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Abstract

Necessary and sufficient conditions are given for a Bayesian Nash equi-
librium of a mechanism to be simultaneously ez-post efficient and ez-ante
individually rational. These conditions require (A) that each individual
receive his/her expected marginal product and (B) that the sum of the
expected marginal products over individuals equal the total expected gains
from trade. Some consequences of this characterization are: (1) the above
conditions are equivalent to the conditions required for a dominant strat-
egy mechanism to be efficient and individually rational which, in turn, is
equivalent to the condition that the environment must be perfectly com-
petitive; (2) such mechanisms are generally impossible to construct in en-
vironments with a finite number of individuals; and, (3) for the sealed-bid
double auction model of exchange where players types are independently
and uniformly distributed, as the number (n) of traders increases the rate
at which the environment converges to one that permits the necessary and
sufficient conditions (A) and (B) to be satisfied is O(1/n).
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1 Introduction

The dominant strategy solution concept is known for being very demand-
ing. For an unrestricted domain of economic environments, Hurwicz [1972]
showed that it is impossible to construct a mechanism that is simultane-
ously dominant strategy (DS), Pareto-optimal (PO), and individually ra-
tional (IR) — DSPOIR, for short. In Makowski and Ostroy [1987a], we
took another tack by characterizing the class of environments on which
a DSPOIR mechanism does exist, assuming quasi-linear preferences. We
showed that such a mechanism had to be perfectly competitive, i.e., a Wal-
rasian mechanisms with the extra property that Walrasian prices are non-
manipulable. Such a mechanism exists only on very special environments
which we call perfectly competitive environments; hence the impossibilty
results with finite numbers of individuals. (In fact, impossibility can occur
in economic environments even without the IR condition — see Green and

Laffont [1977]),Walker [1980],and Hurwicz and Walker [1987].)
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The DS solution concept is often criticized as being too demanding.
Would weakening the solution concept to Bayesian Nash equilibrium lead
to a more robust existence result? Bayesian equilibrium is really the only
alternative if we wish to preserve the incomplete information feature im-
plicit in the DS notion of equilibrium. It is logically weaker than DS since
a DS mechanism is equivalent to one that is Bayesian under any proba-
bility beliefs. Arrow [1979], d’Aspremont and Gérard-Varet [1975,1979],
Holmstrom [1977,1979] and others have demonstrated that Bayesian mech-
anisms which are PO can be exhibited over a wide range of non-perfectly
competitive environments.

The question we address is: Do Bayesian mechanisms exist that are
simultaneously PO and IR — BPOIR, for short — for non-perfectly com-
petitive environments; or, does weakening the solution concept from DS to
Bayesian buy nothing in terms of existence when a mechanism must also
satisfy PO and IR? As the title of the paper suggests, our main result is that
the latter is the case. The conclusion we draw both from this result and our
earlier one is a uniqueness property of perfectly competitive environments:
with incomplete information about the characteristics of others, the only
environments for establishing efficient and incentive-compatible outcomes,
when participation is voluntary, are the perfectly competitive ones.

In our [1987a] we characterized DSPOIR mechanisms as those exhibit-
ing exact full appropriation, i.e., everyone receives a reward exactly equal
to his/her marginal product to society. Analogously, but less demandingly,
we will characterize BPOIR mechanisms as exact full appropriation mech-
anisms in ezpectations, i.e., everyone receives a reward exactly equal to
their expected marginal product. It will also be shown that while there
are many BPOIR mechanisms, they form a single equivalence class in the
sense that they all reward each individual with the same expected utility.
So, weakening the standard of incentive compatibility from DS to Bayesian
may buy something in terms of the number of incentive compatible POIR
mechanisms, provided a DSPOIR mechanism exists; however, all of these
mechanisms are expected utility equivalent to the DSPOIR mechanism.
The latter may be regarded as the standard bearer of the equivalence class,
not only because it is consistent with the more demanding and attractive
DS solution concept, but also because it corresponds to the traditional



Walrasian and perfectly competitive market mechanism.

We call attention to three corollaries of our main result.

e A Walrasian mechanism is not BPOIR on a universal domain, i.e.,
one including non-perfectly competitive environments.

Thus, even under the weaker Bayesian standard of incentive compatibil-
ity, Walrasian equilibria are not implementable unless the environment is
perfectly competitive, in which case they are implementable in dominant
strategies.

e There exists no BPOIR mechanism on a universal domain.

Thus, perfectly competitive environments are uniquely suited for realiz-
ing efficiency in a non-coercive way when there is incomplete information;
outside of them, there is an impossibility result.

e Since any two-person economy with gains from trade is necessarily
non-perfectly competitive, there exists no BPOIR mechanism for two-
person exchange.

This result was first proved by Myerson and Satterthwaite [1983] who focus
exclusively on two-person trading. The benefit of viewing their result from
our framework is that one sees more clearly the economic rationale for non-
existence: it arises from the unavoidable absence of sufficient competition
between the traders.

Section 2 presents the framework we shall be using, a standard demand-
revealing model with quasi-linear preferences. To obtain our results we shall
build upon (i) the characterization results of d’Aspremont and Gérard-
Varet and Holmstrom and (ii) some results appearing in our “Vickrey-
Clark-Groves Mechanisms and Perfect Competition”, henceforth referred
to as VCG. Section 3 establishes the marginal productivity in expectations
framework used in Section 4 to prove our main results. Section 5 exhibits —
within the family of double-auction-type models — (i) a perfectly compet-
itive environment and a BPOIR mechanism on it, (ii) some impossibility
results when the environment is extended to include non-perfectly com-
petitive economies, and (iii) an asymptotic result on the predominance of
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perfect competition (and therefore the existence of BPOIR) as the number
of individuals increases. The concluding Section 6 contains some remarks
on the work of others.

2 The Model

The set of possible populations is V = x;V;, where V; represents the possible
types for individual ¢ = 1,...,n. While it is common knowledge among
individuals that they are in some population v € V, each individual may
only be sure of his/her own type, v;.

There are £ + 1 commodities. The first £ we call “y- commodities” and
the last we call “money”. Let Y; C R’ represent i’s possible trades in the
y-commodities. We assume for all : that Y; is independent of v; and 0 € Y;.

The set of Y-feasible outcomes for any population is defined by

Y={y=(,...,¥) € x;¥:: ) yi =0}.

Note that this framework may apply to models of net trades in private
goods or, through the identification of public goods with personalized joint
supply, to models with net trades in public goods.

Adding money transfers to the model, let z; = (y;,m;) € Y; xR represent
a possible trade for ¢ in both the y-commodities and money. The set of
feasible outcomes for the population is defined by

X={z=(ym)€eY xR":z; = (y;,m;) and )_z; =0}.

Each ¢ has a quasi-linear utility function over y-commodities and money
of the form,
ui(zi;v;) = vi(y:) + ma.
Since all individuals evaluate money in the same way, the only distinguish-
ing feature of i’s actual type is the function v; : ¥; = R. We also assume
that for all ¢, v;(-) is continuous and v;(0) = 0.
For any v € V, the set of Y-efficient outcomes is

POy (v) = arg max 3 vi(y:)-
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The set of Pareto optimal outcomes in v is
PO(v) = arg max 3 ui(zi; vi).
Notice that quasi-linearity implies
z = (y,m) € PO(v) <= z € X and y € POy(v),

i.e., the Pareto optimal outcomes are simply those which are y-efficient and
for which the money components of the allocation sum to zero.

Assume that each V; is a compact metric space. Let (V,S,P) be a
probability space where S = x;S; and S; is the Borel sets of V;. The
probability measure P represents the prior distribution of populations in
V. P is assumed to be common knowledge and supp P = V.

From the point of view of any individual i, others’ possible types are
given by V' = x;4V;, with typical member v'. Let (V*, S*, P(-|v;)) be an-
other probability space, where S* = X ;4;S;. The measure P(-|v;) represents
i’s posterior beliefs about the probability of others’ types given that he is
a type v;.

Throughout f : V — Y x R" will denote a mechanism where f(v) =
(y(v),m(v)). Interpret fi(v) = (yi(v),mi(v)) as the outcome to individual
i in the population v under the mechanism f. A mechanism is assumed to
be P-measurable.

Under the mechanism f an individual i of type v; will receive the ex-
pected payoff

EUi(vi) = [ wilfi(vi, ), 0)dP(v' o),

where v = (v;,v*), provided that ¢ reports his type truthfully. If, however,
i reports that his type is v/ when he is actually v;, the expected payoff will
be

EqUv;v) = [ w(f(}, "), 0)dP(v'lws).
By construction, E;U(v;) = E;U(v;; v;).

We shall say that the mechanism f € BPOy[V], the set of Bayesian,
Y-efficient mechanisms on V, if

1) Vv, y(v) € POy(v), wheref(v) = (y(v), m(v)),
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(2) Vi Vu; Yo, E Ui(v) 2 E;Ui(v}; ;).

Notice that condition (1) does not place any restrictions on the feasibility of
the money component of the allocation, and therefore the range of f need
not lie in the set of feasible outcomes X. Condition (2) is the Bayesian in-
centive compatibility constraint. It says that truthful revelation maximizes
each individual’s ezpected utility, regardless of his type.

How should individuals be rewarded so that the mechanism is Y -efficient
(condition (1)) subject to the Bayesian incentive compatibility condition
(2)? Evidently, this involves restrictions on the money component of the
mechanism. To describe these restrictions, it is useful to introduce some
definitions that will also be employed below.

The gains from trade in v is given by

g(v) = 3 vi(wi(v)),

where y(v) is any element of PO(v). Note that while y(v) may not be
unique, g(v) certainly is. We shall assume that g is continuous on V' rather
than derive it from prior assumptions on each V; and ¥;. (In the model of
Section 5, the derivation is immediate.)

The ezpcc‘ted gains from trade conditional on individual s being of type
Vs 18

Boo) = 3 [, suson NP0 + | m(uton P w0,

where y satisfies condition (1).! Subtract from Eg(v;) the value of the
second term on the RHS to obtain

Eg'(vs) = Eg(v:) - [ v{u(vi,v))dP(v']vs),

the expected gains from trade to everyone except i when he is of type v;
and the mechanism f = (y,m) is used.

A mechanism f is a Groves mechanism in ezpectations, denoted by f €
EG[V], if it satisfies condition (1) and Vi Vu;, there exists k; : V' — R, such

1Ek(z) denotes the expected value of k conditional on the realization z.
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that,
(3 Bmw)= [, miviv)dP(olv) = Eg(v) + Ehi(v),

where

Bhi(v) = | h(v)dP(o'lus),

The term Eh;(v;) is dependent on v; only to the extent that P(:|v;) is. Since
there is nothing that v; can do to effect this quantity, it is a lump sum. Thus,
condition (3) says the expected money payment to an individual of type v;
is the expected gains to everyone except i plus a lump sum. In the following
section we shall provide an alternative marginal product interpretation of
this formula.

Just as it is easy to verify that any Groves scheme is DS, it is easy to
verify that any Groves scheme in expectations is Bayesian incentive com-
patible. Further, provided individuals’ types are chosen independently,
d’Aspremont and Gérard-Varet [1975,1979] and Holmstrém [1977,1979] have
shown that a Groves mechanism in expectations is also necessary for Bayesian
incentive compatibility.

Specifically, say that individuals’ types are independently distributed if
for any ¢, (V, S, P) can be written as the product of two probability spaces
(V;, Si, P,) and (V*,5%, P), ie., if Ax B C S; x S, then P(A x B) =
P,(A) - P'(B). Thus, for any v;, P(-|v;) = P(-). With independence, the
expected lump sum term Eh;(v;) does not depend on v;.

We conclude this section with a summary of the relationship between

BPOy and Groves mechanisms in expectations under independence, which
follows from Holmstrém [1977,1979).

Theorem 1 Suppose that for each i V; is a convez set and individuals’
types are independently distributed. Then,

EG[V] = BPO,[V].



3 Groves Mechanisms in Expectations as Marginal
Product Mechanisms in Expectations

In VCG we showed that any Groves mechanism is equivalent to a marginal
product mechanism, i.e., a mechanism that rewards each individual with
his marginal product, plus perhaps a lump sum. We shall demonstrate
here that this equivalence can be extended to expected values. This equiv-
alence will be used in the next section to show the limitations on lump sum
transfers in BPOy mechanisms resulting from the assumption of individual
rationality.
Recalling that g(v) is the gains from trade in the population v, let
g'(v) = max 3 v;(y;),
J#i

where Y = {y = (11,.--,¥) € Y : i = 0}. Thus, ¢'(v) is the gains
from trade when i is excluded (i.e., when i makes the null trade. This

is effectively the gains from trade in the population v'. The continuity
assumption for ¢ will also be assumed to apply to ¢".

The contribution of the characteristics v; (including Y;) to the the gains
from trade in v is measured by the marginal product of i in v, where

MPy(v) = g(v) — g'(v).
The ezpected marginal product of i conditional on his being of type v; is
EMP(v;) = Eg(v;) — Eg'.

The first term on the RHS was defined in Section 2 as the expected gains
to the population conditional on ¢ being of type v; while the second term,
Eg' = [, ¢'(vi,v*)dP(v'|v;), is the expected gains when i is effectively ab-
sent from the population.

Say that the mechanism f is in the set of marginal product mechanisms
in ezpectations, denoted EMP([V], if f satisfies (1) and Vi Vv; there exists
H;: V' = R such that

(4) E,U.-(v.-) = EMP(U.') + EH,-(v;),
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where EH;(v;) = [y« Hi(v')dP(v'|v;). Condition (4) says that if  is of type
v; he expects to be rewarded with his expected marginal product plus an
expected lump sum. (Note: the dependence of EH; on v; is only via P(v'|v;)
as in the definition of Eh,(v;), above.)

To establish the identity between Groves and MP mechanisms in expec-
tations, let

Boi= [ vi(u(vi,o))dP(v'lwy)

where y; is the i** component of an allocation satisfying (1). From the
formula for a Groves mechanism in expectations, condition (3),

Em,-(v,-) = Egi(v;) + E'h.-(v;) = Eg(v,-) - Ev; + Eh.'(v;).

Since
E',U.-(v.-) = Fv; + Em;(v;),
if we add Ev; to both sides of the formula for Em;(v;) and set H;(v') =

hi(v') — g*(v) — recall that ¢*(v) depends only on v* and is therefore a lump
sum with respect to i — we obtain

E,U,-(v,-) = FEv; + E'm.-(v.-) = Ev; + Eg(v,-) - Ev; + Eh.-(v;)
= Eg(v,-) + Eh,-(v,-) = Eg(v,-) - Eg‘ + EH,‘(U,‘) = EMP('U,) + EH,'(U,').
Thus, any Groves mechanism in expectations can be written as a marginal

product mechanism in expectations. For the converse, just run the above
argument in reverse.

Summarizing,

Lemma 1 EG[V] = EMP[V].

4 Individual Rationality and Feasibility: Char-

acterizing BPOIR Mechanisms

Our concern is with mechanisms involving voluntary, non-coercive partic-
ipation; hence, mechanisms that are “individually rational.” Say that the



mechanism f is individually rational in ezpectations, written f € EIR[V],
if Vi Vv,
E,U.-(v.-) 2 u;(O; v.-) =0.

Notice that a stronger ez post notion of individual rationality is possi-
ble: Vi Vv;, u;(fi(v),v;) = 0. But we shall restrict ourselves to the weaker
concept since voluntary exchange must surely satisfy it, while it need not
satisfy the stronger notion, at least when agreements must be made prior
to revelation and without recourse.

To characterize BPOIR mechanisms we shall make two restrictions con-
cerning the populations in V. The first is an assumption that there exist
types exhibiting no complementarities with others in the expected gains
from trade, in the sense that others can expect to do as well with such a
type present or absent. More formally,

(A.1) Vi, 3v? € V; such that EMP(v]) = 0.

In the example of Section 5, such a type is illustrated by a seller with a
reservation value at least as high as that of any buyer or a buyer with
reservation value at least as low as any seller.

Suppose f € EMP[V] N EIR[V]. Then (4) and the definition of v implies
Vi, EUi(}) = EHy(v) = [ B(v)dP(v'|uf) 2 0.
Therefore, we have

Lemma 2 Assuming (A.1), f f € EMP[V] n EIR[V], where
E,U,-(v,-) = EMP(v,) + EH;(v,-), then Vi,

EH .-(v? )2 0.
Let EMP°[V] be the family of EMP[V] mechanisms in which the lump
sum term is identically zero. Since f € EMP? implies that E,U;(v;) =

EMP;(v;) and since M P;(v) = g(v) — g'(v) = 0 because 0 € Y;, we can
conclude that

Lemma 3 EMP°[V] C EIR[V].
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Denote by F[V] the set of feasible mechanisms f such that Vv f(v) €
X. Recall from the definition of X that a mechanism is feasible if its y
component always lies in Y and the the money components sum to zero.

From Theorem 1 and Lemma 1 we know that if f € EMP?[V], then f €
BPOy[V]; and from Lemma 3 we can conclude that f € BPOyIR[V] (=
BPOy[V] N EIR[V]). While such a mechanism is required to satisfy condi-
tion (1), which necessarily means that it is Y-feasible, there is no guarantee
that f € F[V], i.e., the sum of the money payments is not necessarily zero.
And, it is the latter restriction that makes the mechanism PO rather than
merely POy.

There is one situation in which EMP? will be PO. Call V a full appro-

priation environment if
Vv, 3" MP(v) = g(v),

i.e., if the sum of the individual marginal products always sums to the gains
from trade. In such an environment each individual can fully appropriate
the gains from trade that the individual, through his characteristics, confers
on the population.

On full appropriation environments we could construct an f such that

u;( fi(v);v;) = M Py(v) and f € F[V]. This f would clearly exhibit
E;Ui(vi) = EMP(v;).

From the previous results, this would guarantee BPOIR. (In fact, we showed
in VCG that such a mechanism would guarantee DSPOIR.) The question
that remains is whether there are any other situations — mechanisms and
environments — in which it is possible to establish BPOIR.

Economic environments, at least those with finite numbers of individu-
als, do not typically exhibit the full appropriation property. Rather, they
exhibit what can be called overfull appropriation, i.e.,

(4.2) Vo, ¥ MPy(v) > g(v).

For example, if v is a population having a non-empty core it will satisfy
(A.2). Hence, any private good economy with a Walrasian equilibrium
or any collective good economy with a Lindahl equilibrium will exhibit
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overfull appropriation. (See Proposition 1, below, where (A.2) is verified
for the double-auction model and Section 6.1 for a class of models exhibiting
“underfull” appropriation.)

Let EMP*[V] = EMP?[V] N F[V] be the set of full appropriation mech-
anisms in ezpectations on V. A mechanism f belongs to this set precisely
when

(a) f € POy[V], i.e., satisfies condition (1).
(b) ViVw;, E;Ui(v;) = EMP(v;)
(c) feF[V]
The characterization of BPOIR is described in

Theorem 2 IfV satisfies the hypotheses of Theorem 1 and (A.1) and
(A.2), then
BPOIR[V] = EMP*[V].

Theorem 2 says that if f € BPOIR[V], it must give each type its ex-
pected marginal product. So, for any f, f' € BPOIR[V],

EfU.'(‘U.') = E,'U.-(v.-) = EMP(v,-).

In terms of ez ante expected utility, the equivalence class of all BPOIR
mechanisms yields the same expected utility. Thus it is meaningful to
speak of “the” full appropriation mechanism in expectations. The following
result shows that there is a natural focal point of this equivalence class
of BPOIR mechanisms, namely the mechanism that rewards each : with
exactly MP;(v) for each v € V rather than EMP(v;). In our earlier VCG
paper, it is shown that this focal point is the unique DSPOIR mcehanism.

Theorem 3 If V satisfies the hypotheses of Theorem 2, then

BPOIR[V] # 8 <= Vv, M P;(v) = g(v).
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To relate these results to perfect competition theory, suppose that V is
a class of populations for which Walrasian equilibria exist. (An especially
simple class is given in Section 5.) Say that V is a class of perfectly com-
petitive populations if each v € V' possesses a Walrasian equilibrium with
the extra property that everyone truly faces perfectly elastic supplies and
demands, i.e., with the extra property that price-taking is truly rational.
In VCG, we show that a perfectly competitive population and one in which
there is full appropriation are equivalent. Combining this the results of
VCG and Theorems 2 and 3 above, BPOIR mechanisms only ezist on fam-
ilies of perfectly competitive populations. Alternatively put, if the family of
populations is not perfectly competitive then ndividuals will justifiably be-
lieve that they possess some non-negligible monopoly power. And in their
efforts to exercise this power, the tension between efficiency (PO) and self-
ish Bayesian bargaining burst into inefficiency; formally, BPOIR becomes
impossible.

Proof of Theorem 2: By Lemma 3,
f€e EMP'|V]= f e EMP[V|N F[V]|NEIR[V].
By Theorem 1 and Lemma 1,
f € EMP|VINF[VINEIR[|V] = f € BPOy[VINF[V|NEIR[V] = BPOIR[V].
Conversely, by Theorem 1 and Lemma 1,
f € BPOIR|V] = f € EG[V|nF[V] EIR[V] = f € EMP[VINF[VINEIR[V].

Hence, we need only show that for all i, EH; = 0 to show that f €
EMP*[V).

From Lemma 2, if f € EMP[V]|N EIR|[V], then Vi, EH; > 0. Note that
by independence, EH; does not depend on v;. Therefore,

EIU,'(U,') = EMP(‘U,) + EH; > EMP(U,‘);
from which it follows that

EU; = /V E,Ui(v;)dPi(v;) > /V EMP(v;)dPy(v;) = EMP,.
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Summing over i,
(*) Y EU;=E;) U;=E) uifv);vi)=Eg>> EMP,.

If EH; > 0 for some i, the inequality would be strict, contradicting
(A.2). So, f € BPOIR = f € EMP*, completing the argument for Theo-

rem 2.

Proof of Theorem 3: When Vv,}" MP;(v) = g(v), then by choosing f
such that Vi Vu;, u;(fi(v); v;) = M P,(v), we can certainly satisfy f € EMP*
which, by Theorem 2, implies that f € BPOIR.

For the converse, by Theorem 2 we must show f € EMP* = Vu,
> MP;(v) = g(v). If, on the contrary, this is not the case then by (A.2)
there exists a v such that ¥ M P,(v) > g(v). By continuity of g and g* there
is an open set W C V such that 3 M P;(w) > g(w),w € W. From this we
can conclude P(W) > 0 since otherwise if P(W) = 0, then supp P would
be contained in the closure of V\W, contradicting the hypothesis assumed
throughout that supp P = V. Therefore, by (A.2),

S EMP, > Eqy.

But this contradicts () in the proof of Theorem 2 which was necessary for
f € EMP".

5 The Double-Auction Model

In this section we shall apply our results to a simple and well-studied class
of environments with quasi-linear preferences, the sealed-bid version of the
double-auction model. Here we can explicitly make the connection between
BPOIR mechanisms and perfect competition stated in the Introduction.
Given our characterization result and our claim that BPOIR mechanisms
require perfectly competitive environments, one might jump to the conclu-
sion that BPOIR is impossible in models with a finite number of individuals
because perfect competition is impossible with small numbers. While it is
correct that perfectly competitive configurations of parameter values are
rare with small numbers of individuals, we shall see that they do exist
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in the double-auction model. We shall also show that as the number of
individuals increases, the frequency of (almost) perfectly competitive pop-
ulations increases so that what is a rare event for small numbers becomes
common for large.

In terms of the model of Section 2, the double-auction model is defined
by

(i) £=1

(ii)
_([o,1] ifieB
”"‘{[-1,01 ifies

where B and S are a partition of the n individuals into buyers and
sellers, respectively;

(iii)
Vi, Vi = {v; € [0, K] : vi(yi) = vivi, ¥i € Yi}.

Thus, there is just one y-commodity and money. Letting z; = (y;,m;) €
R2, the utility of z; to a type v; is

ui(zi;v;) = viyi + my.

Note, each individual enjoys constant marginal utility from the commodity
if i € B and suffers constant marginal cost if : € S, and no individual can
trade more than one unit.

Let V = V; x --- x V, = [0,K]". The triple (7,y,m) is a Walrasian
equilibrium for v if
(WE.1) y is a feasible allocation, i.e., y; € Y; and Y y; = 0,
(WE.2) Vi, vy, — my; 2 vy — ©y),

(WE.3) m; = my;, so that the budget constraint ry; + m; = 0 is satisfied.
A description of any v along with its Walrasian equilibria can be illus-

trated in a demand-and-supply diagram. The demand schedule consists
of the {v;},i € B, arranged in descending order while supply consists of
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{v;},+ € S, arranged in ascending order. Walrasian equilibrium price(s)
and quantity (or quantities) occur at the intersection of the two schedules.

In Theorem 3 we gave necessary and sufficient conditions for a BPOIR
mechanism to exist. Qualifications required for this result are that each V;
be convex as well as assumptions (A.1) and (A.2) on V. Since V; = [0, K],
it is evidently convex. By putting v; = 0,7 € B, or v; = K,i € S, we
can evidently satisfy the requirement (A.1) that there exists for each i a v?
exhibiting no complementarities with others.

To verify (A.2), let II(v) be the set of Walrasian prices for the population
v. It is easily seen that II(v) is an interval and we denote its length by
ITI(v)|. Also, let g(v) be the minimum number of units bought (or sold) in
some y-efficient allocation for v.

Proposition 1 Vv, 3 MP,(v) — g(v) = ¢(v){II(v)| 2 0.

Since ¢(v) and |II(v)| are non-negative, the condition (A.2) of overfull
appropriation is satisfied. Proposition 1 also provides the conditions for
full appropriation, the key requirement for BPOIR. This will occur either
in the trivial case that there are no gains from trade and therefore ¢(v) is
zero or in the case that |[I(v)] = 0, i.e., there is only one Walrasian price
for the population v.

We give an informal diagrammatic proof of Proposition 1, illustrated in
Figure 1, using an example with two buyers and two sellers.

f*

v3 ——— — —
)

v-: - —— —

vy

FIGURE 1
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The value of g(v) is given by the area between the demand and supply
schedules to the left of the equilibrium quantity (here equal to 2) where
they intersect. The value of MP; is the difference between this area and
the area ¢'(v) between the two schedules after the trader with reservation
value v; drops out. Assume the values of v; are given in ascending order,
v; < vy < v3 < vy. In this example S = {1,2} and B = {3,4}.

It is readily seen that MP; = v3 —v;, MP; = v3— vy, MP3 = v3 —v,, and
MP, = v, — v5. Note that II{(v) = [v2,v3] and g(v) = (v3 — v1) + (v4 — v2).
The reader may wish to verify the following interpretation of Proposition
1: each seller (buyer) will receive his MP;(v) if the price at which he sells
(buys) is the highest (lowest) value in II(v). (There are no inactive traders
in this example and if there were the rule would not apply to them.)

Adding up the MP’s, we have
EMP:' = (v3—v1)+ (v3—vz) + (v3—v2) + (v4 — v3)
= (v3 =)+ 20(v) + (vq = v3)
= g(v) + 2II(v),

as was to be shown.

Whenever |II(v)| > 0, it is evident that prices are manipulable.? Either
a buyer or a seller can, by reporting a different reservation value, change
the size of the interval in his favor while continuing to trade. For example,
if |II(v)| = [a, b], and y; > 0, then by reporting v € [a,b), i can change the
interval to [a,v!]. This is not true when [[I(v)| = 0: a buyer may be able
to raise the price or a seller lower the price, but no individual can favorably
manipulate the price by misrepresenting his preferences. Since |II(v)] is pos-
itive only when individuals can influence prices and since the size of |II(v)|
is indicative of the extent of the influence, we may use |II(v)| as a measure
of the potential monopoly power in v. (This characterization of monopoly
power and particularly the association of its absence with uniqueness of
Walrasian price in no way carries over to more general models.)

Define
V' ={veV:[l(v)| =0},
2Trivially, prices are non-manipulable when there are no gains from trade, yet II(v)

can be a non-degenerate interval. We ignore this as an inessential exception to the char-
acterization of a perfectly competitive population as [[I(v)| = 0.
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as the subset of populations with unique prices, or the environment on
which there is perfect competition. Let f¥ be a Walrasian mechanism on V.
There is no ambiguity (in terms of utilities) about a Walrasian mechanism
on V* because the utility of an allocation is completely determined by the
price. On V\V*, let the Walrasian price be the midpoint of II(v).

Suppose each ¢ can announce any v; € [0, K] but he is given the prior
information that P(V*) = 1. While the choice of a v! # v; by a single
individual may lead to a v that lies outside of V* — which, nevertheless,
leads to a well-defined outcome — the expected gain from such a choice is
non-positive because the individual knows that any misrepresentation he
makes, if it changes price at all, changes it unfavorably. Therefore,

Proposition 2 Provided P(V*) = 1, the Walrasian mechanism f% is
BPOIR on V.

The essential qualification is the proviso that P(V*) = 1 rather than
the hypothesis of the previous sections that P(V') = 1. Note that V* is not
only a subset of V but is further restricted by the fact that it cannot be
written as a Cartesian product of sets V;*. Hence, individuals’ types cannot
be independently distributed. Thus, Proposition 2 provides only sufficient
conditions rather than necessary ones as in our Theorems 2 and 3.

With this possibility result as background, we can draw upon our main
characterization results to make some observations about impossibility.
Since the model of this section satisfies assumptions (A.1) and (A.2), we
can apply Theorems 2 and 3 to show that for a mechanism to be in
BPOIR[V] the family of populations in V must satisfy full appropriation.
But by Proposition 1, full appropriation occurs only on V* a set for which
P(V*) < 1. Therefore, we have

Proposition 3 If individuals’ types are independently distributed and
supp P =V, then BPOIR[V] = 0.

Given the current interest in investigating incentives under bilateral ex-
change, we point out that BPOIR is never possible in two-person models
with positive gains from trade. While such a result already appears in
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Myerson and Satterthwaite {1983], our more general framework and char-
acterization provides an intuition for this conclusion: two-person economies
with positive gains from trade necessarily involve monopoly or monopsony
power since neither the seller nor the buyer competes against other sell-
ers or buyers; i.e., such economies are never perfectly competitive. More

succinctly,
if n=2,9(v) >0« |[I(v)| > 0.

Two-person economies represent the worst case scenario for BPOIR
because (a) the existence of perfect competition and (b) the presence of
gains from trade occur on mutually disjoint sets of V', whereas when n > 3
there are instances of compatibility. We conclude this section by showing
that as n /" oo, instances of approximate compatibility predominate.

To make the dependence on the number of individuals explicit, let V(n)
replace V. We wish to show that as n increases there is some suitable
metric such that the size of the set V(n)\V*(n) goes to zero. There are
two problems: (i) the dimension of V(n) is increasing with n and (ii) there
are instances in which increasing numbers does not lead to diminution in
the level of monopoly power.

Problem (ii) is illustrated by the following: (Example) Let n = 2k,
where k¥ = number of buyers = number of sellers and let v; = b, Vi € B,
and v; = a, Vi € S, where b > a. Evidently, for all k, |II(v)] = b — a, and
therefore each individual has monopoly power. This shows that we shall
have to incorporate a genericity element in our metric if we are to admit
this possibility while regarding it as exceptional.

We shall deal with problem (i) by peforming an experiment that makes
the metric scalar-valued for all n. Suppose V(n) did coincide with V*(n).
Then we could choose the Walrasian mechanism f and it would satisfy
for each v € V(n), u;(fi(v);v;) = MP,(v). By Theorems 2 and 3 this
mechanism would satisfy BPOIR.

Suppose we pretend that V(n) = V*(n) by choosing an f € EMP?
such that each type v; gets not only EMP;(v;), but his exact MP in every
instance, i.e., f = (y,m) satisfies

(MP.1) Vv, y(v) € POy(v)
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(MPZ) ViV Vs, m.-(v) = MP.(‘U) - v,-(y.-).

By construction,

Y_mi(v) = X MPi(v) - g(v),
and by Proposition 1 this will be non-negative. In the population v, the
scalar 3" m;(v) measures the size of the error associated with our pretense
that v is in V*.

If 3~ m;(v) can be used as a measure of how far the population v is from
being perfectly competitive, then

Em(n)= EY miv) =Y /V o TH(V)PE),
i=1 i=1 77"

can be used as a measure of how far the environment V(n) is from being
perfectly competitive. The number Em(n) can also be interpreted as the
expected subsidy the market participants would have to contribute so that
the market mechanism could operate on V(n) according to the perfectly
competitive principle of rewarding each individual with their MP. In the
case of one buyer and one seller, Myerson and Satterthwaite [1983] show
that this is the minimum subsidy which must be added to make a Bayesian
incentive compatible mechanism efficient.

To say that increasing the number of individuals causes the environ-
ment V(n) to become perfectly competitive, i.e., V(n)\V*(n) is effectively
shrinking to zero, might be described by one of the following:

(1) imn~1Em(n) =0.
(2) n~'Em(n) ~ O(1/n).
(3) n"1Em(n) ~ o(1/n).

They are listed in increasing order of stringency. The first requires that
the per capita expected subsidy to make the market perfectly competitive
go to zero, but it says nothing about the rate of convergence. The second
requires that n~!Em(n) converge at the rate O(1/r), which is to say that
the per capita subsidy goes to zero sufficiently rapidly that a market with
large but finite numbers would be a good approximation to the assumption
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that V(n) = V*(n). The third criterion implies that since the per capita
subsidy is going to zero faster than n~!, we have lim Em(n) = 0.

With the assumption of independence of types, it will be readily verified
that (1) holds and it will also be clear that (3) will not. We shall demon-
strate (2) for the special case of a uniform probability distribution. A
similar order of convergence result on the asymptotic efficiency of a certain
trading mechanism is established by Satterthwaite and Williams [1988] un-
der more general assumptions on the probability distribution. (See Section
6.2, below.)

For computational convenience we normalize by setting K = 1. Let
A be Lebesgue measure on [0,1] and A* = A x --- x A be the population
measure on V(n) = [0,1]" before individuals are assigned to be buyers or
sellers. That assignment is made for each individual by flipping a fair coin.

Proposition 4 Let P(n) = \*; then imn~'Em(n) ~ 0(1/n).

To prove this result, let us first apply Proposition 1 to the definition of
Em(n) to obtain,

Em(n)= [, a@)/I(2)ldx"(v)

Recalling that ¢(v) is the (minimum) number of units bought or sold in a
Walrasian equilibrium, 0 < g(v) < n/2. We may therefore conclude that
the expected number of trades will vary proportionally with n. Thus, the
crucial component of the formula above is the size of {II(v)|.

If, as is readily shown, E|II(v(n))| — 0, then since n~1¢(v) < 1/2, we
are assured that Em(n) — 0. It remains to show that E|II(v(n))| ~ O(1/n)
to demonstrate the Proposition.

Let v(n) = (vy,...,v,) represent a sequence of n random draws from
[0,1]. Rearranging the order if necessary, let us suppose that v(;) < v(z) <
+++ £ Y(n). Call

ailv(n)] = vi41) — vG),
the space between the i** and the (: + 1) ordered value. In the following
argument, we shall ignore the zero probability event that there are ties in
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the reservation values, i.e., we shall only deal with those realizations in
which the spaces are positive.

The spaces o;[v(n)] are of interest because

Lemma 4 If there is irade in equilibrium, then for somei =1,...,n—1,
I(v(n)) = ai[v(n)] + vey).

To demonstrate, let v() (v(x)) be the highest (lowest) reservation value
of an active seller (buyer). Obviously, h > k. If h = (k + 1), then any
price larger (smaller) than v(s) (v(x)) would cause aggregate demand to be
less (greater) than aggregate supply, while any price within this interval is
market-clearing. If 2 > (k + 1), then it would contradict the definitions
of v(x) and v(s) for there to be two reservation values between them, one
belonging to a buyer and one to a seller, such that the buyer’s exceeded
the seller’s. Thus, the lowest value of the sellers’ reservation values in this
interval, call it v(4,), must exceed the highest of the buyers’ reservation
values which will be v(;. It is readily verified that in this case II(v(n)) =
o; + V().

It is well-known that for the uniform distribution (see David [1981,
p.50])

Lemma 5
Eoifv(n)] = ( ': )/ol(z)i(l — z)"=9d;
_ n! t'(n —1)!
T in=i)! (n+1)
1
T (n+1)

Finally, Proposition 4 follows from the observation that the assignment
of buyers and sellers is made independently of the value of v(n) and there-
fore

E|I(v(n))| = 3_ Prob{Il(v(n)) € a:[v(n)]}Eai[v(n)] = (n + 1)77,
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which yields the desired conclusion on the rate of convergence. From the
argument above, it is evident that the same conclusion can be shown to
hold for probability distributions other than the uniform one.

6 Concluding Remarks

In this section we shall relate the results of this paper to the work of others.

6.1 BPOIR with Underfull Appropriation

While most private or collective good models will satisfy (A.1) and (A.2),
there is a much studied collective good model in which they do not hold.
This is the costless collective good model studied, for example, in Laffont
and Maskin [1979]. In this model society must choose exactly one collective
good project from a set of possible alternative projects. There are no costs
of production, except for the opportunity cost of choice, so the cost-sharing
advantages in models with costly collective goods — that lead such models
to exhibit increasing returns over individuals — are absent here. It is easy
to show that in this model that if any individual is pivotal for the choice
of a particular project, then 3 M P;(v) < g(v); i.e., the model will exhibit
decreasing returns over individuals (and will also have an empty core).

Assuming differentiability of the mechanism, Laffont and Maskin prove
that there exists no BPOIR mechanism for this model. We show that our
MP approach leads to the same conclusion, without any differentiability
assumption.

Let the technology Y be a fixed set of costless alternative projects and
v; : Y — R. Normalize tastes so that for some yo € Y, vi(vo) = 0, V..
Now redefine MP;(v) = g(v)—g(v*,v?), where g(v) = max{¥ vi(y) : y € Y’}
and v? is the null function on Y. Thus g(v*,v?) plays the role of g'(v) in
the sense that it measures the maximum gains in the economy when i is
effectively absent.

Now assume, instead of (A.1), that:

(A.1) Vi, Ju; € V; such that Eg(y;) < (l-;-i)Eg.
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Since the right-hand side equals Eg —(1/n)Eg, (A.1’) can be interpreted as
saying that individual ¢ may dislike the collective good more than it is like
by the others on average. (Laffont and Maskin use a weaker assumption
that individuals may simply dislike the collective good choice on average.)

Proposition 5 For the costless, alternative collective good model, suppose
that V is convez and satisfies (A.1') and individuals types are independently
distributed. Then, BPOIR = 0.

To sketch the proof, notice that
f € BPOIR[|V] = f € EMP[V]N F[V]n EIR[V].
And further, (A.1') plus f € EMP[V]NEIR[V] implies that Vi,

H = /h,-(v‘)dP‘(v‘) > Eg(v?) - (—n—’E—I—)Eg.

(The proof is exactly analogous to that of Lemma 2.)
Now, as in the proof of Theorem 2 (the argument leading to (*)

Eg=Y EMP.+Y H..

Substituting the definition of EMP; = [ M P,(v)dP(v), where MP;(v) =
g(v) — g(v*,v?), and using the above inequality yields:

Eg= / g(v)dP(v) = 3 / g(v)dP(v) - 3 / o(v', o0)dPi(v) + 3 H;
> ¥ [sw)ape) - £ LD [ g0)apw)

= nBg- 2" (ngy)
= Eg,

a contradiction. So, BPOIR[V] = 0.
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6.2 The Assumption of Independently Distributed Types

Our characterization result assumes independence, which may the strike
the reader as a restrictive, although commonly used, assumption. We give
it the following defense.

We are looking for conditions under which the market mechanism will
work efficiently despite the presence of decentralized knowledge. When will
the market be robust? To formalize this question, we might ask when will
it be Pareto optimal on a set of economies V no matter from what distribu-
tion P the economy is drawn. The strongest standard of robustness in this
context is dominant strategy equilibrium, explored in our VCG. A weaker
standard is Bayesian incentive compatibility for any given distribution P,
including the independent distributions examined here. While dependence
might be the rule in certain instances such as common value auctions, the
hypothesis of independence of types does seem to reflect the probabilis-
tic interpretation of decentralized knowledge. Our conclusion is that with
independence, the market will be robust if and only if it is perfectly compet-
itive throughout V', which is also the conclusion reached under the stronger
dominant strategy standard of robustness.

Ledyard [1978,1979] shows a result related to ours: any Bayesian mech-
anism under sufficient uncertainty about agents’ types must have the dom-
inant strategy property. But he restricts his attention to so-called “non-
parametric” Bayesian mechanisms, i.e., ones whose outcome functions are
independent of any agent’s probability beliefs about others’ types. This in-
centive compatibility requirement puts it somewhere between the Bayesian
and dominant strategy standards. By contrast, we have stayed with the
confines of the Bayesian concept in which individuals may rely on their
common knowledge of probabilities and the inferences to be drawn from
them.

6.3 BPOIR in Economies with Large Numbers

In Proposition 4 we showed that in the special case of double-auction mod-
els the impossibility results for BPOIR converge to possibility results as
the number of individuals increases. This is entirely in keeping with our
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characterization result which says that perfectly competitive outcomes (or
something expected utility equivalent to it) on perfectly competitive envi-
ronments is exactly what is required for a mechanism to satisfy BPOIR.
Note that this characterization, the subject of Section 4, applies equally well
to models with small as well as large numbers of individuals. The reason
for introducing large numbers is to provide (and confirm) an environment
where perfectly competitive populations are ubiquitous.

On the sealed-bid double auction model, there have been several studies
of its incentive/efficiency properties. In addition to Myerson and Satterth-
waite cited above, Chaterjee and Samuelson [1983], Leininger, Linhart and
Radner [1986], and Satterthwaite and Williams [1987] have investigated the
efficiency and remarkable multiplicity of Bayesian Nash equilibria for the
case of one buyer and one seller. For the small numbers case our main point
of contact is in showing why any trading arrangement will fail to satisfy
BPOIR: the environment would have to be perfectly competitive which, of
course, it is not.

For the large numbers case, Gresik and Satterthwaite [1986] and Sat-
terthwaite and Williams [1988] have established rates of convergence for
Walrasian-like trading arrangements in which individuals can misrepresent
their reservation values. The lack of any incentive to misrepresent implies
the efficiency of their trading arrangement. The latter paper demonstrates
an O(1/n) rate of convergence on the maximum amount that a trader mis-
represents. Proposition 4 establishes a O(1/n) rate based on a different
trading arrangement: the rate of convergence is on the amount of the sub-
sidy required to implement a mechanism which encourages individuals not
to misrepresent at all. These results appear to be two sides of the same
coin.

Wilson [1985a,1985b] has investigated the case of a moderately large
number of individuals. We comment on his interpretation of the features of
the sealed-bid double auction as a desirable trading arrangement. Our po-
sition is that it is not so much the mechanism, but rather the environment,
which is responsible for the efficiency of its outcomes.

Wilson argues that the sealed-bid double auction is worthy of our atten-

tion because it operates without knowledge of individuals’ characteristics,
knowledge that each is unlikely to have about the others. Further, its
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workings do not depend on the particular prior from which the types are
chosen. He shows that for sufficiently large, but finite numbers of indi-
viduals, the mechanism is snterim efficient, a qualified notion of incentive
efficiency for dealing with small numbers, non-perfectly competitive models
due to Holmstrom and Myerson [1983].

We heartily subscribe to the reasons Wilson points to for studying this
mechanism. In a sense we wish to go further by saying that these incomplete
information features of a sealed-bid double auction are central to an appre-
ciation of the unique efficiency properties of perfect competition. Where
we differ is in the attribution of efficiency in the large numbers case: is it
the mechanism or the environment? We can make our point by saying that
the interim efficiency Wilson finds seems to understate the mechanism’s
success. Given the rate of convergence O(1/n) established for Em(n) in
Section 4, the mechanism is close to achieving BPOIR. Alternatively put, if
the participants would make a very small contribution to cover the shortfall,
with very high probability they could achieve BPOIR.

We attribute the mechanism’s success with large numbers to the prop-
erties of the environment, specifically the full appropriation property that
for most populations v € V(n), ¥ MP,(v) — g(v) is small compared to the
number of individuals. Not only can the mechanism be said to be approxi-
mately BPOIR but, unavoidably by Theorems 2 and 3, it is approximately
a dominant strategy mechanism. Hence, it is not sensitive to the prior dis-
tribution on types. Given these strong properties of the environment when
n is “moderately” large, a trading arrangement that did not perform nearly
efficiently (in the ez post sense) would be seriously flawed.

The double-auction model has also been studied in cooperative game
theory as a simple version of a market-game. See, for example, Shapley
and Shubik [1972]. Unlike other market-games, in this one the core always
coincides with the Walrasian equilibria. Thus, our |II(v)| measures the
width of the core of the economy with population v. Qur characterization
of a perfectly competitive v can be identified with a one element core,
|TI(v)| = 0. Also, Proposition 4 can be interpreted as a result on the rate
of convergence of the size of the core.

Our main result that there is little to choose between dominant strat-
egy and Bayesian concepts of equilibrium when the mechanism must also
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satisfy PO and IR suggests that our analysis should have much in com-
mon with the dominant strategy approach, a suggestion which is confirmed
throughout. Here we want to point out the connections between Proposi-
tion 4 and the work of Green and Laffont [1979], Rob [1982], and Mitsui
[1983] on the asymptotic efficiency of Groves, or demand-revealing, mech-
anisms applied to the costless public goods model described in Section 6.1.
In that model or one with private goods, paying individuals their MP’s
provides the proper incentive for individuals to report their characteris-
tics truthfully.® Similarly, the departure of such a mechanism from PO
is measured by | m; = MP; — g|, the amount by which the sum of the
money payments fail to balance. These authors “pretend” that they can
pay everyone his MP and examine the expected value of the discrepancy
as the number of individuals increases. The model they work with is dis-
tinguished by the fact that the strongest mode of convergence described
above, lim Em(n) — 0, is established.

There seems little doubt that theorems on the asymptotic existence of
BPOIR and DSPOIR mechanisms can be demonstrated for more general
models with quasi-linear preferences than the double-auction or the cost-
less public goods, although we have not shown this. However, elsewhere
(Makowski and Ostroy [1988]) we have shown, via the concept of an in-
dividual’'s MP, how the theory of Groves mechanisms can be extended to
continuum economies. One advantage of the continuum model is that the
restrictive assumption of quasi-linear preferences can be discarded. In our
[1987b], results on Groves-MP mechanisms and their properties in the con-
tinuum are given in models without quasi-linearity.

3Although in the public goods case the strength of the incentive to report one’s char-
acteristics truthfully is minimal when the number of individuals is large.
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