Groves Mechanisms in Continuum
Economies: Characterization and
Existence *

Louis Makowski Joseph M. Ostroy *
March 1988

Abstract

The equivalence in the finite agent case between the families of
efficient dominant strategy and Groves mechanisms is extended to
continuum economies. The concept of an individual’s marginal prod-
uct is used to link the two families of mechanisms when agents are

non-atomic.

Unlike the finite agent case, feasible and efficient dominant strat-
egy mechanims exist in the continuum, but these mechanisms do not
guarantee individual rationality. For the latter condition to hold, the
environment must satisfy an adding-up condition: each individual re-
ceives a payoff exactly equal to his marginal product, which we also
characterize as equivalent to the condition that each individual cre-
ates no external effects. Environments and examples are given that
exhibit or fail to exhibit adding-up.
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1 Introduction

To appreciate the role of numbers of individuals in fostering incentives, it
frequently suffices to recognize that prices cannot be manipulated when
there are large numbers of buyers and sellers, at least when they are trading
private goods. What if public goods are included? Or, what if allocations are
not market price-guided, but are directed by the more flexible procedures of
abstract mechanism design? What difference do numbers make then? The
results of this paper show that for the characterization of efficient dominant
strategy (DS) mechanisms in models with quasi-linear preferences, numbers
make no difference. Asin the finite numbers case (Vickrey {1961}, Groves and
Loeb [1975], Green and Laffont [1977], Walker [1978], Holmstrom [1979]),
we show that such DS mechanisms are characterized by the extension to
nonatomic models of Groves’ demand-revealing mechanisms.

On the question of the ezistence of feasible mechanisms, however, there is
a considerable difference. For a Groves mechanism to be feasible it is neces-
sary and sufficient that money transfers sum to zero, i.e., exhibit money bal-
ance. But Green and Laffont [1977), Laffont and Maskin [1980], Guesnerie
and Laffont [1982], and especially Walker [1980] and Hurwicz and Walker
[1984] have demonstrated that this money balance property is almost always
impossible to achieve with a finite number of individuals. In contrast, it will
be easy to see from our characterization that in the nonatomic setting the
DS and money balance properties are possible.

Because the large numbers environment is the most likely setting to pro-
vide the right incentives, what better place to find out how to solve incentive
problems than by studying models with a continuum of individuals? One
difficulty with this suggestion is that answers to incentive questions in the
continuum can be too immediate to be informative. For example, on the
question why is price-taking rational in the continuum, the obvious answer —
an individual who is of null measure cannot possible effect price — does little
to explain the general principles of incentive compatibility. Perhaps for this
reason the bold moves by Hurwicz, Vickrey, Clarke, Groves and others were
more informative about general principles because they studied incentive
problems in finite agent models where they could not rely on market-guided
allocations by price-taking individuals. We follow their lead, extending their
program by avoiding any explicit reference to prices. By this route we seek
to refine the principles established for finite agent models by highlighting a
principle of incentive compatibility that is applicable not only to finite agent
but also to continuum models. We shall show that continuum environments



are the most likely settings to solve incentive problems not for the “obvi-
ous” reasons (which may be false), but for a deeper reason: in continuum
environments a principle is feasible that is already known to be necessary
and sufficient for incentive compatibility in the finite individual model.

What is this principle of mechanism design that goes “behind prices” and
is applicable to large and small numbers? In a previous paper (Makowski
and Ostroy [1987a]) we exploited the fact that in a finite individual model
Groves mechanisms are equivalent to ones satisfying the marginal produc-
tivity principle: give each individual a utility equal to his marginal product
(M P) plus perhaps a lump sum. This equivalence will be the basis for
our nonatomic extension of finite agent demand-revealing mechanisms. We
will show that the marginal productivity principle characterizes efficient DS
mechanisms irrespective of numbers.

An individual’s M P can be decomposed into the sum of two terms: the
utility an individual receives by, as it were, joining the economy and the ex-
ternal effects that are imposed on the utility of others to “make room” for the
individual. [N.B.: Our use of the term “external effects” is only intuitively
related rather than logically related to the same term as it is applied to
market relations.] Therefore, in a model with quasi-linear preferences where
the utility an individual receives is equal to the sum of the utilities from
non-money goods plus “money”, the above M P principle can be restated
by the following internalization principle: the money allocation (positive or
negative) to each person must equal the external effects attributable to that
person plus perhaps a lump sum.

To summarize, modulo a lump sum, efficient DS mechanisms require
that individuals receive their M P’s; and with quasi-linear preferences, this
is equivalent to the prescription that money payments be set so as to in-
ternalize one’s external effects. Appropriating one’s M P and internalizing
one’s externalities are two sides of the same coin describing the operating
principle behind the DS notion of efficient mechanism design.

The observations so far have been limited to characterization and have
not taken account of existence, i.e., feasibility. The money balance condition
required for existence translates into an aggregate consistency condition on
the internalization principle which we call feasible internalization of external
effects. (The corresponding consistency condition for the marginal produc-
tivity condition we call feasible appropriation.) In nonatomic models with
quasi-linear preferences, it is a short step from the internalization /marginal
product principle to feasible internalization /feasible appropriation, provided
the mechanism satisfies certain smoothness assumptions.



It is useful to make a further distinction between feasible internalization
and the more demanding ezact internalization of external effects. This oc-
curs when the sum of the individuals’ external effects is itself zero. In this
case feasible internalization will imply that each individual’s money pay-
ment must exactly equal his external effects, i.e., each individual’s lump
sum must be zero. In M P terms exact internalization corresponds to ezact
appropriation: where each individual receives a utility exactly equal to his
MP (again the lump sum is zero) and the sum of all individuals’ marginal
products adds up to the maximum total gains from the participation of all
individuals.

We shall show that exact internalization is necessary and sufficient for the
existence of an efficient DS mechanism (1) whenever the underlying environ-
ment is “homogeneous” or (2) whenever an individual rationality condition
is imposed on the mechanism. Joining these two conclusions points to a lim-
itation on the existence of incentive compatible mechanisms in nonatomic
models: inspite of the above general existence results, efficient DS mech-
anisms satisfying individual rationality can only be found in homogeneous
environments.

Though we have followed the methodology of abstract mechanism design,
eschewing any explicit reliance on price-guided allocations, this is not for lack
of interest. Quite the opposite. We want to apply these results to understand
why price-guided allocations work so well in certain environments but not
in others. For example, consider the finding that in nonatomic models with
private goods the Walrasian mechanism has the DS property; and, more
importantly, it is the only one to have this property while also satisfying
efficiency (Roberts and Postlewaite [1976], Hammond [1979], Champsaur
and Laroque [1982], McLennan [1982], and Mas-Colell [1983]). Obviously,
it is not merely the fact that the mechanism is Walrasian that accounts
for its success, otherwise it would also be successful with a finite number
of individuals. What is it about Walrasian allocations in the continuum
that is different from Walrasian allocations with finite numbers? Private
goods models are instances of homogeneous environments; therefore exact
internalization /exact appropriation is required for incentive compatibility.
So the Walrasian mechanism enjoys its distinguished position because it
is the only one that exactly internalizes external effects in this nonatomic
environment. By contrast, with finite numbers there is no mechanism that
can exactly internalize external effects.

We may apply the same kind of reasoning to public goods. When and
why does the presence of public goods create incentive problems? As is



well-known, this can be regarded as a cost-sharing problem. If there are
no costs of production to be shared, the underlying environment is again
homogeneous and again exact internalization is possible in the nonatomic
case, although not when there are finite numbers. (See Green and Laffont
[1979], Rob [1982] and Mitsui [1983] for asymptotic results.) When there
are costs, they may be allocated so as to satisfy feasible internalization
and therefore achieve an efficient DS result (Hammond [1979], Groves and
Ledyard [1986]). However, because public goods models with costs are not
homogeneous environments, incentive compatible cost-sharing is generally
incompatible with individual rationality (Roberts [1976]).

As the above illustrates, the marginal product concept and characteriza-
tion results based on it give a general framework in which many, apparently
unrelated, results from mechanism theory can be synthesized. Elsewhere
(Makowski and Ostroy [1987b]) we demonstrate how the results of this pa-
per for nonatomic models with quasi-linear preferences can be extended to
nonatomic NTU models.

The sequel is organized as follows. Section 2 presents our model, a
continuumOof-agents extension of a standard demand-revealing model, ap-
plicable to private or public good environments. Section 3 discuss some
exigencies of non-atomic models and introduces regularity conditions on
continuum mechanisms, to meet these exigencies. Section 4 develops the
general equilibrium extension of the marginal product concept that is the
key to successful extension of Groves finite mechanisms to the continuum.
Section 5 then displays our continuum extension of the finite characteriza-
tion results for Groves mechanisms. Section 6 displays a general existence
result for such mechanisms in the continuum. It also displays some special
characterization and existence results for individually rational mechanisms
and for mechanisms on homogeneous environments. Section 7 discusses re-
lated large economy results in the literature. The proofs of all our results
are collected in the final section, Section 8.

2 The Model

The function » : R x V — R U (—o0) defines tastes and trade/production
possibilities: u(y,v) is the utility an individual of type v receives from the
allocation y. Extreme disutility attaches to an infeasible allocation; and
Y, = {y : u(y,v) > —oo}, assumed to be non-empty, closed and convex, is
the set of v’s feasible allocations.



The parameterization of individual characteristics is such that V' is com-
pact and if v, — v, the Hausdorf distance between Y,,, and Y, goes to zero.
Therefore, the set X = {(y,v) : y € Y} of allocations and types that are
jointly feasible is closed in R x V.

The parameterization also satisfies the condition that agu is continuous
on X and is negative definite so that u(-,v) is concave. One might think
of this in the following way: there is a function 4 : R* x V — R with 8i
continuous and negative definite throughout its domain. Then d2u(y,v) =
8311(3/,’0) whenever (y,v) € X.

An economy will be described by (positive Borel) measure y on V. The
set of all such economies is M[V].

Commodities are divided into two categories: those which are the ar-
guments of u(-,v), referred to as y-commodities (y € R'), and the money
commodity, denoted by m. An individual with characteristics v will evaluate
(y,m) € R x R according to the quasi-linear utility function

U(y, m;v) = u(y,v) + m.

An allocation for the economy p is a specification of the y-commodities
and money that each type receives. Let (y(u,v)), where v € supp u, be
an allocation of the y-commodities. This allocation is individually feasible
for v if y(u,v) € Y,. It is aggregately feasible if y(u,v) € Y,,p — almost
everywhere and (y(g,v)) € Y ().

The set Y(u) will determine the nature of the economic environment.
For example, a private goods exchange economy would be described by

V() = { (4,0 = [ wl))du(o) =0}

Alternatively, a public goods environment, without any costs of production,
could be described by

Y(p) = {(y(e,v)) = y(p) : y(u) € C}.

Environments involving costly production, with or without public goods,
could similarly be defined. In the spirit of mechanism theory, we shall sup-
press the differences to look for principles in common.

About the money component of the allocation, (m(u,v)), there are no
restrictions on individual feasibility, e.g., an individual can deliver any quan-
tity of money. Aggregate feasibility of the money allocation requires

/m(u,v)dp(v) =0.



However, unless otherwise stated, we shall make no aggregate feasibility
restrictions on the money allocation.
A Y-optimal allocation or POy allocation for p is a y-allocation achieving

9(k) = maz( [ u(u(u, ), D)(o) : (u(1,0) € Y ()

The maximum is assumed to exist. Note that it is taken subject to the
constraint that all individuals of the same type receive the same allocation.
The assumed concavity of u(-,v) along with a convexity assumption on the
set of aggregately feasible trades would ensure that such a constraint was
not binding.

The function g can be interpreted as a gains-from-trade function; alter-
natively, it can be thought of as a production function whose inputs are
distributions of agents characteristics and whose output is total gains from
trade, measured in utility.

A Pareto-optimal or PO allocation for p is a pair (y(p,v),m(g,v)) in
which (y(g,v)) is POy and [ m(p,v)dp = 0.

3 The Dominant Strategy Property and Regular
POy Mechanisms

A mechanism is a mapping f:M[V] x V — R! x R where f(p,w) =

(y(u, w), m(u,w)) and (y(&,v))vesupp » € Y (); i.e., there is a restriction
on the feasibility of the y-allocation but not necessarily on the m allocation.
A mechanism f is POy if for all u € M[V],(y(u,v)) satisfies

9(w) = / u(y(p, v), v)du;
and it is PO if in addition for all p, (m(u,v)) satisfies

/m(u,v)du = 0.

Note that for both PO and POy, the mechanism f need only be defined for
pairs (g, v) in
A = {(u,v) : p € M[V],v € supp 4},
a subset of M[V] x V.
A mechanism f exhibits the dominant strategy (DS) property at p if
Vvesupp u,VWEV

U(f(p,v),v) 2 U(f(p, w),v)-



A mechanism f exhibits the DS property on N C M[V] if it exhibits DS
at each p € N.

Recalling the definition of U, this says that the utility an individual re-
ceives from the allocation mechanism by reporting his characteristics truth-
fully, u(y(u,v), v)+m(g,v), is at least as large as the utility an agent of that
type could obtain by reporting other characteristics, u(y(p, w),v) +m(p, w).
Notice if f satisfies DS then v has no incentive to misrepresent himself as a
w, even for w ¢ supp n.

It will be assumed throughout that the y-allocation satisfies POy. As
remarked above, this prescribes the behavior of the y-allocation only on
A, whereas if a mechanism is DS on N the y-allocation must be defined
on N x V. Consistency requires that the behavior of the mechanism on
N x V must fit together with its behavior on A. To achieve this consistency
we shall impose certain smoothness properties of the POy allocation on A
which will provide the base for a consistent extension to (N x V)\A.

To characterize DS mechanisms, it will suffice for our formal analysis to
concentrate upon populations y in a neighborhood N of some fixed popu-
lation p° € M[V]. While our entire analysis could be carried out globally
on M[V] rather than locally on N - and all of our results are valid if N is
replaced by M[V] - the approach we adopt makes the results more useful for
applications. (For example, regular economies typically only exist locally,
not on a universal domain; see Remark 2 below for the connection between
regular economies and regular mechanisms.)

To proceed, let N be the intersection of a norm closed and bounded
neighborhood of p° with M{V]. Define

Ap®) ={(p,v) €EL:p €N}
and
I'(p°) = {(g,v,w) : p € N, v,w € supp u}
Let Dy : T(u°) — R* be defined by
o Yt 8w, v) - y(u,v),

Dy(p,v;w) = lim :

the directional derivative of y(u,v) in the direction w. (8, is the Dirac
measure with unit mass concentrated at w.) The vector Dy(u,v;w) is the
infinitesimal effect on v’s allocation in the population p of the addition of
an infinitesimal individual of type w.

Our main restriction on the POy allocation is



(R.1) Dy exists and is continuous on I'(u°) C N X V x V when N is given
the weak-star topology.

For a POy mechanism there are no restrictions on m(u,v). However, to
achieve consistency of the sort described for the y-allocation we shall assume

(R.2) m is continuous on A(p°) C N x V when N is given the weak-star
topology.

The consequences of (R.1) and (R.2) are fairly immediate. TI'(u°) is
dense in the compact set N x V x V and A(u°) is dense in the compact set
N x V. Since Dy and m are each continous on a dense set whose closure is
compact, there exists a unique continuous extension of both Dy and m to
the closure of their domains. The uniqueness of these continuous extensions
suggests that this is “the” way that allocations should be defined on pairs
(n,w) € (N x V\A.

Note that the existence of the continuous extension for Dy implies that
there exists a unique, continuous y: N XV — R

We shall require one more assumption on y-optimal allocations.

(R.3) If y(pn,wn) € Yo, tin — p and w, — w # v, then y(u,w) ¢ Y,.

This condition says that all y-allocations to individuals that the mechanism
calls for and that are not in v’s effective domain are away from the boundary
of v’s effective domain. This rules out the possibility of u(y(x,w),v) being
discontinuous (relative to the mechanism) for allocations approaching the
boundary of v’s effective domain. It is a strong assumption. But it is only
a sufficient condition to prove our results for general DS mechanisms; it is
not required to prove any of our results for (less general) demand-revealing
mechanisms, where Y, = Y,, for all v and w.

A POy mechanism f = (y,m) on A(p®) satisfying (R.1-3) will be called
a regular POy mechanism. We have seen that such a mechanism can be
smoothly extended to N x V, and from now on we shall not distinguish f
from its extension.

REMARK 1 (Fair Allocations): An allocation f(u,v) is said to be fair
at p if it is Pareto-optimal and for all v,w € supp u

U(f(p,v),v) 2 U(f(p, ), v).

(See Schmeidler and Vind [1972], Varian [1976], Champsaur and Laroque
[1981] and others. We are ignoring a p-almost everywhere qualification.)



Interpreting this condition in the language of misrepresentation, it says that
an allocation is fair if no individual in supp p would prefer to represent
himself as any other individual in supp p. By contrast an allocation is DS
at u if no individual in supp u would prefer to represent himself as any
individual in V. Evidently a DS allocation is fair, but the converse need
not hold. However, the two definitions can lead to quite similar conclusions
provided supp p is a connected set. (See Section 7.) Characterization of
the DS property requires a similar connectedness assumption but on V
rather than supp p (see Holmstrom [1979] and below); and the results of this
paper could, with straightforward modifications, be applied to show that the
marginal productivity/internalization principle underlies fair allocations.

Despite the important similarities between the fair and DS definitions
of misrepresentations in nonatomic models, for our purposes the differences
are significant. For example, since connectedness of supp p is crucial for
the fair definition of misrepresentation to narrow down the class of possible
allocations, there is only a very loose connection between fair allocations
and the DS property in finite agent models. Unless supp u is a singleton
it is necessarily disconnected in finite individual models. But finiteness of
the actual types does not preclude connectedness of V, the set of poten-
tial types, even in finite individual models; and this is what permits a single
characterization of D.S mechanisms applicable to finite and nonatomic mod-
els. This is one reason for regarding the DS version of misrepresentation
as the one to emphasize when our primary focus is on strategic rather than
ethical behavior.

If we look only at the limit, the fair definition of strategic misrepresenta-
tion — confining misrepresentations of characteristics at u to those in supp
g — might appear to be the natural one because the announcement of any
w ¢ supp x4 is obviously a misrepresentation which could be discouraged by
a penalty function that assigned large negative utility to any characteristic
not in supp p. The difficulty with this proposal is that individuals must
know supp u beforehand, an assumption that dilutes its appeal as a substi-
tute for the D.S property where it is an essential point that such knowledge
is unnecessary.

REMARK 2 (Regular Private Goods Economies and Regular POy
Mechanisms): We outline an argument that in a private goods exchange
economy the “regularity” of the economy will ensure that a y-optimal mech-
anism satisfies (R.1).

Let e(p,v), where p € R¥, be the vector of y-commodities that maximizes



u(y,v) + m subject to the constraint py + m = a (the price of m is unity). -
Because u is strictly concave e(p,v) is unique, and because utility is quasi-
linear e(p,v) is independent of a.
If (y(u,v)) is y-optimal for 4 and utility functions are monotone there is
a p € RS such that
¥(1,v) = e(p, ).

Feasibility of net trades implies [ y(u,v)du = 0; therefore

E(p,p) = / e(p,v)dp = 0.

Thus, p is an “equilibrium” price vector for the £ y-commodities. Note:
E(p, ) = 0 and pe(p,v) = m(p,v) would constitute a Walrasian equilibrium
for the full (£ 4+ 1)-commodity model.

The economy u is said to be regular (Debreu [1970)) if 8,E(p, p) is non-
singular. In this case we can apply the Implicit Function Theorem to obtain

Dp(p;w) = [0, E(p, )] ' DE(p, p; w),

where Dp(p;w) and DE(p,u;w) are the directional derivatives in the di-
rection w of the equilibrium price mapping p(1) and the excess demand
function E(p, ), respectively.

A simple calculation shows that

DE(p, p; w) = —e(p,w).
Therefore, the formula for Dy(u,v; w) is

Dy(p,v;w) = Bpe(p, v) Dp(p; w) = —Bpe(p, v)[Bp E(p, 1)] " e(p, w).

The regularity of u plus the hypothesis that 92u(y,v) is jointly continuous
implies that Dy satisfies (R.1).

4 The Marginal Products of Individuals and Their
External Effects

The key to our characterization of DS POy mechanisms is the concept of
an individual’s marginal product. This is no less true in the finite numbers
model than in the continuum (see Makowski and Ostroy [1987a]), but in
the continuum the infinitesimal scale of each agent is ideally suited for the
application of the calculus.

10



Define the marginal product of w in the population u, M P(u,w), as

g(p +t6y) — g(p)
t

Dg(p; w) = lim

Substituting the definitions of g(u + t6,,) and g(u), we obtain

MP(p,w) = limt7'.] / u(y(p + téw,v), v)dp + tu(y(p + 16w, ), w)

t—04

- [ u(w(w,v),v)an)

= [ 8yu(u(h,0),0) Dy(p, v w)dp + uly (s w), )
= E(ﬂ'vw) + u(y(ﬂ’vw)a w)'

The rate at which the total gains function g changes as an infinitesimal
individual with characteristics w is added to pu, Dg(u;w), consists of two
parts: (a) the sum of the “external effects” that the very presence of w
creates for all the other agents in u,£(x,w), plus (b) the utility that w
enjoys in this y-optimal allocation.

To elaborate on the externality component of w’s M P, notice that the
external effect on any one agent of type v € supp p caused by type w is
the infinitesimal change in v’s utility from his y-allocation, d,u(y(u,v),v),
evaluated according to the directional derivative of y(u, v) in the direction w,
i.e., Dy(u,v; w). The magnitude of this effect will be insignificant compared
to the total utility of agent v, but the cumulative sum of these external
effects of the presence of w on the entire population u, {(u,w), can be of
the same order of magnitude as an individual’s total utility. (N.B.: Even
if £(u,w) # 0, w’s “externalities” may still be internalized by w. See the
definition of ezact internalization, below.)

The following result summarizes the implications of a regular mechanism
for the marginal product of an individual.

Lemma 1 Let f be a regular POy mechanism on N x V. Then

MP(p,w) = £(p, w) + u(y(p, w), w)

Moreover, £(p, w) and M P(p,w) are continuous on N X V.

11



4.1 The MP of an Individual Who Misrepresents His Type

We shall show that any mechanism f is DSPOy if and only if it always
rewards all types with their M P’s, plus perhaps a lump sum. Since any
type v € supp p may claim he is really some other type w € V, as a
final preliminary we need to define not only v’s M P when he is truthful,
M P(u,v), but also his M P to society when he announces some other type
w, M P(p,w;v).

Just as M P(u,v) is defined by taking limits, so

MP(u, w;v) = lim glp + thuip + o) — 9(1)
t—04 4

where
g(p + tou; p + 16,) = / w(y(p + téuw, 2), 2)dp(2) + tu(y(p + 6w, w), v),

is the total gains in the economy p when t agents of type v are added
to the population but announce characteristics w. Notice that for some
v and w, v may be called upon to deliver a y-optimal allocation that is
infeasible, i.e., u(y(u,w),v) = —oo. Certainly it is not in v’s interest to
make such an announcement; in terms of the above formula it leads to an
MP(p,w;v) = —o0.

The implications of a regular mechanism for the MP of an individual
who misrepresents his type are given by '

Lemma 2 Let f be a regular POy mechanism on N x V. Then,

MP(p,w;v) = MP(p, w)—u(y(s, w), w)+u(y(s, w),v) = §(w, w)+u(y(p, w),v).

Moreover, M P(u, w;v) is continuous on {(p,w,v) : y(, w) e Y,} C N x
VxV.

5 Characterization of DSPOy

5.1 The Marginal Product/Internalization Principle as a
Sufficient Condition

The payoff in a regular POy mechanism can always be written as

U(f(s, w),v) = w(y(s, w), v) + m(p, w) = MP(p,w;v) — H(p, w),

12



where H(u,w) is simply the residual establishing the equality.
The marginal productivity reward principle has a built-in dominant
strategy property.

Lemma 8 max, MP(u,w;v) = MP(u,v;v) = MP(p,v).

Say that H : N XV — R is a lump sum function if thereis an h: N - R

such that
h() = H(pw).

This might be better termed an anonymous lump sum function in con-
trast with the lump sum function described for finite agent models (e.g., see
Groves and Loeb [1975]). In the latter, the lump sum is invariant to the
individual’s characteristics but may vary with the individual’s “name”. Of
course the distribution approach taken here builds in anonymity.

The DS property of the M P reward principle with lump-sums follows
immediately from Lemma 3.

Theorem 1 Let f be a regular POy mechanism on N x V. If

U(f(l"w)’v) = MP(“’W;'U) - h(p),

then f is a DS mechanism.

Rearranging the terms in the total payoff

U(f(p,w),v) = u(y(u, w),v) + m(p,w) = MP(p, w; v) = h(p),

and using Lemma 2 yields,

m(“’w) = MP(/"a w;v) - "(y(#,w),v) - h(l‘)
€(p, w) + u(y(n, w), v) — u(y(p, w),v) — h(p)
= {(u,w) — h(p).

Hence, the M P reward principle may be equivalently described as giving an
individual of type v who announces w a y-allocation based on his announced
type to satisfy y-optimality, and then guaranteeing that the money alloca-
tion, m(u, w), will equal (ignoring h(u)) the external effects associated with
the type he announces, &(u, w); i.e., external effects are internalized.

Let us restate Theorem 1 in terms of external effects.

H

13



Theorem 1’ Let f = (y, m) satisfy the hypothesis of Theorem 1. If

m(/"’aw) = 6(”)“’) - h(l“’)’
then f is a DS mechanism.

Theorem 1’ says that when external effects are internalized, it pays to
tell the truth. Note, however, that this internalization is from the individual
point of view but not necessarily from the point of view of the economy
as a whole. For that we would also need the budget balancing condition

I m(p,v)dpu(v) = 0.

5.2 The Marginal Product/Internalization Principle as a
Necessary Condition

There remains the converse, that to achieve the DS property a regular
POy mechanism must be specified as in Theorem 1 (or Theorem 1'). Based
on the preparations given above and those to follow, we shall show that
Holmstrom’s [1979] demonstration of necessity for the finite agent model
can be “lifted” to the nonatomic case.

For the sufficient conditions on DSPOy to become necessary it is well-
known that V must exhibit a certain amount of variety. A simple method
of insuring enough variety is to assume that V is a convezr set.

The role of convexity will be to ensure that for any v,w € V such that
u{y(p,w),v) > —oo and u(y(p,v),w) > —oo (i.e., the y-optimal allocation
to w is feasible for v and vice-versa), the environment will contain the pa-
rameterization v, = av + (1 — a)w,a € [0,1], connecting v and w.

Recalling that Y, (resp. Y,,) equals the effective domain of v (resp. w),
note that if v, = av + (1 — @)w, then Y,, =Y, NY,, provided 0 < a < 1.
However, Y,, = Y, and Y,, = Y,, may differ from Y, NY,, and therefore this
parameterization need not be “smooth”. Before dealing with this problem,
we consider a simpler one.

It is common in mechanism theory to assume Y,, = Y, for all w and ».
First we shall prove a converse to Theorem 1 for this special case, where
only tastes may be misrepresented. Call a mechanism f demand-revealing
(DR)ifitis DS and Y,, =Y, for all w and v. A DR mechanism is a special
case of a DS mechanism in which, as it were, information about feasible net
trades of individuals is always common knowledge.

Theorem 2 Let V be a convez set and let f be a regular POy mechanism
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on NxV. If f is DR, then

U(f(sw),0) = MP(,w3) — h(p)
Equivalently, if f = (y,m) is DR, then

m(p, w) = (4, w) — h(p).

In some settings, such as models of exchange economies, we must deal
with the fact that individual characteristics include, besides variations in
tastes, variations in what is individually feasible. The following assumption,
by providing for sufficient variation in what is individually feasible in V,
allows for a more complete converse to Theorem 1.

V is feasibly connected: ¥ p ¥ v, w there exists 2 such that

(1) z could have delivered y(u,v) or y(p, w) : y(u,v), y(p,w) €Yy,
(2) v and w could have delivered y(u,z) € Yy N Y.

In the above, y(u,-) is the y-optimal allocation in f.

To illustrate feasible connectedness consider a two-commodity-plus-money
exchange economy in which V v,(0,0) > —00, i.e., it is individually feasible
for any agent not to trade. Suppose y(u,v) = (1,—-1) and y(p, w) = (-1, 1).
This assumption requires, for example, that there is a 2 which can feasibly
make the trade (1,—1) or (~1,1) but is called upon in an optimal allocation
to deliver y(u,2) = (0,0).

COROLLARY: Let f be a regular POy mechanism, and let V be convez
and feasibly connected. If f is DS, then

U(f(psw),v) = MP(p,w;v) — h(p).
Equivalently, if f = (y,m) is DS, then

m(l‘l‘vw) = E(M,TD) - h(p).

REMARK 3: A weaker assumption would suffice. It is enough to postulate
that for V 4 V v € supp p V w, there exists a finite sequence (20y 215+ ++12n)
with 2z, = v and 2z, = w such that forall i = 1,...,n— 1, % could have
delivered y(p,zi-1) or y(p,2i41) and z_y and 241 could have delivered
y(#, z). In Holmstrom’s terminology this, along with convexity, would make
V into a piecewise smoothly connected domain.
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6 Existence Theorems for DSPO and DSPOIR
Mechanisms '

6.1 A Possibility Theorem for DSPO Mechanisms: Feasible
Internalization/Appropriation

Recall that a DSPO mechanism is a DSPOy mechanism in which the
sum of money transfers, [ m(u,v)du(v), is always zero. If that sum were
positive, the allocation of the money commodity would not be feasible for the
participants in the economy and the balance would have to be made up by
some outside authority; or if it were negative, the sum would represent the
departure from full utility maximization and Pareto-optimality. While the
results for DRPOy mechanisms in nonatomic models completely parallel the
finite agent mechanism results (the literature concentrates on DR, rather
than the more general DS mechanisms), the situation for DRPO is quite
the opposite. Instead of the impossibility results for DRPO cited above for
finite agent models, there is always possibility—even for DS PO mechanisms.

Since M P(u,v) = u(y(p,v),v) +&(p,v) and g(p) = [ u(y(p,v), v)du(v),

[ e vydu(v) = [ MPG,v)in(o) - g(u);

i.e., the sum of the external effects is the difference between the sum of the
marginal products and the total gains from trade for the economy .

From Theorems 1 and 2 and the Corollary we know that a DSPOy
mechanism implies that

m(/“’ v) = 6(/"”) - h(”’)

Suppose the lump sum term to each agent, h(u), just equalled the average
external effect; i.e.,

hw) = [€/m,

where 77 = [du(v) is the size of the economy u. Then m(u,v) = &(u,v) —
J¢/m.

Summing, we evidently have,

[ s vyiute) = [ e - [ €/m] duto) = .

We are led immediately to the following conclusion.
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Theorem 3 Let f be a regular POy mechanism, and let V be conver and
feasibly connected. Then f satisfies DSPO if and only if V uV v,

m(u,v) = &(u,0) - [ €/R.

Eguivalently, f is DSPOifandonlyif ¥V u, Vw, Vv
U(f(p,w),0) = MP(u,wiv) - [ ¢/R.

REMARK 4: Obviously, the conclusions of Theorem 3 also hold for
DRPO mechanisms, without the assumption that V is feasibly connected.

Assuming the mechanism is POy, the unique method to obtain DSPO
is: set the money payment for any announcement v, whether or not v €
supp i, equal to the external effect that announcement would create for
others, £(u, v), minus the average external effect in the population u, [&/F.

With a finite number of individuals this method of strategically internal-
izing external effects fails because each individual announcement typically
changes the average so that it cannot act as a lump sum. This observation
agrees with — but does not, of course, demonstrate — the conclusion that
DS PO mechanisms typically do not exist in finite individual models. How-
ever, as the number of individuals increases, each individual external effect
will influence the average less and less, and with a continuum of individu-
als the influence will be nil. (This conclusion requires certain smoothness
assumptions as well as large numbers.) '

6.2 A Characterization of Individually Rational DSPO Mech-
anisms (DSPOIR Mechanisms)

There is an interesting qualification to Theorem 3, one that highlights the
role of the money commodity in quasi-linear preferences as a built-in medium
for making lump sum transfers. The qualification involves individual ratio-
nality.

No matter what the value of [ £, a regular mechanism can reward each
agent with his/her M P — thus ensuring DSPQOy — and then, by requiring
each agent to make a lump sum payment in the money commodity of [ §/z,
the mechanism can ensure the PO property. It is the ability to break down
the construction of a DSPO mechanism into the separate problems of (1)
DS POy and then (2) PO, which we shall call the “separation phenomenon”,
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that permits Theorem 3 to apply to a wide range of nonatomic economic
environments.

In this section, we show that even within the class of models with quasi-
linear preferences, there is a way to “undermine” the separation phenomenon
through the introduction of a voluntary participation, or individual ratio-
nality, restriction. It is as if the degree of freedom on making lump sum
transfers provided by quasi-linearity is removed once this added restriction
is imposed. The argument will require further definitions and assumptions.

Attention is confined to environments satisfying the following conditions:

(E.1) (Non-decreasing returns) V u, [§ = [ MP — g(u) > 0.
(E.2) (Characteristics are benign) V u V w, M P(u, w) > 0.

(E.3) (Existence of “dummies”) V p 3 v°(p) € V such that M P(u,v°(n)) =
0.

Were we to formulate more explicitly a particular model of an economy
with private or public goods of the kinds referred to above, assumptions
(E.1) and (E.2) could be derived as conclusions. Here we simply assert that
these conditions do not go beyond conventional restrictions. (See Section
7, below, for partial confirmation and also for an illustration of a model in
which [£ < 0.)

(E.3) postulates the existence of individuals having no effect on the gains
from trade. For example, in a private goods exchange economy if p(u) were
the efficiency price vector corresponding to the y-optimal allocation in the
population g, then v°(u) could be taken to be those preferences for which
the hyperplane {z € R’ : p(u)z = 0} is tangent to the indifference curve
of v° passing through the origin of R¢; with public goods, v, would be the
tastes of someone entirely indifferent to public goods and who, furthermore,
has no resources that contribute toward their production.

Lastly, we assume the existence of a status quo allocation, a y° € R¢
such that

(E4) Vv,u(y°,v)=0,and V u Vv € supp y,
if y(p,v) = y° then (y(p,v)) € Y(p).

Such a y-allocation is both individually feasible and aggregately feasible,
independent of the characteristics of the individual and the composition of
the population. For environments in which allocations can be described by
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net trades (with or without public goods), y° would be the null trade; and
for environments in which Y, = Y is a fixed class of public projects, y°
would represent the status quo project. The utility functions are scaled so
that u(y°,v) = 0.

Assuming (E.4), say the mechanism f satisfies individual rationality if

(IR) VpuVovesupp p,U(f(p,v),v) 2 u(y®,v)+0=0.

There is no “rationality” behind this inequality unless the mechanism
gives each individual the choice of whether or not to depart from the sta-
tus quo. Where the status quo is the null trade, the IR condition can be
interpreted as a modification of the DS property: it gives each individual
the right to receive the null trade, not only in y-commodities but also in
money, whenever the “null” characteristics v°(u) are announced. (To verify
this interpretation, the reader must work through the proof of theorem 4
below.) _

With the above assumptions, the following result is a simple corollary of
Theorem 3.

Theorem 4 Assume (E.1-{). Then under the hypotheses of Theorem 3, f
is @ DSPOIR mechanism if and only if V u, f€=0.

The interpretation and meaning of this characterization result will form
the subject matter of the next section. The existence of DSPOIR mecha-
nisms will also be discussed there; we will see that they exist on homogeneous
environments.

6.3 A Characterization of DSPO Mechanisms in Homoge-
neous Environments: Exact Internalization / Appro-
priation

We shall conclude this investigation into dominant strategy mechanisms in
nonatomic economies by pointing out the connections between the condi-
tion f£ = 0 and the century-old problem of “adding-up” in the marginal
productivity theory of distribution.

To motivate the discussion recall that since

MP(I"’ v) = u(y(u’ v)’ v)+ £(u, v),

and [ u(y(u,v),v)du = g(u), then f € = [ MP —g. So, [ £ = 0 is equivalent
to the adding-up condition that the sum of all agent’s M P’s should equal
the total gains in the economy as a whole.
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We shall say that a mechanism f satisfies ezact appropriation if (1)
individuals always receive their M P’s and (2) the adding-up condition (f ¢ =
[ MP — g = 0) is satisfied. There is exact appropriation in the sense that
each individual exactly appropriates in utility the benefits that his presence
confers on the rest of the economy. Or, alternatively put, others neither
gain nor lose from the presence of any individual.

There is another way to describe exact appropriation. Recalling that
an individual’s total utility is equal to u(y(,v),v) + m(u,v), if each in-
dividual’s total utility equals his M P, then &(u,v) = m(u,v). Thus, if
é(n,v) = m(u,v), each individual’s money payment (positive or negative)
exactly measures the external effects the person contributes to others, so
that on balance each person exactly internalizes the utility effects (positive
or negative) that he/she confers on others.

Say that there is ezact internalization when (1) m(p,v) = £(u,v) and
(2) f¢€ = 0. This is simply another version of the exact appropriation
conditions.

Having interpreted the condition £ = [ MP — g = 0 and its role in
DS PO mechanisms (Theorems 3 and 4), we look for conditions under which
it will exist. (Note: Theorem 3 inplies that if adding-up does occur, then
a DSPO mechanism must give each person their M P, while Theorem 4
implies that a DSPOIR mechanism is possible only when there is adding-
up.) Traditional M P theory suggests that adding-up will require constant
returns in the function g, and this is indeed the case.

To prepare the argument, we expand the domain of g from the set
N C M][V] to the smallest positive cone containing N. This will allow
the comparison of g(p) with g(tu), t > 0.

We also make the following adding-up assumption on the directional
derivatives of g. Namely,

(R4) [ Dg(p;v)du(v) = Dg(p; p)

There is an abuse of notation here. Above, Dg was defined on N X V rather
than N X M[V] because we preferred to write the directional derivative
of g(u) in the direction 6, as Dg(p;v) rather than as it should have been,
Dg(u; 6,). In the more consistent notation, (R.4) says that the sum of the in-
dividual M P’s, [ Dg(p; 6,)du(v), equals the M P of the sum, Dg(u; [ 6,dp),
where [ é,du(v) = p.

The adding-up condition on the directional derivatives of g should not be
confused with the adding-up condition on g itself; whichis fé = [MP—g =

0 or f Dg(p;v)du = g(u).
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The following is a straightforward infinite-dimensional version of Euler’s
Theorem for linearly homogeneous functions.

Theorem 5 If C is a positive cone in M[V] andV u € C, g:C — R
satisfies (R.4), there is adding-up if and only if ¥t > 0,V p € C, g(tp) =
tg(n).

Some of the familiar qualifications to Euler’s Theorem in finite dimen-
sions also apply to Theorem 5. For example, if g is homogeneous but
not differentiable (because (R.1) and (R.4) are not satisfied), the condi-
tion [€ = [ MP — g = 0 may fail. Also, [£ = 0 may hold for a particular
p° even though g fails to be homogeneous. In that case g would exhibit con-
stant returns only locally near u°. By insisting that exact internalization
must hold everywhere on C we preclude this possibility.

To emphasize the independence of (R.4) from the above conclusion, we
point out that under the hypotheses of Theorem 5 the following generaliza-
tion can be obtained: for all 4 € C and t > 1,

>

>
/ Dg(p; v)du — g(p) { = } =0 ifand only if g(tp) { = } tg(p).

< <

That is, increasing [decreasing] returns in the sense of g(tu) > tg(p) [g(tp) <
tg(p)], t > 1, are reflected by the property that the sum of the individual
M P’s more than [less than] exhaust the total gains from trade.

We have not traced the returns to scale property of g back to the under-
lying conditions on the allocation y. This is because, in the final analysis, it
is the results of the y-allocation on utility that matters. Nevertheless, the
function g is derived from POy allocations and we shall comment briefly
on the implications for g of some relevant properties of y. For example,
condition (R.4) must ultimately be derived from a condition on y. That
condition is

/ Dy(p, v; w)dp(w) = Dy(p,vip)-

It says that the effects on the allocation to an individual from adding-up
the separate effects on Dy(g,v; w) over w € supp p is equal to the effects
on Dy(u,v;-) of an infinitesimal change in the scale of the population.

Also, the constant returns property g(tu) = tg(x) will derive from the
condition on y that y(tu,v) = y(u,v), i.e., constant returns to g are due to
the fact that scale changes in the population cause no changes in per capita
allocations.
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REMARK 5 (The Value): Readers familiar with the value of a nonatomic
game (Aumann and Shapley [1974]) will recognize important similarities
between the formulas for the value and for DS PO mechanisms. This is a
good point at which to make some comparisons.

Let I = [0,1] be the players in a nonatomic game and e : I — M[V] be
a function describing each player’s characteristics with the restriction that
e(i) = 6, so that each player is endowed with a pure characteristic.

Denote u = [ed), where X is Lebesgue measure, as the total of all
players’ characteristics in the game and let us = [ ed) be the characteristics
of the playersin S C I.

Ignoring how the construction is obtained let g(us) be the worth of coali-
tion S. (This is an infinite-dimensional version of Aumann and Shapley’s
finite-dimensional vector measure game.) The value assigned to an individ-
ual of type v in a game g where the total of all players’ characteristics is p
is a utility ¢(u,v) given by the “diagonal formula,”

1 1
(p,v) = / Dg(tp;v)dt = / MP(tp,v)dt.
0 0
The formula for the utility in a DSPO mechanism is
Q(ﬂ’v) = Dg(ﬂ';v) - h(/*") = MP(#,”) - h(l"’),

where h(u) = [£/E.
If the formulas do not coincide, i.e., ¢(u,v) # ®(u,v) for some p-non-

null set, then the value allocation as a prescription for a mechanism cannot
be DS because ®(u,v) is the method of achieving DSPQO. Alternatively
put, if the two formulas differ then [¢(u,v) — ®(y,v)] is not a lump sum.

The one environment on which the two payoffs agree is the homogeneous
one. With homogeneity, Dg(tu;v) = Dg(p;v) whenever ¢t > 0, from which
it readily follows that ¢ = &.

Homogeneity is well-known to be important for the Value Equivalence
Theorems. For example, Aumann and Shapley [1974] demonstrate that a
class of homogeneous games is derived from nonatomic exchange economies
and for these games/economies they show that the core, the value and Wal-
rasian equilibrium coincide. Regarding the value as a mechanism yielding
utilities given by the formula ¢(u,v), we are led to the following conclu-
sion based on Theorem 3 and 5: Assuming (R.4), the value is a DSPO
mechanism if an only if the environment is homogeneous.
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7 The Work of Others

To conclude our analysis, we comment briefly on some of the connections
between the results of this paper and the work of others mentioned in the
Introduction. We wish to show that our general equilibrium extension of the
marginal product concept and the characterization results derived using it
give a framework in which many, apparently unrelated, results from mecha-
nism theory can be synthesized. Our focus is on results for models with large
numbers or a continuum of individuals but it should be re-emphasized that
our characterization results depend upon constructs also applicable to finite
individual models. In particular, the formula for a DSPOy mechanism —
give each individual his marginal product plus a lump sum — is equivalent
to the necessary and sufficient for a DS POy mechanism in finite individual
models (see Makowski-Ostroy [1987a]). So the framework also allows one
to readily analyze the similarities and differences between large and small
economy results; e.g., why the Walrasian mechanism is incentive compatible
with large but not with small numbers.

Two further preliminary remarks are in order. First, we shall not distin-
guish between results quoted below that apply to models with quasi-linear
utility and those that apply to more general models without quasi- linearity.
Second, in keeping with the mechanism approach and the emphasis of this
paper in which explicit reliance on price-guided allocations is minimized,
we shall not elaborate upon the pricing interpretations of the results stated
below. Demonstrations that the findings of this paper for quasi-linear utility
models can be extended to models without quasi-linearity as well as elab-
orations upon pricing interpretations of DS mechanisms are the subject of
Makowski-Ostroy [1987b].

We divide the literature on DS mechanisms with large numbers of in-
dividuals according to returns-to-scale properties of the models and then
remark on the link with finite individual models.

1. Constant Returns (Homogeneous Environments)

1A. Private Goods. Private goods economies have a built-in homogene-
ity: doubling the number of each type clearly doubles the total gains, i.e.,
9(2p) = 2g(p). Therefore, a DS PO mechanism must reward each individ-
ual with an allocation the utility of which is exactly equal to his marginal
product. Using the equivalence of the no-surplus (Makowski [1980}, Os-
troy [1980]) and marginal product characterizations of an allocation, it may
be shown that such an exact appropriation allocation is necessarily a Wal-
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rasian equilibrium allocation. This confirms the findings of Roberts and
Postlewaite [1976], and Hammond [1979] that the Walrasian mechanism has
the DS property and it is the only one to have this property. Champsaur
and Laroque [1981], McLennan [1982] and Mas-Colell [1983] give versions
of this result under the hypothesis that the net trades in a given economy
must be “fair.” (See Remark 1, above).

1B. Costless Public Goods. In a model with a fixed set of costless public
goods projects among which only one will be selected, the environment is also
homogeneous: if y(u) is the project chosen to maximize total utility when
the population is p, then y(2u) = y(u) will be chosen when the population
is 2u, so g(2u) = 2g(x). (This model does not capture the distinguishing
property of pure public goods. See case 3, below.)

Since the environment is homogeneous, we have [ £ = 0. But the costless
public goods model can be shown to have the stronger property that each
£(u,v) = 0. Thus, in a DSPO mechanism, m(p,v) = 0. Asymptotic ver-
sions of this result are demonstrated by Tideman and Tullock [1976], Green
and Laffont [1979], Rob [1982], and Mitsui [1983]; they show that the per
capita tax imposed by the “pivot” version of a Groves mechanism (our M P
mechanism with zero lump sums) converges to zero.

2. Decreasing Returns Consider a model of private goods without
private property where individuals “own” their tastes but total resources
are fized and under the control of the mechanism. Because an individual’s
characteristics include only his tastes (representable by a concave utility
function) and not resources, when the population doubles total utility less
than doubles because the same resources must be shared among twice as
large a population. The decreasing returns property g(2u) < 2g(u) is equiv-
alent to [£ = [ MP — g < 0. Therefore, DSPO requires that the utility of
each individual’s allocation equal his M P plus a lump sum subsidy equal to
(- [ €/E) to make up for the difference between the sum of the MP’s and
the total gains, g.

Varian [1976], Kleinberg [1980], McLennan [1982] and Champsaur and
Laroque [1982] use this model to study fair allocations. Their findings es-
tablished that the only fair allocations are Walrasian equilibria arising from
an initial allocation in which each individual has an equal-valued share of
total resources. We note that such an allocation is the only way to realize
the formula for a DS PO mechanism in this model of private goods without
private property.

3. Increasing Returns Consider a nonatomic model with public goods
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produced using private goods as inputs, e.g., Meunch [1972]. Two identical
populations s, each producing the same optimal quantities of public goods
with the same resources — so producing total utility 2g(u) — could sim-
ply by combining to form one economy, halve the per capita resources con-
tributed and maintain the same total quantity of public goods, and therefore
produce total gains for the population 2y such that g(2u) > 2g9(p).

In this situation, [§ = [MP — g > 0. Here a DSPO mechanism
gives each individual his M P and then imposes a uniform lump sum taz of
(- [ €/%). Hammond [1979] has given a price characterization of a DSPO
mechanism with public goods. It can be shown (Makowski-Ostroy [1987Db])
that his “privately fair Lindahl allocation” is equivalent to the above MP
mechanism plus lump sum.

Does a DSPOIR mechanism exist for models with costly public goods?
(Clearly, they do exist for private goods, while IR is not applicable in case
2.) A model of costly public goods satisfies the hypotheses of Theorem 4.
Therefore, a DS POIR mechanism exists if and only if [ £ = 0. But feE=0,
the homogeneity condition, contradicts the distinguishing feature of public
goods models, namely the cost sharing and consequent increasing returns
property, [€ = [MP —g > 0. So, we can conclude that a DSPOIR
mechanism cannot possibly exist when there are (costly) public goods. This
agrees with the finding of Roberts [1976].

4. Finite Numbers: Indivisibilities We have used the M P theme to
provide an interpretative survey of the various results for DS mechanisms in
continuum economies. But what is the connection with finite agent models,
to which the literature on DS mechanisms is overwhelmingly devoted? In
making this connection, we will be implicitly shifting the focal point of the
literature from models with small numbers of individuals to models with
large numbers. Rather than viewing the large numbers case as an extension
of the finite agent model, we shall regard the continuum model as the focal
point and the finite individual model as a “special case”. This change in
perspective is suggested by the parallels with traditional M P theory.

It suffices to confine attention to constant returns models — cases 1A
and 1B, above. While constant returns environments are the ideal setting
for DS PO mechanisms in nonatomic models, how to explain that DSPO
mechanisms do not generally exist when the number of individuals is finite,
i.e., when the space of agents contains a finite number of atoms?

Consider the analogy with the M P theory of distribution. In a con-
tinuum model, we have shown that in constant returns environments, the
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necessary and sufficient condition for DSPO is to pay individuals exactly
their M P’s. Such a condition is not automatically guaranteed by constant
returns; it also requires the differentiability condition (R.4). (Recall the
similar requirement in the conventional statement of Euler’s Theorem for
homogeneous functions.) Going behind the g function to the economic en-
vironment from which it is derived, it can be demonstrated that while (R.4)
need not always obtain, it will hold generically for the kinds of economies
to which we have referred. Thus, in constant returns environments, when
each individual is infinitesmial it is typically possible to pay each one his
M P and therefore to demonstrate that a DS PO mechanism is feasible.

Now make the following modification: while continuing to assume a con-
stant returns environment such as would come from a private goods or cost-
less public goods economy where doubling the number of each type of in-
dividual doubles the total gains, assume each individual is an atom. The
fact that individuals are no longer infinitesimal is similar to the hypothesis
in the theory of production that even though there is constant returns, if
factors of production are indivisible, then it will typically be impossible to
pay each one its M P. A similar interpretation appears to lie behind the
non-existence results for DS PO mechanisms in finite individual economies.
There is firm support for this interpretation in the case of costless public
goods. Laffont and Maskin [1979] have shown that among all the DSPOy
mechanisms, there is none that dominates the pivot mechanism in minimiz-
ing the absolute value of the sum of monetary transfers. (Recall that for
DS PO, the sum must be zero.) Since the pivot mechanism rewards individ-
uals with their M P’s, we can trace the non-existence of DS PO mechanisms
to the failure to obtain adding-up, which in turn can be traced to the fact
that the “factors of production” in the gains function g, i.e., the individuals,
are indivisible.

8 Proofs

Lemma 1 Holding p and w fixed, let

K(t) 9(p + téy)

= / u(y(p + téu, v)dp + tu(y(p + téw, w), w)

/ k(t, v)dp + th(t, w).
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It is well-known that
K'(t) = / B,k(t, v)du + B[th(t, w)),

provided 8;k(t,v) and 8;[tk(t,w)] are t-continuous. From the definitions of
k(t,v) and k(t,w),

Aik(t,v) = Oyu(y(p + t6w,v),v)Dy(u + ty,v; w)
Biltk(t,w)] = Bu(y(p + t6u,w), w)Dy(p + t6u, wiw) + u(y(p + t6u, w), w).

From (R.1), both y and Dy are t-continuous (since they are p-continuous)

and by the differentiability hypothesis on v,w € V, yu are y-continuous.

Also, Y, is closed, v € V. Therefore, 8:k(t,v) and 9(tk(t, w)] are continuous.
It is also well-known that K'(t) is continuous on [0,a] provided 0:k is

jointly continuous on [0,a] X V. Appeal to (R.1) and the properties of

v,w € V guarantees this joint continuity. Thus, K'(t) — K'(0) as t — 0.
Now,

lim 5—(1)—-;—@ = K'(0)

t—04

/ 8:k(0, v)dp + (0, w)

= / dyu(y(p,v), v)Dy(u, v; w)dp + u(y(p, w), w)
&(p,w) + u(y(u, w), w),

Dg(p;w) =

where the third equality follows from the second after substituting the defi-
nitions of (0, w) and 8;k(0,v).

The continuity of M P(u,w) = Dg(u;w) on N x V will be established
through the continuity of (i, w) since by the hypothesis on V and (R.1),
u(y(y, w), w) is continuous on N x V.

Let

&) = [ h(u,w,0)du(o),
where h(”" w, v) = ayu(y(""’ v)a v)Dy(“v v, w); i'e" h(l"’a w, ‘D) = atk(oy Vs iy w)
shows the explicit dependence of 8:k on u and w. The continuity of £ on

N x V follows from the continuity of A on N X V x V which is readily found
to follow from (R.1) and the assumptions on V.

Lemma 2 Whenever y(u,w) ¢ Y, define M P(u,w;v) = —oo.
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Alternatively, fix a u,w and v such that y(u,w) € Y,. We show that
there exists an @ > 0 such that for t € [0,a], y(p + téw,w) € Ys.

Suppose not; then there exists a sequence {t,} — 0 such that y, =
y(t + tnby,w) ¢ Y,. By (R.1), y(-,w) is p-continuous so yn — y(u,w).
But by (R.3), n ¢ Y, ¥n — y(p,w) implies y(p, w) ¢ Y, contradicting the
original hypothesis.

Proceeding along lines similar to Lemma 1, let

H(@) = g(p+tby;p+1d,)= / u(y(p + téw, 2)dp(z) + tu(y(p + t6y), v)
= / h(t, z)dp + th(t, v).

Provided 8;h(t, z) and 8:[th(t,v)] are t-continuous,
H(t) = / B,h(t, 2)du + Bifth(t, v)].

Note that for z # v, h(t,z) = k(t,2) given in Lemma 1. The continuity
argument there applies here to 8;h(t, 2).
By definition and differentiation,

Oith(t,v)] = td:h(t,v)+ h(t,v)
t0,u(y(p + 16y, w), v)Dy(p + t6yw; w) + u(y(p + by, w), v).

Because y(u + t6y, w) € Yy, u(y(p + tby, w),v) is t-continuous and the same
agrument as in Lemma 1 applies to show that H'(t) — H'(0) as t — 0.
Thus

lim H(t)- H(0)

t—04

- / 8:h(0, 2)dp + (0, v)

= / 8:k(0, 2)du + u(y(p, w), v)
{7 w) + “(y(l“', w),v).

The continuity of MP(u,w;v) on the set {(u,w,v) : y(p,w) € Yy}
follows first from the continuity of é(u,w) in Lemma 1. For the remain-
der of the argument suppose {(in,wn,?:)} — (4, w,v), and y(pn,wy) €
Yy,. Then, by the fact noted in Section 2, X = {(y,v) : y € Y,} is
closed in Rf x V, and by the assumption (R.1) that y is continuous on

M P(p,w;v) = H'(0)
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N x V,y(tn,wn,vn) — y(u,v) € Y,. The hypotheses about the parame-
terization of V imply that u(y,v) is jointly continuous on X and therefore
w(y(ln, Wn)s vn) — u(y(p, w),v). This completes the argument for the con-
tinuity of M P(u,w,v) on {(g,w,v): y(p,w) € Y, }.

Lemma 3 It is evident from the definition of g that for all t > 0 and v,
9(u + 8y p +18,) < g(p + toys p + t60) = g(p + 16y),

i.e., the total gains from trade cannot possibly be increased through misrep-
resentation. Therefore,

lim g(p + by p + t8y5 1 + t8,) — g(p)

MP(pwiv) = Jim :
< lim g(p + 6y pu + 16,) — g(u)
t—04 t
o g It 18) - g(w)
t-—'0+ 4
= MP(u,v).

Theorem 1 If U(f(u,w),v) = MP(p,w;v) — h(y), then by Lemma 3,
U(f(/t,'l)),'l)) - U(f(»u"w)’v) = MP(I-‘v v;v) - MP(“aw; ’U) 2 0.

Theorem 2 Fix (u,v,w) € N XV x V. By convexity, for a, 8 € [0,1] there
exists vo = av + (1 — a)w and vg = fv + (1 - Bw.
By Lemma 2,

(1) MP([L,‘Up;’va) = u(y(#’vﬂ)’va)"'f(“’vﬁ)'
Therefore, we may write U(f(y,vg),va) = u(y(@, v8), va) + m(i, vp) as

U(f(#,v8),va) = MP(p,vp;va) — H(p,vp)
= ¥(B,a) - k(B),

taking advantage of the fact that u,v and w are fixed.

From the hypothesis that f is a regular DR mechanism, we have that
for all @,( € [0,1]

o € arg, max (6, @) — k(B).
From Lemma 3,
@ € arg, max ¥(8,a).
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By (1) and (2),
W(B,a) = u(y(p,vs),va) + E(1, v8),

where u(y(y,vp), va) = au(y(p,vs),v) + (1 — a)u(y(, vp), w)
Differentiating 3 with respect to o,

6_«%%9_) = Gau(y(k,vp), va)

= u(y(s,vp),v) — w(¥(krvg), ).

Let Q = {y(u,vg) : B € [0,1]}. Now, because y(u,-) is continuous in vg
and {vg : B € [0,1]} is compact, @ is compact. Therefore

supg o|0a¥(B, )| = sup{|u(y,v) — u(y,w)| : y € Q} < —o0.

Having established (a) - (c), now apply the following basic result proved
in Holmstrom [1979],

Lemma Let 9:[0,1] x [0,1] — R and k:[0,1] — R satisfy (a), (b) and (c),
then k is constant.

Therefore, there is an h such that h(p) = H(p,v) = H(p,w), as was to
be demonstrated.

Corollary Note that what is required to prove Theorem 2 is that for all 8 €
[0,1], y(u, v8) € Yy NYy, hence 4 is real-valued. The feasible connectedness
assumption says that if this does not hold there is a 2 such that for all
B € [0,1], (1) y(i,vp) € Y,NY, when vg = fv+(1 - B)z, and (2) y(u,25) €
Y.NY,, where z5 = 82+ (1—f)w. Apply the conclusions of Theorem 2 to (1)
to obtain H(u,v) = H(u,z) and to (2) to obtain H(u,z) = H(y,w), leading
to the same final conclusion as Theorem 2 that h(y) = H(u,v) = H(p, w).

Theorem 3 By Theorem 1’, if f is a regular POy mechanism and
m(p,v) = &(p,v) — h(u), then fis DSPOy. If h(p) = [&/F, then fm =0
and therefore f is DSPO.

Conversely, if f is DS PO then by Theorem 2 and its Corollary m(p,v) =
&(p,v) — h(p) and [m = 0. Thus f£ — h(u)E =0, or h(p) = [ {/B.
Theorem 4 From Theorem 3, if f is DSPO and h(u) = [&/E = 0,
then m(u,v) = §(p,v) and therefore U(f(p,v),v) = &(p, v)+ u(y(p, v),v) =
M P(u,v). But by (E.2), MP(u,v) > 0, so f satisfies IR.

To demonstrate that DSPOIR implies [£ = 0, suppose the contrary.
Then, by (E.1) there is a u’ such that f[£&(u',v)du’ > 0. Let v° = v°(y')

30



(recall E.3), and let u = p’ + téy0. Notice by the continuity of o(u) =
J €(u,v)dp (see Lemma 2) and the continuity of M P(-,v°), that as ¢t —
0, a(p)/B — o(u)/u’ > 0 and MP(u,v°) - MP(u',v°) = 0. Hence,
3t > 0 such that MP(u,v°) — o(u)/E < 0. But by Theorem 3, DSPO
implies

U(f(u,v%),0°) = MP(u, %) - o(w)/.
The RHS, we have verified is negative for some p, contradicting IR.

Theorem 5 This is a straightforward extension of the finite-dimensional
version of Euler’s Theorem on functions homogeneous of the first degree.
If g(tp) = t(n),t > 0, then

i ST —gw) . (4 £)g(s) - (k)

Dg(p;p) = : :

= g(p).
By (R.4), [ Dg(u; v)dp = Dg(p;p), so it and first degree homogeneity imply
adding-up.
Conversely, if there is adding-up then [ Dg(u;v)dp = g(¢) and by (R.4),
[ Dg(up;v)dp = Dg(p; 1), so Dg(p; p) = g(p)- Fixing p, let

L(t) = g(tu) = Dy(tu;tn)

Therefore,
L'(t) = Dg(tu;p) =t L(2)
where the first equality follows from the definition of L'(t) as

Jdm 7 [g([t + hlu) ~ g(tw)]

and the second from the linear homogeneity of the directional derivative,
ie., Dg(tp;ap) = aDg(tu; p),a > 0.

The equation L(t) = tL'(t) is well-known to have the solution L(t) = ct
and putting t = 1,¢ = L(1) = g(u). Therefore, g(t,u) = L(t) = tL'(t) =
te = tg(p).
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