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The indivisibility of housing commodities should be obvious to any-
one who thinks about the problem for a moment. Apart from the fact that
one only has to look at a house to realize that this is so, tye issue is
forced by the logic of formal general equilibrium theory. In the gram-
mar of axiomatic competitive analysis, all commodities must be time
dated and indexed by location. If we impose the natural requirement
that a consumer cannot be in two or more places at the same time, then
the introduction of a spatial dimension means that consumption sets are
necessarily non-convex.

Of course, there is nothing in this logic that requires the intro-
duction of indivisible commodities. One could assume that the restric-
tions of consumption sets to specific locations are convex and that com-
modities, indexed by location, are perfectly divisible. But to do so
obscures the basic reason for the non-convexity of spatial models. The
impossibility of being in two different places at the same time is a

reflection of the indivisibility of the consumer, and this source of

indivisibility carries over to many different aspects of the consumer
choice problem. Choosing a job, a house, a neighborhood each has the
aspects of an all-or-nothing choice, and in each case the discreteness
of the choice process seems to be intimately tied up with the identity
of the consumer as an individual. This paper will present the case for
the importance of recognizing this source of indivisibility to the
development of a coherent theory of housing markets and local public
goods.

The difficulties in constructing a theory that allows for indivisi-

bility are more psychological than real. Recent advances in mathemati-
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cal economics have demonstrated that perfect divisibility is not essen-
tial to the theory of perfect competition. But the old ways die hard.
Years of tradition have ensconced perfect divisibility at the' core of
economic analysis, the apparent sine qua non for the osculation of
smoothly bending curves with separating hyperplanes that drives the
engine of competition. Indivisibility, on the other hand, conjures up
images of corner solutions, scale economies and market failure. Against
this background it is small wonder that economists have chosen to ignore
indivisibility in their efforts to model housing markets and local pub-
lic goods.

Matters are not improved by the language in which the new results
from mathematical economics are presented. Conclusions reached through
an appeal'to the weak star convergence of Borel measures on an infinite
dimensional commodity space, set in the context of a non-atomic measure
space of consumers, are unlikely to reach a‘large audience. Neverthe-
less, the ideas involved are really quite straightforward and very com-
pelling. To help bridge the communications gap, in this paper I will
suppress references to the technicalities of measures, sigma algebras
and the like which underlie my approach. There won't be any theorems
either. (None are needed because Mas-Colell[1975,1977] provides every-
thing that is required.) Instead we will work through a series of exam-
ples illustrating how one models economies with housing commodities or

local public goods as markets for indivisible commodities.
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1. Pure Exchange With a Finite Number of Indivisible Commodities

In setting up this first example, we establish some notation that
will be used throughout the paper. Commodities fall into omne' of two
classes, divisible and indivisible, which we label one and two respec-
tively. We assume a non-atomic measure space of agents, denoted A .

The commodity bundle allocated to consumer a € A is written

x(a) = (xl(a),xz(a))

where xl(a) is a vector of divisible commodities and xz(a) is the

bundle of indivisible commodities. As a varies over the set of agents
A, x(a) indicates the allocation received by each of the consumers.
Thus, we can regard the entire allocation as a function x defined over
the set A. -

In all of our examples we will assume that there is only ome

divisible commodity so that xl(a) is a scalar. The description of

xz(a) requires more elaboration. Associated with the class of indivisi-

ble commodities is a compact metric space K , called the set of charac-
teristics. Each point 2z £ K represents a description of a particular

type of indivisible commodity. For example, if we assume that K is a

subset of Rn, then the components of z & K could be square feet of
floor space, lot size, number of bedrooms, quality and so forth.

In this paper we are going to assume that each consumer chooses at
most one unit and at most one type of indivisible commodity.[1] If the

set K is finite, say K = {z .,zm}, then xz(a) can be given a

1°°°

[1] Mas-Colell's theory requires no such restriction, but this as-
sumption will simplify our presentation considerably.



A

simple representation. For example if m = 5 and the consumer chooses

one unit of the fourth type of indivisible commodity, then xz(a) =

(0,0,0,1,0). If K is not finite, say K = [0,1], then the iepresenta-

tion of xz(a) is more complex. We will defer discussion of this prob-

lem to a later section. For now we confine ourselves to the case where
K is finite. However, in order to establish a comparable notation for

the finite and infinite case, we will write xz(zi) for the ith com-

ponent of the function X, rather than the more usual Xy,
i

The distribution of endowments in the economy is given by a func-

tion e: A2 Rm+1 where e is shorthand for the m+l-tuple of functions
‘(el’ez(zl)’ e ’ez(zm))’

one for each type of commodity. In our applications, we will be
interested primarily in the aggregate endowment, obtained by integrating

e over the set of consumers. Accordingly, we define b = jAel and

c = (cl,...,cm) = (fAez(zl),...,IAez(zm)).

At this juncture we need to address a possible source of confusion
regarding the integrals we have just introduced. In our examples, we
will have no difficulty in evaluating the integrals (only freshman cal-
culus is involved), but readers more used to urban economics than the
continuum of agents literature may find the results slightly puzzling.
When urban economists integrate over a density of consumers, the answer

equals N , the number of consumers. But in the continuum of agents
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context, there is no natural choice for N (because the number of con-
sumers is infinite). An alternative approach is adopted where the
integral of such a density over a subset of consumers equals ‘the frac-
tion of those consumers in the economy as a whole, and, as a result, the
integral over the entire set of consumers equals one.

As a consequence of this procedure, the integral fAe has a some-~

what different interpretation from what one might expect: it equals the
average or mean endowment of the economy and not the total. Similar

comments apply to the aggregation of the functions
X = (xl,xz(zl),...,xz(zm))
describing the allocation of commodities to consumers. The integral
JAx =-(1Ax1,JAx2(zl),...,Isz(zm))

represents the average amount of each of the commodities allocated to

consumers. When we clear markets we set JAx = JAe (which, because

each integral is really an mt+l-tuple of integrals, equates demand and
supply in all of the markets), so that equating average allocation to
average endowment can be regarded as essentially equivalent to equating
the "total" allocation to the "total" endowment.

Our examples will all involve perfectly competitive markets with
price-taking consumers and firms. The natural notation for the vector

of prices is p = (pl,pz) where P, is the price of the divisible com-

modity and P, is itself an m-tuple of prices, one for each type of
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indivisible commodity. However, rather than using Py, for the ith
i

component of Py, We will use h(zi) to denote the price of the indi-

visible commodity of type 2 As with the consumption vector x,, this

i’ 2’
establishes a comparable notation for the case in which K is finite
and the case in which K is infinite. As the letter "h" is supposed to
suggest, the function h defined on K can be interpreted as a
"hedonic" price function.

Having completed the preliminaries, we are ready for the first
example. Consider an economy with three types of indivisible commodity,
and let K = {1,2,3} be the set of characteristics. For concreteness,
imagine that these commodities represent three different types of houses
of size (or "quality", or whatever) equal to 1, 2 or 3. All consumers

have the same utility function where U(x(a)) = xl(a)(1+z) if consumer

a chooses the indivisible commodity of type 2z and U(x(8)) = xl(a)

if none of the indivisible commodities is chosen.

Recall that the mean endowment of the divisible commodity is
denoted b and the mean endowment vector for the indivisible commodi-
ties, c¢. To simplify the computations which follow, we will assume
equal means for each of the indivisible commodities: ¢ = (k,k,k) where

k > 0. Letting p, =1 as numeraire, mean income ("per capita GNP")

for the economy is computed as follows:



Y = JApe

= plfAe1 + h(l)!Aez(l) + h(2)fAe2(2) + h(3)IAe2(3) (1)

L]

b + k(h(1)+h(2)+h(3)) .

where we have used pe to denote the scalar product

Pe = Ppye; + Pyey

P, + h(l)ez(l) + h(2)e2(2) + h(3)e2(3)

One of the difficulties of using any general equilibrium model is

that computations can quickly become very complicated. In the present

instance we want to allow consumers to have different incomes, but if we

start with an arbitrary distribution of endowments the model becomes

very complex (there is no conceptual problem -- particularly because

everything is linear

-=- but the calculations are unpleasant). To sim-

plify matters we adopt a strategy of imposing a form a priori on the

final income distribution. Justification for this unusual procedure

will be given at the

end of the example.

We will assume that the equilibrium income distribution is uniform

on the interval [(1-0)Y,(1+0)Y] where Y is the mean income given by

equation (1) and o

is a fixed parameter lying between 0 and 1. Let-

ting y represent the income of some particular consumer, we can write

y = ¥Y. Our assumption on the equilibrium income distribution is then

equivalent to the assertion that ¥ is uniformly distributed om the

interval [1-0,1+0] with density (20)-1.

With regard to the indivisible commodities, consumers have four

choices open to them:

either to consume one of the indivisible

’
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commodities or to consume only the divisible commodity. For a consumer
with income y, let V(z,y) fepresent the maximum utility achievable if
z € K is chosen and V(0,y) the maximum if only the divisible commo-
dity is consumed, where the maximum is computed conditional on the
consumer's income and market prices. (Thus, V(0,y) and V(z,y) are
just the values of the indirect utility function.) In each case, the
consumer maximiies utility by spending all of his income net of housing

costs, y-h(z) , on the divisible comhodity. We conclude immediately:

v(o,y)

1]
o

(2)

V(z,y) = (y-h(z))(1+2)

Because all of the consumers in this economy agree that indivisible
commodities with hiéher z are better and because they all have the
same tastes, it is obvious that equilibrium will stratify consumers by
income with the wealthiest choosiﬁg z = 3 , the next wealthiest choos-
ing 2z =2 , the next z =1 and the poorest getting no house at all.
Our next step, therefore, is to calculate the value of income which
separates each of these income classes.

A consumer will be indifferent between a house with characteristic
z =1 and no house at all if V(1,y) = V(0,y). Using equations (2),
this condition becomes (y-h(1))2 =y so that y = 2h(1) gives the
income separating those who get no house and those who get a house of

type 2z = 1. Using the definition y = Y¥Y , we obtain the first



transition parameter: .

¥, = (2h(1))/Y (3a)

Similarly, by setting V(1,y) = V(2,y) we obtain the value of ¥ which

separates the consumers choosing z = 1 from those who choose 2z = 2:

12 = (3h(2)-2n(1))/Y : (3b)

And finally by setting V(2,y) = V(3,y) we obtain the third transition

parameter:

13 = (4h(3)-3n(2))/Y (3¢)

Because there are four markets in this economy, by Walras' law we
only have to clear three. We will equate demand and supply in the three
housing markets, leaving the market for the divisible commodity to clear
automatically. Consumers whose income parameter ¥ 1lies in the inter-

val TI(1) = [31,12] will choose houses of type z = 1. Each consumer
demands one house and, in integrating these demands, we weight by the

density (20)_1. Therefore, the market clearing equation for houses of
type z = 1 is the following:

(20) Yy = ¢. = k (4a)

Jr(l) 1

The market clearing equation for houses of type 2z = 2 is obtained in

the same way where we define T(2) = [32,K3]:
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)(20)'1dx =c, =k (4b)

It

Finally, consumers whose parameter ¥ lies in the interval [I(3) =

[13,1+o] between 13 and the top of the income distribution will

choose houses of type z = 3 , leading to the market clearing equation:

(20) " lay = ey =k (4c)

13y

Evaluating the integrals appearing in equations (4a)-(4c), we find:

¥, - ¥, = 20k

og
)

ot
]

20k (5)

l14+0-7%, =20k

Using equations (3a)-(3c) to substitute for ¥ ¥ and ¥ in equa-

1’ 2’ 3
tions (5), we obtain
=4h(1) + 3h(2) = 20kY = El
h(1) - 3h(2) + 2h(3) = okY = 52 (6)

3h(2) - 4h(3) = [20k - (1+0)]Y = &,

where we have defined the expressions on the right-hand side to be El’

£2 and 53 respectively. Letting { = ({1,52,23) and recalling that
P, = (h(1),h(2),h(3))

we can write the system (6) in matrix form (where the definition of B
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should be self-evident):[2]

Bp, = § (N

Provided that B is non-singular, equation (7) has the solution

P, = B-li. Solving explicitly, we obtain the following solution to the

market clearing equations (6):

h(1) = [1+0-60k]Y/2
h(2) = [1+0-50k]2Y/3 (8)
h(3) = [1+0-40k]3Y/4

Equations {(8) do not yet constitute a complete solution to the
model because they depend on the mean income Y. But Y is itself
determined by equation (1). Substituting the equations (8) for the
prices h(1), h(2) and h(3) into equation (1) gives mean income as a

function of the exogenous parameters alone:

Y = {1 - (k/12)[23(1+0)-1120k]} }b 9)

Thus, we can use equation (9) to determine the equilibrium value for Y
and, by inserting this value into equations (8), determine the equili-
brium prices h(l), h(2) and h(3).

An explicit numerical example will help give a better sense of the
model. Suppose that the number of houses per capita of each type is .25
and that o = .6 (so that income is uniformly distributed between .4Y

and 1.6Y ). Then equation (9) implies that Y = 12b/7 and equations

[2] Note that we follow here the mathematical tradition that does
not make distinctions between row and column vectors, arguing that the
appropriate definition is always obvious from the context.
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(8) imply that h(1) = 3b/5 , h(2) = 34b/35 and h(3) = 9b/7. We
find, therefore, that per capita income and the prices of all three
types of houses are proportional to the per capita endowment of the
divisible commodity, b. To obtain integer solutions, let b = 35. Ve
then obtain Y = 60 , h(1) = 21 , h(2) = 34 and h(3) = 45.

Using this explicit numerical example, we can perform some con-
sistency checks on the model. The per capita income from the sale of
houses is k(h(1)+h(2)+h(3)) = .25(21+34+45) = 25 while that from the

sale of the divisible commodity is plb = b = 35. We conclude that

total per capita income is 60, as before. Equations (3a)-(3c) give the
transition points separating the income classes. Evaluating these equa-

tions we obtain Kl = .7, 12 =1 and 13 = 1.3 which neatly subdi-

vide the interval [.4,1.6] into four equal-sized parts. We conclude
that the upper 25 per cent of the income distribution is getting the
houses of type 2z = 3 , the next 25 per cent get the middle quality
houses, the next 25 per cent theuﬁorst houses and the bottom 25 per cent
is left out in the cold. By spot-checking for a few different incomes, .
the reader can verify that all consumers are maximizing their utility at
the equilibrium prices, so indeed Qe do have a competitive equili-
brium. [3]

The one flaw in this presentation from the purist's point of view
is that we have not specified the distribution of initial endowments,

choosing instead to specify a priori the form of the equilibrium income

distribution. However, once we have obtained the solution it is always

[3] The best way to see that this is so is to plot v(o,y), V(i,y),
V(2,y) and V(3,y) as functions of the income parameter ¥.

’
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possible to specify an initial distribution of endowments that would
yield the given income distribution at the given equilibrium prices
(otherwise we would not have found a solution). The basic idea involved
is probably best illustrated by using the numerical example given above.
Suppose we divide the population of consumers into four classes:
class 1 consumers own one house each of type z = 1 , class 2 one house
of type z = 2 , class 3 one house of type z = 3 and class 4 no houses
at all. Assume that one fourth of the consumers in the economy fall
into each category. Our aim is to distribute the divisible commodity to
consumers in such a way that a uniform income distribution on the inter-
val [24,96] will emerge. This would be easy except for the fact that
three of the classes earn income from selling houses: an income of 21
for class 1, 34 for class 2 and 45 for class 3. The procedufe we follow

is to dole out the divisible commodity (which is income since Py =1)

in such a way that we produce the desired uniform distribution.

Starting with group 4, we give them the divisible commodity uni-
formly distributed from 24 to 42; group 1 receives the divisible commo-
dity uniformly distributed from 21 to 39 (which, when added to their
income from the sale of houses, yields an income distribution uniform on
[42,60]); group 2 receives a uniform distribution from 26 to 44 (which,
when added to the income of 34 from houses, amounts to a uniform distri-
bution of total income from 60 to 78); and finally group 4 receives a
uniform distribution from 33 to 51 (yielding a final income distribution
uniform on [78,96]). This procedure requires an average amount of the

divisible commodity equal to

(.25)[(24+42)/2 + (21439)/2 + (26+44)/2 + (33451)/2] = 35
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which is exactly the amount that we have available to distribute.

The point of this construction is that if we started with this ini-
tial distribution of endowments and solved the model without imposing
the a priori constraint on the final income distribution, then we would

obtain exactly the same solution.

2. A Peculiarity of Pure Exchange

An interesting aspect of the model presented in the last section
emerges when we consider the case k = 1/3 . This represents the
pleasant state of affairs in which there is one-third of a house per
capita of each of the three types, so that there is a house for every-
one.

Suppose again that the income distribution parameter ¢ =.6 .
Using equation (9) we find that average income Y = 5b/3 , where b is
the per capita endowment of the divisible commodity. Equations (8)
imply that the equilibrium prices are h(1l) = b/3 , h(2) = 2b/3 and

h(3) = b . Equations (3a)-(3c) give transition points !1 = .4 , 12 =

.8 and 13 = 1.2 . Recalling that, when o = .6 , ¥ is uniformly dis-

tributed on the interval T = [.4,1.6] , we see that ¥, and 13

2
divide the income distribution (as represented by T ) into three equal
parts, and the population stratifies into three income classes matched
to the three types of houses in just the way one would expect. The
reader can verify that this solution passes all of the comsistency
checks imposed on the previous numerical example, so we again have a

competitive equilibrium.
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However, if we go back over the derivation of these equations, we
see that we are now making an unwarranted assumption. Because there are
enough houses for everyone, we can no longer assume that V(o;y) =
V(1,y) for some consumer with income y. The above solution reflects

this assumption (which is why Xl = .4 , the left end-point of T), but

all that can be required on economic grounds is that V(0,y) S V(1,y)
for all y: i.e., the lowest quality houses must be priced low enough to
attract the lowest income consumer.

It seems clear on economic grounds how one should remedy the
derivation. We know that all of the houses will be allocated in equili-

brium, so all that is required is to replace 11 by 1 - o in equation

(4a). (Note that (4a) is then symmetrical with equation (4c)). Repeat-
ing the steps of the earlier derivation, we obtain the following system

of market clearing equations to replace equations (6):

-2h(1) + 3h(2) [20k+1-0]Y =

1
h(1) -3h(2) + 2h(3) = okY = £2 (10)
3h(2) - 4h(3) = [20k-(1+0)]Y = 53
or, in matrix form,
Bp, = § (11)

But at this point something quite remarkable happens: the matrix B
is singular so that the system is indeterminate! This result is not so

surprising if we think about it for a moment. . Suppose that cy, =cg =

1/3 as above (one-third house per capita of the middle and high quality
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houses), but c, > 1/3 . We obtain exactly the same system of market

1
clearing equations (10), but now we know how to solve the system. Low
quality houses are in excess supply for any price greater tha; zero and
so h(l) = 0 in equilibrium. With this additional constraint, the
equations do have a unique solution.

In fact if we impose the constraint h(l) = 0 , the equations have

a solution even in the case where c1 = c2 = c3

= 1/3 considered above.
Sparing the reader the details of the calculation, I will simply supply
the answers (for the case o= .6 , k=1/3): Y =90b/67 , h(2) =

24b/67 and h(3) = 45b/67. The transition points are Xz = .8 and 13

= 1.2 so that the income distribution is again split neatly into thirds
to match the different types of houses.

We can even say something more. If we let ¢, =c, = 1/3 and

2 3
leave the other parameters the same, then the solution we have just
described is the limit of the solutions obtained to the model if we let

c, approach 1/3 from above. On the other hand, the solution described

1
at the beginning of this section is the limit of the solutions obtained

from equations (10) as c. approaches 1/3 from below. Thus, we have a

1

discontinuity at ¢, = 1/3 , a result that (with the advantage of hind-

sight) makes perfect economic sense: this is precisely the point at

which one more house produces a glut while one less produces a shortage.

3. Production With a Finite Number of Indivisible Commodities

The fact that the price of the lowest quality houses can be zero if

houses are in excess supply should not be too disquieting at the
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\

theoretical level, but still there is something strange about the notion
that people would be willing to sell houses at zero price. Intuitively,
we expect that such houses would not be around in the first place. Of
course, when we react that way, implicitly we are assuming that houses
get produced (so that we do not have the perfectly inelastic supply of
pure exchange).

In this section we will present a simple model of the production of
indivisible commodities. We assume that consumers have identical ﬁtil-
ity functions of the form given in Section 1 and the set of characteris-
tics is again K = {1,2,3}. Because of a particular feature of the
model, which we will discuss in a moment, it will not be necessary to
impose the equilibrium income distribution a priori.

The main point of departure is that we now assume that each indi-
visible commodity i; produced using the divisible commodity as input.
Let B(z) be the amount of the divisible commodity required to produce
one unit of the indivisible commodity of type 2z , and assume that pro-
duction is constant returns to scale. It is important to emphasize that
the scale referred to is with respect to the number of units of the com-

modity of type 2z produced and not with respect to 2z (which would be

meaningless).
The introduction of production greatly simplifies the computational
aspects of the model. In the first place, the analogue of equation (1)

is now simply:

Y=b» (12)

This reflects the fact that, with constant returns to scale, equilibrium
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profits are zero so that the only source of income is the divisible com-
modity. The second fact that simplifies the model is that with constant
returns price equals average cost. Therefore, using the assumption that

P, = 1 , equilibrium price are immediately determined:

h(z) = B(2) zt K (13)

Al]l that remains is to determine which commodities get produced and
who receives them, and for this we need to specify the initial distribu-
tion of the divisible commodity. We will assume that the endowment of
this commodity is uniformly distributed on the interval [(1-0)b, (1+0)D]
where 0 <0 <1 . In view of equation (12), this is equivalent to
assuming that the final income distribution is uniform on the interval
[(1-0)Y,(140)Y] which is precisely the distribution imposed a priori in
Section 1. It will prove useful to parameterize the distribution in the
same way by defining y = ¥Y = ¥b and describing the income distribu-
tion as a uniform distribution of ¥ on the interval T = [1-0,1+0]

At this point we can use the same procedure to solve the model that
was used in Section 1. Because all consumers agree that a higher level
of z is better, we know that in equilibrium there will be stratifica-
tion by income class. By setting V(0,y) = V(1,y) , V(1,y) = V(2,y)

and V(2,y) = V(3,y) we can solve for the transition parameters 11,

Kz and 13 . The results are, of course, identical to equations (3a)-

(3c) except that now we are able to impose the additional requirements
given by equations (12) and (13). As a consequence, equations (3a)-(3c)

now become:
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ot
]

(2B(1))/p

o¢
[}

(368(2) - 2B(1))/b (14)

ot
L}

(4B(3) - 3B(2))/b

To illustrate this solution to the model, we will consider two
cases. In both we assume that the income distribution parameter equals
.6, and we assume that the production coefficients are B(1) =2, B(2)
=3 and B(3) = 4 . The choice of these coefficients is, of course,
arbitrary except that we expect that higher quality houses should be
more costly to produce. I chose the numbers to increase linearly with
z , but I started at 2 rather than 1 for a reason: I want to suggest

" in order to

some sort of increasing returns to "production of =z
highlight the fact that any such notion that it is 2z that is produced
is entirely irrelevant.

Once the production coefficients have been specified, equations

(14) can be solved for the transition parameters. For the choice of

coefficients given above, we obtain:

Ul = 4/b; Xz = 5/b; 33 = 7/b (15)

Case 1: b = 10

From equations (15) we find 11 = .4 , 32 = .5 and 13 = .7 .

Because the income distribution parameter is ¢ = .6 , the interval

representing the income distribution is T = [.4,1.6] . Consumers for
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whom ¥ & [.4,.5] choose houses of the lowest quality, those for whom
¥ e [.5,.7] choose the middle quality houses and those for whom ¥ ¢

" [.7,1.6] choose the highest quality houses. Or, in other words, 1/12
of the consumers choose the worst houses, 2/12 the next highest quality
and the remaining 9/12 the best houses.

Because this all seems so simple, it is a good idea to check the

consistency of the model. The inputs used to produce the houses (in per
capita terms) are found by multiplying the per capita demand for each

type of house by the appropriate production coefficient:
B(1)(1/12) + B(2)(2/12) + B(3)(9/12) = 11/3

where we have substituted in the values for the production coefficients.
The demand for the divisible commodity is found by integrating the
demand functions of the individual consumers. Letting T(1) = [.4,.5] ,
r(2) = {.5,.7] and T(3) = [.7,1.6] we find that this per capita

demand is

(Y-h(1))(5/6)d¥ + [ )(Y-h(Z))(5/6)dX +

Tty 2

Jr(3)(Y-h(3))(5/6)dx

=Y - (h(1) + 2h(2) + 9h(3))/12 = 10 - 11/3 = 19/3.

The per capita input of the divisible commodity used in production plus
the amount consumed should equal the amount initially available, and

« since 11/3 + 19/3 = 10, the solution checks.



Case 2: b=5

From equations (15), we find Xl = .8 , 32 =1 and 13 =1.4 .

Consumers in the interval [.4,.8] are priced out of the hou;ing market
altogether, those in the interval [.8,1] choose houses of type 2z = 1,
those in the interval [1,1.4] choose houses of type 2z = 2 and those
in [1.4,1.6] choose houses of type z = 3 .

As the two cases we have discussed are intended to illustrate, the
"comparative statics" of this simple model clearly works just as one
would like: if production costs increase, consumers demand lower quality
houses; if the lower tail of the income distribution is sufficiently
low, one can get "squatter settlements"(consumers priced out of the
housiﬁg market); and so forth.

To illustrate how models of this sort can be used for policy
analysis, suppose that in Case 2 the government decides to subsidize the
consumption of housing of those priced out of the market through a tax
on income in excess of the mean. Let S = [.4,.8] denote the class of
consumers to be subsidized and T = [{1,1.6] the class that will be
taxed, where both § and T are subsets of T.

Define g(¥) as the subsidized housing price to a consumer with
income parameter ¥ & S. Assume that the government sets the subsidized
price such that the consumer is indifferent between consuming no house
and choosing a house of the lowest quality: i.e., V(0,y) = V(1,y) for

a consumer with income y . Using equations (2) with the definition ¥y

¥b and replacing h(l) by g(¥) , this condition implies that g(¥)
= ¥b/2 . The required subsidy is then s(¥) = B(1) - g(¥) =2 - 2.5¢

where we have used the fact that b=5 and B(1) =2 .
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The total budget Bs required for this subsidy program (in per

capita terms) is found by integrating the function s over the set S :
B_ =/ s(¥)(20) la¥ = 1/6

We assume that the housing subsidy is financed through a propor-
tional tax on income in excess of the mean. Letting 1t denote the tax

rate, a consumer with income parameter ¥ £ T will pay a tax
t(¥) = 1(¥b — b).

Total tax revenue (per capita) is then
B, = J. t(¥)(20) la¥ = 31/4
t T
Setting BS = Bt yields the equilibrium tax rate, 1t = 2/9 .

Before the subsidy program, 1/3 of the consumers were priced out of
the housing market, 1/6 bought the lowest quality houses, 1/3 the middle
quality and 1/6 the highest quality houses (see case 2 above). Assuming
that the subsidy is tied to consumption of housing, after the subsidy is
implemented all consumers with ¥ ¢ S will choose a house of quality =z

=1 . Consumers with income parameter ¥ ¢ [.8,1] are not taxed and,

since we found that 12 = 1 , they will continue to choose the lowest

quality houses.
To determine the housing choices of consumers for whom ¥ £ T it

is necessary to consider the effect of the tax. The relationship

* .
between the gross income y of a consumer and income net of the tax,

* *
y , is givenby y=y - 1(y -b) or
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* -1
y = (y-tb)(1-1) .

% * *
Defining ¥ Dby setting y = ¥ b , we obtain the post-tax transition
*
parameters ( Xj ) as functions of the corresponding pre-tax parameters

(Kj ):

* = - - -1 = - I =
Kj = (Kj 1)(1-1) (9?7j 2)/7 (j =1,2,3)

Using the values for the transition parameters Ij calculated ear-

* * *
lier, we find that Zl ¢ 74 , ¥, =1 and 13 # 1.51 . Therefore, we

2
conclude that, after the subsidy program goes into effect, half of the
consumers choose the lowest quality houses, approximately 43 per cent
choose middle quality houses and the remaining 7 per cent choose the

highest quality houses.

4. Production With a Continuum of Indivisible Commodities

As our final example we consider an economy in which the set of
characteristics is infinite. To keep the exposition relatively simple,
we will assume that this set is one-dimensional, letting K = [0,e).[4]
As in the finite case, the introduction of production greatly simplifies
matters and, therefore, we will ignore the corresponding pure exchange
model in this paper.

We adopt the same assumptions employed in the preceding sectioms.

All consumers have identical preferences described by a utility function

[{4] Although the set K = [0,») is, of course, non-compact, thereby
violating one of the requirements of Mas-Colell's pure exchange model,
the set of indivisible commodity types actually produced in the produc-
tion economies we are considering will be compact.
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taking on the value xl(a)(1+z) if a8 house with characteristics 2z ¢ K
is chosen and the value xl(a) if no house is chosen, where xl(a) is

the amount of the divisible commodity consumed.
We noted in section 1 that when K is infinite the representation
of the bundle of indivisible commodities allocated to consumer a ,

xz(a), is rather subtle. In the finite case, xz(a) is a unit vector

(e.g., (0,0,0,1,0) ), a representation that makes no sense when K is

infinite. Consequently, when K is infinite xz(a)_ is given a dif-

ferent interpretation: if the consumer chooses a house with characteris-

tics z , then we let xz(a) = 6(z) where 6(z) is the probability

measure on K that assigns mass one to the point 2z . (In the physics
literature, 6(z) is called a Dirac delta function.) We will continue

to assume that the consumer chooses at most one house, so xz(a) is

equal to one of the Dirac delta functions &(z), z & K.[5]

The easiest way to gain some understanding of this formalism is to

consider the budget constraint of a typical consumer:

Pyx,(a) + IKhxz(a) = p,e,(a) (16)

where most of this equation is interpreted just as in the earlier exam-
ples. In particular, since we will be assuming constant returns to
scale in the production of housing, consumer income equals the value of

the initial endowment of the divisible commodity, plel(a) . h is the

[S] In Mas-Colell[1975] consumers are allowed to consume more than
one unit of a indivisible commodity and more than one type of indivisi-
ble commodity, provided only that the total units consumed is bounded by
some finite integer. In the more general model, the commodity bundle of
indivisible commodities is then a finite sum of Dirac delta functions.
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hedonic price function, h: K =+ R+ » which gives the price of a house as

a function of its characteristics. The integral JKhxz(a) is then the

analogue of the scalar product used in the finite case to repgesent the
housing expenditure of consumer a.

If the consumer chooses a house with characteristics z , then, by
definition of the measure &(z) , this integral equals h(z) , the price
of a house with characteristics 2z . Thus, the budget constraint (16),

conditional on the choice of a house of type 2z , becomes:
P¥y + h(z) = Pi, (17)

a form that should look familiar to readers acquainted with the litera-
ture on urban housing markets or, more generally, "hedonic theory".[6]
Consumers are assumed to maximize the utility function described
above subject to the budget constraint (17). In the usual way, the
solution to this constrained maximum problem conditional on the choice

of 2z can be represented by the indirect utility function:

V(z,y) = (y-h(2))(1+2) (18)

where we let y denote the income of the consumer. By now the con-
struction should look very familiar!

Assuming that the hedonic function is differentiable, the optimal
choice of a type of house is found in the usual way by setting 3V/3z =

0. Differentiating (18) this first-order condition implies:

y = h(z) + (1+z) dh/dz (19)

[6] The standard reference on hedonic theory is Rosen[1974].
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To solve for the competitive equilibrium we must first specify the
initial distribution of endowments and the production technology, and
here we follow essentially the same procedure as in Section 3. Consu-
mers are endowed with the divisible commodity alone, and we again assume
a uniform distribution on the interval [(1-0)b,(1+0)b] where 0 < o <
1 , o a fixed parameter. Just as in Section 3, this implies that con-
sumer income is uniformly distributed on the interval [(1-0)b,(1+0)b]

where b =Y , the per capita income, and we are assuming Py = 1.

Houses are produced subject to constant returns to scale using the
divisible commodity as input, where the technology is described by a

function B: K - R, with B(z) representing the amount of commodity

one required to produce a house of type z . To facilitate comparison

with Section 3, we will assume that the function B takes the form:

B(z) = 1+z (20)

which agrees with the technology.of the earlier section when restricted
to the subset {1,2,3} of K.

Because production is constant returns to scale, h(z) equals the
average éost of producing a house with characteristics 2z and, since we

are assuming P, = 1 , this means that h(z) = B(z) = 1+z . Substitut-

ing this expression into the first-order condition (19) yields y = 2 +

2z or, defining y = ¥Y = ¥b as before,
z=7%/2 -1 (21)

which gives the choice of housing type 2z as a function of the

consumer's income parameter ¥.



-27-

In Section 3 we considered two cases, b =10 and b=5 . When
b = 10 , equation (21) implies that the amount of housing produced in
the competitive equilibrium is uniformly distributed on the interval
[1,7] . When b =5 , production is uniformly distributed over the
interval [0,3] . It seems clear that qualitatively the models with K
finite and K infinite are very similar. For example, as production
costs increase (i.e., as b increases), consumers shift to lower qual-
ity houses. When b =5 one-third of the consumers were priced out of
the market in the finite case, a phenomenon that is absent in the con-
tinuum case. However, if we restrict K to equal [1,3] then one-
fourth of the consumers are unable to afford houses even though a infin-
ite variety of housing types is available.

In fact the two types of model are much more closely related than
this rough comparisén seems to suggest. We can view the model with a
finite set of characteristics, say K = {1,2,3} , as an approximation to

the continuum model where K is-some infinite subset of R+ . Intui-

tively, one would expect that as more points are added to the finite set
of characteristics (provided, of course, that they are well chosen), the
approximation should improve. The demonstration that this conjecture is
true is perhaps the major contribution of the pioneering paper of Mas-
Colell[1975] that we have mentioned earlier.

The convergence of the finite to the continuum model can be illus-
trated very easily with the examples we have presented thus far. How-
ever, first we must decide how the solutions of these models are to be

compared.
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Let K denote the set of characteristics in the continuum model

and let the subset Ka of K represent a finite approximation to the

continuum of characteristics (e.g., in case 1 we have X = [1,7] and

could take Ka = {1,2.5,4,5.5,7} ). One way to describe the solution to

the continuum model is in terms of the function F: K =+ [0,1] giving
the fraction of houses produced with characteristics less than or equal

to z for each z & K. We let Fa: K + [0,1] denote the analogous
function for the finite model with set of characteristics Ka . The
reader may find it helpful to regard F and Fa as distribution func-

tions for probability measures on K . (Note, however, that if some
consumers are priced out of the housing market, then these measures will

assign mass less than one to the sets K or Ka .)

The function F for the continuum model is determined by equation
(19). Letting y = ¥(2)Y = ¥(2)b , where ¥(z) is the income parameter
of a consumer choosing a house with characteristics 2z , equation (19)

implies that

¥(z) = b l{h(z) + (1+z) dh/dz) (22).

Defining T(z) = (¥ e T: ¥ € ¥(2)} we conclude that

F(z) = I} (20)"1ay = 6(3(2)) (23)

(z)

where G is the distribution function for the income parameter ¥.

To determine the corresponding function F, for the finite
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approximation to the continuum, it is necessary to recast our earlier
derivation of the transition parameters in somewhat more general terms.

Suppose that z and =z + ez are adjacent points in Ka where tz > 0.

To find the transition parameter separating the consumers who choose

houses with characteristics 2z from those who choose z + ez we set
V(z,y) = V(z+tz,y) (23)

just as in Sections 1 and 3. Using equations (2) this implies

y = h(z+sz) + (1+z)[h(z+sz)-h(z)]/sz
or, letting y = Ka(z)b s

¥, (2) = b'l{h(z+sz) + (1+z) [h(z+e ) -h(2)] /e )} (24)

The reader should verify that for Ez = 1, equation (24) reduces to

equation (3b) when =z 1 and to equation (3c) when =z = 2.

Defining

Ta(z) {¥eTl: ¥ < Ia(z)}

we have for 2z ¢ Ka that
- s P
Fa(z) = Ira(z)(Zo) d¥ = G(Ka(z)) (25)

and we extend this function to the domain K by letting
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Fa(z) = max {Fa(c): <z ,7¢ Ka}

for all z ¢ K .

Suppose now that z &€ K is a point of continuity[7] of the func-
tion G and suppose as well that =z s:Ka . Imagine now that we improve
our approximation by adding points to Ka in such a way that (i) the
gaps between adjacent points of Ka converge to zero (i.e., €, + 0 for
all =z ¢ Ka ) and (ii) every point in K is the limit of a sequence of
points in K_ (i.e., "in the limit" K, is dense in K ). Letting
£, * 0 in equation (24) and comparing the result to equation (22), we

find that Ua(z) * ¥(z) and, therefore, Fa(z) » F(z) . Thus, the

solution to the finite model approaches that of the continuum model for

each =z ¢ Kdﬂ K that is a point of continuity of G (and hence, by

equation (23), a point of continuity of F ). If 2z £ K is such a

point of continuity but z £ Ka s, then by considering a sequence {zi}
in Ka which converges to 2z we conclude that Fa(z) + F(z) for all

points of continuity 2z of F.

In concrete terms we could construct the approximation Ka by
choosing equally spaced points of K . The function Fa will be a step
function that jumps at each =z ¢ Ka and, as the spacing goes to zero,

’ Fa converges to F at each point of continuity of F . 1Imn our

[7] In our example, where income is uniformly distributed, all
points of K are points of continuity for G . However, in more general
versions of the model this caveat is important.
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examples, where ¥ is is uniformly distributed, every point of K will
be a point of continuity and so we get convergence everywhere.
As an illustration, for case 2 where K = [1,7] suppose that we

choose Ka to divide K into M intervals of length 6/M . Equation

(24) then implies that

¥ (1 + 6o/M) = 10714 + 12m/M + 6/M) (26)

*
for m=20,...,M . Fixing the ratio m/M =n and letting M * « we

find that in the limit equation (26) becomes
* *
Xa(l +6m)=.4+1.2m 27)

Recall that in case 2 with the continuum model, the production of hous-
ing was uniformly distributed on the interval {1,7] . Since the income
parameter ¥ is also uniformly distributed on the interval [.4,1.6] ,
we see immediately from equation (27) that the "distribution function"

Fa for the finite model will approach the uniform distribution of the

continuum model at all of the rationals in K . Since the rationals are
dense in K and the limit distribution is continuous, we conclude that
the convergence occurs everywhere in the interval ([1,7]

Recalling our suggestion that F and Fa can be regarded as dis-

tribution functions for probability measures on K , what we have demon-

strated is that the solution of the finite approximation model converges

* to the solution for the continuum model in precisely the sense that the
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distribution function for the binomial approaches that of a normal dis-
tribution. This is an illustration of the "weak star" convergence
alluded to in the introduction. In fairness to Mas-Colell, we should
remark that our demonstration, relying as it does on the many>special
features of our examples, does not begin to do justice to the power and
generality of hi§ result, just as the central limit theorem is a much
more powerful statement than showing that the binomial distribution con-

verges to the normal.

5. Retrospect and Prospect

The theory of housing markets proposed in this paper, based on a
model of competitive equilibrium with indivisible commodities and a
non-atomic measure space of consumers, represents a radical break with
tradition. If such a departure from current practice is to have any
chance of widespread acceptance, it should satisfy at least two cri-
teria: (1) the models which emerge from the analysis should be easy to
construct and to comprehend and (2) they should offer new insights into
the operation of housing markets and cover a wider range of phenomena
than the standard theory.

The examples we have discussed were selected with the first of
these criteria in mind. The concept of a competitive equilibrium with
indivisible commodities and the notion of a continuum of economic agents
are alien to most economists. Both ideas have been developed in a
highly technical and abstract setting and neither has seen much practi-
cal application. The intent of our examples is to show that, when

translated into a less abstract setting, these theoretical constructs
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are easy to work with and lead to results that have a ready economic
interpretation. (For another demonstration along these lines, see
Scotchmer[1981].)‘

In striving for simplicity of presentation, however, we have had to
pay a price. The models considered in this paper are too simple to do
justice to the complexity of housing markets. The second criterion for
acceptance of this type of analysis is, therefore, still at issue. In
this concluding section I will attempt to address this question by plac-
ing the foregoing discussion in more general perspective and offering
some hints regarding what is to come.

I will consider in turn three topics that are widely regarded as
important in the analysis of housing markets: (a) the role of existing
stock in the production of housing; (b) the development of the hedonic
approach to housing markets; and (c) the incorporation of local public

goods and neighborhood effects into housing market models.

a. Production from the Existing Stock of Housing

The crucial ingredient that gives the theoretical approach I am
advocating its power is the definition of the housing commodity: the
commodities are housing units and not some amorphous notion of housing
services. The way in which this theory handles production from existing
stock provides a nice illustration of the advantages of this definition.

Consider the model with three types of houses treated in Section 3. Let
n = (ny,n,,05,0,)

denote a typical production vector where the first three components of
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the vector represent outputs or inputs of houses of types 1, 2 or 3
respectively and n, is the input of the divisible commodity.

For example, if the conversion of one house of type 2 to one house

of type 3 requires Ko units of the divisible commodity, then the
corresponding production vector is (0,-1,1,-Kc) . Assuming that this

production process exhibits constant returns to scale, we conclude

immediately that if such production takes place then in equilibrium

-h(2) + h(3) - p;x_=0

and, therefore,

h(3) = h(2) + p,k_

We obtain precisely the relationship we should have expected: the price
of a house of type 3 equals the opportunity cost of the house of type 2
from which it is converted plus the cost of conversion.

Similarly, if a house of type 3 is produced through the demolition

of a house of type 2 using R4 units of the divisible commodity, then
the production vector takes the form (0,-1,1,-Kd) and, again assuming

constant returns to scale, we conclude that in equilibrium

h(3) = h(2) + p,K,

if this production process takes place. In this instance the price of a
house of type 3 equals the opportunity cost of the type 2 house that is

demolished plus the cost of construction. (the that P14 also
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includes the cost of demolition so that, contrary to what might be sup-
posed, demolition costs cause no problem for the functioning of the com-
petitive process.)

Working out the implications of such a model requires much more
elaboration, but enough has been said to establish our point: once
housing commodities have been properly defined, the introduction of pro-

duction from existing stock becomes both easy and natural.

b. The Hedonic Theory of Housing Markets

Providing a rigorous foundation for hedonic theory is perhaps the
most important application of the model proposed by Mas-Colell, and in
the preceding sections I have used h to denote the equilibrium price
function in order to emphasize this relationship. However, the examples
we have considered ;epresent only a very specialized version of what is
usually considered to be hedonic theory. The main advantage of the
hedonic approach to housing markets is its ability to describe a house
in terms of a large bundle of characteristics. But in all of our exam-
ples, the set of characteristics K is assumed to be a subset of the
real line and, because all consumers agree that a higher level of the
characteristic z is better, the various types of houses are linearly
ordered.

It is important to emphasize, therefore, that the theory developed
by Mas-Colell only requires that K be a compact metric space and, as a

result, much more complex interrelationships among housing types can be

accommodated. For example, we could take K to be a subset of R"

where the components of z &€ K represent various attributes of a house:
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e.g., accessibility to employment, lot size, square feet of floor space,
number of bathrooms, neighborhood quality and the like. (For an empiri-
cal test of a model of this type, see Ellickson[1981].)

The basic question we want to address is whether there is any rea-
son to develop the hedonic theory of housing markets within the frame-
work provided by Mas-Colell instead of relying on the much less formid-
able version presented by Rosen[1974]. One justification for turning to
Mas-Colell is that he provides a proof of existence of equilibrium as
well as demonstrating core equivalence and Pareto optimality of the
resulting competitive allocation. In view of the technical complexity
of his theory, this justification alone probably does not warrant the
effort needed to learn the required techniques.

There is, however, another reason for preferring the theoretical
approach of Mas-Colell that should be much more relevant to the practi-
cal theorist: it is much more powerful from the computational point of
view. In practice, Rosen's version of hedonic theory has been quite
useful in modeling demand behavior, less successful in treating the sup-
ply side and largely a failure in analyzing the interaction between
demand and supply. The problem is that the analytical dévices employed
by Rosen, while quite useful in illuminating the qualitative features of
an equilibrium, provide very little information concerning market clear-
ance. Bid price functions for consumers and offer functions for firms,
defined over the set K of housing characteristics, serve as the basic
ingredients for Rosen's diagrammatic exposition of the determination of
hedonic prices. But demand and supply clear in terms of housing units,

not characteristics, and the number of housing units of each type is
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suppressed in the Rosen diagram.

These critical remarks regarding Rosen's model are intended to be
pointed, but they are not supposed to be harsh. Rosen and Mas- Colell
present different aspects of the same theory, and my point is simply
that both approaches are crucial to the development of that theory.
Rosen's diagram provides a splendid picture of what is going on in a
market for indivisible, differentiated commodities. Mas-Colell's theory
tells you how to model the equilibrium. At a few crucial junctures,
Rosen notes that an application of "functional analysis" is needed to
complete his theory. Mas-Colell provides that functional analysis.

What then are the computational advantages of Mas-Colell's theory?
Providing a concrete answer to that question was the primary motivation
for writing this paper. The examples we have constrpcted are, of
course, far too spe;ialized to represent what is normally meant by
hedonic theory, and I do not claim that the extension to more complex
models will be devoid of any complication. For example, of the three
models that we considered, the pure exchange model of Section 1 was com-
putationally the most complex. I avoided presenting the parallel pure
exchange model for a continuum of characteristics because the solution
is even more complicated. As in the model with production treated in
Section 4, the solution of the corresponding pure exchange model is
determined by equation (22) but, in the absence of production, we can no
longer solve this equation simply by substituting the production coeffi-
cient B(z) for the hedonic price h(z). Instead equation (22) gives
us a differential equation in dh/dz , the solution of which depends on

the distribution of endowments.
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It is not hard to specify endowment distributions that lead to a
differential equation that I know how to solve, but it is even easier to
end up with differential equations that are analytically intractable.
This situation is strongly reminiscent of the difficulties faced by the
"new urban economics', a movement that floundered on similar shoals.

It is clear that the difficulties arise because, in the case of a
continuum of characteristics, one is dealing with an infinite dimen-
sional commodity space. Without heroic restrictions on the distribution
of preferences and endowments, tractable analytical solutions will be
the exception and not the rule. The introduction of production can sim-
plify matters greatly when, as in Section 4, it imposes a structure on
the relative prices of the continuum of housing types. However, if we
add another characteristic such as accessibility to employment the com-
plexity returns (es;entially because land at various locations, a&s an
input into the production of houses, is not itself produced).

The experience we have gained from our earlier examples suggests a
way out of this apparent impasse. In Section 4 we saw that, in a sense
that Mas-Colell has made rigorous, a continuum of characteristics can be
approximated by a finite set of characteristics. Since it is accessi-
bility that is causing the problem, the natural approach is to divide
the total land area into a finite number of "zones", treating all land
within a particular zone as equivalent so far as distance to employment
is concerned. Similar suggestions have been made before as & way around
the corresponding difficulties faced by the new urban economics (see

Mills and MacKinnon{1973]), but implementation of such suggestions was

stymied both by the absence of a logical connection from the finite to
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the continuous models and by the awkward computational aspects of the
finite approach. In the theoretical framework we have been considering,
the weak star convergence result of Mas-Colell resolves the first prob-
lem (as illustrated in Section 4) and the continuum of agents setting

resolves the second (as shown in the example of Section 1).

c. Neighborhoods and Local Public Goods

Finally we come to the aspect of the theory that was the primary
motivation for my interest in indivisible commodities in the first
place, the modeling of the market for local public goods and its
interaction with the housing market. The reader will undoubtedly have
noticed that, although we have discussed our examples in terms of
houses, that interpretation is quite incidental. The indivisible commo-
dities could just as well have been automobiles, washing machines or
microcomputers. And, more to the point, they could be local public
goods.

I have argued elsewhere (Ellickson[1979a]) that the notion of a
local public good is a redundant concept in economics. Local public
goods can be regarded as indivisible private goods whose production
exhibits increasing returns over some initial range. When looked at in
this way local public goods theory, a rather confusing body of ideas
from the standard point of view, reduces to something which is easy to
understand. For example, the issue of existence of a competitive
equilibrium for local public goods is then identical to the question of
existence of a competitive equilibrium for indivisible private goods.

If scale economies are small relative to the extent of the market, then
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a competitive equilibrium (also known as a "Tiebout equilibrium") will
exist, at least in an approximate sense. When equilibrium fails to
exist, the cause is no longer a mystery: it is simply a matter of
increasing returns to scale. An application of these ideas to neighbor-
hood attributes, which can be regarded as a type of local public good,
is given in Ellickson [1979Db].

Two limitations of this new approach to the theory of local public
goods which restrict its range of application are that: (i) the com-
petitive equilibrium concept involves an approximate, rather than an
exact, equilibrium and (ii) the number of public good types is assumed
to be finite. But the theory presented in Ellickson[1979a] is based on
an economy with a finite number of consumers. With a non-atomic measure
space of consumers, we obtain an exact equilibrium of the form illus-
trated by the example of Section 3. And the extension to a continuum of
public good types (where the continuous characteristic =z is then
interpreted as the "quantity" of the public good) leads to a model of
the kind exhibited in Section 4. Because the market for houses and the
market for public goods are thereby put on a comparable footing, tied
together in a single choice process by the indivisibility of the consu-
mer, the way is paved for the study of the interaction of the two types
of markets.

To summarize, I have argued that the key to the development of a
coherent and powerful theory of housing markets and local public goods
is the concept of a competitive equilibrium for indivisible commodities.
Through a series of examples I have tried to show that such an approach

is computationally feasible and relatively easy to comprehend. In this
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concluding section I have suggested what the approach has to offer.

Most economists view indivisibility as something which undermines
economic theory. If my view is accepted, it should instead be regarded
as a prime illustration of the power of the competitive concept and as a
vehicle for extending the scope of economic analysis to a vast new

domain.
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