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Abstract: Ex-post implementation is a notion that addresses “Wilson’s
critique” of non-robust mechanisms, and it has found numerous applications
to collective decision making. We show that only trivial choice functions
are ex-post implementable in generic mechanism design settings with multi-
dimensional signals and interdependent valuations. In other words, ex-post
implementation implies that the same alternative must be chosen irrespective
of agents’ signals. Hence, ex-post implementation is often too strong for
practical use. The proof is based on the observation that implementation
of non-trivial choice functions is only possible if some rates of information
substitution (that depend on the agents’ valuations) coincide for all agents.
This condition amounts to a system of equations that has no solution for
generic valuation functions.
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1 Introduction

The theory of mechanism design is the most powerful theoretical tool for the
study of collective decision making by privately informed, strategic agents.
Following Harsanyi, interactions with incomplete information have been mostly
modelled in a Bayesian framework. That is, agents’ choices are required to
be optimal at the interim stage where agents know their own signals but only
have beliefs about the distributions of others’ signals. Based on her own be-
liefs about the distributions of signals (and possibly on beliefs and higher
order beliefs of agents), the designer chooses a mechanism that optimizes her
criterion, assuming that agents will subsequently play a Bayes-Nash equilib-
rium.

Wilson (1987) has forcefully pointed out that the success of many of the
implementation schemes used in the above mentioned literature sensitively
depends on the beliefs of the agents or of the mechanism designer: if the
agents or the mechanism designer are mistaken in their beliefs, the actual
outcome of a supposedly optimal mechanism may be very far from the in-
tended one.

Wilson’s concern suggests the use of stronger notions of implementation.
A concept that has recently received a good deal of attention is ex-post im-
plementation, which requires the decision of each agent to be optimal against
the strategies of other agents, independently of the realized characteristics of
other agents.

Ex-post implementation is an appealing notion since a social choice func-
tion that can be ex-post implemented does not require (from agents or de-
signer) any knowledge about the distributions of types. Our main result
raises serious doubts about the practical relevance of this concept by show-
ing that in environments where signals are multi-dimensional and the (quasi-
linear) valuations are interdependent and generic, only constant choice func-
tions are ex-post implementable.

In a class of environments that includes the one we use here, Bergemann
and Morris (2004) provided a strong formal argument in favor of ex-post
implementation as a notion of robust implementation that addresses Wilson’s
critique: working with universal type spaces à la Harsanyi-Mertens-Zamir,
they showed that a social choice function is ex-post implementable for some
given, payoff-relevant types if and only it is Bayes-Nash implementable for
every system of beliefs and higher order beliefs that can be associated with
those payoff-types.
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Ledyard (1978) and Dasgupta et. al (1979) offered early, related argu-
ments in favor of dominant strategy implementation, which is equivalent to
ex-post implementation in frameworks with private values. More recently,
Chung and Ely (2004) offer a different rationale for dominant strategy mech-
anisms in private values frameworks: they argue that the designer’s belief
about the agents’ beliefs is unlikely to be reliable, whereas her belief about
the payoff-relevant part of the agents’ signals is usually more reliable (as it
can be assessed from past experiences).2 In their framework, the worst-case
scenario of any Bayes-Nash incentive compatible mechanism performs worse
than the expected outcome of the dominant strategy mechanism (that is
independent of agents’ beliefs). Accordingly, a ”maxmin” designer should
choose a dominant strategy mechanism.

The interest and attractiveness of dominant strategy implementation has
been dampened by the classical impossibility result (for private values envi-
ronments) due to Gibbard (1973) and Satterthwaite (1975). However, their
result requires ”rich enough” type spaces, and positive results are possi-
ble for restricted but still interesting classes of preferences. For settings in
which preferences are not necessarily single-peaked, the most celebrated re-
sult is the Vickrey-Clarke-Groves construction for private value settings with
quasi-linear utility: by assigning to each agent a transfer equal to the sum
of others’ valuations in the chosen social alternative, all individual payoff
maximization problems become identical to the maximization of social sur-
plus, yielding the dominant strategy implementation of the efficient choice
function. In particular, the efficient social choice function can be ex-post
implemented irrespectively of the dimension of the private information held
by the agents in the private value setting.

The assumption of private values is very restrictive, however, and recent
research has focused on models with interdependent values (while still retain-
ing the assumption of quasi-linearity), i.e. on models where agents’ payoffs
depend on the entire profile of private signals, and not only on their own
information.3 Many practical choice problems fit well in such a setup. For
the sake of illustration, consider two examples: 1) A committee has to decide
whether to hire candidate A or candidate B (think about the hiring decisions
in your own department). The committee’s members have private informa-
tion on some aspects of the quality of the two candidates. Since there are two
candidates, and since there are often several dimensions of quality (research,

2Note that choosing among ex-post implementable social choice functions does require
some knowledge about the distribution of the payoff-relevant part of agents’ types.

3Quasi-linearity is usually regarded as a legitimate assumption when the financial stakes
are moderate.
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teaching ability, etc.) the private information is typically multi-dimensional.
Clearly, all members care about the information held by all agents, and, usu-
ally there are many different and potentially conflicting views about how to
aggregate the various dimensions of quality. Thus, it is implausible to impose
a-priori assumptions of specific functional relations between the preferences of
the committee members. 2) International negotiations about environmental
standards also involve interdependent values with multidimensional signals
because each country usually has some private information, based on data
from its national firms on the (partly common) cost associated with comply-
ing with the various standards, and data from its citizen about their attitudes
toward pollution. Cross-subsidies between countries make the assumption of
transferable utilities plausible in this application.

A substantial amount of research has been devoted to extending the
Clarke-Groves-Vickrey approach to frameworks with interdependent valua-
tions.4 However, Jehiel and Moldovanu (2001) have shown that, if at least one
agent holds a multi-dimensional signal (and distributions of signals are inde-
pendent across agents), the efficient social choice function cannot generically
be Bayes-Nash implemented. Thus, a fortiori, the efficient social choice func-
tion cannot be ex-post implemented. But, that result does not rule out the
possibility that social choice functions other than the efficient one can be ex-
post implemented, and it naturally raises the question about ”second-best”
or constrained-efficient social choice functions. By ruling out the generic im-
plementation of all non-trivial choice functions, the present paper casts a
much more serious doubt on the usefulness of ex-post implementation. We
want to stress that our result does not say merely: “For any given social
choice function, the set of valuation functions that are compatible with the
ex-post implementation of that social choice function is non-generic.” This
would be an easy extension of the Jehiel—Moldovanu impossibility result.
In contrast, we assert the much stronger statement: “For generic valuation
functions, only trivial social choice functions are ex-post implementable.”

The first step in our analysis derives a geometric condition on valuation
functions that must be satisfied for a non-trivial choice function to be imple-
mentable. The second step shows that this condition cannot be generically

4Cremer and McLean (1985), Ausubel (1997), Dasgupta and Maskin (2000), Jehiel and
Moldovanu (2001), Bergemann and Välimäki (2002) and Perry and Reny (2002) construct
efficient, ex-post incentive compatible mechanisms for various settings with interdependent
values. These results assume that agents’ signals are one-dimensional, and that valuations
satisfy a Single Crossing Property (SCP). Maskin (2003) offers an excellent survey of
the literature. Jehiel et al. (2004) study the alignment of agents’ interests by means of
potential functions.
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satisfied, where the notion of genericity is either topological or measure-
theoretic.

The geometric condition connects the agents’ rates of information sub-
stitution: these measure how marginal variations in the several dimensions
of one agent’s signal affect the agents’ payoffs. It is derived from a taxation
principle which states that, in an ex-post incentive compatible mechanism,
agents must agree on a favorite alternative in every state of the world. By
this principle, the set of indifference states - where an agent is indifferent
between two given alternatives - must be the same for all agents. On this
common set, marginal variations in agent i’s signal must affect all agents’
payoffs in the same way. But, with multidimensional signals and generic val-
uations it is impossible to construct transfers that equate the resulting rates
of information substitution.

The condition for efficient ex-post implementation obtained in Jehiel and
Moldovanu (2001) is stronger than the present condition for non-trivial imple-
mentation, yet structurally similar. Agent i’s preferences must, in a sense, be
aligned with social preferences in order to ensure efficient implementation. In
contrast, we need here alignment between the preferences of any two agents
i and j. But, whereas the social preferences are exogenously fixed by the
valuation functions, agent j’s preferences can be altered via an endogenous
transfer. Therefore, proving the impossibility of non-trivial ex-post imple-
mentation is considerably harder than the impossibility of efficient ex-post
implementation. To illustrate a notable difference: while our present im-
possibility result requires the presence of at least two agents having at least
two-dimensional signals, the Jehiel—Moldovanu impossibility result requires
only that at least one agent has a multidimensional signal (other agents need
not even have private information).

The rest of the paper is organized as follows: In Section 2 we describe the
mechanism design problem, we define the ex-post equilibrium concept, and
we derive a helpful ”taxation principle.” In Section 3 we state the generic
impossibility result about implementation in ex-post equilibrium, and we il-
lustrate how the main geometric applies to a specific example. This section
concludes with two remarks on dictatorial and efficient choice functions, re-
spectively. In Section 4 we discuss the main assumptions that underlie our
result. In particular, we show that non-trivial implementation is possible
in settings where either only one agent has a multi-dimensional signal. We
also mention several interesting, but non-generic settings where non-trivial
implementation is possible even if several agents have multi-dimensional sig-
nals. In Section 5 we gather several concluding remarks. In particular, we
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discuss some links to weaker implementation concepts such as Bayes-Nash
and posterior implementation. Most proofs are collected in an Appendix.

2 The Model

Consider a setting with N ∈ N agents i, j ∈ N , who will be affected by a
decision between K ∈ N alternatives k ∈ K. Agent i’s utility ui = vik − ti is
determined by a quasi-linear utility function, taking into account the chosen
alternative k and a monetary payment ti ∈ R. Her valuation vik = vik (s) for
alternative k depends on the state of the world s ∈ S.
Each agent holds private information si ∈ Si on the state of the world

s ∈ S. The signal si results from an exogenous draw. There is no loss of
generality in assuming that the agents’ joint information (si)i∈N completely
determines the state of the world s. We thus identify states of the world with
signal combinations: S =

Q
j∈NSj. As usual, the information of every agent

but i is denoted by s−i ∈ S−i. We adopt the usual notation s−i = (sj)j∈N ,j 6=i
and s = (si, s−i), when we focus on agent i. We assume Si = [0, 1]d

i

, and
assume v to be a smooth function on S.5 We denote by∇si the di-dimensional
vector of derivatives with respect to si, and by ∂ρ the directional derivative

in direction ρ ∈ Rdi . Two vectors x, y ∈ Rd are co-directional if x = λy for
λ ≥ 0.
We are interested in choice functions ψ : S → K, with the property that

there are transfers functions ti : S → R, such that truth-telling is an ex-
post equilibrium in the incomplete information game that is induced by
the direct revelation mechanism

¡
ψ, (ti)i∈N

¢
, i.e.

viψ(s) (s)− ti (s) ≥ viψ(esi,s−i) (s)− ti ¡esi, s−i¢ (1)

for all si, esi ∈ Si and s−i ∈ S−i, where s := (si, s−i). We shall call such ψ
implementable. We call a choice function ψ trivial, if it is constant on the
interior intS of the type space.6

By requiring optimality of i’s truth-telling for every realization of other
agents information s−i, equation (1) treats s−i as if it was known to agent i.

5Assuming Si to be the closure of any open connected subset of Rdi would suffice as
well.

6Restricting attention to the interior of the type space is justified since the interior
has full measure. This assumption is necessary since the main geometric argument in the
proof fails on the boundary of the type space. Alternatively, we could have assumed open
type spaces to start with.
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Her incentive constraint is thus equivalent to a monopolistic screening prob-
lem for every s−i. Thus, the central authority can post personalized prices
tik (s

−i) for the various alternatives, and let the individuals choose among
them. In equilibrium all agents must agree on a most favorable alternative:

Lemma 2.1 (Ex-Post Taxation Principle) A choice function ψ is im-
plementable, if and only if for all i ∈ N , k ∈ K and s−i ∈ S−i, there are
transfers (tik (s

−i))k ∈ (R ∪ {∞})N such that:

ψ (s) ∈ argmax
k∈K

©
vik (s)− tik

¡
s−i
¢ª
. (2)

Proof . See Appendix or Chung and Ely (2003).

3 The Impossibility Theorem

In this section we present our generic impossibility result, Theorem 3.2. For
ease of exposition, we assume there are only two agents i, j ∈ {1, 2} and
two possible alternatives {k, l}. Because this “2 by 2” model is naturally
embedded in every model with more agents and alternatives, the impossibility
result for this special setting immediately generalizes to the general setting.

Because agents’ incentives are only responsive to differences in payoffs, it
is convenient to focus on relative valuations µi and relative transfers τ i :

µi (s) = vik (s)− vil (s) ; τ i
¡
s−i
¢
= tik

¡
s−i
¢− til ¡s−i¢

For technical simplicity, we assume that relative valuations satisfy the mild
requirement ∇siµi (s) 6= 0 for all s ∈ S.7
We use two notions of genericity. The first is topological. If E is a

complete metric space, recall that every open subset U ⊂ E also admits
a complete metric. A subset A ⊂ U is residual in U if A contains the
countable intersection

T
ν∈NAν of open and dense sets Aν ⊂ U . Residual

sets are generally viewed as (topologically) large, and their complements as
small. In particular, the Baire Category Theorem guarantees that residual
sets are dense.

7That is, agent i’s relative valuation is everywhere responsive to i’s own signal. Theorem
3.2 can be adapted to allow for relative valuations that are not everywhere responsive
to own signals – and in particular to allow for interior maxima – but the additional
complication makes the argument less transparent without adding any useful insights.
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The second notion of genericity is measure-theoretic. Let E be a complete
metric topological vector space, U an open subset of E and A a Borel subset
of U. We say that A is finitely shy in U if there is a finite dimensional
subspace F ⊂ E such that A meets every translate of F in a set of Lebesgue
measure 0 (equivalently, if every translate of A meets F in a set of Lebesgue
measure 0).8. A Borel set A ⊂ U is finitely prevalent in U if the relative
complement U \ A is finitely shy in U . Hunt et. al. (1992) and Anderson
and Zame (2001) have argued that finite prevalence, and prevalence, which is
a generalization, provide a sensible measure-theoretic notion of “largeness”
for infinite-dimensional spaces of parameters. In particular, if E = Rn then
B = U \ A is finitely prevalent in U if and only if the Lebesgue measure of
A is 0.

In general, these two notions of genericity are different – even in finite
dimensional spaces. However, aside from a technical issue of the degree of
differentiability required of the relative valuation function under considera-
tion, we show that ex-post implementation is generically impossible in both
the topological and measure-theoretic senses.

Definition 3.1 For each m ≥ 1, Let Cm(S,R2) be the (Banach) space of
maps S → R2 that admit an m-times continuously differentiable extension
to an open neighborhood of S, equipped with the topology of uniform conver-
gence of maps and m derivatives. Let Hm ⊂ Cm(S,R2) be the open subset
consisting of those pairs of relative valuation functions (µ1, µ2) ∈ Cm(S,R2)
for which the partial gradients ∇siµi do not vanish anywhere on S.

Theorem 3.2 Assume that the individual signal spaces have dimensions
d1 ≥ 2 and d2 ≥ 2, respectively. Fix an integer r > 2d1+1

d1−1 and set k =
dr + 2d1 + 1− 2d1r ,where d = d1 + d2.

1. There is a residual subset G1 ⊂ H1 such that for every (µ1, µ2) ∈ G1,
only trivial social choice functions are ex-post implementable.

2. There is a residual and finitely prevalent subset Gk+1 ⊂ Hk+1 such
that for every (µ1, µ2) ∈ Gk+1, only trivial choice functions are ex-post
implementable.

8If F has dimension n, say, any linear isomorphism between F and Rn induces a
measure on F . All such measures are mutually absolutely continuous, and have the same
null sets. Hence, it is consistent to abuse terminology by saying that a subset of F – or
any translate of F – has Lebesgue measure 0 if it has measure 0 for one – hence all –
of these induced measures
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The proof of the Theorem consist of two major steps. Proposition 3.5
shows that the existence of a non-trivial ex-post implementable choice func-
tion implies a geometric condition on the gradients of the relative valuation
functions; Proposition 3.6 shows that this geometric condition cannot be
satisfied generically.

The proof of Proposition 3.5 relies on a geometric argument on the bound-
ary that separates the areas (in the signal space S) where alternatives k and
l, respectively, are chosen.

Definition 3.3 The indifference set I of a choice function ψ, is defined by:

I := ψ−1 {k} ∩ ψ−1 {l} ∩ intS. For an indifference signal bs ∈ I, we define
the indifference set with fixed bsi to be I i (bs) := {s ∈ I : si = bsi}.
For the sake of illustration, if the choice function ψ maximizes the social

surplus (so that ψ (s) ∈ argmaxk,l {
P

i v
i
k (s) ,

P
i v
i
l (s)}) then the social sur-

plus is the same at both alternatives k and l whenever the state of the world
s lies in the indifference set I.

The taxation principle states that, in an incentive compatible mechanism,
all agents agree that the chosen alternative is the most favorable one. Assum-
ing, for now, that relative transfers τ are continuous, this implies that the
indifference set of the choice function and the indifference sets of all agents
must coincide. The following lemma formalizes this assertion. (The proof of
this lemma and all other proofs are relegated to the Appendix.)

Lemma 3.4 Let (ψ, t) be a non-trivial ex-post incentive compatible mecha-
nism with continuous relative transfers τ i.

1. For every bs ∈ intS and i ∈ {1, 2}, we have
µi (bs)− τ i

¡bs−i¢ = 0 ⇔ bs ∈ I (3)

2. For all bs ∈ I, I i (bs) = {s ∈ intS : si = bsi, µ−i(s) = µ−i(bs)} is a
(d−i − 1)-dimensional sub-manifold of intS.

If relative transfers are differentiable, the gradient of an agent’s payoff
function is perpendicular to her indifference set. Thus, the coincidence of
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the agents’ indifference sets as expressed in (3) implies that the gradients of
agents’ payoff functions must be co-directional on the indifference set:µ ∇siµi (s)

∇s−iµi (s)−∇s−iτ i (s−i)
¶
and

µ ∇siµ−i (s)−∇siτ−i (si)
∇s−iµ−i (s)

¶
are co-directional on I (4)

Equation (4) says that the payoff functions of agent i and −i have the
same rate of information substitution: the relative effect on payoffs of chang-
ing any two dimensions of the signal must coincide for all agents.

Proposition 3.5 Let (ψ, t) be a non-trivial ex-post incentive compatible mech-
anism.

1. If the relative transfers τ i are continuous on intS−i for all i ∈ {1, 2}
then, there are an indifference signal bs ∈ I, and a vector y ∈ Rdi such
that

∇siµi (s) and (∇siµ−i (s)− y)

are co-directional for every s ∈ I i (bs) (5)

2. If relative transfers τ−i are discontinuous at bsi ∈ intSi for some i ∈
{1, 2} then, locally, agent i’s incentives do not depend on s−i. That is,
there is a vector y ∈ Rdi and a non-empty open set Q ⊂ S−i such that

∇siµi(bsi, q) and y
are co-directional for every q ∈ Q (6)

For differentiable relative transfer functions, a proof for Proposition 3.5 is
simple: Take any s = (bsi, s−i) ∈ I i(bs). By considering a slight perturbation siε
in a neighborhood of bsi such that sε = (siε, s−i) ∈ I, equation (4) implies that
∇siµi (s) and ∇siµ−i (s)−∇siτ−i (bsi) must be co-directional at s = (bsi, s−i).
Letting y = ∇siτ−i (bsi) yields equation (5). The full proof (see Appendix) is
slightly more complicated in large part because the relative transfer functions
are not known to be differentiable, or even continuous.
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The second half of the proof of the Impossibility Theorem is that the
geometric conditions (5), (6) cannot be generically satisfied. To show this,
fix valuation functions µ1, µ2; for each bs ∈ intS define

Ĩ i(bs) = {s ∈ intS : si = bsi, µ−i(s) = µ−i(bs)}
As in Lemma 3.4, this is a manifold of dimension d−i−1. Moreover, for each
mechanism and each bs ∈ I, Lemma 3.4 guarantees that Ĩ i(bs) = I i(bs). Hence
the following Proposition is enough to complete the proof of the Impossibility
Theorem.

Proposition 3.6 There is a residual set G1 ⊂ H1 and a residual and finitely
prevalent subset Gk+1 ⊂ Hk+1 such that if (µ1, µ2) ∈ G1 or (µ1, µ2) ∈ Gk+1
then

(1) there do not exist bs ∈ intS and y ∈ Rd1 such that ∇s1µ2(s) − y and
∇s1µ1(s) are co-directional for every s ∈ Ĩ1(bs)

(2) there do not exist bs ∈ intS and y ∈ Rd2 such that ∇s2µ1(s) − y and
∇s2µ2(s) are co-directional for every s ∈ Ĩ2(bs)

(3) there do not exist bs ∈ intS, y ∈ Rd1, and a non-empty open set Q ⊂ S2
such that y and ∇s1µ1(bs1, q) are co-directional for every q ∈ Q

(4) there do not exist bs ∈ intS, y ∈ Rd2, and a non-empty open set Q ⊂ S1
such that y and ∇s2µ2(bs2, q) are co-directional for every q ∈ Q

Fix an indifference signal bs ∈ I and a vector y ∈ Rdi . If ∇siµi(s)
and ∇siµ−i(s) − y are co-directional for every s ∈ I i(bs) = {s ∈ S : si =bsi, µ−i(s) = µ−i(bs)} , then the valuation functions µ1, µ2 satisfy a certain set
of first-order differential equations. It is not hard to see that generic valu-
ations functions do not satisfy these equations. But the actual argument is
substantially more complicated since the assertion of Proposition 3.6 is that
generic valuation functions do not satisfy these equations for any bs and any
y. Intuitively, varying bs and y only do not offer enough degree of freedom to
guarantee that ∇siµi(s) and ∇siµ−i(s)− y are co-directional all over I i(bs).
By way of illustration, we apply now Proposition 3.5 to a setting with

bi-linear valuations and 2-dimensional signals si = (sik, s
i
l) ∈ [0, 1]2. In this

case, non-trivial implementation implies a simple algebraic condition (that
cannot be satisfied generically) on the coefficients of the valuation functions
(See Proposition 6.3 of the Appendix for a generalization to the class of all
polynomials of degrees less than a sufficiently large K.)
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Example 3.7 Define valuations v by:

vik (s) = aiks
i
k + b

i
ks
i
ks
−i
k = sik

¡
aik + b

i
ks
−i
k

¢
vil (s) = ails

i
l + b

i
ls
i
ls
−i
l = sil

¡
ail + b

i
ls
−i
l

¢
where aik, b

i
k, a

i
l, b

i
l 6= 0. Thus,

µi(s) = aiks
i
k − ailsil + biksiks−ik − bilsils−il .

For a vector y =

µ
yk
yl

¶
, we have

∇siµi (s) =

µ
aik + b

i
ks
−i
k

−ail − bils−il

¶
(∇siµ−i (s)− y) =

µ
b−ik s

−i
k − yk

−b−il s−il − yl
¶

It is readily verified that b1l b
2
k−b1kb2l = 0 is necessary for such vectors to remain

co-directional when we vary s−ik and s−il (see Appendix for details). It follows
from Proposition 3.5 that a non-trivial choice function ψ is implementable
only if

b1l b
2
k − b1kb2l = 0. (7)

The above condition is obviously non-generic: the set of parameters where it
is satisfied has zero Lebesgue-measure in the 8-dimensional space of coeffi-
cients that parameterize the bi-linear valuations in this example.

We conclude this section with two important remarks:

Remark 3.8 Our main result rules out implementation of dictatorial choice
functions. First, note that ”dictatorship” is ambiguous with interdependent
values: 1) If ψ chooses the alternative for which dictator i has the highest
valuation, then ψ (s) depends on everybody’s information s, as the dictator
does not know her favorite alternative. Point 1 of Proposition 3.5 shows that
the agents’ incentive constraints cannot be simultaneously satisfied. 2) A dic-
tatorial rule in the sense that ψ (s) = ψ (si) depends only on the dictator’s
information si is generically not implementable either: The relative transfers
to the other agent τ−i (si) has to be discontinuous, and point 2 of the Propo-
sition shows that, generically, i’s incentive constraint cannot be satisfied for
all s−i.

12



Remark 3.9 The role played by the dimension of the signals has been em-
phasized by Jehiel and Moldovanu (2001) in the context of efficient Bayes-
Nash implementation. The generic impossibility of ex-post efficient imple-
mentation is obviously a corollary of Theorem 3.2, but we now offer an in-
dependent argument in order to highlight both the similarities and the dif-
ferences between the two results. For the sake of illustration, assume here
that only one agent i holds private information, and that ∇siµN 6= 0 where
µN =

P
i µ

i. Efficient ex-post implementation implies that there is a differ-
ence in transfers ∆ = τ i, such that society is indifferent between the alter-
natives if and only if this is the case for agent i. Mathematically, the level
set (µi)

−1
(∆) must coincide with the indifference set of the efficient choice

function Ieff :=
¡
µN
¢−1

(0). Therefore, we obtain that:

∇siµi (s) and ∇siµN (s) are co-directional for all s ∈ Ieff . (8)

Efficient implementation is only possible if there is a congruence between
the private and social rates of information substitution. In contrast, our
present condition for non-trivial implementation requires a congruence of
private rates for any two agents i and −i. Whereas the social preference is
exogenously fixed by the agents’ valuations, agent −i’s preferences can be
easily altered via the endogenous transfer τ−i. Thus, we needed to show
that no transfer whatsoever achieves the required congruence. In particular,
we show below that the presence of at least two agents, each equipped with
a multidimensional signal, is crucial for the present result, whereas, as just
explained, it is not crucial for Jehiel-Moldovanu’s result.

4 The Limits of the Impossibility Result

We now discuss the role played by the following three assumptions :

1) There are multiple (strategic) agents.

2) The signal of at least two agents has multiple dimensions.

3) Valuation functions are generic.

4.1 One strategic agent

Suppose that only agent i is strategic about the release of her information,
whereas the information held by all agents j, j 6= i is freely available to the
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designer. Let tik = t
i
k(s

−i) be any transfer to agent i in alternative k (this may
be constantly zero). The non-trivial social choice function that implements
any outcome k ∈ argmaxk vik(s)− tik(s−i) for every signal profile s = (si, s−i)
is ex-post implementable. This simple finding should be contrasted with
the impossibility of efficient implementation in this setting (see Jehiel and
Moldovanu (2001), or the previous section).

4.2 One-dimensional signals

Efficient, ex-post implementation is possible if all agents have one-dimensional
signals, and if a single crossing property holds.9 Our present impossibility
result requires that at least two agents have multi-dimensional signals, and
thus it is silent about what happens if all but one agent have one-dimensional
signals. Consider the following example that shows how positive results can
be obtained in this case:

Example 4.1 There are two agents i = 1, 2 and two alternatives k, l. Agent
1 has a one-dimensional signal s1 ∈ [0, 1] . Agent 2 has a two-dimensional
signal, s2 = (s2k, s

2
l ) ∈ [0, 1]2 . Assume that the relative valuation µ1 satisfies

the condition: :

∂

∂s1
µ1(s) > 0 (9)

(Note that the set of valuations satisfying this condition is open.) We show
how to implement a social choice function ψ that chooses alternative k for
high values of s1 and chooses alternative l for low values of s1. Set first
transfers t2(s1) such that

∂

∂s1
¡
µ2(s)− τ 2(s1)

¢
> 0 (10)

and

µ2(s)− τ 2(s1) takes on values above and below zero on S (11)

Consider now the choice function

ψ (s) =

½
k if µ2(s)− τ 2(s1) ≥ 0
l if µ2(s)− τ 2(s1) < 0

(12)

9This condition is determined by strict inequalities, and it is satisfied for an open set
of valuations.
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By condition (10), for a fixed s2 there is s1(s2) such that

ψ (s) =

½
k if s1 ≥ s1(s2)
l if s1 < s1(s2)

(13)

For agent 1 we apply the standard technique from the literature with one-
dimensional signals, and we set transfer τ 1(s2) = µ1 (s1(s2)) . Using the
monotonicity assumption in equation (9) we get that

ψ (s) =

½
k if µ1(s)− τ 1(s2) ≥ 0
l if µ1(s)− τ 1(s2) < 0

. (14)

By equations (14) and (12) (ψ, t) is incentive compatible. It is non-trivial by
equation (11). For generic µ, the choice function ψ is non-dictatorial.

4.3 Non-generic valuation functions

Generic impossibility allows for large classes of interesting (yet non-generic)
valuation functions for which non-trivial ex-post implementation is feasible.
For example, this is the case for separable valuation functions, i.e. v for
which there are functions f ik : S

i → R, hik : S−i → R, with:

vik (s) = f
i
k

¡
si
¢
+ hik

¡
s−i
¢
.

Condition 4 requires thatµ ∇si (f ik − f il ) (si)
∇s−i (hik − hil) (s−i)−∇s−iτ i (s−i)

¶
is co-directional on I withµ ∇si ¡h−ik − h−il ¢ (si)−∇siτ−i (si)

∇s−i
¡
f−ik − f−il

¢
(s−i)

¶

As the upper (resp. lower) half of the condition is independent of s−i

(resp. si) the two gradients can be equalized everywhere by setting, for ex-
ample, τ−i (si) :=

¡
h−ik − h−il

¢
(si)− (f ik − f il ) (si) , and similarly for τ i (s−i) .

These transfers implement the choice function ψ (s) ∈ argmaxk {
P

i f
i
k (s

i)}.
In a recent paper, Bikchandani (2004) studies multi-object auction prob-

lems where social alternatives are partitions of goods. The agents do not
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care about the exact partition among others. In other words, at each possi-
ble signal, each agent is indifferent between many alternatives. Bikchandani
shows that non-trivial ex-post implementation is possible in this obviously
non-generic framework where many of the relevant rates of information sub-
stitution are constant. The needed mechanisms are not ”intuitive”: for ex-
ample, in an one-object auction with two buyers, the object is sold if one
buyer has a low valuation while another has a high valuation, but the object
must remain in the hands of the seller if both buyers have high valuations.
In an auction setting, the indifference among alternatives arises naturally if
there are no allocative externalities among agents. But such an indifference
seems strong and less appealing in social choice settings where information
can affect the relative value of any two alternatives.

5 Conclusion

We have established the impossibility of non-trivial ex post implementation in
generic quasi-linear environments with interdependent preferences and mul-
tidimensional signal spaces. The main motivation for considering ex-post
implementation (as opposed to Bayes-Nash implementation) is the idea that
the agents or the designer may have insufficient information about relevant
features of the environment.

Our result does not imply that Bayes-Nash implementation is impos-
sible for any given, specific beliefs. But, in conjunction with the results in
Bergemann and Morris (2004), it implies that, for any non-trivial mechanism
(social choice rule + transfers), there are beliefs for which this mechanism
is not Bayes-Nash incentive compatible. Thus, robust implementation a la
Bergemann-Morris is generically impossible. At least three significant tasks
remain for future research:

1)Identify additional interesting models with restricted classes of pref-
erences where ex-post implementation is possible (i.e. besides frameworks
with single-dimensional signals, or with separable valuations, or auctions of
private goods without allocative externalities).

2)Focus on the possibly weaker conditions needed for robust implemen-
tation of social choice correspondences: suppose that we can establish the
existence of a Bayes-Nash equilibrium for a family of priors, and suppose
it is known that the priors of agents must belong to this family. Then the
social choice correspondence that associates to each signal profile s the set
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of alternatives that may emerge in a Bayes-Nash equilibrium (for some of
these priors) can be robustly implemented in the sense that, whatever the
effective prior, there is an equilibrium outcome that belongs to the social
choice correspondence.

3) Identify a fruitful way to address Wilson’s critique in frameworks where
ex-post implementation is not possible.

6 Appendix

Proof of Lemma 2.1. ”if”: Given tik (s
−i) such that equation (2) holds,

define ti (s) := tiψ(s) (s
−i). Agent i’s problem in the game induced by (ψ, t)

is to choose bsi in order to maximize viψ(bsi,s−i) (si, s−i) − tiψ(bsi,s−i) (s−i) . By
equation (2), it is optimal for her to report truthfully bsi = si, and let the
choice function ψ pick her most preferred alternative.

”only if”: Let (ψ, t) be an ex-post incentive compatible mechanism. We
define

tik
¡
s−i
¢
:=

½
ti (si, s−i) if ψ (si, s−i) = k
∞ if ψ (si, s−i) 6= k for all si ∈ Si. (15)

Note that tik (s
−i) is well-defined. By i’s incentive constraint

ψ
¡
si, s−i

¢
= ψ

¡
s0i, s−i

¢
= k implies ti

¡
si, s−i

¢
= ti

¡
s0i, s−i

¢
.

By i’s incentive constraint again, she always reports in order to maximize
her payoff. Thus, with tik (s

−i) as defined in (15), condition (2) is satisfied.

Proof of Lemma 3.4. 1) µi (bs)− τ i (bs−i) = 0 and ∇siµi (bs) 6= 0 imply
that there are s0i, s00i arbitrarily close to bsi such that µi (s00i, bs−i)− τ i (bs−i) <
0 < µi (s0i, bs−i) − τ i (bs−i). Applying the taxation principle to agent i yields
ψ (s0i, bs−i) = k and ψ1 (s00i, bs−i) = l. Hence bs ∈ I.
For the converse, assume that µi (bs)− τ i (bs−i) > 0, say. By continuity, we

have µi (s)− τ i (s) > 0, and thus ψ (s) = k, for all s in a neighborhood of bs.
Thus, bs /∈ I.
2) is immediate from the above.

3) Since we assumed that ∇s−iµ−i is non-vanishing, we can apply the
implicit function theorem to conclude.
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dξ(x)

dφ(x)

x'

Figure 1: If the gradients of φ and ξ are not co-directional at x, the functions
disagree at some x0, i.e. φ (x0) < 0 < ξ (x0).

To prove Proposition 3.5, we first state a simple Lemma.

Lemma 6.1 Let φ and ξ be smooth functions on an open set X ⊂ RN .
Assume that there exists x ∈ X such that φ (x) = ξ (x) = 0, but ∇φ (x) and
∇ξ (x) are not co-directional. Then there exists x0 arbitrarily close to x such
that φ (x0) < 0 < ξ (x0).

Proof. As ∇φ (x) and ∇ξ (x) are not co-directional, there exists a direc-
tion ρ ∈ RN with ρ ·∇φ (x) < 0 < ρ ·∇ξ (x). For x0 = x + ερ, with ε > 0,
we get φ (x0) < 0 < ξ (x0), as desired. This argument is illustrated in Figure
1.

Proof of Proposition 3.5. Consider an ex-post incentive compatible
mechanism (ψ, t) and the associated relative valuations and transfers.

1) If τ is differentiable, the discussion preceding the Proposition together
with Lemma 6.1 completes the proof.

More generally, we need to deal with two sub-cases:

1.a) The direction of the gradient ∇siµi (s) does not depend on s ∈
Ii (bs). Instead of showing that τ−i is differentiable, we directly construct
the vector y. Denote the orthogonal complement of ∇siµi (s) by (∇µi)⊥ ⊂
Rdi and let ρ ∈ (∇µi)⊥. Fix for a moment s−i with (bsi, s−i) ∈ I i (bs) . By
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Lemma 3.4, µ−i (·, s−i) − τ−i (·) must equal zero on the sub-manifold {si :
µi (si, s−i) = µi (bsi, s−i)} . Thus, restricted to that manifold, τ−i is differen-
tiable and we have ∂ρµ

−i (bsi, s−i) = ∂ρτ
−i (bsi). Therefore, ρ·∇siµ−i (bsi, s−i) =

∂ρµ
−i (bsi, s−i) is independent of (bsi, s−i) ∈ I i (bs).Set now y := ∇siµ−i (bs) +

λ∇siµi (bs). By construction, we have ρ · (∇siµ−i (bsi, s−i)− y) = 0 for ρ ∈
(∇µi)⊥. By choosing λ sufficiently large, ∇siµi (s) and (∇siµ−i (bsi, s−i)− y)
must be co-directional, and condition (5) is satisfied.

1.b) The direction of the gradient ∇siµi (s) varies in s ∈ I i (bs). In this
case we will show that τ−i is differentiable at some esi close to bsi.
As a first step, we show that the directional derivatives ∂ρτ

−i (bsi) in
directions ρ ∈ ∇siµi (bsi, s−i)⊥ exist. Fix s ∈ I i (bs) and ρ ∈ ∇siµi (s)⊥
such that there are s, s ∈ I i (bs) close to s with ρ · ∇siµi (s) > 0 > ρ ·
∇siµi (s). By agent i’s incentive constraint, we have ψ

¡bsi + ερ, s−i
¢
= k

and ψ (bsi + ερ, s−i) = l for small enough ε > 0 (compare this argument to
the one for Lemma 6.1). In turn, agent (−i)’s incentive constraint implies
∂ρµ

−i (s) ≥ − τ−i(bsi+ερ)−τ−i(bsi)
ε

≥ ∂ρµ
−i (s). As s−i and s−i approach s−i,and

ε approaches zero, this entails ∂ρτ
−i (bsi) = ∂ρµ

−i (bsi, s−i).
By assumption, ∇siµi (bsi, s−i)⊥ varies (continuously) in s−i. Therefore,

∂ρτ
−i (bsi) exists for an open set of directions ρ ∈ Λ ⊂ Rdi . In order to

conclude, we need to show that these directional derivatives are continuous
in si.

Consider esi = bsi+ ερ for some ρ ∈ Λ and ε ∈ R sufficiently small. By the
above argument, there is a neighborhood U of esi, such that the directional
derivatives ∂ρτ

−i (si) for ρ ∈ Λ ⊂ Rdi and si ∈ U exist and are continuous in
si. Thus, τ−i is differentiable for si ∈ U and, after replacing bsi by esi, we can
conclude. For an intuition consider Figure 2. 2)Assume now that the relative

transfer τ−i is discontinuous at some bsi ∈ intSi .We can assume w.l.o.g. that
τ−i (si) ∈ T−i (si) := [infs−i {µ−i (si, s−i)} , sups−i {µ−i (si, s−i)}] for all si.10
By assumption, there is a sequence of i’s signals (sin)n∈N such that limn s

i
n =bsi but such that τ−i (sin) does not converge to τ−i (bsi). Modulo taking a

subsequence, we can assume that limn τ
−i (sin) = τ−i (bsi) + ε, for ε > 0, say.

Consider eS−i := {s−i ∈ S−i : µ−i (bsi, s−i) ∈ ¡τ−i (bsi) + ε
4
, τ−i (bsi) + ε

2

¢}.11
10If τ−i

¡
si
¢
< infs−i

©
υ−i

¡
si, s−i

¢ª
, say, we have 0 < υi

¡
si, s−i

¢
+ τ−i

¡
si
¢
for all s−i,

and agent −i will ”choose” outcome k, no matter what her signal s−i is. This is still the
case, after we change τ−i

¡
si
¢
to infs−i

©
υ−i

¡
si, s−i

¢ª
.

11Note that Si (ε) is not empty. Taking τ−i
¡
sin
¢ ∈ T−i

¡
sin
¢
to the limit, yields

that τ−i
¡bsi¢ + ε ∈ T−i

¡bsi¢. Together with τ−i
¡bsi¢ ∈ T−i

¡bsi¢, this yields
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Figure 2: An illustration of Si ⊂ R2: the directional derivatives ∂ρτ
j (bsi)

exist for directions ρ inside the cone. As ∇siυi (si, sj) is continuous in si,
these directional derivatives also exist in a neighborhood U of esi and are
continuous.

These types s−i ∈ eS−i of agent −i prefer k when the relative payment is
τ−i (bsi), but prefer l when the relative payment is τ−i (bsi) + ε. Therefore,
ψ (bsi, s−i) = k , but ψ (sin, s−i) = l for large enough n.12 As limn s−in = bs−i, we
can apply the taxation principle to agent i to obtain µi (bsi, s−i)−τ i (s−i) = 0,
for all s−i ∈ eS−i (recall that µi is continuous).
We now show that the gradients ∇siµi (bsi, s−i) are co-directional for all

s−i ∈ eS−i. This proves the desired result since eS−i is open, and since it
contains the manifolds

©
s = (bsi, s−i) : µ−i (s) = τ−i (bsi) + ε

3

ª
.

Assume that this is not the case for s0−i, s00−i ∈ eS−i (ε). We assume
w.l.o.g. that µ−i (bsi, s0−i) < µ−i (bsi, s00−i). By Lemma 6.1, there is esi, arbi-
trarily close to bsi, with µi (esi, s00−i) + τ i (s00−i) < 0 < µi (esi, s0−i) + τ i (s0−i).
Thus, ψ (esi, s0−i) = k and ψ (esi, s00−i) = l. However, for esi close enough to bsi,
continuity of µi yields µi (esi, s0−i) < µi (esi, s00−i). This yields a contradiction
to the monotonicity of ψ and concludes the argument.

We turn now to the proof of the genericity assertion, Proposition 3.6.
Write d = d1 + d2, and let P2dr be the space of polynomials on Rd of degree
at most 2dr. We need the following lemma, whose simple proof is left to the£
τ−i

¡bsi¢ , τ−i ¡bsi¢+ ε
¤ ⊂ T−i ¡bsi¢ = [infs−i ©υ−i ¡si, s−i¢ª , sups−i ©υ−i ¡si, s−i¢ª].

12Specifically, n such that: υ−i
¡
sin, s

−i¢ < υ−i
¡bsi, s−i¢+ ε

4 ≤ τ−i
¡bsi¢+ 3ε

4 < τ−i
¡
sin
¢
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reader.

Lemma 6.2 Let s1, . . . , sr be distinct points in Rd and let {ai : 1 ≤ i ≤ r}
and {aij : 1 ≤ i ≤ r, 1 ≤ j ≤ d} be families of real numbers. There is a
polynomial P ∈ P2dr such that for all i, j:

P (si) = ai
∂P

∂xj
(si) = aij

Recall that we fixed r > 2d1+1
d1−1 and defined k = dr + 2d

1 + 1− 2d1r. For
each i, let πi : Rd → Rdi be the projection. We will derive both parts of
Proposition 3.6 from the following finite dimensional Proposition.

Proposition 6.3 Let L ⊂ Ck+1(S,R2) be any finite-dimensional subspace
that contains P2dr × P2dr, let M be any translate of L in Ck+1(S,R2), and
let M0 = Hk+1 ∩M. There are subsets M1,M2,M3,M4 ⊂ M0 that
are residual and have full Lebesgue measure in M0 and enjoy the following
properties.

(1) If (µ1, µ2) ∈ M1 then there do not exist bs ∈ intS and y ∈ Rd1 such
that ∇s1µ1(s) and ∇s1µ2(s)− y are collinear for every s ∈ Ĩ1(bs).

(2) If (µ1, µ2) ∈ M2 then there do not exist bs ∈ intS and y ∈ Rd2 such
that ∇s2µ2(s) and ∇s2µ1(s)− y are collinear for every s ∈ Ĩ2(bs).

(3) If (µ1, µ2) ∈ M3 then there do not exist bs ∈ intS, y ∈ Rd1, and a
non-empty open set Q ⊂ S2 such that ∇s1µ1(bs1, q) and y are collinear
for every q ∈ Q.

(4) If (µ1, µ2) ∈ M4 then there do not exist bs ∈ intS, a vector y ∈ Rd2,
and a non-empty open set Q ⊂ S1 such that ∇s2µ2(bs2, q) and y are
collinear for every q ∈ Q.

Moreover, the intersection M∗ =
TMi is also residual and has full

Lebesgue measure in M0, and every pair (µ
1, µ2) ∈ M∗ enjoys the four

properties above.
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Proof. Write (intS)(r) for the open subset of (intS)r consisting of dis-
tinct r-tuples. To constructM1, write

V = (intS)(r) × Rr ×Rd1 ×Rd1 ×R
For each n = 1, . . . , r define

φn :M0 × V → Rd1 ×Rd1 ×R = R2d1+1

by

φn(µ
1, µ2; s1, . . . , sr;λ1, . . . ,λr; y,w, c)

=
¡∇s1µ1(sn)− λn[∇s1µ2(sn)− y], π1(sn)− w,µ2(sn)− c

¢
Finally, write

Φ = (φ1, . . . ,φr) :M0 × V → R(2d1+1)r

Because the components of Φ are either linear functions or evaluations
of first derivatives of (k + 1)-times continuously differentiable functions, Φ
itself is k-times continuously differentiable. Using Lemma 6.2, it is easy
to check that for every (µ1, µ2; v) ∈ M0 × V the directional derivatives of
Φ in directions in P2dr ×P2dr × V span R(2d1+1)r. In particular, for each
(µ1, µ2; v) ∈M0 × V the differential DΦ is onto. Hence, the transversality
theorem (see Mas-Colell (1985) for instance) provides a subset M1 ⊂ M0

that is residual and of full measure such that, for each (µ1, µ2) ∈M1, the set

J(µ1, µ2) = {v ∈ V : Φ(µ1, µ2; v) = 0}
is either empty or is a manifold of dimension

dr + r + d1 + d1 + 1− (2d1 + 1)r = dr + 2d1 + 1− 2d1r

To see thatM1 has the desired property (1), suppose not, so that there
exist bs ∈ intS and y ∈ Rd1 such that ∇s1µ1(s) and ∇s1µ2(s)−y are collinear
for each s ∈ Ĩ1(bs). If z1, . . . , zr are distinct points of Ĩ1(bs) then we can find
λ1, . . . ,λr ∈ R such that

∇s1µ1(zi) = λi
¡∇s1µ2(zi)− y¢

Hence ¡
z1, . . . , zr;λ1, . . . ,λr; y,π

1(bs), µ2(bs)¢ ∈ J(µ1, µ2)
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Equivalently, Ĩ1(bs)(r) is a subset of the projection of J(µ1, µ2) into (intS)(r).
Because Ĩ1(bs) has dimension d2 − 1 and projection does not raise the di-
mension of a manifold, it follows that J(µ1, µ2) must have dimension at least
(d2 − 1)r. However, our computation of the dimension of J(µ1, µ2) implies
that

dr + 2d1 + 1− 2d1r ≥ (d2 − 1)r
and equivalently, that

2d1 + 1

d1 − 1 ≥ r

Since this contradicts our choice of r, we conclude thatM1 has the desired
property.

To construct M2 we proceed exactly as above, except that we reverse
the roles of µ1, µ2 . The constructions ofM3,M4 use a variant of this same
construction. ForM3, write

V = intS1 × (intS2)(r) × Rd1 ×Rr

For each n = 1, . . . , r define

φn :M0 × V → Rd1

by

φn(µ
1, µ2; bs1; q1, . . . , qr; y;λ1, . . . ,λr) = ∇s1µ1(bs1, qn)− λny

Finally, write

Φ = (φ1, . . . ,φr) :M0 × V → Rd1r

As above, we use the transversality theorem to find a residual set of full
measureM3 ⊂M0 such that if (µ

1, µ2) ∈M3 then

J(µ1, µ2) = {v : (bs1, q1, . . . , qr; y;λ1, . . . ,λr) : Φ(µ1, µ2; v) = 0}
is a manifold of dimension

2d1 + (d2 − d1)r + r − d1r = 2d1 + r + (d2 − d1)r

We claim that if (µ1, µ2) ∈ M3 then there does not exist bs1 ∈ intS1,
y ∈ Rd1 and an open set Q ⊂ intS2 such that ∇s1µ1(bs1, q) and y are collinear
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for each q ∈ Q. To see this, we argue exactly as before: if such existed then
the dimension of J(µ1, µ2) would be at least as large as rd2, whence

2d1 + r + (d2 − d1)r ≥ r
and

r ≤ 2d1

d1 − 1 <
2d1 + 1

d1 − 1
This contradicts our choice of r, so we conclude that M3 has the desired
property. To construct M4 we proceed exactly as above, except that we
reverse the roles of µ1, µ2.

Finally,M∗ is residual and of full measure because it is the intersection
of a finite number of sets with these properties.

With Proposition 6.3 in hand, we turn to the proof of Proposition 3.6.

Proof of Proposition 3.6. We begin by constructing Gk+1 as the
intersection of four setsW1, . . . ,W4, corresponding to the various properties,
and then use Proposition 6.3 to show that Gk+1 has the desired properties.
To construct W1 and W2 we proceed in the following way. First choose

and fix an increasing sequence of compact sets L1, L2, . . . , whose union is
intS1. For each index m, let C(m) be the set of pairs (µ1, µ2) ∈ Hk+1 for
which there exist bs ∈ Lm, y ∈ Rd1 with |y| ≤ m, and a subset Z ⊂ Ĩ1(bs) such
that:

• for every z ∈ Z there is a λ ∈ R such that µ1(z)−λ[µ2(z)− y] = 0 and
|λ| ≤ m

• the projection of Z into some d2−1-dimensional subspace of Rd contains
a ball of radius at least 1/m

It is straightforward to check that each C(m) is a closed subset of Hk+1,
so the complement Hk+1 \ C(m) is open. Set

W1 =
∞\
m=1

£Hk+1 \ C(m)¤
We constructW2 in exactly the same way, except that the roles of µ

1, µ2 are
reversed.

To construct W3 and W4, we proceed as follows. For each index m, let
K(m) be the set of pairs (µ1, µ2) ∈ Hk+1 for which there exist bs ∈ Lm,
y ∈ Rd1 with |y| ≤ m, and a ball B ⊂ S2 such that:
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• for every b ∈ B there is a λ ∈ R such that µ1(bs1, b) − λy = 0 and
|λ| ≤ m

• the radius of B is at least 1/m

It is easy to see that K(m) is closed, and hence that Hk+1\K(m) is open.
Set

W3 =
∞\
m=1

£Hk+1 \K(m)¤
We constructW4 in exactly the same way, except that the roles of µ

1, µ2 are
reversed.

Set Gk+1 = TWi. By definition, Gk+1is the countable intersection of open
sets, and, in particular, is a Borel set.

To see that Gk+1 is finitely prevalent in Hk+1, define L = P2dr and let
M be any translate of L. The construction of Gk+1 and Proposition 6.3
guarantee that ¡Hk+1 \ Gk+1¢ ∩M ⊂M∗

Hence Proposition 6.3 implies that Hk+1 \Gk+1 meets every translate of L in
a set of Lebesgue measure 0. By definition, therefore, Hk+1 \ Gk+1 is finitely
shy in Hk+1 , and Gk+1 is finitely prevalent in Hk+1.

To see that Gk+1 is residual in Hk+1, let F ⊂ Ck+1(S,R2) be any finite
dimensional subspace that contains P2dr. It follows from Proposition 6.3 that
Gk+1 ∩ F has full Lebesgue measure in Hk+1 ∩ F ; in particular, Gk+1 ∩ F is
dense in Hk+1 ∩ F . Because Ck+1(S,R2) is the union of finite dimensional
subspaces that contain F0 , we conclude that Gk+1 is dense in Hk+1. Because
our construction guarantees that Gk+1 is the countable intersection of open
sets, we conclude that it is residual in Hk+1, as desired.

To construct G1 we proceed in almost the same way, except that we work
in H1 instead of in Hk+1. For each index m, let C(m) be the set of pairs
(µ1, µ2) ∈ H1 for which there exist y ∈ Rd1 with |y| ≤ m and a subset
Z ⊂ Lm such that

• for every z ∈ Z there is a λ ∈ R such that µ1(z)−λ[µ2(z)− y] = 0 and
|λ| ≤ m

• the projection of Z into some d2−1-dimensional subspace of Rd contains
a ball of radius at least 1/m.
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It is straightforward to check that each C(m) is a closed subset of H1, so
the complement H1 \ C(m) is open. Set

V1 =
∞\
m=1

£H1 \ C(m)¤
We construct V2 in exactly the same way, except that the roles of µ1, µ2 are
reversed. For each index m, let K(m) be the set of pairs (µ1, µ2) ∈ H1 for
which there exist bs1 ∈ Lm, y ∈ Rd1 with |y| ≤ m, and a ball B ⊂ S2 such
that

• for every b ∈ B there is a λ ∈ R such that µ1(bs1, b) − λy = 0 and
|λ| ≤ m

• the radius of B is at least 1/m

It is easy to see that K(m) is closed, and hence that H1 \K(m) is open.
Set

V3 =
∞\
m=1

£H1 \K(m)¤
We construct V4 in exactly the same way, except that the roles of µ1, µ2 are
reversed.

Now set G1 = TVi. By definition, G1 is the countable intersection of
open sets. In order to show that it is residual in H1, we need only show it
is dense. To this end, view Ck+1(S,R2) as a subset of C1(S,R2), and note
that Gk+1 ⊂ G1 and Hk+1 ⊂ H1. Malgrange (1966) shows that Ck+1(S,R2)
is dense in C1(S,R2). Because Hk+1 is open in Ck+1(S,R2) , it follows that
Hk+1 is dense in H1. Our above construction shows that Gk+1 is dense in
Hk+1, and hence in H1. Because Gk+1 ⊂ G1 it follows that G1 is dense in
H1. By construction, G1 is the countable intersection of open sets, so that,
as asserted, it is residual in H1.

Remark 6.4 The relevant property required of the space of polynomials of
degree at most 2dr is embodied in Lemma 6.2: given r distinct points, we can
find polynomials whose values and first partials can be specified arbitrarily
at those points. Any other space with this property would do as well. Note,
however, that the space of separable relative valuation functions does not
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have this property: If µ is a separable relative valuation function and the
first d1 coordinates of s1 and s2 coincide then

∂µ

∂xi
(s1) =

∂µ

∂xi
(s2)

for 1 ≤ i ≤ d1.

Proof for Example 3.7. If (ψ, t) is a non-trivial incentive compatible
ex-post mechanism with continuous relative transfers τ i, condition (5) must
be satisfied: there is bs ∈ I, ∆ := µi (bs) and (yk, yl)T ∈ R2, such that for all
s ∈ Ĩ i (bs) µ

aik + b
i
ks
−i
k

−ail − bils−il

¶
and

µ
b−ik s

−i
k − yk

−b−il s−il − yl
¶
are collinear

For this to be true at some s, the cross product of these vectors must vanish,
implying the following condition :¡

aik + b
i
ks
−i
k

¢ ¡−b−il s−il − yl¢− ¡−ail − bils−il ¢ ¡b−ik s−ik − yk¢ = 0. (16)

We now argue, that the above condition can be satisfied for all s in the
set I i (bs) only if the coefficients a, b satisfy the algebraic condition (7).
The one-dimensional indifference set Ii (bs) can be parametrized by s−ik =
∆

a−ik +b−ik bsik + a−il +b−il bsil
a−ik +b−ik bsik s−il , where ∆ = µ−i (bs). As a−ik , b−ik , a−il , b−il 6= 0, we

can assume w.l.o.g. that a−ik + b−ik bsik 6= 0, and a−il + b−il bsil 6= 0. Substitut-
ing for s−ik in condition (16), we see that this equation can only hold on
all of Ii (bs) if the coefficient of the quadratic term in s−il vanishes, i.e. if
a−il +b−il bsil
a−ik +b−ik bsik

¡−bikb−il + bilb−ik ¢ = 0. This implies condition (7). Finally, for the

case of discontinuous transfers τ i, condition (6) reduces here to bik = b
i
l = 0,

so that condition (7) is satisfied.
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