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Abstract

Different information systems are compared in terms of their relative efficiencies
in an agency model. It is shown that the variance of the likelihood ratio distribution
ranks such information systems when the agent’s utility function is a square root.
Also the second order stochastic dominance relation between the likelihood ratio
distributions derived from the original information systems is found to be sufficient to
rank information systems under quite general assumptions about the agent’s utility
function. Furthermore, it is shown that the second order stochastic dominance
criterion is equivalent to Holmstrom’s informativeness criterion when the comparison

is done for inclusive information systems.



1 Introduction

A principal-agent problem arises when it is impossible for a principal to design a
reward scheme which is conditional upon an agent’s choice of an action because of
the principal’s lack of ability to observe that action. In the basic agency model,
there is a set of common observables imperfectly correlated with the agent’s hidden
action choice and the principal’s interest in controlling the agent’s decision-making
leads him to utilize those observables. The system that generates those observables

is called an information system.

Most often it is assumed that the principal observes the output produced by the
agent, either exactly or with error.! More generally, in a multi-agent setting, an
agent’s contribution to aggregate output may be very difficult to estimate. In such
cases, the principal has an incentive to monitor some facets of an agent’s input. The
information service is then one or more signals from a monitoring technology, where

each signal is correlated with the agent’s input.

Even though growing attention has been paid to the modelling of the principal-
agent relationship over the last decade, this literature is primarily focused on the
problem of designing an incentive contract for some given information system.? How-
ever, in reality, the principal typically must also choose among alternative informa-
tion systems before designing the incentive scheme. Thus the principal’s problem
of designing an incentive contract through which he wishes to control the agent’s
decision-making consists of two stages: the choice of an information system and the
design of an incentive scheme based on the information system that is chosen in the

first stage.

In this traditional case where the only observable is the output, the production technology can
play a role of information system that gives a signal correlated with the agent’s hidden action.

2See Ross (1973), Mirrlees (1974), Harris and Raviv (1979), Holmstrom (1979,1982), Shavell
(1979), Grossman and Hart (1983), among others.



This paper focuses on the first stage. To illustrate the issues, consider the following
simple bucolic example. A risk neutral ranch holder (principal) hires a risk averse
cowhand (agent) to manage a herd of milch cows. The principal must choose between
two breeds of cows which are equally costly. The amount of milk produced in a
given period is affected not only by the cowhand’s effort that is hidden to the ranch
holder but also by the weather which changes stochastically. It is assumed that
the expected amounts of milk from both breeds are the same if combined with the
cowhand’s same effort but the cow of breed A is more weather resistant than that of
breed B. Thus the amount of milk from cow A is less sensitive to the change of the
weather. Consequently, conditional on any particular effort level of the cowhand,
the distribution of the amount of milk from cow A is less risky.® The first problem to
be solved by the principal is which breed should be given to the cowhand.* A naive
answer is that the ranch holder will be indifferent between the two breeds since being
risk neutral he is only concerned with the expected amount of milk. Of course this
is incorrect because not only the expected amount of milk but also the cost needed
to control the cowhand’s hidden action is important in this moral hazard situation.
For any effort level of the cowhand, if the variance of milk output is greater for breed
B then the information contained in the output signal is less revealing to the ranch
holder. This suggests that the ranch holder will prefer the less risky breed A since, for
a given payment scheme based on milk output, he imposes less risk on the cowhand.

While this intuition is sound, as far as it goes, it is incomplete except in special
cases, for example, where milk output is normally distributed.® In this paper we
establish that the key factor in ranking information systems in an agency model is

not the distribution of the signal conditional upon the agent’s action but the derived

3The term ‘less risky distribution’ here means a distribution with a less variance.

4This bucolic example can easily be extended to the real economy where the principal provides
a specific production project among many alternatives and the agent’s provides hidden effort.

5For this issue, see Kim and Suh (1990).



likelihood hood ratio distribution of the signal.

The related subject of ranking information systems of a decision maker was initi-
ated by Blackwell (1951, 1953) and the economic comparability of such ranking was
developed by Marschak and Miyazawa (1968). More recently there have been two
efforts to analyze the ranking of information systems in an agency model. The first
result regarding the choice of an information system is the informativeness criterion
in Holmstrom (1979). This criterion states that, between any two costless public
information systems having an inclusive relation® the information system with addi-
tional signals is strictly preferred by the principal if and only if at least one of those
additional signals is informative about the agent’s action choice. Holmstrom’s notion
of informativeness is defined in terms of a sufficient statistic." Second, Grossman
and Hart (1983) and Gjesdal (1982) apply Blackwell’s ranking information systems
to the agency model and they show that the sufficient part of Blackwell’s theorem
works in the agency model, that is, when two information systems satisfy Blackwell’s

sufficiency condition they can be ranked in their efficiencies in the agency model.

However, the informativeness concept is very restrictive as a ranking criterion in
the sense that it is impossible to apply such a criterion for the ranking of information
systems which cannot be ordered in terms of a sufficient statistic as the bucolic
example mentioned above. Moreover, the application of Blackwell’s theorem to the
agency model still remains obscure in many respects. The purpose of this paper is
to find another criterion for the ranking of information systems in the agency model
which can be applied to a broader set of information systems and, in doing so, shed

light on the earlier work.

The paper is organized as follows: In Section 2 the basic agency model is formu-

8 An inclusive relation between two information systems here means that one information system
has additional sources of signals than the other. However, the inclusive relation generally means
that one information system is a finer partition of the other.

THolmstrom (1982) extends his result to the generalized notion of a sufficient statistic.



lated and in Section 3 two criteria for the ranking of information systems are derived
and discussed. First, by imposing a restriction on the agent’s preference we obtain
a measure by which we can rank all information systems. That is, when the agent’s
utility function is the square root function, the variance of the likelihood ratio be-
comes the measure which ranks all the information systems if such variances exist
(Variance Criterion). Second, under the general additive separability assumption
for the agent’s utility function, we show that one information system is more efficient
than the other if its derived likelihood ratio distribution is second order stochastically
dominated by that of the other information system (SOSD Criterion: Second Or-
der Stochastic Dominance Criterion). So it is not the distribution of an information
system itself but the distribution of its derived likelihood ratio that is important in

deciding the relative efficiency of the information system.®

In Section 4, it is shown that the SOSD criterion includes Holmstrom’s infor-
mativeness criterion in the sense that it becomes equivalent to the informativeness
criterion when applied to the ranking of inclusive information systems. In Section
5, it is shown that the sufficient part of Blackwell’s ranking of information systems
can be applied to the agency model and the basic difference between Blackwell’s the-
orem and the SOSD criterion is explored. In Section 6, the welfare implication of
moral-hazard is investigated.

In Section 7, as concluding remarks, we briefly mention further extensions and

possible applications.

8The reason the distribution of the likelihood ratio is more important than the distribution itself
is that the former can cleatly represent the role of the agent’s hidden action choice in the information
system which is important in deciding the efficiency of the information system.



2 Basic Model

We consider a two-person, single-period agency model. The agent paticipates in
this decentralized economy by providing some productive effort a € [g,a] C R, not
observed by the principal. There is a signal vector y commonly observed by the
principal and the agent without cost. The signal vectory = Y(a,0) €Y C R™,m >
1, generated from the information system Y, is received after the agent has made
his choice of a and the nature its choice of # € ©. The monetary outcome z is
determined by the stochastic production process X, i.e., ¢ = X(a,0) € X. The
rndnetary outcome z may be included in y or may not.® The agent’s compensation
s is a function of the jointly observed signal y.

Given a probability measure on 0, the information technology Y can be described
by the joint density function h(y|a) parameterized by the agent’s effort. Thus,
h(yla) € T can be interpreted as an information system which generates a signal
vector y informative about a where I’ denotes a set of information systems to be

ranked.1?

Assumption 1:

The principal is assumed to be risk neutral while the agent is work- and income risk-
averse. Furthermore, the agent’s preference on wealth and effort is assumed to be

additively separable, i.e.,

U(s,a) = u(s) —v(a) v >0,u’"<0,v'>0

9In much of the moral hazard literature, the monetary outcome z is assumed to be the only
common observable. In this case, the signal y = z. In general, however, the outcome z will not be
observed without cost. On the other hand, other signals than the monetary outcome may be more
easily observed. See Gjesdal (1982).
10This parameterized distribution formulation is pioneered by Mirrlees (1974) and further explored

by Holmstrom (1979).



where v denotes the agent’s disutility of effort.

Assumption 2:

3 [V h(t|a)dt

<0, Vhel,VyeY.
Oda

Assumption 3:

For any value y, Vh(y|a) € T is twice differentiable in a.

Assumption 4:

Y, the image of information system Y, is independent of the agent’s action choice.

Assumption 2 implies that the signal y is increasing in a in the sense of first
order stochastic dominance while Assumption 3 is provided to characterize the op-
timal incentive scheme. However, Assumption 3 also rules out perfect information
systems from I'.  Thus, the focus of this paper is to rank imperfect information
systems. Assumption 4 also eliminates perfect information systems. But more

strongly it eliminates all the moving support cases from I'.!?

The agency problem with an information system h(y|a) € I is the following:

Maz [z — s(y)]h(yla)dy
s(y) 2 k,a
s.t (i) [u(s(y))h(yla)dy —v(a) 2T
(i1) @ € argmaz [ u(s(y))k(y|a)dy — v(a)

where U denotes the agent’s reservation level of utility. Here the lower bound of the

agent’s compensation, k, is provided to avoid a nonexistence problem. In practice, £

11The reason we eliminate all the moving support cases from I is a technical one to guarantee
[ B (yla)h(yla)dy = 0,Yh € T.



can be interpreted as the subsistence level of the agent’s income. The first and the
second constraints are referred to as the participation constraint and the incentive

compatibility constraint, respectively.

Of course, the comparison of information systems in I in terms of their values
will be accomplished by solving the above program for every information system in
I and then by ranking in terms of the principal’s expected payoff.12 However, this
ranking will be sensitive to the characteristics of the agency problem especially to
the agent’s utility function. Our purpose, however, is to find a ranking criterion that
is insensitive to the charateristics of the agency problem. Furthermore, our main
interest lies in deciding the efficiency of an information system which is associated
with the precision of the information system. Thus, it is natural to make the following

assumption about T'.

Assumption 5:

Every information system h € [ has the same expected monetary outcome for any

given a, i.e.,
/ zh(y|a)dy = E(X|a), YheT, Va€ a3l

Assumption 5 means every information system in I' has the same expected pro-
ductivity, thus we ignore the productivity aspect on the efficiency of an information
system. So ranking those information systems can be equivalently done by compar-
ing the principal’s minimized expected compensation costs under such information
systems.

On the other hand, the changes in agency’s welfare with respect to changes in

information system will be generated through two different but mixed ways, i.e., the

12The concept of value here is that of the principal’s economic demand price.



changes in optimal incentive scheme and the changes in optimal action choice. How-
ever, our focus here is further restricted to ranking information systems in inducing
the same action. Thus, the agent’s action choice is fixed and our concern is that
which information system is better (less costly) in inducing the same action.

In order to induce a given action a at a minimum cost the principal has to solve

the following program under information system h(y|a):!®

Min [ s(y)h(yla)dy
s(y) 2 k
st (i) fu(s(y)h(yla)dy —v(a) 2T
(ii) @ € argmaz [ u(s(y))h(yla)dy — v(a)

Now by assuming Holmstrom’s (1979) first order approach is valid,'* the second

constraint can be reduced to

(i) [ uls(v)ha(ylady - v'(a) = 0

where h,(y|a) and v'(a) denote the first derivatives with respect to a.

Then the cost-minimizing contract sf(y) in inducing the agent a given action

choice a # a under the information system h(y|a) must satisfy

1
w(s4(y))

13Thus, we ignore the welfare implication due to the possible changes in optimal action choice
followed by the changes in information system.

14This assumption restricts I'. Rogerson (1985) shows that MLRP (Monotone Likelihood Ratio
Property) and CDFC (Convexity of the Distribution Function Condition) are sufficient for the
validity of the first order approach. As noted many times (See Hart and Holmstrom (1985), Jewitt
(1988).), most of the distributions commonly used in statistics and economics do not satisfy CDFC.
However, Jewitt (1988) recently finds a less restrictive condition for the validity of the first-order
approach and shows that many well-known families of distribution functions, e.g., exponential,
gamma, chi-square, Poisson, satisfy his condition.

hq
= A + pro-(yla) (1)

8



for almost every y for which (1) has a solution s¢(y) > k and otherwise si(y) = k.
An and puj, denote the Lagrangian multipliers of constraints (i) and (ii’) respectively,

given information system h(y|a).

Observation 1:

The Lagrangian multipliers of constraints (i) and (ii’), Ax and us, are both strictly

positive.

It is well known that when both the principal and the agent possess homogeneous
beliefs at the time of contracting, the agent always gets his reservation utility at the
optimum (i.e., Ay > 0.). Also, as shown by Holmstrom (1979), we cannot attain the

first-best solution (i.e., us > 0.).

3 Analysis

Since, from Observation 1, the agent always receives his reservation utility at the op-
timum under any information system k € T, the relative efficiency of the information
system in inducing a given action is determined by its relative expected compensation

cost in enforcing the agent such an action choice. Consider two information systems

fandy, f,g€T.

Definition 1: (Efficiency for a given action)
Information system f(y|a) is ‘more efficient at a’ than g(yla) if and only if, at the
optimum, the expected compensation for inducing the action choice a under f(yla)

is less than that under g(y|a), that is,

N .a
Ebf < Ebg



where,

/ f(yla)dy

E/ (y)g(yla)dy

&

Proposition 1:

No information system k € I' is ‘more efficient at ¢’ than others in I'.

Proof:
Since a is the least costly action to the agent (i.e., v’ > 0), to induce the agent to
choose that action for any information system it is enough to give the agent a constant

wage which guarantees the agent U. Thus the principal becomes indifferent about

the information systems. . 8

Definition 2: (Efficiency)
Information system f(y|a) is ‘more efficient’ than g(y|a) if and only if Es} < Es} for

all a € (a, @, the strict inequality holding for some a.

3.1 Variance Criterion

We start with a simple example by specifying the agent’s utility function a squarc
root because this simple example provides many clear intuitions as a benchmark.
Since the purpose of this presentation is just to show such intuitions, we temporarily
assume without much loss of generality that (1) is satisfied for almost every y under

any information system h € T'.

Proposition 2 (Equivalence Theorem):'®

When the agent’s utility function is a square root, the following equivalences hold for

any given a € (g,al:

15The same result is used in Kim and Suh (1990).

10



var({2) > var(2) = us < py
1 1
= var[-—-——-u,(,”] < var[-—u,(’g)]
<> Es} < Esg

Proof:

When the agent has a square root utility function u(s) = 24/s, by (1) we get

hq
Esp= [ +m=2Phyla)dy,  h=fig (2)
We now use the fact that two constraints (i) and (ii’) are binding.

From (i),

he 4 ¢
Jou+mhlary = SN =20 h= g (3
and, from (ii’)
ha ' ha _v(a)_D _
Jowtm)hGlady = =2 =5, k=g (4)
By (3), since [ 4 f(yla)dy = [ g(yla)dy = 0,
C
/\f = /\g = —2—
And by (4),
D

It

I, /(%)zf(ma)dy = ug/(i]—“)zg(yla)dy = —, (3)

2
Since D is a constant that is exogenously given, var(ffﬂ) (= f(if‘l)zf(yla)dy] > var(%)
is equivalent to ps < pg. From (1),

) = [+ w5y =

11



So, by (1) and (5),

ﬂf/ =) f(yla) dz,/—;u,var(fT)__,,f7
ga

var|

1 —_ 2 Ga 2 2 a
-@1—% J & atslerdy = wipar(%

Therefore, since D is positive, gy < p, is equivalent to var[;(ls—,)] < var[u—,(ls;-)-].
! g

Furthermore, from (2),

foy 2 € 1 varl=]

Es; = A? + u:}var(-f) =T + var ey
C? 1

E a _ /\2 2 g_a — —_—

Sq s + ugvar( . ) 1 + var[u’(s;)]

So, var[@] < var[u,(l—-;g] is equivalent to Es% < Esi. Therefore, the information
system f(y|a) is less costly than g(y|a) if and only if var(lf-‘l) > var(L). ]

Statistically, 22(y|a) is the derivative of the log likelihood function logh(y|a) with
h g ghly
respect to the unknown parameter a. More precisely, in the two action case (ar.
ar), where ar, and ay denote the agent’s low effort and high effort respectively, the
h h{yla . h(yla . . T .
term 53(y|a) reduces to 1 — F(iﬁ'a_;% Since ﬁ;{;’;—% represents the likelihood ratio of
the agent’s low effort choice when y is observed, 1 — E"%:—}% can be thought as the
likelihood ratio of the agent’s high effort choice when y is observed. Therefore.
-’l,f(y|a), which is the counterpart of 1 — %’ﬁ% in the continuous action case, also
represents the likelihood ratio of the the agent’s action choice a. In other words, the
term %2(y|a) designates the principal’s statistical inference about the agent’s action
choice a when y is observed. Since the first best risk sharing rule between the risk
neutral principal and the risk averse agent is constant regardless of y, the fact that

the optimal incentive scheme s§(y) should be designed in the way that is shown in

12

-



equation (1) in the presence of moral-hazard implies that the term 2a(y|a), which
together with u, denotes the deviation from the first best risk sharing rule, is needed

for incentive provision in designing an incentive scheme.!®

Proposition 2 indicates that when the agent has a square root utility function.
all information systems in I' can be ranked by the magnitude of var(42). That is.
var(%s) provides a total ordering of the information systems for such an action choice
when the agent’s utility is a square root. The intuition that var(%2) is related to
the relative efficiency of an information system h(y|a) is the following: In statistics.
var(3s) is referred to as ‘the amount of information’ on ‘a’ contained in y under
information system h(y|a).!” So, as shown in the equivalence theorem, when the
principal can obtain more information about the agent’s hidden action choice under
information system f(yla) (i.e., var(%}) > var(Z)), the extent of the moral hazard
problem is reduced under f(y|a) (i.e., py < pg). And this reduction in the extent of
the moral hazard problem is accompanied by the smaller deviation from the first best
risk sharing rule which is needed for incentive provision, i.e., var[;,-(-lrﬁ] < var[;,-(-ls—lg;j].
Consequently, the principal can reduce his expected compensation cost by being able

to give an incentive scheme closer to the first best.

Corollary 1:
When the agent’s utility function is a square root, information system f(yla) is ‘morc
efficient’ than g(y|a) if and only if var({fl) > var(4s) holds for all a € (a,a), the strict

inequality holding for some a.

16The first best risk sharing rule here means the one that obtains when the principal observes the
agent’s action choice directly. In this case, the optimal risk sharing rule will be constant.
17See Freeman (1963).

13



3.2 Second Order Stochastic Dominance (SOSD) Criterion

QOur main purpose, however, is not to find a ranking criterion which is appropriate
for one specific utility function of the agent but to find the ranking criterion which
can be applied to the agent’s general utility function. So a natural question whether
the variance criterion can still be applied to the agent’s general utility function case

will be answered here.

Definition 3: ( Weak SOSD )

The distribution function F ‘weakly dominates’ over G in the sense of second order

stochastic dominance if and only if

v Yy
/ F(t)dt < / G(t)dt forall yeY.

Definition 4: ( (Strong) SOSD )8

The distribution function F ‘(strongly) dominates’ over G in the sense of second

order stochastic dominance if and only if
/y F(t)dt < /y G(t)dt forall y €Y.
and the strict inequality holds for at least one y € Y.

Definition 5:(Likelihood Ratio Distribution Function)

H2(z) denotes the likelihood ratio distribution function of an action choice ‘a’ under

information system h(y|a) where z = %2(yla). That is,

a — — h“ .~ -] —
Hi(z)=Pry[Z < 2] = Pr[7l-() la) < z| = /%,“(yla)sz h(yla)dy.

Proposition 3:

Information system f(y|a) is ‘more efficient at a # a' than g(yla) with any risk

18For details of SOSD, see Hadar and Russel (1969, 1971) and Hanoch and Levy (1969).
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averse agent satisfying Assumption 1 if the likelihood ratio distribution of that
action choice under information system f(y|a), H}(2), is second order stochastically

dominated by that under information system g(yla), Hg(z).

Proof:

Let us define, under information system h(yla), h = f,g
ha
gn = a(yle) = M + pa-(yla)

Then, st(y) can be written as s(qx) since the functional form of s with respect to ¢s

only depends upon the functional form of u with respect to s by (1). Also by (1)

1 when ¢, > (5 (6)

qru'(k) when ¢, < 0

gnw'(s(gn)) = {

since s(qn) = k and u(s(qa)) = u(k) when g < .

Since the two constraints are always binding, i.e.,

(i) [u(s(a)h(yla)dy =T +v(a) = C
() [ uls(an)32h(yla)dy = v'(a) = D,

it follows that for any information system h(yla), k= f,g,

-1

E(qnun) = [u(s(gn))gnh(yla)dy = [u(s(qn))(An + url2)h(yla)dy (
= MC + pnD

By dropping the subscript A for notational simplicity, now we know that s,(¢) (=
3—"5(5‘11) > 0, since by (1) as ¢ increases u'(s(q)) is nonincreasing and by the concavity

of the agent’s utility function s(q) is nondecreasing. Let us define

¥(q) = s(q) —u(s(q))q (3]

15



Then, using (6),

agg D s, - w(s())seg - uls()) = —u(s(e))
0%y /
8q(2q) = —u'(s(g))s, < 0

and when ¢ < i, since s, = 0,

“8q —u(k)
Thus, 1¥(q) is continuous and concave in g.
Now define 7 = g(yla) = As + ps2(yla).
Using (8), we obtain
E¥(g) - Ed(g,) = [[s(q) — u(s(7))ql9(yla)dy — [[s(qs) — u(s(gs))aslg(yla)dy

= f[(/\f+#f 2) —u(s(As + pr2))(As + pr2)lg(yla)dy
= [Is(Ag + ps%) = u(s(Ag + pg2))(Ag + py%)]g(yla)dy

Since v(q) is concave in g, it is also concave in (A, u) between (s, uy) and (Ag, pg).

Therefore,

Ep(g) — E¥(qy) < {[lsq(gs) — u'(5(95))5¢(95)90)9(yla)dy }( Ay — Ag)
+{f[30(%) —u'(s (qg))sq(%)%]&g(yla)dy}(/‘f — ig)
—{[J u(s(g9))9(yla)dy]l(As — Ag) + [[ u(s(gq)) L g(yla)dy](us — 1)}

The first two terms in the right hand side become zero by (6) and the third term, by
(7), reduces to —C(Af — Ag) = D(py — pg). Thus by (7),

16



EY(q) — E¥(qy) < —=C(As—Ag) — D(ps — )
= E(qqu,) — E(gruy)
Using (8)

Es; - Es}

Ep(qg) — Ev(qs) + E(qqug) — E(qyuy)

Ey(3) — Ev(qs)

JlsOhr + pr2) —u(s(Ag + pr2))(As + ur22)lg(yla)dy
—[lsOrs + prl) —u(s(As + pr2)) A + 1 8)1f (yla)dy

v

Thus, using the transformation in Definition 5, we can rewrite

Es® — Es? z/w(z)dH;(z)—/w(z)dH;(z) 9)

where,

w(z) = s(As + ps2) = u(s(Ag + pr2))(As + ps2) (10)

Since pp > 0, w(z) = ¥(As + pyz) is concave in 2. Now if H}(z) dominates over
H$(z) in the sense of second order stochastic dominance, H}(z) is a mean preserving

spread of H%(z). Then Es? is greater than £s$.1% This completes the proof. ]
9 9 f

Proposition 3 indicates if the distribution of %(yla) is dominated in the sense
of second order stochastic dominance by that of 99—"-(y|a), information system f(y|a)
is better (more efficient) than information system g(y|a) for a given action a since
the former allows the principal to enforce such an action choice at less expected
compensation cost.

The basic intuition for the proposition is as follows: Since every likelihood ratio

distribution for a given action choice has the same mean value of zero, the second

19Gee Rothschild and Stiglitz (1970).
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order stochastic dominance of L2 over -f& means the distribution of % is a mean
preserving spread of that of L, When the likelihood ratio distribution under one
information system is a mean preserving spread of that under the other information
system, it provides more effective information to the principal by offering a more
diverse set of data, in a probabilistic sense, from which he can draw inference about

the agent’s action choice.

The SOSD criterion is stronger than the variance criterion since the fact that the
distribution of ff is a mean preserving spread of that of fo always means var(ffﬁ) >
var(%) but the converse is not always true, and this SOSD criterion provides a
partial ordering in the sense that two information systems to be compared may not
have such a second order stochastic dominance relation.

It is natural to ask why we need a stronger criterion than the variance criterion in
ranking information systems with the agent’s general utility function. If the agent's
utility function is a square root, by (10), w(z) = —(As+pusz)? is quadraticin z. Thus.
the Taylor expansion of w(z) around z = 0 will end at the second moment of 2.
This implies that the difference between Es$ and Esj can be completely determined
by the difference in the second moment of z since the first moment of z is zero for any
information system. Thus, the second moment of z, which is equivalent to var(s).
can alone be a measure in comparing the principal’s expected compensation costs.

On the other hand, if the agent’s utility function is not a square root, i.e.. if
w(z) is not quadratic in z, var( ﬁhﬂ) alone cannot serve as a relevant measure [or
the principal’s expected compensation cost, since w”(z) is no longer indépendem of
z. This reveals that the efficiency of an information system generally depends not
only on the “amount of information”, as measured by var(4), but on how it is used

for contracting purposes, as affected by the agent’s risk preferences. Thus, when

20The reason we expand w(z) around z = 0 is that z under any information system has a mean
value zero.
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w"(z) is not constant, var(s) alone cannot capture the effect of the agent’s risk
preferences on the principal’s expected compensation cost. In, comparison, however,
the SOSD criterion in Proposition 3 is strong enough to dominate any of higher

than second-order effects of w(z) on the expected compensation cost.

Corollarz 2:

For any agent’s preference satisfying Assumption 1, information system f(y|a) is
‘more efficient’ than g(y|a) if H}(z) is weakly dominated by Hj(z) in the sense of
second order stochastic dominance for all a € (g,@], and the (strong) second order

stochastic dominance holds for at least one a € (g, @].

Remark 1:

A careful reader may have a question as to whether the converse of Proposition 3
holds. The converse of Proposition 3 is the statement that if information system
f(yla) is ‘more efficient at a # a’ than g(y|a) for any risk averse agent then the
likelihood ratio distribution of that action choice under information system f(y|a),
H$(z), is second order stochastically dominated by that under information system
g(yla), H3(z). Thus, if the converse is true, then any two information systems
which can be ranked in their efficiencies in the agency model should have the sec-
ond order stochastic dominance relation. As is well known in finance theory, the
second order stochastic dominance criterion is an ‘if and only if’ condition for any
risk averse economic agent to select a financial prospect. That is, any risk averse
agent prefers one financial asset to the other if and only if the return distribution of
the former dominates over that of the latter in the sense of second order stochastic
dominance.?! However, the converse of Proposition 3 in the agency model has
not yet been proved even though equation (9) which will be crucial for proving the

converse of Proposition 3 appears to be the same as the critical condition in the

21See Hadar and Russell (1969,1971), and Hanoch and Levy (1969).
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analysis of a financial prospect. However, w(z) in equation (9) does not cover all the
concave functions as the agent’s utility function covers all increasing concave func-
tions. Proving the converse or establishing a counter-example will be most helpful

in clarifying the connections between the analysis here and Blackwell’s theorem.

4 Comparison with Holmstrom’s Informativeness Criterion

In this section, we examine the relation between the SOSD criterion and the infor-
mativeness criterion in Holmstrom (1979). Using his notation, Holmstrom defines
that the additional signal y is informative about the agent’s action choice if and only
if z is not a sufficient statistic for (z,y), or equivalently it is false for some (z,y) and
a that

h(z,yla) = 8(z,y)f(zla),

where z denotes the commonly observed monetary outcome without cost.?? 1l
shows that the information system h(z,yla) is ‘more efficient’ than f(z|a) if and only
if the additional signal y is informative, i.e., it provides more information about the
agent’s action choice in addition to what is conveyed by z.

Kim and Suh (1990) show that Holmstrom’s informativeness criterion can be
equivalently represented by the variance criterion when the comparison is done for
the inclusive information systems. This tells that the variance criterion as a measure
of ranking information systems is better than Holmstrom’s informativeness criterion
in the sense that it can be applied not only to the comparison of inclusive informa-

tion systems but also to the comparison of exclusive information systems with some

22Thjs is the principal’s cost minimizing version of Holmstrom’s (1979) definition of informative-
ness with the agent’s action choice fixed. In Holmstrom, the agent’s action choice is not fixed for
the comparison.



restrictions.?> Now the following proposition shows that Holmstrom’s informative-
ness criterion can also be equivalently represented by the SOSD criterion when the

comparison is done for the inclusive information systems.

Proposition 4:

Let f(z]a) denote the information system which gives signal z while h(z,y|a) denotes
the information system giving signal (z,y) where y represents the additional signal
jointly observed. Then, Hg(z) is weakly dominated by H$(z) for all a € (g, @] in the
sense of second order stochastic dominance, and the (strong) SOSD holds for at least

one a € (g,d] if and only if it is false that

h(z,yla) = ¢(z,y)f(z|a) for almost every (z,y) and a € (g,d].

As a preliminary to proving this proposition we start with the following lemma.

Lemma 1;
Two random variables X and Y are related as follows:

Y=X+7

where “=,;” means “has the same distribution as” and Z is a nontrivial random
variable?* with the property that
E(Z|X)=0 forall X

if and only if E(X) = E(Y') and the distribution of X (strongly) dominates over that

of Y in the sense of second order stochastic dominance.

23t is already shown that the variance criterion ranks all the information systems when the agent’s
utility function is a square root. Kim and Suh (1990) also show that the variance criterion is au
effective measure for the ranking of information systems when the set of information systems [' is
restricted to normal, lognormal, or double exponential (Laplace) family. For the details, see Nim

and Suh (1990).
24Nontrivial random variable here means that it is false that Z = 0 with probability 1.
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Proof of Lemma 1:
See Rothschild and Stiglitz (1970).

Proof of Proposition 4:

(1) Sufficiency:

Denote h(z,yla) = #(yle, a)f(cla).

Then hq(z,yla) = a(ylz, a) f(z|a) + 8(ylz, a) fa(z]a)
which yields

ho(2,3l) _ ¢alslz.a) , fulala)
hz,yla) ~ elylz,a) * f(zla)

Let’s denote Z; = 1:1 where : = h, ¢, f. Then Z,Z,, and Z; are random variables

which satisfy Z, = Z; + Z4. If the aforementioned Holmstrom’s informativeness

condition holds, then

for some (z,y) and a.

ha(z,y|a) » fa(z]a)
f

h(z,yla) (zla)
Thus,
%%z’—:)) # 0 for some (z,y) and a.

So Z, is a nontrivial random variable for such action a. Furthermore, it is obvious

that E(Z4|Z;) = 0 for all Z; since

¢“(y|$’a)¢(y|x,a)dy =0 forall z and a.

o(ylz,a)

Since Zy = Zy + Z4 always means

Zn =4 Zf + Z¢,

(8]
[S™)



by Lemma 1 and by the fact that E(Z,) = E(Z;) = 0 it follows that H}(z) is
weakly dominated by HZ(z) in the sense of second order stochastic dominance and
the strong SOSD holds for some a.

(2) Necessity:

If Holmstrom’s informativeness condition does not hold, then

ha(z, yla) — fa(z|a)
h(z,yla)  f(z]a)

for almost every (z,y) and a.

Thus,
$a(ylz, a)
¢(yl|z,a)
Then, Z = Z; for all a € (a,@], which means Z, =4 Z; for all a € (a,@]. This

=0 for almost every (z,y) and a.

violates the requirement that the strong SOSD should hold for some a € (g,d].
. :

Consequently, Proposition 4 demonstrates that the aforementioned three crite-
ria(Holmstrom’s informativeness criterion, Variance criterion, SOSD criterion) be-
come equivalent when the ranking of information systems is done for the inclusive
information systems. However, since the SOSD criterion can be applied to the com-
parison of a broader set of information systems without any restriction either on the
agent’s preference or on the set of information systems to be ranked, it is much more
effective as a measure in the respect that it includes Holmstrom’s informativeness

criterion and the variance criterion.

5 Comparison with Blackwell’s Theorem

Definition 6:2°

Let Y; and Y, be random variables or experiments with probability density functions

25Gee DeGroot (1970)



f(y1|w) and g(y:|w) respectively. The experiment Y; is sufficient for the experiment
Y, if there exists a nonnegative function on the product space ¥; x Y, for which the

following three relations hold:

g(ake) = [ by, ) f(uilw)dys for all ya and w

/h(yhyz)dyz =1 forall y

and
0< / h(ys,y2)dys < oo for all g

where w denotes the nature’s unknown state.

Blackwell’s theorem states that any decision maker prefers the information system
F(y1|w) to g(yzw) if and only if the experiment Y; is sufficient for the experiment
Y,.28

In the agency model, the incentive scheme can be thought as the principal’s deci-
sion function while the agent’s action choice the unknown parameter. Thus Black-
well’s theorem may suggest that ranking information systems in the agency model
is formally equivalent to that in the Bayesian decision theory. To present the con-
clusion first, the sufficient part of Blackwell’s theorem works in the agency model
but whether the necessary part works is still questionable. Intuitively, the function
h(y1,y2) generates a stochastic transformation from Y; to Y2.27 Thus Y; can be
generated by means of randomization and it is obvious that the decision maker never
chooses the experiment Y; when Y, is available because Y; is simply the one obtained

from adding white noise to ;.

Proposition 5:

26See Blackwell (1951, 1953). For the simple proof of Blackwell’s theorem, see Cremer (1982).
27Here we rule out nonstochastic single point transformation.
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If information system f(y|a) is ‘sufficient’ for information system g(y:|a), then

f(y1]a) is ‘more efficient at a’ than g(yz|a) for all a € (g,a].?®

Proof:
Let s3(y2) be the optimal incentive scheme in inducing the agent any given action «
under the information system g(yz|a). To prove this proposition it will be enough
to show that there always exists an incentive scheme under the information system
f(y1|a) which induces the agent the same action and also guarantees at least U while
it incurs less expected cost to the principal. Let’s construct such an incentive scheme
s¢(y1) satisfying

u(ss(y1)) =/h(y1»y2)u(53(y2))dy2 (11)

Therefore, s¢(y;) is a certainty equivalent wage scheme of 53(y2). Then,

EU(s2(y2),a) = [u(s3(y2))9(y2la)dy: — v(a)
= [ [ u(s3(y2))h(¥1,y2) f(y1]a)dyrdyz — v(a)
= [u(ss(y1))f(1la)dy, — v(a)
= EU(ss(y1),0)

Thus s;(y1) equally induces the agent a and also guarantees U under the information

system f(yi|a). But

Es; = [ss(y1)f(y1la)dy
< [ [ s3(y2)h(y1,y2) f(y1la)dyidy:
= [ s2(y2)9(y2la)dy: = Es;

where the inequality comes from applying Jensen’s inequality to (14).?® Therefore.

28The statement that f(y;|a) is ‘more efficient at a’ than g(yz|a) for all a € (g, @] is stronger thau
that f(yi|a) is ‘more efficient’ than g(yz|a) because in the former statement the strict inequality

between Es$ and Esj holds for all a € (a,a].
29The strict inequality comes from the strict concavity of the agent’s preference and the eliminatiou
of the nonstochastic transformation from A(y;,y2).
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the principal can reduce his expected cost by giving s¢(y1) under information system

f(yla). i

Proposition 5 illustrates that the sufficient part of Blackwell’s theorem can be
directly applied to the agency model in ranking information systems. It is intuitive
that offering the risk averse agent the incentive scheme which is conditional on an
additional lottery is never desirable rather than giving certainty equivalent income
shown in (14).

However, about the converse little is known.®® As a matter of fact, showing the
converse of the Proposition 5 is equivalent to proving that any two strictly ranked
information systems for all agent’s action choices in the agency model should satisfy
Blackwell’s sufficiency condition shown in Definition 5. But a simple charateriza-
tion of this kind does not seem to exist. The game structure of the agency model is
different from that of the Bayesian decision theory. In the agency model, the agent's
action choice which is thought as a hidden parameter is not a pure random variable
but the agent’s (a player’s) decision variable to be controlled by the principal. Thus
the efficiency of an information system is not intrinsically related to the degree of sta-
tistical inference of the agent’s hidden action but the degree of controlling the agent’s
action choice even though both are closely related. That is why the SOSD criterion
is strongly based on the likelihood ratio of the information system, which captures
the incentive provision for such controlling, rather than the likelihood function h(yla)

itself on which the Bayesian decision theory is based.

Remark 2:

Blackwell’s notion of sufficiency in Definition 5 is stronger than its general form in

30Gjesdal (1982) shows that the converse is not true in the agency model by giving a counterex-
ample. That counterexample is composed of two information systems one is perfect and the other
is a moving support. However, it is not appropriate in this paper since we have already ruled out
both cases from I'.
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the sense that the nonstochastic single point transformation is ruled out in Defini-
tion 5. Also, it is a stronger criterion than the SOSD criterion since it gives the

strict inequality between Es% and Es? for all a € (g,a).

Remark 3:

This proposition is a continuous action version which is parallel to the results ob-
tained in Grossman and Hart (1983) and Gjesdal (1982). This is strongly based
on Assumption 1. Sometimes a randomized incentive scheme can be better in the

absence of Assumption 1.3!

6 Welfare Implication

It has been recognized that the presence of moral-hazard incurs social welfare loss.
The first best solution in contracting between the risk neutral principal and the risk
averse agent is providing a constant wage scheme and enforcing the first best action.?
This constant wage scheme also implies the constant risk sharing rule between the
principal and the agent in equation (1). However, the moral-hazard problem induces
the principal to deviate from the first best risk sharing rule for incentive provision.
This obviously reduces the principal’s expected revenue. Furthermore, as pointed
out frequently, the moral-hazard problem may result in the deviation from the first
best action since it may be too costly for the principal to induce the agent to take

such an action choice. Therefore, the sources of welfare loss with moral-hazard have

been thought as the deviations from the first best risk sharing rule and action choice.

However, this argument is sufficient only when the information system is socially

given to the principal. When the principal is facing several alternatives as infor-

31Gee Gjesdal (1982).
32The first best action occurs where the expected marginal productivity equals the agent’s
marginal disutility of effort.
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mation systems to select, there may be an additional source of welfare loss. For
the ease of exposition, let us suppose that the principal has two alternatives as in-
formation systems f and g and the only observable is the outcome z, that is, y =
z. Then the principal’s two alternatives can be thought as two production projects
to be selected. Now relax Assumption 5 and suppose that project g gives more
expected output than f for all action choice while project f provides more precise
information satisfying Proposition 3. If the benefit from the precise information
more than offsets the benefit from the high productivity, the principal will choose
project f instead of g which should be chosen without moral-hazard. Observing
the deviation associated with f thus understates the welfare loss since it ignores the
switch to a less productive information system. That is, the deviation from the first

best project choice is a third source of welfare loss.
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7 Conclusion

The main pursuit of this paper is to find a criterion which makes it possible to rank
a broader set of information systems in an agency model. The SOSD criterion is
derived and its economic meaning is discussed. This SOSD criterion applies to a
broader set of information systems in the sense that the information systems to be
ranked do not need to have Holmstrom’s sufficient statistic relationship. Of course,
this criterion still provides a partial ordering because the information systems to
be compared should have the second order stochastic dominance relationship. The
economic intuition is that with the agent’s general utility function the efficiency of an
information system is not only based on the physical amount of information system
about the agent’s hidden action choice but on the effective amount of information
that is related to the agent’s risk aversion.

The SOSD criterion for the ranking of information systems is specific to the
principal-agent model.  Blackwell’s theorem, on the other hand, states that all
decision-makers in all decision situations will prefer one information system to an-
other if and only if the former is sufficient for the latter in terms of his notion of
sufficiency. However, the game structure of the agency model is different from that
of classical decision theory. In the agency model, the agent’s action choice to be
statistically inferred by the principal is not a pure random variable, that is, not
the nature’s decision variable but the agent’s choice variable to be controlled by the
principal through the incentive scheme while in decision theory the variable to be sta-
tistically inferred is purely random. We show that the sufficient part of Blackwell’s
theorem can be directly applied to the ranking of information systems in the agency
model. However, it is still questionable whether the necessary part of Blackwell's
theorem works in the agency model.

Another question is whether parallel results can be found in general contract theo-
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ries that arise from more general informational asymmetries including not just hidden
action but hidden knowledge ( “adverse selection”). In hidden knowledge models, the
principal’s problem of designing a contract is to give the agent an incentive to reveal
his hidden knowledge. So the game structure is similar to that of agency model
and the answer is positive. However, as usually assumed in this kind of models, if
there is no common observable which is correlated with the risk neutral agent’s hid-
den variable (e.g., the agent’s hidden quality or other private informations) but the
principal has only a prior belief about such hidden variable, then the difference in
the preciseness of the principal’s prior will not make any difference in the principal’s
welfare loss from the first best even though the incentive scheme will be sensitively
related to the given prior.*® This means it is meaningless to investigate the efficiency
of an information system according to the preciseness of the principal’s prior because
the principal’s given prior cannot play a role of ‘information’ about the agent’s hid-
den knowledge in designing an incentive scheme. However, as in the agency model.
suppose that there is a common observable which is imperfectly correlated with the
agent’s hidden variable. Then such observable can play an ‘informational’ role in
designing an incentive scheme and it will be meaningful to check the efficiency of
an information system according to the preciseness of the observable, that is, how
closely the observable is correlated with the agent’s hidden variable.

An instant and fruitful extension will come from proving the converse of Propo-
sition 3 or providing a counter-example. As stated earlier, such analysis will make
clear the relationship between the Bayesian decision theory and the agency model.
Other possible extensions will come from relaxing the agent’s additively separable

preferences on wealth and effort, or relaxing the assumption that the first order ap-

33The priors which is different in their preciseness here means different priors but with the same
expected value about the agent’s hidden variable. And the ‘first best’ will be achieved when the
principal can exactly observe the hidden variable.
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proach is valid.3¢

We conclude with a couple of simple applications of the central results. One possi-
ble application is concerned with the principal’s optimal investment into conditional
monitoring. In the conditional monitoring setting, the principal chooses the amount
of monitoring investment after he observes the outcome, and it is generally assumed
that more investment into monitoring enhances the precision of an additional signal
generated by the investment. Thus, varying the monitoring investment by the prin-
cipal is equivalent to manipulating the efficiency of an information system. Moreover
his optimal monitoring investment strategy is technically similar to his choosing infor-
mation system in its efficiency. The main difference is that the principal manipulates
the information system after he has observed the outcome. Thus, it is more closely

concerned with the efficiency of the additional signal generated by such investment.*

Another example is related to the role of collateral as an incentive device in the
credit market. It has been argued that, under limited liability contracts, a risk
neutral borrower has an incentive to choose a project that is undesirably risky to a
lender.® This conflicting incentive of the borrower cannot be reconciled unless the
collateral fully covers his liabilities. However, in a more realistic situation where the
borrower chooses a project and then endows it to a risk averse worker who chooses
his level of hidden effort, partial collateral can work for reconciling the borrower’s
incentive in choosing a project with the lender’s. This is a two-layer moral hazard
problem. In the first layer, the borrower, as an agent, has an incentive to choose
a risky project given the limited liability contract. But, in the second layer, he, as

a principal, has an incentive to endow a riskless project and so makes it less costly

34]¢ can be shown that the main result (Proposition 3) still holds in the case of discrete action
choice under certain assumptions. Those assumptions are closely related to the validity of the first

order approach.
35The issue of optimal monitoring investment is investigated in Kim and Suh (1989).
36For the details of this issue, see Stiglitz and Weiss (1981).
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to induce high effort by the worker. Thus it may be possible to induce the riskless
project with only partial collateral.
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