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Introduction

In decision-making bodies like legislatures, parliamentary systems, and
organizations in general, coalitions turn out to be either all-powerful or totally
ineffectual.  This singular circumstance permits us the use of a simple
mathematical construct — simple games -- to study the internal authority
structure of these entities. Simple games designate a particular class of multi-
person games which can be thought of as games of control, and are characterized
by having only two types of coalitions, winning or losing, that is, the only two
possible outcomes for any viable coalition are either winning or losing. This
property makes them particularly well suited for the analysis of structures where
the primary concern is power and authority rather than strategic or monetary
considerations. The mathematical structure and properties of simple games were
originally developed by von Neumann and Morgerstern [5] and later extended by

Shapley [2], [3].

The present paper follows closely Shapley’s analysis and modeling of the
structure of simple games and its extension into organization theory, and is
organized in five sections. The first three give the basic necessary results about
sets, coalitions, simple games, and the local topology of command. In the fourth
section we study in detail the key notion of the present paper, the control
function. The last section deals with the global structure of control and its

applications to organization theory.

1 Sets

The basic mathematical framework of our analysis is set theory and in this
section we shall briefly review some of the elementary Boolean properties of sets.
The relevant issue to note is that although we use nothing more sophisticated
than simple set theory, we shall be working at three different levels of analysis,

and it is necessary to distinguish very clearly between sets whose elements are



individuals and sets whose elements are other sets. We shall use the following
notational conventions: regular lower-case letters or numerals for individuals,
italic capital letters for sets of individuals, and script letters for sets of sets of
individuals. The connective e(g) states that an element belongs (does not
belong) to a set and it will help to clarify the different levels of abstraction under
consideration, i.e., ae A€ A. Further, we shall even differentiate between the
empty set of individuals @ and the empty set of coalitions ¢ . When naming the
elements of a set we shall employ both the traditional braces and the overhead
bar, i.e., S={a,b,c,d}or S =abcd. The set of all individuals in a decision-
making body — i.e., a game, a voting system, or an organization — will be denoted
by N, and its power set by N . Thus, N is the set of all subsets of N and its
elements shall usually be called coalitions. Sets whose elements are sets shall be
normally denoted as collections. Set subtraction will be indicated either by “\”

or by “-”. Therefore, if ¢ is any element of N, then N, will denote

N\i-ie, (N —;) - and N, will denote the power set of N,. A minimal element

i

of a nonempty collection (of sets) S, is a set (coalition) who belongs to S and has
no strict subsets in S. Complements and all other set operators are defined in

the usual manner.
1.1 Definitions

Let S< A be any nonempty collection of coalitions. Then we shall define the

following special collections:

S* s the set of all supersets of elements of S

S~ is the set of all subsets of elements of S

S is the set of all complements of elements of S
S™ s the set of all minimal elements of S

SY  is the union of all elements of S

SN is the intersection of all elements of S



Note that SY and S are not collections of coalitions (sets) but just sets of
individuals. By convention @' =@ and " =N. All the elementary Boolean
properties of sets carries over to collections of sets, plus some other elementary

identities on these special collections, of which the most interesting follow.

For any nonempty S,7 ¢ N we have:
(SNTY =S'NT
SUTYy =8'UT
(S\T) =S"\T"
S"'=8

For the purpose of illustrating the previous definitions, consider N =abcd so that

N has sixteen coalitions and take one of them, such as S = {E, a_cg, EZ} .

Then we have

= {ab cd, abc,abd, acd,bed, abcd}

S = {cd,b,ab}

S" ={ab,cd
SY = abed
"=

Later on, we shall make good use of another Boolean operation on collections of
sets. The product of two nonempty collections of sets is defined as the collection

of all nonempty intersections of elements of these collections.

Formally, let S,7 c N be a pair of nonempty collections, then its product S7 is

defined as

ST ={SNT:8e8,TeT}



2 Simple Games

The essential notion of a simple game is the basic concept of a winning coalition
which doesn't require more elaboration and one that we take as a primitive. We
represent a simple game by simply stating its players and its winning coalitions.
Further, we characterize this intuitive idea of winning by the following
conditions:

i) the grand coalition always wins,

ii) the empty set never wins, and

iii) any superset of a winning coalition also wins.

Probably the most elemental of all simple games is the simple majority game

denoted by M, where n, the number of players, is odd. In this game M, , there

are 2" possible coalitions of which all of those with more than —’23 members win,

and the rest, those with less than g— members, lose. The general simple game is

denoted by M, , where there are n players and it takes & out of them to win. An
interesting example is the unanimity game M,, where the unanimous decision of
all players is needed to reach an agreement or decision. This particular type of
simple game is also equivalent to an instance of what is known as a pure
bargaining game, denoted by B,. In B, there is only one winning coalition — the

whole body or grand coalition — and thus there are 2" —1 losing coalitions.

Formally, we define a simple game G on a set of players N as an ordered pair,
denoted by I'(N,W), where
pcW=W'cN (2.1)

The first strict inclusion tells us that the grand coalition N is always in W and
the second tells us that the empty set @ is never in W, as desired. The elements
of W are called winning coalitions and since every superset of a winning coalition
is winning, when defining a specific simple game it is necessary only to state w",

the set of minimal winning coalitions.



A player ie N is said to be

an essential player if ie Wwm

a dummy if ie N\wm™
a veto player if iew™

a master if iewn

a dictator if {;} =W"

In what follows we present several basic results on simple games without stating

the formal proofs for reason of brevity.

Theorem 2.1 A simple game has at least one essential player and at most one

dictator.

Corollary 2.2 If a simple game is a dictatorship, then all other players are

dummzies.

A coalition S e N is said to be

Winning if SeW
Losing if Se(N-W)=L
Blocking if Se(N- W)‘ = BK

Thus, a blocking coalition is one that can prevent the formation of any winning

coalition whatsoever. In terms of coalitions the notation is as follows

{S e N :S is a winning coalition}
{S € N:S is a losing coalition}
{S € N:S is a blocking coalition}

2%
L

BK



A game T'(N,W) is said to be

proper if WcN\W orif WNW =¢ orif WcBK
strong if  WoN\W orif WUW =N orif WoBK
decisive if W=N\W

improper if WNW z¢

weak if W @

It is interesting to observe that in a proper game winning implies blocking while
in a strong game blocking implies winning. Note also that the concepts of weak
and strong are not direct opposites. Since in a dictatorship all the players other
than the dictator are dummies -- i.e., they are not essential players -- we may

denote a simple game as essential if it is not a dictatorship. Then the following

results follow.
Theorem 2.3 No essential game is both weak and strong.
Corollary 2.4 Only dictatorships are both weak and strong.

Theorem 2.5 A simple game is strong only if it has no pair of complementary

blocking coalitions.

Corollary 2.6 A simple game is strong only if it has no pair of complementary

losing coalitions.
Theorem 2.7 A simple game is weak only if it has a veto player.

Theorem 2.8 A simple game is improper if it has a non-intersecting pair of

minimal winning coalitions.

If it is possible to enlarge W, the set of winning coalitions in G=TI (N,W),

without violating conditions (2.1) defining a simple game, we shall say that G has



been strengthened. Similarly, if we can diminish W preserving definition (2.1) we

say that G has been weakened.

Theorem 2.9 Repeated strengthening (weakening) of a game G=F(N,W) will

eventually make it strong (weak). Once G becomes strong (weak) it remains so.
Corollary 2.10 Improper games may be either strong or not, but never weak.
The following examples will serve to better illustrate the previous concepts.

Example 2.1 Consider the game G =I'(N,W) where N =abcd and W" = {E,E} .

complements of the losing coalitions is C ={E,;c_,abc,abd,acd, abcd} =B,
therefore the set of minimal blocking coalitions is BK" = {E,ZE}. There is one

master a, one dummy d, and there are no dictators. The game is strong; and

because it has a pair of disjoint minimal winning coalitions, it is improper.

Example 2.2 Consider an assembly of 100 members that requires a 2/3 majority
to pass a resolution. This is a proper, nondecisive weak game. The winning
coalitions are those who have at least 67 members, the minimal winning
coalitions are those with exactly 67 members, and the losing coalitions are those
with less than 67 members. Coalitions with more than 33 members block, and

there are no dictators, masters, dummies, or veto players.



3 Local Topology of Authority

In any organization or decision-making body each of its members is directly
concerned with only a small fraction of all the official orders, requisitions,
authorizations, etc., that flow through the organization. Some members may
have a certain degree of discretionary power; some may even be free agents,
accountable to no one. Others may be merely cogs in the machinery. In what

follows we develop a formal game-theoretic model for these ideas.
3.1 Boss Sets

Let N denote the set of all members of an organization, and let ¢ denote a generic
individual member of N. In general there will be certain other individuals, or
more generally, sets of other individuals, that i must obey regardless of his/her
own wishes. We call them boss sets and denote them collectively by B,. Note
the script letter. Thus, if there is an individual b who can boss i, this is indicated

by l_JeB,., notby beB,.
Formally, for all ie N, we assume:
pcB=B'NN,cN, (3.1)

which may be compared with equation (2.1). The strict inclusion ensures that &
is never a boss set. But all other subsets of N, are eligible, subject to the

condition that every superset in A/, of a boss set, is also a boss set.

Recalling that a rooted tree is a finite, acyclic graph having a distinguished node
called the root, we find that there may be several different ways to set up a
hierarchical structure of an organization, where the members of N are represented

as the nodes of a rooted tree.



Example 3.1 Consider the basic chain-of-command hierarchy, where there is a
leader at the top who is unbossed, and where each lower-ranked member is
bossed by just those coalitions that include his immediate superior, who is in
effect his personal dictator. We shall refer to this type of organizational

structure as a Type I Hierarchy.

Thus, if a denotes the leader, we have B,=¢, and B ={S e./\f,l Ji eS} for all

ie N,, where j, denotes ¢’s unique immediate superior.

Hierarchy

Figure 3.1

A close variation of the previous authority structure is the Type II Hierarchy,
which is one where commands are not necessarily forwarded through channels. A
private has to obey direct orders from his captain and his colonel as well as from
his sergeant. In this case we again have a tree structure, but the boss sets now
take the form B ={SeN,:SNJ,#Q} for all ie N where J, is the set of all
superiors of member i. For the moment, we merely observe that although these
two hierarchies are in some sense equivalent, their local command structures are

not the same.
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3.2 Approval Sets

Just as there were some particular agents, or set of agents, that could boss any
single individual, there are other set of agents, that can approve of him/her.
Thus, we shall associate with every ie N another, wider collection 4 of
coalitions in N, called approval sets, that can approve #'s actions. The consent
of any of these sets of approvers is sufficient to allow i to act, if he wishes to do
so. However, it may not be able to force him to act. So approval sets are not
necessarily boss sets. On the other hand, any boss set is a fortiori an approval

set.

Formally, we have

pc A=A'NN,c N, (3.2)
where B c A for all ieN.

A study of equation (3.2) reveals that always N, c A, and that possibly & c A;.
The set difference (A4 -B) gives us a guide to the amount of personal discretion
that individual i enjoys, if any. At one extreme, if (.A, —B,.) =N, then i is called
a free agent. He needs no approval since @€ .4, and no one can boss him, since
B =¢. At the other extreme, if (A4 —B)=g, then i has no discretionary power,
and we shall call him a cog. For an intermediate example of partial-discretion,
consider a corporation president who is bossable by a 2/3 majority of the board
of directors but is allowed to follow his own judgment so long as he has the

support of a simple majority.

3.3 Command Games
Although we presented the boss and approval notions separately, they are really

halves of a single command concept that can be expressed very naturally as a

simple game.
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Define for each i€ N, the set (collection) of commanding coalitions for i by
W=BU{sUi:SeA} (3.3)

Then G,=I'(N,W) is a well defined simple game, since (2.1) follows directly
from equations (3.3), (3.2), and (3.1). We shall call G, the command game for i.
The ensemble of command games G={G,. :ieN } then completely specifies the

authority structure or constitution of the organization.

From the definition of a command game's winning coalitions we see that the free
agents are dictators in their own command games while the cogs are dummies in

their own command games. Note also that here we have B, # B and A4 # A" .

Example 3.2 Returning to our two types of hierarchies in Example 3.1 (Figure
3.1), to complete their descriptions we need to define their approval sets. It
seems natural in both cases to make the leader a free agent and the rest of the

members cogs. The following Table gives all the respective command games:

i BT AT W i B A wW"

« ¢ N {3 a9 N, {a}

v {a {d {d} b {a {a {q}
- ) B B e-afpa) (a4
e @ @ @ e [ by (33
o fa) @ @ gee (@53 (@53 (353
v ) ) 7 » (Fasa{7ana(7.aba)

Note that in a Type I hierarchy all the command games are dictatorships, while
in a Type II hierarchy many command games have more than one master, and

hence no dictator.
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It will be useful to have an alternative way of speaking of B, A, and W, by

introducing certain set-to-set functions that map A into itself.

The boss function ﬂ(S)={ieN:SeB,.*}
The approval function a(S)= {i eN:Se .A,*}
The command function  w(S)={ieN:SeW}

That is, the boss function B(S) is the set of all individuals that must obey an
order issued by coalition S; the approval function a(S) is the set of all

individuals that can act (if they wish to do so) with the approval of S; and the

command function @(S) is the set of all individuals that are commanded by

coalition S.

From the previous definitions it can easily be seen that B(S)ca(S)c@(S) for
all Se N. Note also that these three functions are monotonic in the sense that

if TS then f(T)c f(S)for f=p,a,0.

Most statements about B, A,W translate easily into synonymous statements
about f,a,w, which are in a sense their inverse functions. Thus, if we are given

S we can recover B from the relation B, = {S eN:ie ,B(S)} and similarly for A
and W, if given o and f respectively.

13



4 Control Games

The command games described the local patterns of authority of a decision-
making body. However, these games do not suffice to give an adequate account
of the global distribution of authority throughout an organization. We will
attempt that task by developing the notion of control. We shall start with a
control function y similar in form to the boss S, approval @, and command @
functions previously defined. Then, we shall reverse the inversion to obtain a set
(collection) of controlling coalitions C, and thus derive a set of control games
H,=T(N,C) similar in form to the command games G =C(N,W). It is
important to emphasize the fact that the notion of control is a derived concept,
ie., no new information is contained in the function y or in the games H,’s.
Nevertheless, a substantial amount of calculation may be required to obtain the

control games H,’s from the command games G,’s.
4.1 The Control Function

Similar to the @, f, and @ functions, the control function y(S) represents the
set of individuals that coalition S can control, regardless of possible opposition
from any or all of the other members of the organization. In defining 7(S ) we
must recognize, on the one hand, the possibility of indirect control -- i.e.,
members outside § being co-opted to join with § in bossing other outsiders -- and
on the other hand, the possibility that some members of S may not have full
control over their actions -- i.e., they require consent from some set of approvers

before they can participate in the bossing of others.

Formally, let F' be the set of all free agents of an organization with N members.
For each Se N we construct }f(S ) with the aid of an increasing sequence of
sets:

Yo ENCY,S)he...
which we shall call the control sequence for S.

14



It begins with the free agents:
Yo=FNS (5.1)

and builds recursively according to the rule
7k=ﬂ(7k-1)U{Sna(7k-1)} (5.2)
for k=1,2,3,...

Lemma 4.1 There is a nonnegative integer k <n—1 such that the control

sequence increases strictly up to the term ¥ . and is constant thereafter.

Thus, we can now define the control function in several different ways:

-]

7(8)=7:(S) or 7,4(S) or lim7(S) or Un(s)

k=0
which by Lemma 4.1 are all equal.

If S=N rule (5.2) simplifies to
7 (N)=a(r.. (V)

Note that it is by no means inevitable that y(N)=N. Individuals in y(N) will
be called controllable, while those in N\y(N) uncontrollable.

4.2 Properties
We present some results on control without stating the proofs.

Theorem 4.2 The control function y is monotonic.

15



Corollary 4.3 Forall S,Te N
y(SUT)27(S)Ur(T)
y(SNT)cy(S)Nr(T)

Theorem 4.4 If S contains no free agents, then y(S) = . In particular we have
y(D)=02.

Therefore (taking S=N) we obtain the remarkable conclusion that, if no one in

an organization is free, then no one is controllable.
Theorem 4.5
If Rey(S) then y(SUR)=y(S)
If RgN\y(S) then 7(S\R)=7(S)
Broadly speaking, this result says that if outsiders controlled by a coalition are

admitted to membership the coalition is not strengthened, while if insiders not

under the coalition's control are expelled the coalition is not weakened.

Theorem 4.6 Always B(y(S))cr(S).

That is, anyone bossable by a controlled set is subject to the same control.
Theorem 4.7 Always 7(}'(S)) =y(S).

This expresses the notion of transitivity of control. It states that anyone

controllable by a controlled set is subject to the same control, and conversely. In

other words, a controlled set controls its own members, and no one else.

16



4.3 Exact Coalitions

The notion of exact coalitions will lately prove helpful in the decomposition of
organizations. A fixed point of the control function will be defined as being an

exact coalition:

SeN uer(S)=S8

Thus, a coalition is an exact coalition if it controls just its own members. From

Theorem 4.7 we have that the control function y maps N onto N, .

The following result specifies the actual existence of fixed points of the control
function. Naturally we know that there are at least as many fixed points of the
control function as there are free agents, actually, oW S|N BX|SZ|N| where F' is the
set of free agents. The ensuing theorem formally establishes the nonemptiness of

the collection of exact coalitions NV, .

Theorem 4.8 Let £=<N ,g) be a complete lattice with a monotonic conirol
function y: N > N such that N, is the set of all fized points of y (i.e., the set
of all exact coalitions). Then the collection N, is not empty and the system

(ng> is a complete lattice.

Corollary 4.9 In particular (given the assumptions and results of Theorem 4.8)

we have

M= U [7(8)25]e N,
SeN,,
and

NI =SQ [y(S)gS]eNa

The following results will also be useful in decomposing organizations. We shall

define an ezact partition as a partition of N that is included in N, . If (for

17



nonempty collections) S =87 (recall the definition of product ) we say that S
is a refinement (or is finer) of 7, and/or that T is coarser than S. For any two
partitions S, 7 such that |S|<|T| we shall say that partition S is smaller than
partition 7.

Theorem 4.10 The product of two exact partitions of a controllable set is also an

exact partition.

Theorem 4.11 There is no smaller common refinement of any two partitions than

their product.

Corollary 4.12 There exists no smaller common refinement of any two ezact
partitions of a controllable set, than their product, which is also an ezact

partition.

Theorem 4.13 For any two nonempty disjoint coalitions S, T of a controllable set

N, such that SNa(T)=TNa(S)=2 we then have that y(SUT)=y(S)Ur(T).

Coalitions with this property (Theorem 4.13) shall be called additive-in-control
coalitions. An exact partition all of whose members satisfy the additive-in-

control property shall be denoted an ezact additive-in-control partition.

Theorem 4.14 The union of any number of coalitions of an ezact additive-in-

control partition is also an exact partition.

4.4 The Control Games

Now we invert the control function y in order to obtain the corresponding class
of control games. This is the reverse of the process that gave us the command
function @ from the collection of commanding coalitions Y. Thus, for each

ie N we define the collection of controlling coalitions for individual ¢ by:

18



C={SeN:iey(S)}

Unfortunately, the ordered pair (N ,C,) does not necessarily define a simple game
according to conditions (2.1). Theorems (4.2) and (4.4) assure that C,=C; and
that C' # N respectively. But nothing guarantees that C; is nonempty. Indeed,
C #¢ if and only if i€y (N ) Only controllable players can have control

games!

Therefore, we define the control game for each individual player i€y (N) to be
H, =I"(N ,C,) Then, the symbol H will denote the ensemble of control games,
H= {H lie }'(N )} (analogous to G, the ensemble of command games).

Theorem 4.15 The set F of all free agents is a blocking coalition in every control

game.

Theorem 4.16 Every cog is a dummy in every control game.

Recall that a free agent (cog) is a dictator (dummy) in his/her own command

game.
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5 Organizations

The term organization in our model is meant to be synonym with organizational
authority structure. We aim to develop a game theoretical model that can
adequately describe and analyze the internal and external workings of a decision-
making body or of any organization in general. Because the command games
describe only the local patterns of authority in the past section we developed the
notion of control, which then allowed us to obtain the controlling games which in

turn give us the desired global structure of authority of the organization.

We pay a price, however, for defining our model in terms of the local notion of
command, since the global fabric of authority may have then to contend with the
logical inconsistency of improper control games. An improper command game is
not necessarily a defect in the authority structure since two disjoint commanding
coalitions may be subject to a common higher control. However, an improper
control game is a serious defect, because it means that there are independent
subsets of the organization that can send contradictory instructions to the same

individual agent — instructions which, under the rules, that individual must obey.

Therefore, we have to recognize the existence of a fundamental distinction
between those systems of command that are free from such logical impediments

and those that are not.
5.1 Proper Organizations

In the previous section we concluded that only controllable players can have
control games. Control is the key notion to keep in mind when defining an
organization. Accordingly, if there exists an structured entity which does not
control all of its members, we denote it as pre-organization. Only entities which

are able to control all of its members are defined as organizations.
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Any member of an organized entity who belongs to y(N ) is called controllable,
while those in N\y(N) are uncontrollable (recall definitions in section 4.1).
Thus, in a pre-organization some of its members may be uncontrollable whereas

in any organization all of its members are controllable.

Formally, we denote an organization by the symbol Q(N ,G) where N is a finite
set and G is an ensemble of simple games {Gi:ieN}. For Q(N,G) to be
considered a proper organization, however, we shall require that all its control

games be proper.

We can state these definitions in two ways, using the control games or using the

control functions.

An entity Q(N,G)is an organization if for every ie N,

C#o (5.3)
and an organization Q(N,G) is proper if for every ie N,
CNCG =9 (54)
Or equivalently, an entity Q(N ,G) is an organization if for every Q,Re N,
y(N)=N (5.5)

and an organization Q(N,G) is proper if for every Q,Re N,
ONR=C=y(Q)Ny(R)=2 (5.6)

Because of the elaborate computations that may be necessary to determine the
control function y, or the ensemble of controlling collections {C’, :ieN } , it would
be desirable to have some general conditions, stated in terms of the command
games, that would ensure a proper organization. The following three propositions

will be helpful in this regard.

Theorem 5.1 Let Re N be such that R\i is a blocking coalition in G, for every
ieR. Then y(N)NR=D --i.e., the members of R are uncontrollable.
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The simplest example of this phenomenon occurs when R has two members, each

one having veto power in the other’s command game.

Theorem 5.2 If there is only one free agent, then the control games are all

proper.

We shall say that an organization is hierarchic if its members can be represented
by a rooted tree (the nodes) in such a way that in each command game G, the

essential players are all superiors or equals to player .

We shall say that an organization is a pyramidal-type organization if it has a
hierarchic control structure that can be represented by a rooted tree with a
unique free agent — the root. Common examples of pyramidal-type classes are

Type I and Type II Hierarchies, the Armed Forces, the Catholic Church, etc.
Theorem 5.3 Every pyramidal-type organization is proper.

Theorem 5.4 If all the command games of an organization are proper then all the

control games are also proper.

Clearly the converse of Theorem 5.4 is not valid. For instance, in Type II
Hierarchies the typical command game has several masters, and so it is improper.
However, the control games are all dictatorships, and thus they are proper. It
can also be easily seen that decisiveness of the command games does not suffice
to ensure that the control games are decisive also. Consider the following simple
example, let N =abcde and let players a, b, and c be free agents; also assume
that the command games for both d and e, are of the form M,,. Then all the
command games are decisive. Unfortunately, it can easily be calculated that

7(%) =ab and 7(51;) =c, from where it follows that the control games H, and

H, each have a pair of complementary losing coalitions (21—5 and cde respectively)

and thus are not decisive.
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An organization in which each member is either a free agent or a cog will be
called a simple organization. A sub-organization is simply a subset of an
organization which is also an organization on its own right (i.e., it controls all of
its members). Two organizations will be called equivalent if and only if their

control functions (games, coalitions) are the same.
5.2 Applications

In the previous sections we have emphasized the procedures of command and
control, of the internal contractual aspects of the organization’s authority
structure, or in other words, of the governance of the organization. However,
most organizations or decision-making bodies have an external material purpose
as well, so that at least some of the commands that flow through the authority
system have a substantive content, and at least some of the power to control that
the organization’s members exercise, does extend beyond the external boundaries

of the organization into another larger domain.

In order to set up the framework of analysis for the intefactions between
organizations we need to formalize an organization's external environment, i.e., to
model the way how the organization members' power to control extend itself into
that external dimension, i.e., into the outside world. We accomplish this by
considering the notion of simple tasks that the organization may be called upon
to perform. For reasons of simplicity we shall only contemplate tasks one at a
time, and we shall treat them as black boxes because their internal structure will
not interest us. On the other hand, we shall be very much concerned with the

interface between the tasks and their potential effectors within the organization.

The problem of quantifying the distribution of responsibility in an organization is
solved by a simple application of the Shapley-Shubik (4] power index for simple
games. Terms like power or responsibility present serious difficulties of use,
because besides the fact that they are multidimensional concepts, they have no

established formal meaning in organization theory. Further, the Shapley-Shubik
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power index for simple games is not the only game-theoretic index amenable to
use for our purposes. For instance, the Banzhaf power index' would be a serious
alternative candidate to consider, however, we have not yet examined the
question of which one would be the most appropriate for our use in the analysis
of organizations. Nevertheless, it seems quite natural, and of great practical use,
to have a reliable numerical measure of organizational responsibility, and
therefore, we shall confine ourselves to the Shapley-Shubik power index

specification.

The primitive basic interactions between organizations that are of interest to
consider here, are interactions between two organizations both vying for the
control of some external task. There are several possibilities that can be
modeled: i) performing one external task under the vigilance of another
organization (monitoring), or i) because of control of another organization’s
external task, eventually a new organization emerges (merger). Further, this
event could be the result of iia) full cooperation (friendly merger) or iib) open
conflict (takeover). The situation of competition would directly aim to cover
open conflict for internal tasks (for the management control of other
organization) and full cooperation (the emergence of pacts and alliances among
different organizations). Possibly some sort of returns to scale are at play here.
Besides organization theory, more practical applications of our theory can be
conducted on a wide diversity of topics such as optimal tariffs, central banks,
constitutional amendments, economic analysis of conflict and coalition forming

incentives, to name but a few.

! See Dubey P., and L. S. Shapley [1] for a discussion and comparison of both indexes.
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