.t, over this region, U is stric;tily quasi-concave for all B. <f, where
B> 1. | | ’ |
It is easy to cheék that tl;e assumption in Theorem L.3 is satisfied
it B <1. When 8 = 1, the inequality ‘bebcomes. an equality end from (L.12)

ve have

= 0, everyvhere : . (4.1k)
-1 : . ,

Kl B

Ir (k.14) is satisfied, the optimal choice (k ,)r.l) is independent of
the initia.l point on an iso-m contour. Moreover, (k ,xl) lies on this con-
tour so every future choice is also (kl ,xl) implying that_the latter is a
stationary solution.- 'I'herefore, in this border-line case, it is optimal
to Jump directly to a stationary point and remain there. - |

When 8 > 1, the inequality in Theorem 4.3 is reversed and from (k. 12)

we have

dk'l'. < 0, everywhere

dk
t-1

implying ke 5 ( ><) k, <k > ktﬂ_
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Therefore, unless the initial state is a stationary solution, oscilla-
‘tions must resulf. Tt is left as an open question whether the optimel path
ig necessarily a damped cycle, or whether it might a.pproach some limit cycle.

We conclude with a brief discussion of initial conditions. if the : 'just
era' begins with the first generation, there are no initial claims of the
old (x = 0) and, assuming Theorem 4.3 holds, the capital stock grows there-
‘a.fter (see Figure La). Alternatively, suppose the economy has been moving
along a Raxhsey-Koopmans tra.Jectory. It can 'bg shown that this must lie
below the locus of gtationa:y solvu*tion.s for a.ll k <k , the asymptotic capi-~
tal stock. o o

' Therefore, for all ko. <k vthe introduction of the Rawlsian érit.erion :

again results in growth of the' capifal stock.

5. Decentralization

Having determined the optimal path, how might a planner decentralize

* _gsuch an economy, assuming that jndividuals respond egoistically? From the
previous section (eguation (%.7)), marginal rates of substitution must, for
every generation equal. marginal productivities. Then given éonsta.nt retu;'ns
to scale and quasi-concavity of preferences, optimal decisions by indivﬁldugl
agents can be achieved with the intfo_duction of a sequence of wages' {wt}

and interest rates’ {p }. To camplete the decentralization consumer budgets

must be balanced by an‘optimal sequence ‘g2 ,Bz} of first and second period

' @emogrants.

When young, consumers must choose between coﬂsmptiop and saving ac-

cording to
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oy * 8y = Uy g%+ BY o (5.2)

.

+ where is fhe marginal product of labor associated with the

t-1
previously determined capi'i:e.l stock kt e ) . -

When old, all income is consumed according to

x, = (1 +p.)s, + By | | (5.2)
‘ Since consumption of X, takes place at the end of period t+l, pt is
the marginal product of capital essociated with kt' Combining these two

expressions _yields the 1lifetime budget congtraint,’
. x, . . o | ‘ _
+ enn— ’ .
KT W oty ¥ By o | - (5.3)

i

vhere B = B1 + 82/(1+pt) is the present value of demogrants received.
Since, at least for the present discussion, only the choice of B is of

interest we shall consider the case B: 0.

In period t+l firms borrow capital kt and individuals save 8y For
gquil:lbrium in the cé.pita.l market the government must float public debt.
Suppose it offers bonds paying 6ne wmnit .of consuﬁptién at the end of the
present period. Then équilibrium requires that there must be an offering

of dt such bonds where

d£/1+pt =8, - kt - v | o (5.4)

If we balance '_bhe .government budget constraint, Waira.s' Law will auto-
matically ensure that individuel budgets are balanced. To achieve the for-

mer the government supplies a demogrant 8 t .at the end of period t, equal to



the difference between debt payments due and the value of the debt about

to be floated.
oy o » , o

Conbining (5.2) and (5.4), we have

x, = (1+ Py, )(kt +-dt/1+pt)

. Since 1 + p = Fk(kt’g't+l) this can bg rewritten as

Now suppose that the sufficient‘ condition for monotonicity is satis-

fied and that initially the capital stock is below the corresponding sta-

tionary state level k. Then kt lies to the right of kt-l as depicted in

Figure 5. From ( 2.8) the slope of the m-contour at (kt ,xt) is the mar-
ginal product of capital Fk(kt ’!"t-'-l)' It follows immediately that the size
of A.the bond issue dt i; given by the igtercept of the tangent with the x—a.:;is.

Then to achieve the monotonic rise in the capital stock the govemmeﬁi
mst float a ﬁonotonically increasing volume of debt. As depicted the
government lends money in initisl periods but eventuslly becomes a borrower
from the private sector. Hw_ever, it is quite possible that even in the

asymptotic stationary state lending is 'optimal.13

.1.3‘I'bere is also a point on the stationary locus, with zero public debt.
This is the long run equilibrium for a laissez-faire econonmy; see also
P.A. Diemond [ 1.
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By extending the ‘tangent at (kt 1 t+1) to the horizontal axis we
obtain the value of bonds floated at the beginning of period t+1; i.e.,
t-l-l /{1 + pt+1) From the diagram it is clear that this also is directly
related to the capital stock at the beginning of period t+l. Also shown
.on the negative half of the k-a.xis is the mirror image of the level of the ‘
previous periods debt. Then trom (5.5) the difference between these two
points is exactly the present value of the demogrant paid to the (t+1)-th
generation. Hovever, both terms in (5.5) increase with k and we caennot make
general inferences about changes in the size of the demogrant over time.

-

6. Intergeneration Ties of Sentiment

‘ We have been studying the bintertemporal ’charaeter of 'maximin' gfowth
wnder conditions of generation egoism. The interests of each >generation,
apart from its prior interest in justice, are limited to its own consump-
tions (end its leisure). This maximin problem, as we have shown, has the
peculia.r features that generat:lon welfare is equalized‘and that the asymp-
totic state is‘ completeiy sénsitive (for k <kG(x)) to the initiel state.
Both features, especially the 1a.tter, have been regarded by some as unattrac-
tive features of the maximin criterion. But we shall argue that they are.
peculiar to the postulate of egoistic preferences, not to the criterion,
and hence, vanish (over most if not all of the domain) as soon as the
' former postulate is relaxed. |

Before doing 80, ﬁowever, we should not let the objections to these
features pass without comment. One does not expect of a person who has grown
up vith less advantages in his formative years than someone else, that he

f£inally match the lifetime achievements of the other person, no matter how
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many'years he is given to do it in. Why, then, should one expect of a

\ v ‘
society of egoistic generetionsthat it strive for some asymptotic state
that'is as good as the desiiny of another society that is more fbrtunafe
in its initial endovments? Surely justice does not demand that the 1ese ;
fortunate society, by dint of its own sacrifices, eventﬁally catch the more
fortunate one. If the failure of the dispai&ty between the two societies
to venish in the 1limit does not accord with the intuitioﬁ of some crities,
as for example Solow 1 ], it is perhaps because they assume that
natianal pride or parental pride would drive the 1ess favored society, given
enough time, to erase its initial disadvantage or even to embark on a
restless quest for some more absolute state of perfection or completeness.
But such nationel and/of iarental objectives‘are an electiie,matter for
each generation to decide on the basis of its instincts aixd cultural values,
not the intrinsic dictates of Justice. An egoistic generatipn that lacked
these drives yet heeded the maziﬁin criterion might be celled.unaltruistic
or uninspiring or otherwise ebnormal. But if it made a maximin allocation,
thus te.ESSu;e for future generations the possibility of economic welfare
at least as great as its own realized.welfere, it eeuld net fairly be called
unjust.

It should not be concluded from the rbregoing that when generations
choose, out of altruistic spirits or other motives, to improve opportunities
for their successors that questions of intergenerational justice are there- .
by rendered moot. If a generation says, "We mske things better for the
next generation, don't wel" the question might occur why the generation

does not make things still better. One expects some kind of ethical Justi-
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fication ':ln reply. Like: "Further gifts to hie future by us would have
negative marginal utility for us, and since our utility is already sina;ler
fhan vh.at' theirs can be, fhe consequence would be a reduction of minimm
generation utility and hence a contravention of the principles of inter- :
generation maximin justice." | )

When generation'utility functions are niade to incorporate altruistic

preferenées:, there is still room for the maximin criterion. " Though the

introduction of altruism will generally alter the allocation, the cri-

terion functions in the same essential way. Some criterion of :Lntergen-‘
erational justice is appropriate; , even needéd, in order to model the
"optimum" iﬁteftemporal allocations of a soclety. Othervise, there is no
vay, in the model, to mediate the partially conflicting interests of
genezfations, altruistic or not -~ unless, of‘course, their interests' or
preferences are in full agreement, not just similar (symmetric_:al) and
coﬁsistent (or congruent) .1,4

We can now present and discuss a rather simple emplg of the inter-
generat'i.on mé.ximin problem when every (homogeneous)v generation possesses

altruistic preferences of a certain stationary or vintage-free type. | Thé

egoistic utility function U(ct 2 X, s R t) is replaced and incorporated by

~1!‘Ra.w1§ reaches the conclusion that there is no concept of Justice between
generations [ , D 291]. The unhappy result follows from his ethical po-
gition that justice is a matter between parties who cen gain from economic

" cooperation -- no one is ever obligated to accept less than what he (or a ne-

tion?) can attain operating alone -- and the economic premise that even ad-
jacent generations cannot gain from economic cooperation. What ever the
merits and problems in the first postulate, Rawls has clearly made a (rare)
slip with the economic premise -- as this paper has demonstrated. They

can benefit from our production of capital and we can later benefit from

their working with it.
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the é.ltruistic utility function

vV, = V[U(c

% xer L)y ¥

o1 ]’, t=1, 2, ...

vhere the function V has positive and continuous first derivatives every-
vhere. Rawls's "ties of sentiment" are here like links in a chain. Each
generation gives positive weight to its own-:interests and to the interests
of the iﬁmediately gucceeding getiera.tion, the 1a.tfer expﬁessed by the sﬁme :
function V The chain creates a derived interest by a.ny generation in the
own-interests (or self-interests) of subsequent generations indeﬁnitely
into the future. i |

In its 4.technocrg.tic version, leaﬁng aside fiscal implgmentability,

the maximin problem becomes:
ngimize Wleys 1y &5 ooes Xps Xg ) = inf [V, V,, ees]

. > > 0.
givenko=ko o, xo=xo_0

By considering the analogous maximin problem in the t-th period wnder jus-

tice and upon defining

m(kt-l’ xt—l) = max W(ct. Xy s R.t, R ART xt-l)

~ one obtainé the dynamic- programming equation

) = mex [min {v[U( X zt) LA

n(k

t-l’ ]’ m(kt, x )}]

1

8.4, X, , * ot k, = F(kt-l’ ,'t)
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The s\olution to this altruistic maximin problem, when there is a solu~
tion, contrasts with the solution of the egoistic pc;rblem in several ‘respects.
First, ?. range of states ihich are fixed points or rest points under the ’
egoistic utility function are no longef rest points upon the 1ntroduction-
of the altruistic argument in the generation utility ﬁniction;.the locus
of rest points or stable steady states shriﬁks, thoﬁgh not generally to a
point. éecond, with regard to at least one rest point, there will be a
.whole region (not just a locus which is the maximin 't;rajectory to the rest
point) within which a éha.nge' of the initial stafe will not alter the cor- |
responding rest poinf.. Third, ;cr some initial states the maximin trajec-
tories are nbn-egalitarian, making V(+) increase monotonically with time,
vhile from other initial states the meximin trajectories e.re ega.lita.riaﬁ
with respect to V and (it follows immediately) U as we fo;znd in the egoistic
case. |

. These departures from the egoistic maximin solution are satisfactorily
i]_.lustra.ted by consideration of the additive V function with a positivé im-

. plicit time-discount :15

Vt=U("c > Xp» lt)‘l"Y Vt+1, 0 < Y<1

More general forms of the V function would pnly complicate the departures
from the egoistic case if they would admit of a solution at all. |
To obtain the solution to thié additive altruistic maximin problem
for some initial (kb, xe) in the region of "scarcity",_ire.ﬁrst find the
intertemporal allocation that maximizes Vl('). This sub--optimiza.tion

problem can obviously be reduced to the familiar utilitarian problem of

15We are indebted to Cuillermo Calvo for discussing this problem with us.
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mé.ximizing the geometrically weighted own-utility sum, LY -1 U(e t,x -,2t).
4 " .
In the first of two cases we have to distinguish between, the "sub-optimal"

allocation yields a sequence of own—utilities Ut whiech are monotone 1n-

creasing and which approach asymptotical]y some Stat:lona.ry Utility level
G

U <U . In this case, that allocation must a.lso be the full ma:d.min
solution. For if the U sequence is monotone increasing then so must be
the corresponding Vt sequence; hence, noting that the Vl maximum is unique,
: any other allocation could only lower the minimmn v, namely v 1° and thus |
could not be maximin., Moreover there will not arise any Strotz-Pollak
problem of inconsistency causing genera.tion 2 to select g different plan.
For once (cl, ;5 21) is given the subseguent allocation maximizing V2 also
4maximizes Vl.
is determined by the familiar condition Fk(k, R,) =Y 1>1,‘ t_ogether with

The quantity of steady-state ca.pita.l in the Stationary state .

the usual ina.rginal equivalence regarding the t;uantity of employment, -27

In the other case, the allocation that solves the sub-optimization
‘ problem would makevUt Gdecline monotonic;liy and aSymptotically down to U.
Then Vt would also be declining e.symptotica.lly down to (lf'Y)E. The first
generation wnder Juetice would be exploiting its position as first in the
sequence of generations to award itself higher V2 at the expense of subse-
quent generations thereby made worse off than it which would not be nax- .
jmin. In such a case the maximin solution must, from an initial state in
~ the region of sca.rcity, equalize generation utilities 'at the highest feasible
level. Since constant Vt implies constant Ut over time, this maximin al-
location is :ltlentical to the egoistic maximin allocation if the U functions
in the two problems are’identical. Outside the region, k _<_kG(x), some

but not all generations can be assigned a Vt in excess of the maximum-
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sustaine.ble Golden Rule VG. It follows that whilé there are many "maxinf"
solutions there exists no (true or genera.lized) maximin solution. .

A complete discussion of the a.ltruistic maximin problem would require
‘analysis of the implementa.tion or optimal ma.ximin program by, say, taxes and
‘transfers in a setting of perfect markets. In the non-—ega.lita.rian region
. of the state space, vwhere utilities ‘are rising from on-e’ generation to the
next, it may be that voluntary private bequests will suffice without .'bénoﬁ.‘l_:
of "fiscal policy" (apart from any lump-sum grant to the initial old); if so,
tha.t would be fortunate for it may 'be, as suggeéted 'oy some results of Bar-
ro [ ] that in a vorld of perfect cerbainty and foresight variastions
in the volume of lump-sum grants a.nd ta.xes 'as long as current generations -
are connected to future generations by a cha.:ln of operative intergenera-
tional transfers". But this difficult matter is perhaps not worth discussing
except'in a model of heterogeneous generations operating in imperfect (that

is, realistic models of) markets and bes‘et by uncertainties.

7. The Instinct to Invest

In the Freudian theory of private behavior, gratification is imputed '
to activities of both disposal and accumulation. Yet the hypothesis of
national gratification from national capital accumulation has not so far

made its mark on the theory of optimal growth.16

16An exceptional study is M. Kwrz, { 1.
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Society's investments in knowledge and in artistic capital vare reward-
ing for the generation making them because of the en joynment n.nd usefulness
that subsequent generations as well as contemporaries are anticipated to
derive 'i‘rom- them. These two kinds of capital are intergenerational col-
lective goods. Investments in them present a type of intergeneration ex-
ternality (or expected externality) that. operates differently from the al-
truistic type of intergeneration externality discussed in the previous
‘section. |

Does investment by a nation in every durable good p’roduce this pride
of creation? Suppose that the great bulk of capital investments do not con-
fer such satisfactions, being Just so much nondescript hardware to their ab~
sentee owners'. Then the psychic rewards which are special to some types
of investments would inﬂuence the investment mix selected 'by the current
generation but ‘it is not evident that they would influence the "aggregate
stock" of capital that the generation (faithful to maximin) would leave to
the next generation, that is the utility possibilities of the next genera-
tion might not experience a net increase. 'We are leaving you less nuts and
bolts than were left us," the current generation might say, "in consideration
of the addition we have made to the stock of technologic and artistic capital®.

But it is imaginable that many & society takes satisfaction from the |
| growth of aggregate national capital, from an increase of the next genera-
tion's production possibilities. The simplest representation of this idea
. introduces the quantity of net investment into each generation 8 (egoistic)

utility mnct.ion :

U, = Uleys Xy Bys Ky = ke o)
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with the first derivative of U with respect to the fourth argument positive,
.perhaps e‘verywhere. " In this case, it is obvious that, under the mmqlmin
criterion, there may very well be no rest point short of the Golden Rule
sta.te — 1f the instinct to invest is strong enough relative to the marginal
utility of consumptions. " The maximin criterion would preclude a sequence
of capital deepening ’beyond the Golden Rule point of capital sa.turation.

If on the other hand, the marginal utility of adding to capita.l relative to
the margina.'l utility of consumption, the results are entirely similar to ;
those of the previous section in which future utility possibilities, rather
than production possi'bilities Have utility Vl}for the i)resent generation. In
| both cases there is a region of initial states in which the origina.l capital
endowment is sufficiently sm&ll that despite the regulation of the maximin
‘eriterion, capital and (egoistic) generation utility rise monotonically
toward some stationary-sta.te. Thus the satisfactions from national invest-
ment, like the altruistic interest in subsequent generations' satisfa.ctions,
are capable of dissolving the egalitarian property of the maximin allocation

that would otherwise obtain.

8. Concluding Remarks

The principal messages of this paper are presumably clear. The ap-
plication of the. intergenerati.on maximin criterion is not generally a bar
to the growth of capital. Unless the economy happens to be in en efficient
otationa.ry state initially, the maximin criterion will not lock the econorny
" forever in that state. It is true that the maximin allocation (where it
exists) is intergenerationally ega.litarian with regard to utility if in-

tergeneration externalities are excluded. That such intergeneration equality
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should result from the maximin criterion does not seem a telllng deection
vto the use of that criterion when by hypothesis the generations, while
Just, are perfect egoists. In any case, the maximin criterion does not_
generally preclude the growth o} utilities if initial capital is sufficiently
scarce and if the generations possess an altruistic interest in the future
utility possibilities or take pride in future production possibilities.

‘Ethical theory, as Ravls has himself insisted, is uncertain and pro-
visional like knowledge in general, especially the theory of human beha~-
vior. Without being able to foresee the»final verdiét on the maximiﬁ eri-
ferion, we nevertheless find it “significant that no anomalies of conun-
drums have been turned up by our study of maximin as a standard fdr_the
allocgtion of resources'amOng'generations —-Jespecially when "growth" has
been‘considered a critical stumbling block for the maximin ériterion. The
only difficulty that the maximin criterion has encountered in §ur'analysis
occurs vhere the initial capital stock is so large that some gen2rations
can be sllocated a utility exceeding the Golden Rule amount while by impli-
cation not all generations can be so favored. Yet even this’difficulﬁy
cén be 1laid to the unboundedness of the time horitbn rather than to the
criterion itself. Moreover it is a qﬁestion whether our éthical principles
should be asked‘to meet all manner of hypothetical conditions however coun-
terfactual in actual experience. In a signifiﬁant sense, fhe unrestricted
domain is undefinable, so no criterion coﬁld ever te certified wiversally
rdbﬁst.

It remains to be ;een vhether the maximin criteribn will stand up under
various extensions of the model. What are the consequences of.placing an.

upper bound‘ on the lifetime of the earth or mankini? What are the effects

\
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of making population growth an endogenous variable to be optimized along
with capi:tal and wea:l.‘l;h‘lrr What are the consequenc:es of introducing ex-
haustible natural retsov.::rces?:"8 Of introducing invesfments in human beings
‘and in the technology? Fina.lly', to put an end to an indeﬁnite list of R
quentions » one wonders wﬁat can be said once ve admif thh.{b future tastes,

values and consumption possibil:l"ties are muicertain.

Tca1vo [ ] has analyzed this problem when generations overlap as here
though without provision for variability of manhours in employment empha-
sized in the present paper. o

18801w ( ] has studied the fixed-population maximin problem without

generation overlap. Koopmans [ ] gives a utilitarian treatment of a
" variable-population problem without capital. o .



APPENDIX: A Cobb Douglas Example

Suppose, for the sake of simplicity, that tastes are given by ¢
U= [ex(1 - 2,)] and gross output is produced according to F = 2(k2)‘/2
First, we solve for the locus of stationary solutions, that is, sta-

tiona.ry points satisfying the dyna.mic ﬁ.rst order conditions (14 7)

and the production constraint (1.1).

We have,

U, ) - | _ - ,
go-Rfp =1 > =+ L=1 e . (a.1)
Uc | x -1/2 | o .‘ 1‘

g =F * 7Y | (A.2)
x . :
a ' /2 _ _
c+x=F(k,£) -k -+ ‘x=-2-L———l%- ‘ . i | ..(A.3)

l+y
vhere y = x/%.

Combining (A.1) end (A.3) it is a straight-forward matter to show that.

r

% must decline (and x increase) with y wmtil y"/ ? = -1 +V/3 and that the

opposite is true for larger y.

Also combining (A.2) and (A.3) we have

Egzy-l/z -1 (A.b) _
k _—_;Tz— : .

so x/k declines as y increases. Since x is increasing for lower values of

Y, k must also be increasing in y. For yl/z > -1 +v3, x declines and %

\,



increases with y. Bu‘!': y = k/% so k must continue to increase irith y.
Therefore, the capital-labor ratio always changes with k around the~station;
ary state locus. Note timt the marginal product of capital is simply y-'/ z
‘therefore F'k deci:lnes monotoniégl;y eround this locus as k increases. Finc
‘ally as x/k + 0, yllz +2 and £ approaches 1, thérefore k+ L,

Hence, the locus of stationary soiuticns is a single peaJ':ed curve in

(x,x) space, from the origin to the point ( 4,0). At the turning point

: -2 _ 1 3
F=v 2(1+/3)>1

}

thus the golden rule point G must lie on the _b downward sloping section of the
" curve, All this is depicted in. Figure L(a). o
Next we examine steady state levels of the publie debt. Utilizipg

(5.6) we obtain,
12 .

d x
x x Y

and substituting from (6.L4) yields

~V2 _,

a—y A A » s
o l+y

As k increases and we move around the 'locus‘ of stationary solutions,

Wi

Y increases and the right hand side declines, reaching zero vwhere

P = "-1/,2 =2
This is the laissez-faire stationery state (the point D in Figure ba).

Since F:: >1, it lies to the left of the Golden Rule point. As Diamond [



~ level of the pu'blic debt .

has noted this need not be the case. In fact, if we introduce the more
general production function, F = ox% 1%, it is possible to show that for
0 less than some‘a'the leissez faire point lies to the right.

Combining (A.1), (A.3), (A.4) and (A.5) we have

dz( 1/2 2y) . v ' . - - : '. "“':.
1+ 3yx/z - : : - _ _

Diffefentiaming, it can be shown that d increases with y end hence with

x in the range F, > 5 and decreases thereafter. Thus even for this very

k : ;
mallegble case the long run equilibria caﬁnot be characterized simply by the
19" _
Finally, it is possible to confirm that moving around the 1ocus of
stationary solutions the demogrant B declines from zero to some minimnm then

increases again reaching zero at the laisgsez faire point.- To‘the right

of this point B is positive, ineressing steadily up to some maximum and

‘then declining again towards the Golden Rule point.

19The same is true for the value of the public debt, i.e., d/Fk.



