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On The Existence Of Walrasian Equilibrium In Large-Square Economies

by

Joseph M. Ostroy, UCLA

An existence theorem for Walrasian equilibrium is demonstrated for an economy
with a continuum of consumers and an infinite—-dimensional commodity space,

such as ¢, or ¢, having an “"order-compatible” basis.

Two parameters in the description of a general equilibrium model are the
number of commodities and the number of participants, or agents. If both
parameters are finite the model will be said to be a member of the class of

small-squares of economies. If neither is finite it belongs to the class of

large-square economies. For small squares, the mathematical theory of the

existence of Walrasian equilibrium has been rather definitively established
(see, for example, McKenzie (1981)). Recent conélibutions which obviate the
need for individual p:eferences to be complete or transitive, for example Mas-
Colell (1974), Gale and Mas-Colell (1975), and Shafer and Sonnenschein (1975),
provide the means in this paper to extend existence theory from small-square
economies to certain kinds of large—squares.

The principal reason for introducing an infinite number of agents has
been to justify the competitiveness of Walrasian equilibrium (Aumann (1964)).
The rationale fo; an infinite-dimensional commodity space has been to
introduce an unending time horizon (Bewley (1973)) or to incorporate product
differentiation (Mas-Colell (1975) and Jones (1983)) into general equilibrium
theory. Brown and Lewis (1981) and Blad and Keiding (1983) have also |
established results for models with a continuum of agents and an infinite-
dimensional commodity space.

There 1s a tension between these two infinities. It is known that the

competitive properties of Walrasian equilibrium in models with a continuum of



agents requires'some restrictions on the commodity space so as to preclude
"truly large—square” models where “the number of commodities is as large as
the number of agents”. In these truly large-square models, the potential
competition from large numbers of agents is offset by the variety of commodit-
ies in the seuse that infinitesimal agents may trade commodities for which
there are no good substitutes.

Encouraged by the findings in Ostroy (1984) for a special class of
economies in which the existence of Walrasian equilibrium required only the
existence of a supporting hyperplane, the original aim of this paper was to
demonstrate a similar result for a more general version of a truly large-
square model in order to highlight the differences between it and models with
more competitive properties where, with a continuum of agents, the commodity
space guarantees greater substitutability. Unfortqnately, the methods
employed here do not lead to this desired result. The assumptions imposed on
the infinite-dimensional commodity space make it too small to be truly large-
square. For example, we shall also demonstrate that, as in the nonatomic
models of Aumann, Bewley and Mas—Colell, the core and WE allocations coincide.
Further, I doubt that an existence theorem for a truly large-square model,
e.g., one without core equivalence, can be obtained in anything like the
generality typically associated with the study of Walrasian equilibrium.

The Samuelson overlapping generations model involves an infinite number
of agents and commodities and existence theorems for it have been obtained by
Balasko, Cass and Shell (1980a,b) and by Wilson (1981). However, because it
employs a o-finite measure space of atomic agents rather than a finite, non-
atomic measure space and because it admits as prices linear functions that are
not necessarily continuous, it lies outside the scope of the large—square

models I am considering.



In the model presented here, the key assumption on the commodity space is
that it has an "order-compatible” Schauder basis. The fact that the basis is
order-compatible will mean that our results apply to spaces such as zp,
1<p <= and ¢, but not to Lp[O,ll, 1<p<» C[0,1], or £

For models with a finite number of agents, existence theorems have'been
obtained by Peleg and Yaari (1970) and Stigum (1973) for the space of
sequences with the product topology, by Bewley (1972) for L°° with the Mackey
topology, and by Jones (1984) for a ca(K) with the weak-star topology. On
Bewley's model, see also Bojan (1974), Barkuki (1977), Brown and Lewis (1981),
Toussaint (1982), Florenzano (1982), and Magill (1983). Brown (1983) has
demonstrated an existence theoreﬁ for Banach lattices including Lp,

1 <p <> and Mas-Colell (1983) for spaces including L_ and ca(K) when
they are given their weak-star topologies. -

Besides the restriction on the commodity space, there are three other
features of this model to which I should like to call attention. The first
concerns the problem of pricing when the relevant portion of the commodity
space has an empty interior. The presence of a nonempty interior to a convex
set permits the conclusion that its boundary has a kind of finite steepness
from which the existence of a closed hyperplane supporting a boundary point of
the convex set may be derived (see Gale (1967)). Without the interiority
assumption, the steepness condition is not assured and the existence of closed
hyperplanes, i.e., prices, becomes problematic. In the model below, the
relevant part of the commodity space 18 a positive cone and in the infinite-
dimensional cases considered here this will always have an empty interior. To
overcome the resulting difficulty, I-shall invoke an assumption explicitly

bounding the steepness of certain convex sets, similar to bounding marginal

rates of substitution (cf., Jones (1983), Mas-Colell (1983)).



The second feature of the model concerns the relation between finite and
nonatomic representations of an economy. Kannai (1970), Hildenbrand (1974)
and others have showﬂ how a nonatomic model can be obtained as the limit of a
sequence of models with a finite but increasing number of atoms of diminishing
size. The building block for the nonatomic model is the finite model. I
shall turn this around, starting with the nonatomic model as the basic object
out of.which a finite model is constructed. This is accomplished by partit-
ioning the set of agents into a finite number of groups, each of which has
"coagulated” into an indivisible unit. Each such unit has an endowment that
is indistinguishable in scale from that of an atdm, but, because the prefer-
ences of an individual are typically assumed to be complete whereas the
preferences of the group are not, there is a gap between the preferences of a
single large-scale individual and a nonatomic group of agents. However,
because completeness of individual preferences has been shown to be unneces—
sary to demonstrate the existence of Walrasian equilibrium in small-square
economies, this gap becomes inconsequential. Thus, Mas—Colell's formulatioh
of a small-square model (1974) may be regarded as deriving from certain
restrictions imposed on Vind's formulation (1964) (see also Cornwall (1969)
and Richter (1971)) of a nonatomic model. One advaﬁtage of building the
finite model from the nonatomic one is that it minimizes the difficulties in
passing from an existence theorem for the small-square model to an existence
theorem for the large-square model from which it was derived. A disadvantage
is that it precludes a demonstration of the convexifying effects of large
numbers, i.e., it cannot be demonstrated that individually non-convex

preferences lead to group preferences that are convex.
The remaining feature of the model concerns an extension of the measure

space of agents into a linear space. There is a one-to-one correspondence



between the elements of a oc-algebra of a measure space and its characteristic
functions. The linear space derived from the measure space consists of finite
linear combinations of characteristic functions. The extension of the measure
space to a linear space brings with it an extension of the set of possible
agents. For example, for any group E there is now, for each o > 0, a
group  axg, where Xg {8 the characteristic function of E. By construction
this group will have endowments that are an o-multiple of E's endowments
and preferences that are similarly scaled to E.

The extenéion from a meésure space to a linear space of agents leads to
an extension of the definition of allocations from (positive) vector measures
to (positive) linear operators. The advantage of the operator description of
allocations is that it leads to a characterization of Walrasian equilibrium
that does not directly involve prices! This characterization (see the
Auxiliary Lemma) says that, subject to certain qualificatiomns, a Walrésian
equilibrium is the same as an allocation in what I shall call the core of the

linear space of agents. Such an allocation, involving as it does only

restrictions on quantities, is easier to verify than the usual statement of
Walrasian equilibrium, involving as it does restrictions on prices and quanti-
- ties. This result is a generalization of the Debreu-Scarf Theorem (1963)
suitable for nonatomic economies with an infinite number of types of agents.

This alternative definition of Walrasian equilibrium ylelds a simple
characterization of the core equivalence property: the core of an economy
coincides with its Walrasian equilibria whenever the core of the measure épace
of agents (the core) coincides with the core of the linear space of agents
(Walrasian equilibria). It follows as a corollary of our method of

demonstrating existence of Walrasian equilibrium that the large-square model

considered here exhibits core equivalence.



2. Preliminariea

2.1 Commodities and Prices

The commodity space is a Banach lattice with positive cone Y,. The
space of prices is the continuous linear functionals on Y, denoted by Y*,
If qeY* and y ¢ Y, the value of q at y 1s denoted by gqy.

The zero elements of Y and Y* are denoted by 0.

The set of positive prices in Y* 1is
Y* = {q e Y*: qy >0, all yeV¥]}.
The set of strictly positive quantities in Y, is
Y., ={ye¥:a >0, all qeIN{0}}

The norm interior of Y,, int Y,, 1is contained in Y, and if Y were
finite-dimensional Y, = int Y,. However, Y,; may be nonempty when int Y,
= ¢. For example, if Y = L1» then y = (1, H@ AQ yeoo) E Y., but
int Y = ¢.

The space Y is said to have a (Schauder) basis if there exists a

sequence {ek} C Y such that for each y ¢ Y there is a sequence of scalars

{Bk} having
k=4 -
14 y - L e = 0
zm || o Brex || ’
where ’I . || is the norm on Y. For example; if Y = zp or Lp[O,l],

1 <p <= 1t has a basis. Since a space exhibiting a basis is necessarily
separable, the non-separable spaces £ _ and Lw[0,1] cannot exhibit a basis.
The key restriction imposed on Y is that it has an "order-compatible”

basis, i.e.,



(Y.1) yeY, implies y = LB e and for each Kk, B, > 0

+

The fact that {ek = (0,...,1,0,...)} is a basis for zp, 1<p < =,
k
and ¢, makes it clear that their positive cones satisfy (Y.1). There are
spaces such as Lp[0,1] or C[0,1] with a basis but not one that satisfies

(Y.1) (see Lindenstrauss and Tzafriri (1977)) and therefore our results do not

apply to these spaces.

REMARK 1: The set Y,, 1is called the quasi-interior of the cone Y,. It

follows from a result in Peressini (1967, Proposition 4.6, p. 187-88) that

if Y satisfies (Y.1) then Y,, 1is nonempty.

1.2 Agents

The measure space of agents is (A, ./,)) where A 1s the unit interval,

/ 1{its Borel subsets, and )\ is Lebesgue measure. The linear space of

agents is X = X(A,.«/,)), the set of finitellinear combinations of character-

istic functions defined by elements of .=/, Thus, x = ZaixE ¢ X, where ay
i

is scalar and Xg 1s the characteristic function of Ei e & X; 18 the
1 .
positive cone of X, 4i.e., those x for which all @ > 0. The space X

will be given the Ll-norm so that its closure 1is Ll(A,dl,x). The norm of

x 1s denoted by le.

1.3 Allocations
Denote by 2 a countably additive Y, -valued measure on 7. 2

describes an allocation of commodities in which i(E) is the total amount of

commodities assigned to E. The measure Z is bounded if the per capita

assignment of commodities is bounded, i.é.,



“sup {|[Z(E)||/A(B): A(E) > O} < =
Clearly, if 2 is bounded then it 18 nonatomic, i.e.,
||£(E)'| # 0 implies there exists F ¢ &/ with 0 # ||i(F)|' # !lZ(E)||.

Let M_[«,Y] be the set of bounded Y,-valued measures on sZ and let
B+[X,Y] be the set of bounded positive linear operators on X. To every

Z ¢ M+ there corresponds a unique 2 e.B+ defined by

Ix = ZaiZ(Ei), when x = Zaiin.

Conversely, any Z ¢ B+ defines a unique z € M+ defined by

ZXE = Z(E).

Ihis 1-1 correspondence between M, and B, means that it is merely a
matter of convenience as to whether we regard allocations as (bounded) vector
méasures or positive linear operators. Although vector measures are defined
on the measure space describing the actual sets of agents in the economy while
linear operétors are defined on its linear algebraic extension, we shall see
that the latter has a useful role to play in the definition of Walrasian
equilibrium,.

Denote by B++[X,Y] the set of strictly pésitive linear operators, i.e.,

those Z e B such that
Zxz * O whenever AE) # 0.

REMARK 2: In our description of allocations as vector measures we are
following the Vind-Cornwall-Richter approach in which individuals disappear
and attention is focused on A-nonnull groups. There is a more individual-

istic approach to nonatomic economies piloneered by Aumann (1964) in which



allocations are defined by (Bochner) integrable functions z: A + Y+; where
z(a) 18 the allocation assigned to individual a e A. Every such integrable
function yields a Y,-valued measure 2 according to 2(E) = IE zdx. If =z

18 essentially bounded (ess sup {"z(a)l': a € A} < »}), then Z e M . Thus,
the individualistic description of allocations 1is included within the descrip-
tion of allocations via groups. For spaces satisfying the Radon-Nikodym
Property (Diestel and Uhl (1977, Chapter III)), the converse holds. These
spaces have the property that for any 2 € M+ there exists an essentially
bounded integréble function z such that Z(E) = jE zd). Thus, for spaces
with the Radon-Nikodym Property -— such as R" or 21 -—— the representation
of allocations as vector measures or as integrable functions 1s a matter of
convenience. However, in a space such és Cor which does not exhibit this

property, the vector measure description may provide added generality.

3. The Model And The Theorem

Following the Vind-Cornwall-Richter formulation of a nonatomic model, I

shall first describe an exchange economy by the pair (;&,f), where ,1

describes preferences and f € M+ defines the initial allocation of commodi-

ties to groups of agents. Then I shall extend these definitions from groups

to the linear space of agents.

An allocation i, a member of M,, is feasible if 2(A) = T(A). The

allocation 2Z agrees with Z' on E {if for all F e ./, FCE, Z(F) =

Z2'(F).
‘ M+xM+
Preferences are defined by the mapping }dzﬂ/a-Z .« To say that

(i',i) e’}(E) is to say that all the members of E unanimously prefer A

to i, i.e., (2',i) € }(F) for all F e ../, FCE.
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Information about preferences can be summarized by the mapping S: n+ x o
Y -~ ~
+ 2 + derived from » . The set of elements y € S(Z,E) 4s obtained from

?(E) by taking all those Z' such that

-~

(1) Z' agrees with Z on A\E
(11)  (Z',2) e»(E), and
(111) - Z'(E) = y.
The following assumptions on 7 are given as they are reflected in §,
(s.1): §(£,E)‘= {Q} whenever A(E) = O,
(S.2): §(2,L)Em) = Z§(£,Em) whenever {Em}, m=1,...,n are pairwise
disjoint.

Since z € M+ 'implies that i(E) = 0 whenever A(E) = 0, (S.1) says that
null sets of agents, receiving null aggregate quantities of commodities, have
null preference sets. (S8.2) would follow from an assumption on }’ that
preferences do not exhibit external effects, i.e., if i' agrees with Z on
E, then S(Z',E) = S(Z,E).

The model (},Ts will be referred to in its more convenient summary form
_(S,T).

A Walrasian equilibrium (WE) for (S,T) 1s a pair (Z,q) ¢ M x Y* such

that

(1) Z(A) = T(A)

(2) qZ(E) = qT(E), all E e-¥

(3) - y e S(Z,E) dimplies qy > qT(E), all E with A(E) # O.

REMARK 3: Assume Y has the Radon-Nikodym Property described in Remark 2,

The model (§,f) might have originated from the individualistic
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representation (u,t). Then T(E) = ]E t dA so that initial allocations for
groups are built up out of the initial allocations for individuals. Similar-
ly, let wu: A x Y+ + IR be a measurable function from which § is derived:
when Z(E) = Jg zd%, then S(Z,E) = {y = Jg 2'dx: u(a,z'(a)) > u(a,z(a)),
a.e. on E}. If (§,f) were derived from (u,t) in this way, the définition
of (i,q) as a WE for (§,f) would be equivalent to the definition of (z,q)
as a WE for (u,t) where (1) [, zd) = [, tdr, and for a.e. a ¢ A,
(2) q(z(a) - t(a)) =0, and (3) u(a,y) > u(a?z(a)) implies q(y-z(a))
> 0.

The relation between the aggregate or group and the individualistic

formulations of nonatomic models is the subject of Debreu (1967) and Armstrong

(1982).

Just as there is a unique linear extension of T ¢ M+ to T ¢ B,, let
Y

us also define S: B+ x X+ + 2 + as the linear extension of §, where

S(Z,x) = ¢ uiS(Z,Ei), when x = % aiin and a, > 0,

To 1nterpret,.we may regard Z as a replicated version of Z in which the
group ayxp receives the total quantities ai(E). S 1s the corresponding
notion of replicated group preferences in which S(Z,axE) = ag(i,E). Note
that unlike the usual definition of a replica economy with a finite number of

types, here there may be a continuum of types.

The pair (S,T), a linear extension of (§,f), is simply a replicated
version of (§,f). It is readily verified that (i,q) is a WE for (§,f) if
and only if (Z,q) is a WE for (S,T’, i.e., (1) ZXA = TXA’ (2) q(z-T)x
=0, all xeX , and (3) y e S(Z,x) implies qy > q2x, all x ¢ x;\JQ}.

The advantage of the latter formulation is that it leads to a characterization



of WE that will be used below, in the proof of existence of WE and its
coincidence with the core. For the remainder of the paper I shall use the
linear extension B, 'of the space of allocations and the linear extension
(S,T) of the model (S,T).

The remaining assuﬁptiona on p;eferences and initial allocations are n&w
given. Rather than stating them in terms of (§,f) and then extending them,
I shall give them directly on (S,T);

Besides the requirement that T ¢ B+, assume

(T.1): T ¢ B++,

(T.2) says that aggregate initial endowments satisfy a quasi-interiority
condition. (T.l) says that nonnull subsets of X4~ have nonnull initial
endowments. Note that.the stipulation T ¢ B+ implies the converse of (T.1l):
if le = 0, then Tx = 9.

For (Z,x) ¢ B+ x X assumptions on S are:

+’

(s.3): S(Z,x) 4is monotonic — i.e., if |x| +# 0, then
(a) Zx e ¢l S(Z,x) and

(b) y €cl S(Z,x) implies y + Y;\jg}(: S(Z,x), where ¢l

closure,
(S.4): S(Z,x) 1s convex,

(S.5): S has open graph in Y+ x B+ x X+ when Y,_ and X+ are given their
respective norm topologies and B, 1s given the strong operator

topology.
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(S.3) 1is ; strong monotonicity condition while (S.4) is standard and
essential.

(S.5) 18 a key restriction upon which a limiting argument from small-
square to large-square economies 1s based. The sequence {Zn} converges to
Z 1s the strong operator topology if for each x ¢ X, 1lim Z x = Ix. (8.5)
says that if {yn}(: Y, {xn} C X, {Zn} C B, are such that y_ -+ },

x *x ¢ 0, Z +Z and ye S(Z,x), then for some n, and all n > m,
Y, € S(Zn,xn). This implies that if xE# 0, S(Z,x) 1is open in Y,.

Let us examine (S.5) in more familiar settings. When the large-—square
model is specialized to form a small-square model, in Section 5.2, it will be
seen that (S.5) is exactly the continuity condition used in the demonstrations
of WE. Next, consider an individualistic representation (u,t), described in
Remark 3, from which (S,T) might be derived. Each 2 ¢ B+ is representable
by a z: Z » Y+ such that Zxg = ]E zda. If y ¢ S(Z,XE), there 18 a z'
such that y = ]E z'dx and u(a,z'(a)) > u(a,z(a)) a.e. on E,

Assume that u(a, ) 1s continuous. Then, for any € > O there is a
§ > 0 such that u(a,NG[z'(a)]) > u(a,NG[z(a)]j a.e. on ENE?, where
NG[y] is a §-neighborhood of Y, and A(Eé) <€,

When Zn +Z, v e S(Z,XE) and A(E) # 0, (S.5) implies that for
sufficiently large n, y ¢ S(zn’xE)° To see what this entails, let Z, be
represented by z,. It can be shown that Zn + Z in measure (i.e., for any
§> 0, 1lim A{a: ||zn(a) - z(a)|' > 8§} = 0) and for any {En}(: E with
1im A(En) = 0, lim |‘JE z dx" = (O, Therefore, the continuity of u
implies that for any .€Z§ 0 there i8 an n such that u(a,z'(a)) >
u(a,z;(a)) a.e. on E\E, and X(En) ¢ €/2. Agaln, by continuity we can
find za such that a.e. on E E \UF, u(a,z&(a)) > u(a,zn(a)), z'(a) -

z'(a) e Y, and AE F)) < €. Note that 1lim | (z'-z!) dx e Y, \\{0}
: E\E UF_ :
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while 1lim f » zndA = 0. (S.5) says that we may choose z& in such a way
E UF
n- n
that the excess f (z'—z;) d), which is arbitrarily large in
E\E UF
n_ n
comparison to f zndx, can be redistributed to En CJFn so that
EUF
n” n

y = IE zd) = IE za d\» and u(a,za(a)) > u(a,zn(a)) a.e. on E U F,.

The above restrictions do not capture the irreflexivity of the underlying
preferences of the members of a group. For example, we cannot say that for
A(E) # 0, Zxg £ S(Z,XE), as we could if E were a single individual. For a
given Z, there are many Z' sguch that Z'XE = ZXE and the possibility can-
not be ruled out that some of them are unanimously preferred by E to Z. To
presefve this fossibility while also relying upon the theorems for small-
squaré'models, another assumption must be made for which some additional
constructions are required.

Let 7 = {E} be a partition of A 1into a fi;ite number of elements from
o/, Use 1w to define the finite-dimensional subspace of X,

X(n) = {x ¢ X: x = gﬁ, GEXE}'

If 2' is a linear operator on X(w), it can be extended to all of X by

taking

Zx = I (E YA ):
i 4 Eenw “E(i) E

where x = L “iin and ogcq) = AEN Ei)‘ This construction illustrates the
method by which an allocation for a model with a finite number of agents is
made into a replica allocation for a nonatomic model. The scalar aE(i) is
the fraction of the members of Ey who are of type E.

Let Bﬂ(: B(X,Y) be the set of operators on X that can be built up as

extensions of operators on X(w). In contrast to allocations in the space B,
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for allocations in B" there 1is the conclusion,
if z, Z' ¢ Bw and ZXE - Z'XE, Eew, then Z agrees with Z' on E.

Let S1r be the restriction of S to the domain (B")+ x x+(n). Note
that if E' £ n and therefore Xg £ X+(n), its preferences are ignored by

Sn' Irreflexivity of preferences appears as
(S.6): Zxg £ S“(Z’XE) whenever Z ¢ (Bu)+ and E ¢ .

The final assumption acknowledges the fact that the commodity space may
not be finite-dimensional and therefore Y, may have an empty interior.
Thus, without further qualification, even if the feasible allocation Z were
such that Zy, belonged to the Y, -boundary of the convex set S(Z,XA) -~ a
necessary condition for WE, given (S.3) — there need not be a q ¢ Y*\\{Q}
defining a supporting hyperplane to S(Z,XA) passing through ZXA° Before we
can prove the existence of a WE pair (Z,q), the prior condition that such
supporting hyperplanes exist must be ensured.

To this end, let Z ¢ B, and define the function djz? Y x Xi\{g} + by

‘ -», 1if y ¢ aS(Z,x), all a> O,

d, (y3x) = l
sup{a »0: ye aS(Z,s)}, otherwise.

Note that when Z ¢ B and (S.2) is satisfied then 0 £ cl S(Z,x).

-+
Therefore, dz(y;x) 1lies in [-=,»); and 1if dz(y;x) > -=, then dz(y;x)
» 0. dz(y;x) is a measure of the distance between point y and the set
S(Z,x). The point y does or does not belong to cl S(Z,x) as dz(y;x) > 1
or < 1.

Holding Z and x fixed, dz( ;x) 1s known to be homogeneous (8 > 0

implies de(y;x) - dZ(By;x)) and, because S(Z,x) 1is convex, it is super-

additive (dz(y+y';x) > dz(y;x) + dz(y';x)). Therefore, dz( ;x) 1s concave.
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Properties of this function are demonstrated in Phelps (1963, Proposition 2,

The subdifferential of the homogeneous concave function dz(.;x) is a

mapping defined by
3d,(y;x) = {q € Y*: qy = d,(y;x), aqy' > d,(y'sx), all y'e Y}.

Note that because dy( ;x) 1is homogéneoua, if B> 0 then adz(sy;x) =
The reason for introducing d, is the following: if q e 3d,(y;x) and

dz(y;x) = o, the hyperplane defined by q passing through y supports

cl a S(Z,x) at y. Thus, y 1is on the boundary of S(z,x) 1iff a = 1.

If dz( ;x) were continuous at y, that would suffice to conclude
adz(y;x) # ¢ and, if y belonged to the interior of Y., the fact that
ds( 3x) 1s concave would imply its continuity. However, when Y, has no
interior, its continuity cannot be presumed, adz(y;x) may be empty, and a
supporting hyperplane cannot be ensured.

To demonstrate the existence of WE these possibilities must be precluded.

This is accomplished by the following assumption.

(S.7) For any ¥y > 0 and 2 ¢ B++, there exists a weak-star compact subset
¢ C ¥A\[0} such that 1f (y,x) € ¥, x X\{0} and I~ 7] < v

then
-1
3dz(!X| yix) N C # ¢.
There are two parts to (S.7). First, there is the assumption that for

any (y,x) e ¥_ x X\{0}, ad,(y;x) # ¢. This would itself be a comsequence

of the continuity of dz at y. A q e adz('xE|—1 y;xE) measures the per

capita marginal rate of substitution among commodities for the group E.

Second, (S.7) says that not only are per capita marginal rates of substitution
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well-defined for any group, but they also do not vary "too much" among groups

of agents.

REMARK 4: It may be helpful to give an analog of (S.7) when the model (S,T)

is derived from an individualistic representation (u,t) as in Remark 3.

Agsuming Z ¢ B++, assume there exists a 2z: A +‘Y++ such that ZXE =

IE zd). Let S(z(a),a) = {y: u(a,y) > u(a,z(a))}. Therefore, if there exists

q € Y* such that 1inf q[S(z(a),a)] = qz(a) # 0, then q represents the

marginal rate of substitution of commodities for individual a at z(a).
Suppose u(a,+) is a concave function on Y, and let 3u(a,y) =

{a € Y*: u(a,y) - q(y-y') > u(a,y'), all y' ¢ Y. ]. It is readily verified

that q ¢ 3u(a,z(a)) implies inf q[S(z(a),a)] = qz(a). Let auY(a) =

{au(a,y): ||y|| < y} and say auy(a) # ¢ 1f 2Ju(a,y) # ¢4, for all

||y|' < y. It would suffice as an alternative to (S.7) to have
Ma: auy(a) NC # ¢} = A(A).

Call the above restrictions (Y.l), (T.1-2) and (S.1-7) on the commodity

space, initial allocations and preferences, respectively, the “"stated condi-

tions”. The main result of this paper is the following:

EXISTENCE THEOREM: Under the stated conditions on (S,T) there exists a

Walrasian equilibrium.

4, The Auxiliary Lemma and the Core Equivalence Property

Say that a feasible allocation Z for (S,T) 1is in Walrasian position

if

(We): Tx £ S5(Z,x), all x e X\{0}.



18

It 1s readily verified that if (Z,q) 1is a WE for (S,T), then 2Z 1is in
Walrasian position. More interesting is the converse,

Compare the definition of Z as satisfying Walrasian position with z

as an allocation in the core of (§,f);
(Core): T(E) # S(Z,E), all E with A(E) # O.

Thus, Z 1is in Walrasian position if it is in the core, not simply of the
actual space of agents ,/, but the linear space X_.

If the economy (§,f) were to be replicated so that for every
“"individual type” E there were groups of agents having preferences and
endowments that were positive scalar multiples of f(E) and §(Z,E) and if
the ailocation Z were also in the core of the replicated economy, the result
of Debreu and Scarf (1963) suggests that Z would be a WE. Because T and,

S(Z,¢) are each linear on X,, such replication is a built-in feature of

(S,T). Thus, the following result is an extension of the Debreu-Scarf Theorem
to economies with an infinite number of types of agents and an infinite?
dimensional commodity space. Aubin (1979) gives a version of this result for
small-square economies with the additional restriction that individual

preferences can be represented by concave functions.

AUXILIARY LEMMA: Under the stated conditions on (S,T) if Z2 1is a feasible

allocation in Walrasian position, there exists a q e Y* such that (Z,q) is

a Walrasian equilibrium.

PROOF: Let x ¢ X;\jg}. From (T.1), Tx # Q. Since 7Ty ¢ s(z,x), It
follows from (S.3) that 2Zx # 0. Therefore, 2 ¢ By, .

Define
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K = {s(Z,x) - Tx: x € X}

1. K 1s a convex cone with vertex g.

implies Tx = 0; and by (S.1), S(Z,x) = {0}].

~

Let 'x' =0, Te B+
Therefore, S(Z,x) - Tx = 0 ¢eK.
If ye {S(Z,x) - Tx} and y'e€ {s(z,x') - Tx'}, then for all a >0,

(ay +¥') € {S(Z,x") - Tx“}, where x" = ox + x'. Thus, K 18 a convex cone

with vertex 2.

2. K NEYN{GD = ¢
Let |x| = 0. From Step 1, {S(z,x) - Tx} N(-¥\{0D) = ¢.
Let x € Xl\{g}. Suppose thefe is a y ¢ S(Z,x) such that (y - Tx)
€ (-'Q\{Q}). But by (S.3) this would imply Tx ¢ S(Z,x), contradicting the

hypothesis of the Lemma. Again {S(Z,x) - Tx} N Y \{0}) = ¢.

3. cl KO (-Y) = ¢
Suppose v, € K where v, =y, - Tx, and Y, € S(Z,xn). Let v =
1im voe If v = 0 there is nothing more to prove so assume v # 0.
| Let q, € adz(Txn;xn)(: C. Therefore, by (T.1) and the definition of
o,,
q,Tx, = dz(Tx,;x%,) > O (1a)

q. Y, > dg(y ix,) (1b)
But dz(y,sx,) > dz(Zx,3x,) > dz(Txn;xn). Therefore (la=b) imply
Q(yy = Txg) =quvy > 0 (2)

Since T 1is bounded, there i8 a y > 0 such that |xn|_1 ||Txn|| < Yo
v ) = e
Further, adz‘Txn,xn) adz(|xn| Txn,xn). Therefore, by (S.7) 1if q, €

ad,(Tx ;x ) there is a q e Y4 such that a subsequence of {q |}, taken to
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be the sequence itself, converges in the weak-star topology to q. Therefore
qn'v + qv (3

Since C 1is norm bounded and {qn}(: C, the hypotheses that v+ v in

norm and 9, * 4 in the weak-star topology imply that

Conditions (2-4) imply qv > 0. Since q ¢ Yi\\{g} and v # 0,

v £ (—Y++); otherwise, qv < O,

4. 1inf gk > O for some q # 0.
A result in Klee (1948, Corollary 1, p. 769) is that if K is a convex

cone with vertex 0, then there exists a q # Q such that inf qk > 0 1if

and only if cl K # Y. Therefore, Step 4 follows Trom Step 3.

5. (Z,q) 1is a VWE.

From (S.3) and condition (1), Y\\{0} C {8(Z,x,) - Tx,}. Therefore,
inf qk = 0 implies q e YX \{g} and by (T.2) this implies qTy, > 0. By a
well-known argument it follows that qTxE >0 wbenever TXE # 0 and there-
fore if y ¢ S(Z,XE), then q(y - TxE) > 0. B& (T.1), TXE # 0 whenever

A(E) # 0 and therefore condition (3) defining WE is satisfied. Q.E.D.

It is clear from their definitions that an allocation in Walrasian
position for (S,T) is in the core of (S,T), 1i.e., Tx £ S(Z,x), all
X € X;\jg} implies Tx ¢ S(Z,x), all x e Y\[Q} where y ={yz: E ¢ ol}. By
the Auxiliary Lemma, this is nothing other than the well-known result that a
WE is in the core. In general, the condition of being in Walrasian position

is stronger than merely being in tiie core, even in nonatomic economies.
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However, in certain models where the commodity space is not "too large” the
core and Walrasian position are equivalent conditions. This is the case for
the model of this paper, as it is for the large-square models examined by

Bewley (1973) and Mas—-Colell (1975).

CORE EQUIVALENCE THEOREM: Under the stated conditions on (S,T), the

conditions of being an allocation in the core, in Walrasian position, or

Walrasian equilibrium are equivalent.

PROOF: Since WE => WP => core, the three are equivalent if core => WE,

We repeat the definition of K and introduce the definitions of K, and

K= {S(Z,x) - Tx: x ¢ X} -
K1 = {S(Z,x) - Tx: x € co x}
J = {s(z,x) -~ Tx: x ¢ x}

where co y 1is the convex hull of x = {XE: Eewl.

To say that Z 1s in the core 18 to say that
Jm "'Y+ = {Q}.

If it can be shown that this implies cl KM -Y, = {g}, then steps 4 and 5
in the proof of the Auxiliary Lemma can be used to show that there 1s a q
such that (Z,q) 1s a WE.

1. el JN Y., = ¢. Since J C K, the same argument used in step 3 of the
Auxiliary Lemma to show KM -Y, = {0} dimplies cl KMN-Y = ¢ may be

applied here to yield the desired conclusion.
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Let us say that Z[x] is dense in Z[co x] 1if for any x = quxE €
3
co x, where {Ej} are pairwise disjoint, and any € > 0, there exists Fj(:

Ej, necessarily pairwise disjoint, such that

||zxUFj - zx|| < €.

2. ZeB implies * Z[y] 1is dense in Z[co yx]. Let

+
k=eo . k=g

Zx = (x)e, and Z'x = [ (x)e, .

o Be(x)ey o B (x)ey

Therefore,
(Z—Zz)x = I Bk(x)ek.
k>2

If x £ co y, then 2Zx < ZXA - TXA' Writing

k= 2 k=2
Ty, = I 1. (x,)e, and T'yx, == T 1,.(x,)e.,
A K=l kY2 "k A k=1 k**A"k

we know that because {ek} is order—compatible rk(xA) > Bk(x). Therefore
sup {||(z-z‘)x||: x € co x} < l|(T—T£)XA'| = ||k§ Tk(xA)ek'|’ (5)
L

which implies that the LHS + 0 as & + e,

Similarly,

sup {,'(Z—Zz)xllz xex} +0 as g+ w, (6)

Now, by Lyapunov's Theorem on the convexity of the range of a vector

measure,
z1y] = z%{co y] for all 3, ¢))

where the equality is understood in the same sense of Z[y] as dense in

Z[co x] except that € = 0.
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The conjunction of (5), (6) and (7) implies the desired conclusion.
3. ¢l J =cl Ky: It suffices to show that J 1is dense in K;. Let y =
$(Z,x) - Tx, where x = ZaixE € co x» Now, x can be rewritten (if
i
necessary) as a linear/combination of pairwise disjoint {Ej} such that
x =73 Bij ’ Bj ¢ [0,1], Therefore, there exists Yy such that Zyj =y
- ' '
and yj e gj [S(Z,XEJ) TxEj]° Thus, there exists Z' such that 2Z xEj €
S(Z,xE ) and
h
= g, [2'-T
Yy < By [ lej
By 2, Z'[x] is dense in Z'[co ], T[x] 1is dense in T[co x] and it

readily follows that (Z'-T)[x] 1s dense in (Z'-T)[co x]. Therefore, there

exists Fj C Ej such that

y) = (z'-T)XFj

and yj is close to Yy, or y = Zyj is close to y' =T yj, as was to be
demonstrated.

4, ¢l KMN-Y,_, = ¢. Steps 1 and 2 imply that cl KjN Y4y = ¢ But K=
{a Ryt a> 1} and cl K = {acl Kyt a > 1}. Therefore, cl KN =Y, = ¢
otherwise if y e cl K f\—Y++, then there would be an a > 0 such that

d-ly e cl Klrj—Y++, a contradiction. Q.E.D.

5. Proof of the Existence Theorem

The strategy of the proof is first to show that a large-équare model can
be suitably restricted to mimic a small-square one. Once this is done
theorems for small-square models can be applied to demonstrate the existence
of WE and therefore of an allocation in Walrasian position (WP). This is

accomplished in Sections 5.1 and 5.2, below. In Section 5.3, I shall show how
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the existence of an allocation in WP for the small-square model can be
extended to imply thé existence of an allocation in WP with the original
large—square space of agents but the small-square commodity space. In step
5.4, the existence of an allocation in WP will be extended to the original

model with both a continuum of agents and an infinite-dimensional commodity

space.

5.1 The economy (s*,1mh.

By (Y.1), each Tx can be written as
Tx = ¢ rk(x)ek,

where {Tk(x)} is the unique sequence of nonnegative scalars defining Tx.
Let y = Tx, and define -
y(2) = I T (x,)e, .
k>2 k7Ak

Construct the finite—dimensional subspace

Yalyeriy= 1 Beex + B, }?(2)}.

k<2
(0f course, Y£ i{s equivalent to ]Rz, assuming ;(2) is not spanned by
{el""'e£—1}°) Use Y! to define B* ag the set of bounded linear
operators from X to ¥t and Bf as those for which Z[X+](: Yf.

Let o € Bi be defined by

z . -
T = I 1 (x)e +Ia 'inl y(2), when x =1 a ,xp .

k<2 i
T is a revision of the initial allocation. Regarding each e, as one unit
of a distinct commodity, T glves each group E exactly the amounts of the

first (2-1) -commodities it had in T. However, its allocation of the
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remaining commodities is revised to ensure an equal per capita distribution of
the "composite commodity,” ¥y(&). Thus, E receives the amount AE)Y(L).

As a member of Bi, 1% satisfies conditions (T.1-2).

[}
f x X+ > 21 ig the restriction of the original preference mapping
g

S to the set of allocations defined by Bi. On its domain, gatisfies

conditions (S.1-7).

5.2 The small-square economy (S:,Ti) and the existence of WE,

Let 7 be a partition of A having n nonnull elements. In Section 3,
the preparations for assumption (S.6) included the definition of Bu' Bi
will indicate the subset of Bu in whigh the range of the operator lies in

Y%, Note that elements of B# can be put in 1-1 correspondence with ¢ xn

matrices.

Ti e (B is a further revision of T din which T:XE = szE R

2
)
L i i

E1 c®m. For E ¢ m, T:XE need not agree with szE. T: is the descrip-

tion of initial endowments in a small-square economy.

The description of preferences in a small-square is given by Si: (B:)+
v
+ ’

" the domain of allocations described by £ x n matrices. Note that for

x X+(w) > 2 which is the further restriction of the preference mapping to

x £ X, (v), 1its preferences are ignored in S#.
It 18 now useful to eliminate some of the notational burden from

(Si,Ti) so as to regard it as a small-square model on its own terms.

L

As an element of .(B:)+, Tw can be described by (t;,...,t;), where

- 7Te L -
t:1 T in € Ry when Ei € v. By (T.1-2),

L L
(a) t, € ]R+\{Q} and I L, € int R_.
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. L
Similarly, Z ¢ (B“)+ can be described by (21)00"zn), where 2z

i

n
Zin, when Ei ¢ 7. Define Si(Z) = Si(Z,in). Thus 81: (Hi) > 2 .
Further,

(b) by (5.3), S;(Z) is nonempty and its closure contains {u{‘\{g} + zi};
(¢) by (S.4), $4;(Z) 1is convex
(d) by (S.5), S54(Z) has open graph ;n DRi x (B&)n
(e) by (5.6), z, £5,(2).
L 2 . B
(S;,T ) 1is now described by {(5y,ty): 1 = l1,...,n}, where S; defines

the preferences and t; the initial endowments of individual 1. A WE for

this model is a (Z,q) € (mi)n x }3 such that,

(1) Bz -t =0,
(1i) q(z1 -t,)=0, 1 =1,...,n
(111) y e Si(Z) implies q(y - ti) >0, 1 =1,...,0.

Through the contributions of Mas—Colell (1974), Gale and Mas-Colell
(1975), and Shafer and Sonnenschein (1975), it is know that conditioms (a)-(e)

imply the existence of WE. Therefore, if (Z,q) 1is a WE for the small-square

model, Z 1is in Walrasian position, i.e.,

Zq,it1 £ Zqisi(Z), all a >0, 1=1,...,n, 2&1 > 0.

'A formal restatement of this conclusion suited to our purposes is
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PRINCIPAL LEMMA: Under the stated conditions, in the small-square model

(S:,T:) derived from the large—square model (S,T), there exists Z: €

(Bf’r)+ in Walrasian position, i.e., for all x e X _(x)\ {0}, T:x ¢

2,8
Sz .
"( I,x)

5.3 From WE in (s%,TH) to wE 1n (st,Th. ‘
Let {n] be a sequence of successively refining partitions for A for
which

lim (max {A(E)}) = 0.
w Ben

It is known that for any ¢ > O there is a LN in the sequence such that for
any 1w refining LN and»any E ¢ /, there exists an E' formed by the
union of elements of w such that the A\-measure of the symmetric difference
between E and E' 1is less than ¢ (see Halmos (1950, p. 170)).

By construction, for each E ¢ m, T:XE,' szE. Further, {T:}, regarded
as a sequence in w, 18 'a bounded sequence of operators. Thus, for each E,
I%m TiXE = szE' This readili extends to the conclusion that for all x ¢ X,

1im sz = sz, or
" 1

TR' + '1‘2'.
T

To show that a limit point of {Z:} exists in Bf, a more general

argument applicable to convergence in B will be given and drawn upon again,

below.
Let B, = {Zn} and B, be the closure of B; with respect to the

strong operator topology. Since B 1is known to be closed in this topology,
By C B. Further, if Bj ¢ By, it is readily verified that B, C B,. To
engsure that any sequence in B; contains a convergent subsequence, By must

be compact.
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FACT 1 (Dunford and Schwartz (1957, p. 511, exercise 2)): B, 1is compact in

the strong operator topology iff for each x, Byx = {y: y =2x, Ze BZ} is

contained in a compact set.

For all 1w, the range of Zﬁ »is contained in the same finite-
dimensional Y*. Thus, the closure of {Zﬁ}, call it B,, 1is contained in
Bf. Since the range of each Byx is in ¥? and is bounded, the conditions
of Fact 1 are met. Therefore, there exists a z* € Bi and a convergent

subsequence of w, assumed to be the sequence itself, such that

L
L

2

z7 + 77,

Further, z¥ 1g a feasible allocation for (s%,1%) since Z:XA = TixA =

T* for all x and therefore szA = szA.

Xp

LEMMA 1: Let Zi satisfy the conclusions of the Principal Lemma for

(s:,T:). Then {(z:,rﬁ)} has a limit point (z%,T%) which 1s in Walrasian

position for (s*,t%, 1i.e., for all x ¢ Xg\{g}, 4% £ s¥z%,x).

PROOF: Suppose T*x' € Sz(Zz,x'). Then for some ‘v there is an X €
X+(n)‘\{g} such that x 18 arbitrarily close to x', T:x close to sz‘,
and Zix close to z%x. By the continuity condition, (5.4) this implies
Tix € Si(z:,x). But this contradicts the hypothesis that Z: is a WE for

(st,rh.

5.4 From WE in (S*,T%) to WE in (S,T).

Let {z} be the sequence of positive integers. By construction,
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z —
T"% = I 1 (xzle, + |xe]| Y(R)
E ¢y K ETK 'E'
= I (y.)e, + (> (x,)e. )
kQ’kXEk lle kn‘kXA k'’
while
k=0
Ty, = I 71,.(x.)e, .
Xg oy K ETK
Thus,
lim ||T%. - T = 11 T (x,) = 1, (xz)] =0
zmH xg = Txg| zmllbz Ixg| T (xy) = 7 (xgdle || = 0,

i.e.,

™ 4 T,

To show that a limit point of {Zz} exists in B,, it suffices by Fact

1 to establish that for each x,
z.
Kx = {y = Z7x: & =1,2,...}

is contained in a compact set of Y, Since Y has a basis, compactness is

characterized by

FACT 2 (Dunford and Schwartz (1957, p. 260, Corollary 5)): If {ek} is a

basis for Y, then K 1is contained in a compact set (i.e., is conditional}y

compact) iff it is bounded and for every € > 0, there exists zo such that

for any y = zskek e K, if ¢ > Lq then '| I skekll LG
' k>

The "tails” of all y in K must be uniformly small.
Let y = 2B¢ek = zle be an element of Kyg « Clearly, y <y = Tx, and

therefore KXE is bounded. Further, for.any L,
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2 -
y(2) = I e, <y(2) = ¢ 1,(x\)e, .
| o Bk g XAk

Since for any € > 0, there exists 20 such that H;(R.)H < € whenever
L zo, the same condition follows for y(g). Therefore, KXE is

conditionally compact.
then Kx = zquXEi exhibits the same property.
Therefore, the closure of {Zz} is compact in the strong operator topology.
Thus, there exists Z ¢ B+ such that {Zz}, or a subsequence taken to be the
sequence itself, satisfies '22 + Z.

Further, Z 1is a feasible allocation for the economy (S,T) since
‘ZLXA = TzXA = Tx, for all £ and therefore 2Zyx, = TXA°

LEMMA 2: Let z* satisfy the conclusion of Lemméil for (Sl,Tz). Then

{(Zz,Tz)} has a limit point (Z,T) which is in Walrasian position for

(s,T), i.e., for all x ¢ X\{0}, Tx £ 8(z,x).

PROOF: Suppose Tx' ¢ S(Z,x'). Because ™ + T and z* - Z, (S.4) implies
that for sufficiently large £, ™x' ¢ S(Zz,x'). Since sz', T*' ¢ Bf

and s* 1g simply the restriction of S to Bi, it follows that Ty €

Sz(Zz,X') which contradicts the hypothesis that z* is a WE for (Sz,Tz).

Applying the results of the Principal Lemma, Lemmas 1 and 2, and the

Auxiliary Lemma completes the proof of the Existence Theorem.
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