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Abstract

Consider a decentralized, dynamic market with an infinite horizon and participa-
tion costs in which both buyers and sellers have private information concerning their
values for the indivisible traded good. Time is discrete, each period has length δ,
and each unit of time continuums of new buyers and sellers consider entry. Traders
whose expected utility is negative choose not to enter. Within a period each buyer
is matched anonymously with a seller and each seller is matched with zero, one, or
more buyers. Every seller runs a first price auction with a reservation price and, if
trade occurs, both the seller and winning buyer exit the market with their realized
utility. Traders who fail to trade continue in the market to be rematched. We
characterize the steady-state equilibria that are perfect Bayesian. We show that,
as δ converges to zero, equilibrium prices at which trades occur converge to the
Walrasian price and the realized allocations converge to the competitive allocation.
We also show existence of equilibria for δ sufficiently small, provided the discount
rate is small relative to the participation costs.
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1 Introduction

The frictions of asymmetric information, search costs, and strategic behavior interfere
with efficient trade. Nevertheless economists have long believed that for private goods’
economies the presence of many traders overcomes these imperfections and results in
convergence to perfect competition. Two classes of models demonstrate this. First,
static double auction models in which traders’ costs and values are private exhibit
rapid convergence to the competitive price and the efficient allocation within a one-shot
centralized market. Second, dynamic matching and bargaining models in which traders’
costs and values are common knowledge also converge to the competitive equilibrium.
The former models are unrealistic in that they assume traders who fail to trade now
can not trade later. Tomorrow (almost) always exists for economic agents. The latter
models are unrealistic in assuming traders have no private information. Information
about a trader’s cost/value (almost) always contains a component that is private to
him. This paper’s contribution is to formulate a natural model of dynamic matching
and bargaining with two-sided incomplete information and to show that it converges to
the competitive allocation and price as frictions vanish.

An informal description of our model and result is this. An indivisible good is traded
in a market in which time progresses in discrete periods of length δ and generations
of traders overlap. Each unit of time traders who are active in the market incur a
participation cost κ and a discount rate β. Thus the per period participation cost is
δκ, the per period discount factor is e−βδ, and they both vanish as the period length
converges to zero. Each period every active buyer randomly matches with an active
seller. Depending on the luck of the draw, a seller may end up being matched with
several buyers, a single buyer, or no buyers. Each seller solicits a bid from each buyer
with whom she is matched and, if the highest of the bids is satisfactory to her, she sells
her single unit of the good and both she and the successful buyer exit the market. A
buyer or seller who fails to trade remains in the market, is rematched the next period,
and tries again to trade.

Each unit of time a large number of potential sellers (formally, measure 1 of sellers)
considers entry into the market along with a large number of potential buyers (formally,
measure a of buyers). Each potential seller independently draws a cost c in the unit
interval from a distribution GS and each potential buyer draws independently a value
v in the unit interval from a distribution GB. Individuals’ costs and values are private
to them. A potential trader only enters the market if, conditional on his private cost or
value, his equilibrium expected utility of entry is at least zero. Potential traders whose
discounted expected utilities are negative elect not to participate.

If in period t trade occurs between a buyer and seller at price p, then they exit
with their gains from trade, v − p and p − c respectively, less their participation costs
accumulated at the discount rate β from their times of entry onward. If δ is large (i.e.,
periods are long), then participation costs accumulate in a short number of periods
and a trader who chooses to enter must be confident that he can obtain a profitable
trade without much search. If, however, δ is small, then a trader can wait through
many matches looking for a good price with little concern about participation costs and
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discounting offsetting his gains from trade. This option value effect drives convergence
and puts pressure on traders on the opposite side of the market to offer competitive
terms. As δ becomes small the market for each trader becomes, in effect, large.

We characterize steady state equilibria for this market in which each agent maximizes
his expected utility going forward. We show that, as the period length δ goes to zero,
all such equilibria converge to the Walrasian price and the competitive allocation. The
Walrasian price pW in this market is the solution to the equation

GS (pW ) = a (1−GB (pW )) , (1)

i.e., it is the price at which the measure of entering sellers with costs less than pW
equals the measure of entering buyers with values greater than pW . If the market were
completely centralized with every active buyer and seller participating in an exchange
that cleared each period’s bids and offers simultaneously, then pW would be the market
clearing price each period. Our precise result is this. Among active traders, let c̄δ and
vδ be the maximal seller’s type and minimal buyer’s type respectively and let [pδ, p̄δ]
be the range of prices at which trades occur. Also let cδ be the smallest bid acceptable
to any active seller. As δ → 0, then cδ, c̄δ, vδ, pδ, and p̄δ all converge to the same
limit p. In the steady state, the only way for the market to clear is for this limit p to
be equal to the competitive price pW . That the resulting allocations give traders the
expected utility they would realize in a perfectly competitive market follows. Finally,
we show that if the period length δ and, relative to the level of participation costs κ,
the discount rate β are both sufficiently small, then a full trade equilibrium exists. Full
trade equilibria are a special class of equilibria in which active sellers immediately trade
upon being matched with at least one buyer.

This is a step towards a theory of how a completely decentralized, dynamic market
with two-sided incomplete information and participation costs implements, increasingly
well, an almost efficient allocation as the speed with which traders’ are able to seek out
potential trading partners increases. In making this step we assume independent private
values, which means that all traders a priori know the underlying Walrasian price in
the market. In the theory that we ultimately seek traders’ would have less restrictive
preferences (e.g., correlated private values or interdependent values) in which the Wal-
rasian price follows some stochastic process. Efficient trade would therefore require that
traders’ equilibrium strategies reveal sufficient information not only to identify the most
valuable currently feasible trades, but also to reveal the underlying, changing Walrasian
price even as it simultaneously facilitates trade at that price. A complete theory would
both identify sufficient conditions for which convergence to an efficient allocation and
Walrasian price is guaranteed and show how, when those conditions are not met, the
equilibrium may fail to converge to efficiency.

We hope that the insights and results here will contribute to the development of
such a theory. This paper first shows that convergence to one price occurs and is driven
by option value: as δ, the length of a period decreases, each trader becomes more willing
to decline a merely decent offer so as to preserve the option to accept a really excellent
offer in the future. With both buyers and sellers doing this the price distribution in the
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market rapidly narrows as δ becomes small. Second, it shows that the price distribution
must converge to the Walrasian price because if an equilibrium exists in which it does
not, then too many traders accumulate on the long side of the market, which creates
incentives for these traders to deviate from their equilibrium strategies by bidding more
aggressively. We would be surprised if either of these insights fail to carry over to models
with less restrictive processes for generating valuations.

This progression has been true for static double auctions. Almost all the early papers
assumed independent private values, e.g., Chatterjee and Samuelson (1983), Myerson
and Satterthwaite (1983), Gresik and Satterthwaite (1989), Satterthwaite and Williams
(1989a), Satterthwaite and Williams (1989b), Williams (1991), and Rustichini, Sat-
terthwaite, and Williams (1994). Recently Cripps and Swinkels (2004) and Fudenberg,
Mobius, and Szeidl (2003) have generalized rates of convergence results from the inde-
pendent private values environment to the correlated private value case. Further, Reny
and Perry (2003) in a carefully constructed model with interdependent valuations have
shown that the static double auction equilibrium exists and converges to a rational ex-
pectations equilibrium as the number of traders on both sides of the market becomes
large.

A substantial literature exists that investigates the non-cooperative foundations of
perfect competition using dynamic matching and bargaining games.1 Most of the work
of which we are aware has assumed complete information in that each participant knows
every other participant’s values (or costs) for the traded good. The books of Osborne
and Rubinstein (1990) and Gale (2000) contain excellent discussions of both their own
and others’ contributions to this literature. Papers that have been particularly influ-
ential include Mortensen (1982), Rubinstein and Wolinsky (1985, 1990), Gale (1986,
1987) and Mortensen and Wright (2002). Of these, our paper is most closely related
to the models and results of Gale (1987) and Mortensen and Wright (2002). The two
main differences between their work and ours are that (i) when two traders meet they
reciprocally observe the other’s cost/value rather than remaining uninformed and (ii)
the terms of trade are determined as the outcome of a full information bargaining game
rather than an auction. The first difference–full versus incomplete information–is
fundamental, for the purpose of our paper is to determine if a decentralized market can
elicit private valuation information at the same time it uses that information to assign
the available supply almost efficiently. The second difference is natural given our focus
on incomplete information.

The most important dynamic bargaining and matching models that incorporate
incomplete information are Wolinsky (1988), De Fraja and Sákovics (2001), and Serrano

1There is a related literature that we do not discuss here concerning the micro-structure of inter-
mediaries in markets, e.g., Spulber (1999) and Rust and Hall (2002). These models allow entry of an
intermediary who posts fixed ask and offer prices and is assumed to be large enough to honor any size
buy or sell order without exhausting its inventory or financial resources.
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(2002).2 ,3 To understand how our paper relates to these papers, consider the following
problem as the baseline. Each unit of time fixed measures of sellers and buyers enter
the market, each of whom has a private cost/value for a single unit of the homogeneous
good. The sellers’ units of supply need to be reallocated to those traders who most highly
value them. Whatever mechanism that is employed must induce the traders to reveal
sufficient information about their costs/valuations in order to carry out the reallocation.
The static double auction results of Satterthwaite and Williams (1989a) and Rustichini,
Satterthwaite and Williams (1994) show that even moderately-sized centralized double
auctions held once per unit time solves this problem essentially perfectly by closely
approximating the Walrasian price and then using that price to mediate trade.4

Given this definition of the problem, the reason why Wolinsky (1988), Serrano
(2002), and De Fraja and Sákovics (2001) do not obtain competitive outcomes as the
frictions in their models vanish is clear: the problems their models address are different
and, as their results establish, not intrinsically perfectly competitive even when the
market becomes almost frictionless. Thus Wolinsky’s model relaxes the homogeneous
good assumption and does not fully analyze the effects of entry/exit dynamics. Ser-
rano’s model embeds a discrete-price double auction mechanism in a dynamic matching
framework. There are, however, no entering cohorts of traders. Consequently, the
option-value effects become progressively smaller as the most avid buyers and sellers
leave the market through trading and are not replaced. As the market runs down
and becomes small, necessarily it becomes less and less competitive. Not surprisingly
Serrano finds that “equilibria with Walrasian and non-Walrasian features persist.”

Closest to our model is De Fraja and Sákovics’ model. Traders search for the best
price in a market similar to the market we study. Option value drives the market to one
price, much as in our model. Its entry/exit specification, however, is quite different than
our specification in that it does not specify that fixed measures of buyers and sellers
enter the market each unit of time as in our baseline problem. Instead, whenever two

2Butters in an unfinished manuscript (circa 1979) that was well before its time considers convergence
in a dynamic matching and bargaining problem. The main differences between our model and his are (i)
he assumes an exogenous exit rate instead of a participation cost, (ii) traders who have zero probability
of trade participate in the market until they exit stochastically due to the exogenous exit rate, and (iii)
the matching is one-to-one and the matching probabilities do not depend on the ratio of buyers and
sellers in the market. We thank Asher Wolinsky for bringing Butters’ manuscript to our attention after
we had completed an earlier version of this paper.

3 In a companion paper we (Satterthwaite and Shneyerov, 2003) consider a dynamic matching and
bargaining model that has no participation costs, but instead has the alternative friction of a fixed,
exogenous, per unit time rate of exit among active traders. For this model we show convergence to
pW as the period length becomes short, but have not been able to show existence. There are two
main effects of substituting an exit rate for participation costs. First, traders who enter with postitive
expected utility do not necessarily trade; they may spontaneously exit with zero utility prior to making
a successful match. This makes market clearing more subtle and, as a consequence, demonstrates more
clearly than this paper’s model the power of supply and demand to force price to converge to pW . Second,
the structure of equilibrium strategies is different than in the participation cost case. In particular, full
trade equilibria, which play a leading role in this paper’s existence proof, are easily shown not to exist.

4Another example of a centralized trading institution is the system of simultaneous ascending-price
auctions, studied in Peters and Severinov (2002). They also find robust convergence to the competitive
outcome.
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traders consummate a trade and exit the market, then two traders of identical types
replace them. This means that, no matter what limiting price the market converges to
as search becomes cheap, the distribution of traders’ valuations in the market remains
constant. Consequently, if the limiting price is above the Walrasian price, then sellers
do not accumulate in the market and, unlike in our model, sellers have no incentive to
reduce the prices that they ask. Supply and demand does not affect price in De Fraja
and Sákovics’ model. Instead the exogenously specified balance of bargaining power
determines the limiting price.

The next section formally states the model and our convergence and existence re-
sults. Section 3 derives basic properties of equilibria. Section 4 proves convergence for
all equilibria and Section 5 proves that, for sufficiently small δ and β, the special class
of equilibria–full trade equilibria–exist. Section 6 concludes.

2 Model and Theorems

We study the steady state of a market with two-sided incomplete information and an
infinite horizon. In it heterogeneous buyers and sellers meet once per period (t =
. . . ,−1, 0, 1, . . .) and trade an indivisible, homogeneous good. Every seller is endowed
with one unit of the traded good and has cost c ∈ [0, 1]. This cost is private information
to her; to other traders it is an independent random variable with distribution GS

and density gS. Similarly, every buyer seeks to purchase one unit of the good and has
value v ∈ [0, 1]. This value is private; to others it is an independent random variable
with distribution GB and density gB. Our model is therefore the standard independent
private values model. We assume that the two densities are bounded away from zero:
a g > 0 exists such that, for all c, v ∈ [0, 1], gS(c) > g and gB(v) > g.

The strategy of a seller, S : [0, 1]→ R∪ {N} , maps her cost c into either a decision
N not to enter or a minimal bid that she is willing to accept. Similarly the strategy of
a seller, B : [0, 1] → R ∪ {N} , maps his value v into either a decision N not to enter
or the bid that he places when he is matched with a seller. A trader only enters if his
expected discounted utility from doing so is non-negative; if he elects not to enter he
receives utility zero.

The length of each period is δ > 0. Each unit of time measure 1 of potential sellers
and measure a of potential buyers consider entry where a > 0. This means that each
period measure δ of potential sellers and measure δa of potential buyers consider entry.
A period consists of five steps:

1. Entry occurs. A type v potential buyer becomes active only if B (v) 6= N and a
type c potential seller becomes active only if S (c) 6= N .

2. Every active seller and buyer incurs participation cost δκ where κ > 0 is the cost
per unit time of being active.

3. Each active buyer is randomly matched with one active seller. Consequently every
seller is equally likely to end up matched with any active buyer. The probability
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πk that a seller is matched with k ∈ {0, 1, 2, . . .} buyers is therefore Poisson:

πk (ζ) =
ζk

k! eζ
(2)

where ζ is the endogenous ratio of active buyers to active sellers.5 Consequently
a seller may end up being matched with zero buyers, one buyer, two buyers, etc.
These matches are anonymous, i.e., no trader knows the history of any trader with
whom he or she happens to be matched.

4. Each buyer simultaneously announces a bid B (v) to the seller with whom he
is matched. We assume that, at the time he submits his bid, each buyer only
knows the endogenous steady state probability distribution of how many buyers
with whom he is competing. After receiving the bids, the seller either accepts or
rejects the highest bid. Denote by S (c) the minimal bid (i.e., reservation price)
acceptable to a type c seller. If two or more buyers tie with the highest bid, then
the seller uses a fair lottery to choose between them. If a type v buyer trades in
period t, then he leaves the market with utility v −B(v). If a type c seller trades
at price p, then she leaves the market with utility p − c where p is the bid she
accepts.

5. All remaining traders carry over to the next period.

Traders discount their expected utility at the rate β ≥ 0 per unit time; e−βδ is therefore
the factor by which each trader discounts his utility per period of time.

To formalize the fact that the distribution of trader types within the market’s steady
state is endogenous, let TS be the measure of active sellers in the market at the beginning
of each period, TB be the measure of active buyers, FS be the distribution of active seller
types, and FB be the distribution of active buyer types. The corresponding densities are
fS and fB and, establishing useful notation, the right-hand distributions are F̄S ≡ 1−FS
and F̄B ≡ 1− FB. The ratio ζ is therefore equal to TB/TS.

By a steady state equilibrium we mean one in which every seller in every period
plays a time invariant strategy S (·) , every buyer plays a time invariant strategy B (·) ,
and both these strategies are always optimal. Let WS (c) and WB (v) be the sellers
and buyers’ interim utilities for sellers of type c and the buyers of type v respectively,
i.e., they are beginning-of-period, steady state, equilibrium net payoffs conditional on
their types. Given the friction δ, a market equilibrium Mδ consists of strategies {S,B},
traders’ masses {TS , TB}, and distributions {FS , FB} such that (i) {S,B}, {TS, TB}, and
{FS , FB} generate {TS, TB} and {FS , FB} as their steady state and (ii) no type of trader
can increase his or her expected utility (including the continuation payoff from matching
in future periods if trade fails) by a unilateral deviation from the strategies {S,B}, and
(iii) equilibrium strategies {S,B}, masses {TS , TB} , and distributions {FS , FB} are

5 In a market with M sellers and ζM buyers, the probability that a seller is matched with k buyers
is πMk = ζM

k
1
M

k
1− 1

M

ζM−k. Poisson’s theorem (see, for example, Shiryaev, 1995) shows that
limM→∞ πMk = πk.
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common knowledge among all active and potential traders. We study perfect Bayesian
equilibria of this model 6

Four points need emphasis concerning this setup. First, since within a given match
buyers announce their bids simultaneously and only then does the seller decide to ac-
cept or reject the highest of the bids, the subgame perfection aspect of perfect Bayesian
equilibria implies that a seller whose highest received bid is above her dynamic oppor-
tunity cost of c+ e−βδWS (c) accepts that bid. In other words, a seller’s strategy is her
dynamic opportunity cost,

S (c) = c+ e−βδWS (c) ,

and is independent of the number of buyers who are bidding, i.e., S (c) is her reservation
price. Second, beliefs are simple to handle because our assumptions that there are
continuums of traders, that all matching is anonymous, and that traders’ values and
costs conform to the standard independent private values model imply that off-the-
equilibrium path actions do not cause inference ambiguities. Third, step 5 within each
period requires every trader who enters to stay in the market until he eventually succeeds
in trading. Obviously, given that our goal is modeling a decentralized market, this is
inappropriate; traders should be free to exit. However, given independent private values
and a steady state equilibrium, forbidding exit has no loss of generality. The reason is
that a trader only enters the market if his expected utility is non-negative. Being in a
steady state implies that if he had non-negative expected utility when he entered, then
at the beginning of any subsequent period after failing to trade he has the same non-
negative utility going forward. Even if exit without trade were permitted, he would not
do so. Fourth, an uninteresting no-trade equilibrium always exists in which all potential
buyers and sellers decline to enter. We analyze equilibria in which positive trade occurs,
i.e., equilibria in which each period positive measures of buyers and sellers enter and
ultimately trade.

Let c̄ and v to be the maximal seller and minimal buyer types that choose to enter.
These are the marginal participation types. Let c, p, and p̄ be respectively the lowest bid
that is acceptable to the cost zero seller, the lowest bid any active buyer makes, and the
highest bid that any active buyer makes. Formally, define AS ⊂ [0, 1] and AB ⊂ [0, 1]
to be the sets of active sellers and buyers’ types respectively. Then:

c̄ ≡ sup{c | c ∈ AS} (maximum active seller type),

v ≡ inf {v | v ∈ AB} (minimum active buyer type),

c = inf {S (c) | c ∈ AS} (minimum acceptable bid), (3)

p = inf {B (v) | v ∈ AB} (maximum bid),

p̄ = sup {B (v) | v ∈ AB} (minimum bid).

Figures 1 and 3 below, among other purposes, illustrate how these descriptors summarize
an equilibrium’s structure.

6See definition 8.2 (page 333) in Fudenberg and Tirole, 1991
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Given an equilibrium Mδ, we index with δ its components Sδ, Bδ, FSδ, FBδ, TSδ,
TBδ, and ζδ and its descriptors c̄δ, vδ, cδ, pδ, and p̄δ. This notation allows us to state
our convergence result:

Theorem 1 Fix κ > 0 and β ≥ 0. Suppose that a δ̄ > 0 exists such that for all δ ∈ (0, δ̄)
a market equilibrium Mδ exists in which positive trade occurs. Let {c̄δ, vδ, cδ, pδ, p̄δ}
be the descriptors of these equilibria and let WSδ (c) and WBδ (v) be traders’ interim
expected utilities. Then

lim
δ→0

c̄δ = lim
δ→0

vδ = lim
δ→0

cδ = lim p
δ
= lim

δ→0
p̄δ = pW . (4)

In addition, each trader’s interim expected utility converges to the utility he would realize
if the market were perfectly competitive:

lim
δ→0

WSδ (c) = max [0, pW − c] (5)

and
lim
δ→0

WBδ (v) = max [0, v − pW ] . (6)

Sections 3 and 4 below prove this.
In section 5, given κ > 0, we prove, for sufficiently small β and δ, that a special

class of equilibria–full trade equilibria–exist and result in positive trade. Formally
a full trade equilibrium is an equilibrium in which c̄δ = vδ. Figure 1 diagrams such
an equilibrium and shows each of the descriptors c̄δ, vδ, cδ, pδ, and p̄δ. We call these
equilibria full trade because if in a particular period a seller is matched with at least
one buyer, then that seller for sure trades no matter what her cost ci is and what the
matched buyer(s) value vj is. In a full trade equilibrium trade occurs as fast as possible
among active sellers and buyers. The theorem is this:

Theorem 2 For given κ > 0, a neighborhood X of the point (0, 0) exists such that for
all non-negative β and positive δ in X an equilibrium Mδ exists in which positive trade
occurs.

Two points deserve emphasis. First, the restriction that β must be small relative to κ
implies that our existence theorem concerns situations in which participation costs, not
delay per se, are the issue. Section 5.3, which discusses the existence result, develops
intuition why the β-κ ratio is important. Second, we do not know if all equilibria
are full trade or not. Conceivably for some parameter values, a sequence of full trade
equilibria may not exist, but a sequence of non-full trade equilibrium in which c̄δ > vδ
may exist. If so, convergence of price to pW is guaranteed because Theorem 1 applies
to all sequences of equilibria.

The intuition for our convergence result can be understood through the following
logic. In a match in which a buyer is bidding for an object, the “type” that is relevant
is not his static type v, but rather his dynamic opportunity value

IBδ (v) = v − e−βδWBδ (v) .
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Figure 1: Strategies in full trade equilibrium
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Similarly the cost that is relevant to a type c seller is not c, but her dynamic opportunity
cost

ISδ (c) = c+ e−βδWSδ (c) .

When the buyers bid in the auction, they act as if their types were drawn from the
density hBδ (·) of IBδ (v) and the sellers’ types were drawn from the density hSδ (·) of
ISδ (c). Since limδ→0WSδ (c) = max [0, pW − c] and limδ→0WBδ (v) = max [0, v − pW ],
the convergence theorem indicates that, as the time period length δ → 0, the distribu-
tions of the "dynamic types" ISδ (c) and IBδ (v) approach pW and become degenerate:
the distribution of sellers’ dynamic opportunity costs concentrates just below c̄δ and the
distribution of buyers’ dynamic opportunity costs concentrates just above vδ. Viewed
this way, as δ → 0, the dynamic matching and bargaining market in equilibrium progres-
sively exhibits less and less heterogeneity among buyers and sellers until there is none
and the incomplete information vanishes. The underlying driver causing the heterogene-
ity to vanish as δ → 0 is the option value that each trader’s optimal search generates.
This is the same pathway that drives convergence in the full information matching and
bargaining models of Gale (1987) and Mortensen and Wright (2002). In their models,
as in our model, the option value that optimal search creates causes the distributions
of buyers and sellers’ dynamic opportunity costs to become degenerate as the friction
goes to zero. Once this is understood, our result that incomplete information does not
disrupt convergence is natural.

Figure 2 is a table of graphs illustrating the general character of these equilibria
and the manner in which they converge. These computed examples assume that the
primitive distributions GS and GB are uniform on [0, 1], equal masses of buyers and
sellers consider entry each unit of time (i.e., a = 1), the participation cost is κ = 1,
and discount rate is β = 1.7 The left column shows an equilibrium for δ = 0.10 while
the right column shows an equilibrium for δ = 0.02. Traders’ costs and values, c and v,
are on each graph’s abscissa. The top graph in each column shows strategies: sellers’
strategies S (c) are to the left and above the diagonal while buyers’ strategies B (v) are to
the right and below the diagonal. Because masses of entering traders are equal and their
cost/value distributions are uniform, the Walrasian price is 0.5; this is the horizontal
line cutting the center of the graph. Observe also that B (v) and S (c) are not defined
for non-entering types. Comparison of the strategies in the top two graphs illustrates
the convergence of all the descriptors {c̄δ, vδ, cδ, pδ, p̄δ} toward pW as δ decreases from
0.10 to 0.02.

The middle graph in each column shows the endogenous densities, fS and fB, of
active traders in the equilibrium. The density fS for active sellers is on the left and
the density for active buyers on the right. Note that to the right of c̄ the density fS
is zero because sellers with c > c̄ choose not to enter. Similarly, to the left of v the
density fB is zero. These two densities show that both high value, active sellers and low
value, active buyers often have to wait before trading and therefore accumulate in the

7 In computing these equilibria we numerically solve equations (44) and (45) from Section 5.1 that
characterize a full trade equilibrium. See also the discussion in Section 5.3. The Mathematica program
that was used is available upon request.
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Figure 2: Equilibrium strategies and associated steady state densities. The left column
of graphs is for δ = 0.10 and the right column is for δ = 0.02. The top row shows
buyer and seller strategies S and B. The middle row graphs the densities fS and fB of
the traders’ types, and the bottom row graphs the densities hS and hB of the traders’
dynamic opportunity costs and values.
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market. The bottom graph in each column shows the equilibrium densities hS and hB
of the dynamic opportunity costs and values and dramatically demonstrates how, as δ
decreases, the heterogeneity of traders’s dynamic opportunity costs and values narrows.

The ex ante expected utility of a trader is

Wδ =
1

1 + a

Z 1

0
WSδ (c) gS (c) dc+

a

1 + a

Z 1

0
WBδ (v) gB (v) dv

where the weights on sellers’ and buyers’ ex ante utilities depends on the measure a of
potential buyers who consider entry each period relative to the measure 1 of potential
sellers who consider entry each period. For the two equilibria graphed in Figure 1
W0.1 = 0.0564 and W0.02 = 0.1088.In the limit, when δ → 0 and the market is perfectly
competitive, W0.0 = 0.1250. Define the relative inefficiency per trader of an equilibrium
Mδ to be (W0 −Wδ) /W0. The relative inefficiency of the graphed δ = 0.10 equilibrium
is 0.548 and the relative inefficiency of the graphed δ = 0.02 equilibrium is 0.129. This
convergence towards 0 is driven by two distinct mechanisms. First, the direct effect of
cutting δ, the period length, from 0.10 to 0.02 is that, even if traders’ strategies remained
unchanged, then the decrease in δ reduces by a factor of five the wait before trading
for all traders who are not lucky enough to trade immediately upon entry. Second,
the gap between buyers and sellers’ strategies reduces, resulting in fewer traders who
should trade–sellers for whom c < 0.5 and buyers for whom v > 0.5–but do not trade.
Thus, when δ = 0.10, sellers whose cost c is in the interval (0.347, 0.500) do not trade
even though they would in the competitive limit. When δ = 0.02, however, this interval
shrinks in length by approximately a factor of five to (0.470, 0.5000) , which results in a
second efficiency gain.

One final comment concerning the model and theorems is important. In setting
up the model we assume that traders use symmetric pure strategies. We do this for
simplicity of exposition. At a cost in notation we could define trader-specific and mixed
strategies and then prove that they in fact must be symmetric and (essentially) pure be-
cause of independence, anonymity in matching, and the strict monotonicity of strategies.
To see this, first consider the implication of independence and anonymous matching for
buyers. Even if different traders follow distinct strategies, every buyer would still inde-
pendently draw his opponents from the same population of active traders.8 Therefore,
for a given value v, every buyer will have the identical best-response correspondence.
Second, we show below that every selection from this correspondence is strictly increas-
ing; consequently, the best-response is pure apart from a measure zero set of values
where jumps occur. These jump points are the only points where mixing can occur,
but because their measure is zero, the mixing has no consequence for the maximization
problems of the other traders.

8This is strictly true because we assume a continuum of traders.
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3 Basic properties of equilibria

In this section we derive formulas for probabilities of trade and establish the strict
monotonicity of strategies. These facts are inputs into the next two sections’ proofs.
We separate them out because they apply for all δ > 0. We emphasize that they apply
to all equilibria, not just full trade equilibria.

3.1 Discounted ultimate probability of trade and participation cost

An essential construct for the analysis of our model is the discounted ultimate proba-
bility of trade. It allows a trader’s expected gains from participating in the market to
be written as simply as possible. Let, in the steady state, ρS (λ) be the probability of
trade in a given period of a seller who chooses reservation price λ and, similarly, let
ρB (λ) be a the probability of trade in a give period of a buyer who chooses bid λ. Also,
let ρ̄S (λ) = 1− ρS (λ) and ρ̄B (λ) = 1− ρB (λ) .

Define recursively PB (λ) to be a buyer’s discounted ultimate probability of trade if
he bids λ:

PB (λ) = ρB (λ) + ρ̄B (λ) e
−βδPB (λ) .

Therefore

PB (λ) =
ρB (λ)

1− e−βδ + e−βδρB (λ)
. (7)

Observe that this is in fact a discount factor because every active trader ultimately
trades. Its interpretation as a probability follows from formula (9) immediately below.
The parallel recursion for sellers implies that

PS (λ) =
ρS (λ)

1− e−βδ + e−βδρS (λ)
. (8)

This construct is useful within a steady state equilibrium because it converts the
buyer’s dynamic decision problem into a static decision problem. Specifically, the dis-
counted expected utility WB of a type v buyer who follows the stationary strategy of
bidding λ is

WB (λ, v) = ρB (λ) (v − λ)− κδ + ρ̄B (λ) e
−βδWB (λ, v) .

Solving this recursion gives the explicit formula:

WB (λ, v) = PB (λ) (v − λ)−KB (λ) , (9)

where

KB (λ) =
κδ

1− e−βδ + e−βδρB (λ)
(10)

= κδ
PB (λ)

ρB (λ)
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is the the buyer’s expected discounted participation costs over his lifetime in the mar-
ket. To get intuition for the last equation, note that 1/ρB (λ) is the expected lifetime
of a trader in the market, so that κδ/ρB (λ) is the expected participation cost over the
lifetime. The discounted participation cost KB (λ) equals the the expected participa-
tion cost over the lifetime times the discount factor PB (λ). Similarly, the discounted
expected utility WS of a type c seller who follows the stationary strategy of accepting
bids of at least λ is

WS (λ, c) = PS (λ) (λ− c)−KS (λ) (11)

where

KS (λ) =
κδ

1− e−βδ + e−βδρS (λ)
. (12)

is the discounted participation cost of a seller who asks λ. In accord with our convention
for non-entering types, we assume that

ρB (N ) = ρS (N ) = KB (N ) = KS (N ) = 0.

In section 3.3 we derive explicit formulas for ρB (·) and ρS (·)

3.2 Strategies are strictly increasing

This subsection demonstrates the most basic property that our equilibria satisfy: strate-
gies are strictly increasing. We need the following preliminary result.

Lemma 3 In equilibrium, PB [B (·)] is non-decreasing and PS [S (·)] is non-increasing
over [0, 1]. The buyers for whom v > v elect to enter, while the buyers for whom v < v
do not:

(v, 1] ⊂ AB, [0, v) ⊂ ĀB.

The type v is indifferent between entering and not entering. Similarly,

[0, c̄) ⊂ AS , (c, 1] ⊂ ĀS

and the type c̄ is indifferent between entering or not.

Equation (3) and the paragraph above define the sets AB and AS and the descriptors
v and c̄.

Proof. The buyer’s interim utility,

WB(v) = sup
λ∈R∪{N}

(v − λ)PB(λ)−KB (λ) = (v −B (v))PB (B (v))−KB (B (v)) ,

is the upper envelope of a set of affine functions. It follows by the Envelope Theorem
that WB (·) is a continuous, increasing and convex function. BecauseWB is continuous,
the definition of v = inf {v : v ∈ AB} implies that (i) WB (v) = 0 and v is indifferent
between entering or not, and (ii) the types v < v prefer not to enter. Further, convexity
implies that W 0

B (·) is non-decreasing. By the Envelope Theorem W 0
B(·) = PB [B (·)] ;
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PB [B (·)] is therefore non-decreasing at all differentiable points. Milgrom and Segal’s
(2002) Theorem 1 implies that at non-differentiable points v0 ∈ [0, 1]

lim
v→v0−

W 0
B (v) ≤ PB

¡
B
¡
v0
¢¢
≤ lim

v→v0+
W 0

B (v) .

Thus PB [B (·)] is everywhere non-decreasing for any best-response B. Further, Milgrom
and Segal’s Theorem 2 implies that

WB (v) =WB (v) +

Z v

v
PB [B (x)] dx for v ≥ v. (13)

Since v is indifferent between entering or not, we can choose a best-response eB in which
v is active, while eB (v) = B (v) for v 6= v. eB may different from B at v = v, since ineB, the type v is active, while in B he may not be. Importantly, the function WB (·)
is the same for both B and eB, since by Milgrom and Segal’s Theorem 2, the envelope
condition (13) holds for any selection from the best-response correspondence. Now

PB

h eB (v)i > 0 since otherwise the active buyer v would not be able to recover his

positive participation cost. Since PB
h eB (·)i is non-decreasing, PB h eB (v)i > 0 for all

v ≥ v, and the envelope condition (13) then implies that the buyers for whom v > v
elect to enter. The argument for the sellers is parallel and is omitted.¥

Recall that we assume if a potential trader’s expected utility from entering is at
least zero, then he or she enters. Thus types v and c̄ enter, which keeps our notation
simple. Since {v} and {c̄} have measure 0, all our results would hold in substance under
the alternative assumption that entry only occurs if expected utility is positive.

Lemma 4 B is strictly increasing on [v, 1].

Proof. Pick any v, v0 ∈ [v, 1] such that v < v0. Since PB [B (·)] is non-decreasing,
PB [B (v)] ≤ PB [B (v

0)] necessarily. We first show that B is non-decreasing on [v, 1].
Suppose, to the contrary, that B(v) > B(v0). The auction rules imply that PB (·) is non-
decreasing; therefore PB [B (v)] ≥ PB [B (v

0)]. Consequently PB [B (v)] = PB [B (v
0)] >

0. But this gives v incentive to lower his bid to B(v0), since by doing so he will buy
with the same positive probability but pay a lower price. This contradicts B being
an optimal strategy and establishes that B is non-decreasing. If B(v0) = B(v) (= λ)
because B is not strictly increasing, then any buyer with v00 ∈ (v, v0) will raise his bid
infinitesimally from λ to λ0 > λ to avoid the rationing that results from a tie. This
proves that B is strictly increasing on [v, 1].¥9

Lemma 5 S is continuous and strictly increasing on [0, c].

Proof. Any active seller will accept the highest bid she receives, provided it is above
her dynamic opportunity cost:

S(c) = c+ e−βδWS(c) (14)
9This proof uses the same argument that Satterthwaite and Williams (1989a) used to prove their

Theorem 2.2.
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Milgrom and Segal’s Theorem 2 implies that WS (·) is continuous and can be written,
for any active seller type c as

WS (c) = WS (c̄) +

Z c̄

c
PS(S(x))dx (15)

=

Z c̄

c
PS(S(x))dx

where the second line follows from the definition of c̄ and the continuity of WS (·).
Combining (14) and (15) we see that

S(c) = c+ e−βδ
Z c̄

c
PS(S(x))dx

for all sellers that are active. This also implies that S (·) is continuous. Therefore, for
almost all active sellers c ∈ [0, c],

S0(c) = 1− e−βδPS[S(c)] > 0 (16)

becauseW 0
S (c) = −PS [S(c)]. Since S (·) is continuous, this is sufficient to establish that

S (·) is strictly increasing for all active sellers c ∈ [0, c].¥

Lemma 6 c < B (v) < v, S (c̄) = c̄ < p̄, and B (v) ≤ c̄.

Proof. Given that S is strictly increasing, S (0) = c is the lowest reservation price
any seller ever has. A buyer with valuation v < c does not enter the market since he
can only hope to trade by submitting a bid at or above c, i.e. above his valuation. In
equilibrium, any buyer who enters the market must submit a bid below his valuation
and above c, since otherwise he is unable to recover a positive participation cost. It
follows that c < B (v) < v. Similarly, a seller who is only willing to accept a bid at or
above p̄ never enters the market, since she is unable to recover her participation cost.
This implies S (c̄) < p̄. Any active seller has acceptance strategy given by (14), so in
particular S (c̄) = c̄.

Finally, suppose that B (v) > c̄. Then the buyer for whom v = v bids more than
necessary to win the object: he can only be successful if there are no rival buyers, and
when this is the case, bidding c̄ is sufficient to secure acceptance of the bid by the
seller.¥

All these findings are summarized as follows. In reading the theorem, recall that the
descriptors

¡
c, c̄, v, p, p̄

¢
are defined in equation (3).

Theorem 7 Suppose that {B,S} is a stationary equilibrium. Then, over [v, 1] and
[0, c̄], B and S are strictly increasing, S is continuous and, almost everywhere on [0, c̄],
has derivative

S0(c) = 1− e−βδPS [S(c)].

Finally, B and S have the properties that c < p < v, S (c̄) = c̄ < p̄, and p = B (v) ≤
S (c̄) = c̄.
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The strict monotonicity of B on [v, 1] and S on [0, c̄] allows us to define V and C, their
inverses over [B (v) , B (1)] and [S (0) , S (c̄)]:

V (λ) = inf {v ∈ [0, 1] : B(v) > λ} ,
C(λ) = inf {c ∈ [0, 1] : S(c) > λ} .

Finally, that B (v) ≤ S (c̄) is a weak inequality, not a strong inequality, makes possible
the existence of full trade equilibria.

3.3 Explicit formulas for the probabilities of trading

Focus on a seller of type c who in equilibrium has a positive probability of trade. In a
given period she is matched with zero buyers with probability π0 and with one or more
buyers with probability π̄0 = 1− π0. Suppose she is matched and v∗ is the highest type
buyer with whom she is matched. Since by Theorem 7 each buyer’s bid function B (·)
is increasing, she accepts his bid if and only if B (v∗) ≥ λ where λ is her reservation
price. The distribution from which v∗ is drawn is F ∗B (·): for v ∈ [v, 1],

F ∗B(v) =
1

π̄0 (ζ)

∞X
i=1

πi (ζ) [FB (v)]
i (17)

where FB (·) is the steady state distribution of buyer types and {π0, π1, π2, . . .} are the
probabilities with which each seller is matched with zero, one, two, or more buyers.
Note that this distribution is conditional on the seller being matched. Thus if a seller
has reservation price λ, her probability of trading in a given period is

ρS (λ) = π̄0 [1− F ∗B(V (λ))] . (18)

This formula takes into account the probability that she is not matched in the period.
A similar expression obtains for ρB (λ), the probability that a buyer submitting bid

λ successfully trades in any given period. In order to derive this expression, we need a
formula for ωk (ζ), the probability that the buyer is matched with k rival buyers. If TB
is the mass of active buyers and TS is the mass of active sellers, then ωk (ζ)TB, the mass
of buyers participating in matches with k rival buyers, equals k + 1 times πk+1 (ζ)TS ,
the mass of sellers matched with k + 1 buyers:

ωk (ζ)TB = (k + 1)πk+1 (ζ)TS .

Solving, substituting in the formula for πk+1 (ζ) , and recalling that ζ = TB/TS shows
that ωk (ζ) and πk (ζ) are identical:

ωk (ζ) =
(k + 1)

ζ
πk+1 (ζ) =

(k + 1)

ζ

ζk+1

(k + 1)! eζ
= πk (ζ) . (19)

The striking implication of this, which follows from the number of buyers in a given
meeting being Poisson, is that the distribution of bids that a buyer must beat is exactly
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the same distribution of bids that each seller receives when she is matched with at least
one buyer.10

Turning back to ρB, a buyer who bids λ and is the highest bidder has probability
FS(C (λ)) of having his bid accepted. This is just the probability that the seller with
whom the buyer is matched will have a low enough reservation price so as to accept
his bid. If a total of j + 1 buyers are matched with the seller with whom the buyer is
matched, then he has j competitors and the probability that all j competitors will bid
less than λ is [FB (V (λ))]

j . Therefore the probability that the bid λ is successful in a
particular period is

ρB (λ) = FS (C (λ))
X∞

j=0
ωj (ζ) [FB (V (λ))]

j

= FS (C (λ))
X∞

j=0
πj (ζ) [FB (V (λ))]

j (20)

= FS (C (λ)) [π0 + π̄0F
∗ (V (λ))] .

We are now in position to prove Theorem 1 on convergence and Theorem 2 on
existence. The next section proves convergence to pW , the Walrasian price, in two
steps. Convergence to one price follows from each trader’s search for a better price
becoming cheaper as δ, the period length, becomes shorter. Traders who do not offer
a good price to the opposite side of the market fail to trade and therefore revise their
price, narrowing the range of prices realized in the market. That convergence is to pW
is a consequence of supply and demand. Traders who enter stay in the market until
they trade. If the one price to which the market converges is not Walrasian, then either
more buyers will enter than sellers or more sellers will enter than buyers. Either way the
market will not clear, traders on one side of the market will accumulate without bound,
and the market will not be in a steady state equilibrium. Therefore, if a sequence of
steady state equilibria exists as δ → 0, the equilibria must converge to pW .

Section 5 proves existence in three steps. In the first step we identify a class of
equilibria–full trade equilibria–and show that a necessary condition for a full trade
equilibria to exist is that it satisfy a system of two equations that β, the discount rate,
and δ, the period length parameterize. In step 2 we show that at (β, δ) = (0, 0) a
solution to these equations always exists and apply the implicit function theorem to
establish that a unique solution always exists for all (β, δ) in a neighborhood around
(0, 0) . Finally, in step 3 we show that if β is sufficiently small relative to κ,the per unit
time participation cost, then the solution to the two equation system–which exists–
defines an equilibrium, i.e., a solution to the system is sufficient for an equilibrium to
exist. Section 5 then concludes with a discussion of two issues: why is it important that
β be small relative to κ and what are we able to say about the rate at which equilibria
approach full efficiency as δ → 0.

10Myerson (1998) studies games with population uncertainty and shows that the Poisson assumption
is both necessary and sufficient for players’ beliefs about the number of other players to be equal to the
external observer’s beliefs.
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4 Proof of convergence

Theorem 1 consists of two parts: “the law of one price” part, which given the charac-
terization in Theorem 7, reduces to

lim
δ→0

cδ = lim
δ→0

p̄δ = lim
δ→0

vδ = pW ,

and the efficiency part

lim
δ→0

WSδ (c) = max [0, pW − c] , lim
δ→0

WBδ (v) = max [0, v − pW ]

These are dealt with separately in Theorems 8 and 12 below. All the proofs in this
Section apply to all equilibria, not only to full trade equilibria. Figure 3 shows the
structure of a non-full trade equilibrium. The difference between this figure and Figure
1 of a full trade equilibrium is that the equality p = B (v) = S (c̄) = c̄, which defines an
equilibrium to be full trade, is changed to the inequality, p = B (v) ≤ S (c̄) = c̄, which
allows sellers and buyers’ strategies to overlap.

Theorem 8 limδ→0 cδ = limδ→0 p̄δ = limδ→0 vδ = pW .

The proof of this Theorem relies on three Lemmas.

Lemma 9 limδ→0 (p̄δ − c̄δ) = 0.

Proof. Suppose not, i.e., there exists an ε > 0 such that p̄δ − c̄δ > ε along a
subsequence. Let

bδ = p̄δ − ε/2,

vδ = sup {v : Bδ (v) ≤ bδ} .

Let the probability γδ be the seller’s equilibrium belief that the maximum bid in a given
period is greater than or equal to bδ. If limδ→0 γδ = γ > 0 along a subsequence, the
seller for whom cδ = (c̄δ + bδ) /2 would prefer to enter for small enough δ. The reason
is this. By definition bδ − c̄δ > ε/2 and, therefore, bδ − cδ > ε/4. Consequently, if seller
cδ sets her offer to be λ = bδ, then the gain bδ − cδ she realizes if she trades is at least
ε/4 and her per period probability of trade is ρS (λ) > γ. Inspection of formulas (8)
and (12) establishes that as δ → 0 her discounted probability of trade goes to 1 and
her discounted participation costs goes to 0. Therefore her expected utility, as given by
(11), is

WS (bδ, cδ) = PS (λ) (bδ − cδ)−KS (λ) >
ε

4
> 0

as δ → 0, a contradiction.
If, on the other hand, limδ→0 γδ = 0 along all subsequences, then the buyer for

whom v = 1 would prefer a deviation to bδ. If he deviates, then in the limit, as δ → 0,
his probability of trading in a given period, ρB (bδ), approaches 1. This is an immediate
implication of the observation that follows (19): γδ is not only the probability that the
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Figure 3: Structure of an equilibrium that is not full trade. The figure also shows the
construction of b0, b00, c0δ and c00δ that are used in the proof of Lemma 10.
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maximum bid a seller receives in a given period is greater than or equal to bδ, but it
is also the probability that the maximum competing bid the type 1 buyer must beat is
greater than or equal to bδ. Therefore γδ → 0 implies that deviating to bδ results in his
discounted probability approaching 1 and discounted participation cost approaching 0.
Consequently, this buyer deviates and secures the lower price bδ, which completes the
proof.¥

Lemma 10 limδ→0
³
p̄δ − p

δ

´
= 0.

Proof. The proof is by contradiction: pick a small ε, suppose p̄δ− p
δ
> ε > 0 along

a subsequence, and define

b0δ = p̄δ −
1

3
ε, (21)

b00δ = p̄δ −
2

3
ε.

Note that b00δ − p
δ
> ε

3 . Select a buyer and let

φδ = FSδ
¡
Cδ

¡
b0δ
¢¢

be the equilibrium probability that the seller with whom he is matched in a given period
would accept a bid that is less than or equal to b0δ. Lemma 9 guarantees that the seller
for whom S (c) = b0δ exists, at least for small enough δ. Select a seller and let

ψδ =
∞X
k=0

πk
£
FBδ

¡
Vδ
¡
b0δ
¢¢¤k

= π0 + π̄0F
∗
Bδ

¡
Vδ
¡
b0δ
¢¢
.

be the equilibrium probability that, in a given period, she receives either no bid or
the highest bid she receives is less or equal to b0δ. Observe that ψδ is the equilibrium
probability that a buyer’s bid b0δ is maximal in a given match; this follows directly from
formula (20) for ρB (λ) . Given these definitions, this Lemma’s proof consists of three
steps.

Step 1. The fraction of sellers for whom Sδ (c) ≤ b0δ does not vanish as δ → 0, i.e.,
φ ≡ limδ→0φδ > 0.

Suppose not. Then φδ → 0 along a subsequence. Fix this subsequence and fix some
period, say period 0. Let Nδ be a sequence of integers whose values are chosen later in
the proof. Define, without loss of generality, the time segment Υδ of length Nδ periods
that begins with period 0 and ends with period Nδ. Define three masses of sellers :

• m+
Nδ is the mass of sellers who enter the market within time segment Υδ and for

whom b00δ ≤ Sδ (c) ≤ b0.

• m−Nδ is the mass of sellers who both enter and exit the market within time segment
Υδ and for whom b00δ ≤ Sδ (c) ≤ b0δ.
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• mδ the steady state mass of active sellers for whom b00δ ≤ Sδ (c) ≤ b0δ.

The assumption that φδ → 0 implies that mδ → 0. We show next that mδ → 0 entails
cδ → b00δ . This establishes a contradiction because Theorem 7 states that cδ < p

δ
and by

construction p
δ
+ ε

3 < b00δ .

The fraction of sellers in the mass m+
Nδ that do not exit during the time segment

Υδ is
m+

Nδ −m−Nδ

m+
Nδ

≤ mδ

m+
Nδ

because the surviving massm+
Nδ−m

−
Nδ of sellers who entered in time segment Υδ cannot

exceed the total, steady state of the mass mδ of sellers with reservation prices in the
interval [b00δ , b

0
δ]. Therefore the fraction of the sellers in m+

Nδ that have traded within
time segment Υδ is at least

1− mδ

m+
Nδ

. (22)

In the mass m+
Nδ, pick a seller c

00
δ who enters in period 0 and for whom

Sδ
¡
c00δ
¢
= b00δ .

Such a seller c00δ always exists because Sδ is continuous (see Theorem 7) and g is a lower
bound on the density of entering sellers. This seller’s reservation price is as low as any
other seller in m+

Nδ and has the full time segment Υδ in which to consummate a trade.
Her probability of trading within Υδ is therefore as high as any other seller in m

+
Nδ. Let

rδ be her probability of trading within the time segment Υδ. It is therefore at least as
great as the average probability of trading across all sellers in m+

Nδ:

rδ ≥ 1−
mδ

m+
Nδ

. (23)

Now, since the slope of Sδ is at most one (see the formula in Theorem 7), it follows
that

m+
Nδ ≥

ε

3
gδNδ, (24)

because m+
Nδ is minimized when the slope of Sδ is the largest (i.e., equal to 1) and the

density gS is minimal. Substituting this lower bound on m+
Nδ into (23) gives

rδ ≥ 1−
mδ

ε
3gδNδ

.

For seller c00δ her discounted probability of trading PSδ (b
00
δ ) from setting reservation price

b00δ is bounded from below by

PSδ
¡
b00δ
¢
≥ e−βδNδ

µ
1− mδ

ε
3gδNδ

¶
. (25)

The right-hand side understates the discounted probability of trade because, literally,
the lower bound is the discounted probability of trader c00δ waiting the full Nδ periods
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before attempting to trade, having only probability 1−mδÁ( ε3gδNδ) of succeeding in
that period, and then never trying again.

Set the period length to be

Nδ = min

½
k : k is integer, k ≥

√
mδ

δ

¾
.

Substitution of this choice into (25) and taking the limit as δ → 0 shows that discounted
probability of seller c00δ trading approaches 1 from below because mδ → 0:

lim
δ→0

PSδ
¡
Sδ
¡
c00δ
¢¢
≥ lim

δ→0
exp (−β√mδ)

µ
1−
√
mδ
ε
3g

¶
= 1.

Recall from Theorem 7 that, for almost all c ∈ [0, c̄),

S0δ (c) = 1− e−βδPSδ [Sδ (c)] .

Since PSδ (Sδ (c)) ≥ PSδ (b
00
δ ) for c ≤ c00δ and Sδ is increasing on [0, c̄), it follows that, for

all seller types c ∈ [0, c00δ ], PSδ [Sδ (c)]→ 1 and

lim
δ→0

S0δ (c) = 0.

Consequently, since Sδ is continuous,

cδ = Sδ (0)→ b00δ .

This is in contradiction to cδ < p
δ
< b00δ − ε/3. Therefore it cannot be that φδ → 0.

Step 2. If the ratio of buyers to sellers ζδ is bounded away from 0, then the
probability ψδ that the highest bid in a given meeting is less than b0δ is also bounded
away from 0. Proof of this step stands alone and is not based on the result in step 1 of
this proof.

Formally, if limδ→0ζδ > 0, then ψ ≡ limδ→0 ψδ > 0. Suppose not. Then ψδ → 0 and
ζδ → ζ > 0 along a subsequence. Fix this subsequence and recall that by construction

b00δ > p
δ
+

ε

3
. (26)

First, we show that the seller with cost c00δ such that S (c
00
δ ) = b00δ prefers to enter. Since

ζδ → ζ and ψδ → 0, for all δ sufficiently small, the probability that he meets a buyer

for whom B (v) ≥ b0δ = b00δ + ε/3 is at least 12

³
1− e−ζ

´
. This is because, with ψδ → 0,

(i) almost every bid she receives is greater than b0δ and (ii) her probability of getting
at least one bid is approaching 1− e−ζ . Therefore, as δ → 0 her discounted probability
of trading with a buyer for whom Bδ (v) ≥ b0δ approaches 1 even as her discounted
participation costs, given by formula (10), approach 0. Consequently, the profit of the
c00δ seller, in the limit as δ → 0, is at least ε/3, and she will choose to enter.

Second, since she chooses to enter, it must be that c00δ ≤ c̄δ. Therefore the slope of
S for c ∈ [0, c00δ ) satisfies

S0 (c) = 1− e−βδPSδ (c)→ 0
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since PSδ (Sδ (c)) ≥ PSδ (Sδ (c
00
δ )) and PSδ (Sδ (c

00
δ )) → 1. Therefore cδ → b00δ , a contra-

diction of (26) and Theorem 7’s requirement that cδ < p
δ
.

Step 3. For small enough δ, a buyer for whom v = 1 prefers to deviate to bidding
b0δ instead of p̄δ. There are two cases to consider.

Case 1. limδ→0ζδ > 0. We show, using both steps 1 and 2 of this proof, that
bidding p̄δ cannot be equilibrium behavior for a type 1 buyer. Recall that φδ is the
probability that a seller will accept a bid less than b0δ and that, according to step 1,
φ = limδ→0 φδ > 0. Additionally, recall that ψδ is the probability that the maximal
rival bid a buyer faces in a given period is no greater than b0δ and that, according to
step 2, limδ→0 ψδ = ψ > 0. For small enough δ > 0, this second probability is bounded
from below by (1/2)ψ. It follows that, for small enough δ, the buyer who bids b0δ (i)
wins over all his rival buyers with probability greater than (1/2)ψ, and (ii) has his bid
accepted by the seller with probability greater than (1/2)φ. Therefore, as δ → 0, the
buyer who bids b0δ trades with a discounted probability approaching 1 and a discounted
participation cost approaching 0. Consequently deviating to b0δ gives him a profit of at
least 1−b0δ, which is greater than 1− p̄δ, that profit he would make with his equilibrium
bid B (1) = p̄δ. Therefore deviation to b0δ is profitable for him.

Case 2. limδ→0ζδ = 0. Fix a subsequence such that ζδ → 0. The proof of this
case relies only on the result in step 1 of this proof. The probability of meeting no rival
buyers in a given period is e−ζδ and, since ζδ → 0, this probability is at least 1/2 for
sufficiently small δ. In any given period, for a type 1 buyer and for all small δ, (i) the
probability of meeting no rivals is at least 1/2 and (ii) the probability of meeting a seller
who would accept the bid b0δ is at least (1/2)φ. It follows that as δ → 0, his discounted
probability of trading approaches 1 and his discounted participation cost approaches 0.
Therefore deviating to b0δ gives him a profit of at least 1 − b0δ > 1 − p̄δ, which proves
that a deviation to b0δ is profitable for him.

Step 3 completes the Lemma’s proof because it contradicts the hypothesis that,
limδ→0(p̄δ − p

δ
) = ε > 0.¥

Lemma 11 limδ→0
³
vδ − p

δ

´
= 0.

Proof. Suppose not. Recall that B (vδ) ≡ p
δ
and that Theorem 7 states that

vδ > p
δ
. Pick a subsequence such that vδ−pδ ≥ η > 0 along it. Define ξδ =

1
2

³
p
δ
+ vδ

´
and observe that ξδ − p

δ
≥ η/2 and ξδ < vδ. The latter inequality implies that a type

ξδ buyer does not enter the market because his expected utility is non-positive. But
suppose to the contrary that a type ξδ buyer enters and bids p̄δ. Bidding p̄δ guarantees
that he wins the auction in whatever match he finds himself, i.e., ρBδ (p̄δ) = 1. Therefore

25



in the first period after he enters he earns profit of

ξδ − p̄δ − κδ

= ξδ − p
δ
+ p

δ
− p̄δ − κδ

≥ η

2
+ p

δ
− p̄δ − κδ

→ η

2

because Lemma 10 states that, as δ → 0, p̄δ − p
δ
→ 0. This contradicts the equilibrium

decision of the type ξδ buyer not to enter.¥
Proof of Theorem 8. Consider any sequence of equilibria δn → 0. The descriptors

p̄δ and vδ converge because

lim
δ→0

(p̄δ − vδ) = lim
δ→0

(p̄δ − vδ)− lim
δ→0

(p
δ
− vδ) (27)

= lim
δ→0

(p̄δ − p
δ
)

= 0

where limδ→0(pδ − vδ) = 0 (from Lemma 11) implies the first equality and limδ→0(p̄δ −
p
δ
) = 0 (from Lemma 10) implies the third equality. Theorem 7 establishes that c̄δ ∈

[p
δ
, p̄δ); therefore Lemma 10 implies

lim
δ→0

(p̄δ − c̄δ) = 0. (28)

Pick a convergent subsequence of
³
vδ, p̄δ, c̄δ, pδ

´
and denote its limit as (p∗, p∗, p∗, p∗).

Traders who choose to become active in the market exit only by trading. Therefore
in the steady state the mass of sellers entering each period must equal the mass of
buyers entering each period:

GS (c̄δ) = a ḠB(vδ). (29)

Taking the limit in (29) along the convergent subsequence as δ → 0, we get

GS (p∗) = a ḠB(p∗).

This is just equation (1) that defines the Walrasian price; therefore p∗ = pW . Since pW
is the common limit of all convergent subsequences, it follows that the original sequence³
vδ, p̄δ, c̄δ, pδ

´
converges to the same limit:

lim
δ→0

p̄δ = lim
δ→0

p
δ
= lim

δ→0
c̄δ = lim

δ→0
vδ = pW . (30)

All that remains is to show that cδ also converges to pW . The type c̄δ seller who is
on the margin between participating and not participating must in expectation be just
recovering his participation cost each period. Recall that Sδ (c̄δ) = c̄δ. Since the price
this seller receives is no more than the highest bid, p̄δ, it follows that

ρSδ [Sδ (c̄δ)] (p̄δ − c̄δ) ≥ κδ.
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Therefore
ρSδ [Sδ (c̄δ)]

δ
≥ κ

p̄δ − c̄δ
→∞

by (28). The discounted probability of trade may be written as

PSδ [Sδ (c̄δ)] =
ρSδ [Sδ (c̄δ)]

1− e−βδ + e−βδρS [Sδ (c̄δ)]
(31)

=
1

1−e−βδ
δ

ρSδ[Sδ(c̄δ)]
δ

+ e−βδ
.

It follows that limδ→0 PS [Sδ (c̄δ)] = 1 because limδ→0
1−e−βδ

δ = β and limδ→0
ρSδ[Sδ(c̄δ)]

δ =
∞. Further, for all c ∈ [0, c̄δ],

lim
δ→0

PSδ [Sδ (cδ)] = 1 (32)

because PSδ [Sδ (·)] is decreasing. Therefore

S0δ (c) = 1− e−βδPSδ (Sδ (c)) ,

the slope of Sδ on [0, c̄δ], converges to 0. Together with the continuity of Sδ this implies
that cδ → c̄δ, which completes the proof.¥

Next we prove the second part of Theorem 1.

Theorem 12 limδ→0WSδ (c) = max [0, pW − c] and limδ→0WBδ (v) = max [0, v − pW ] .

Proof. Equation (32) establishes that, for all c ∈ [0, c̄δ], limδ→0 PSδ [Sδ (c̄δ)] = 1.
The same argument, slightly adapted, shows that, for all v ∈ [vδ, 1], limδ→0 PBδ [Bδ (v)] =
1. Thus the buyer for whom v = vδ must just recover its participation cost each period:

ρBδ [Bδ (vδ)] (vδ −Bδ (vδ)) = ρBδ

³
p
δ

´³
vδ − p

δ

´
= κδ.

Therefore
ρBδ

³
p
δ

´
δ

=
κ

vδ − p
δ

→∞

by Lemma 11 and, exactly as with (31) ,

lim
δ→0

PBδ

³
p
δ

´
= lim

δ→0

ρBδ

³
p
δ

´
1− e−βδ + e−βδρBδ

³
p
δ

´ = 1
Since PBδ (·) is increasing, this establishes that limδ→0 PBδ [Bδ (vδ)] = 1 for all vδ ∈
[vδ, 1].
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The envelope theorem–see equations (13) and (15)–implies that

WSδ (c) =

Z c̄δ

c
PSδ [Sδ (x)] dx,

WBδ (v) =

Z v

vδ

PBδ [Bδ (x)] dx.

Passing to the limit as δ → 0 gives limδ→0WSδ (c) = max [0, pW − c] and limδ→0WBδ (v) =
max [0, v − pW ] because c̄δ → pW and vδ → pW .¥

5 Existence of full trade equilibria

Recall that Theorem 7 shows that every equilibrium must satisfy B (v) ≤ S (c̄). The
intuition for this is that the type v buyer can only trade if there is no rival buyer.
Consequently he should certainly not bid more than S (c̄), the lowest bid that every
seller accepts. In a full trade equilibrium B (v) = S (c̄) and the type c̄ seller, who is the
highest cost active seller, always trades if she is matched with at least one buyer, even if
he is the lowest value active buyer. This, of course, means that any seller with cost less
than c̄ also trades if she is matched and that a buyer fails to trade only because he is
beaten in the bidding by another buyer. In this section we characterize these equilibria
and, given κ > 0, prove their existence for each sufficiently small pair of non-negative
β and positive δ. Specifically, Lemma 13 proves that, given κ > 0 and β ≥ 0, then for
each sufficiently small β and δ the vector of equilibrium descriptors (c̄δ, vδ, ζδ) exists
and is unique. Theorem 14 then shows that, given κ > 0, there is a neighborhood X of
(0, 0) such that if (β, δ) ∈ X, then a unique full trade equilibrium exists that the vector
(c̄δ, vδ, ζδ) characterizes. Theorem 2 then follows immediately as a corollary.

5.1 Preliminaries

Before introducing the equations that determine (c̄, v, ζ) , we derive sellers and buyers’
probabilities of trade as a function of their types c and v and the buyer-seller ratio
ζ. As a consequence of the equilibrium being full trade, buyers’ trade probabilities
are independent of sellers’ equilibrium strategy S. That the sellers’ strategy does not
feed back and affect the buyers’ trade probabilities and strategy implies that the market
fundamentals–GS, GB, a, κ, β, and δ–fully determine the equilibrium. This fact drives
both the uniqueness and existence results of this section.

Given that the market is in a steady state, within every period the cohort of buyers
who has the highest valuations in their matches and therefore trades is replaced by an
entering cohort of equal size and composition. Therefore F ∗B, the distribution function
of the maximal valuation within a match, is equal to the distribution of v in the entering
cohort conditional on v ≥ v:

F ∗B (v) =
GB (v)−GB (v)

1−GB (v)
. (33)
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Let ρ̂B (v) be the equilibrium probability that a type v buyer trades in any given
period. It, as reference back to equation (20) and its derivation explains, is equal to
the probability that he bids against no rival buyers

¡
ω0 = e−ζ

¢
plus the complementary

probability
¡
ω̄0 = 1− e−ζ

¢
times the probability that the maximal value among the

rival buyers in his match is no greater than v:11

ρ̂B (v) = e−ζ +
³
1− e−ζ

´
F ∗B (v) . (34)

The discounted equilibrium trading probability for a type v buyer is therefore

P̂B (v) =
ρ̂B (v)

1− e−βδ + e−βδρ̂B (v)
. (35)

The hats on ρ̂B (·) and P̂B (·) emphasize that these equilibrium probabilities are func-
tions of the buyer’s value v, not of his bid B (v) .

With this notation in place we can introduce the equations that determine (c̄, v, ζ)
in a full trade equilibrium. First, since every meeting results in a trade, the mass of
entering buyers must equal the mass of entering sellers in the steady state:

GS (c̄) = a [1−GB (v)] (36)

= aḠB(v).

Second, the buyer for whom v = v must be indifferent between being active and staying
out of the market. The type v buyer only trades in a period when there are no rival
buyers; his probability of trading is ω0 = e−ζ . Since in a full trade equilibrium B (v) =
S (c̄) and Theorem 7 states that S (c̄) = c̄, indifference necessarily implies that his
expected gains from trade in any period, (v − c̄)e−ζ equals his per period participation
cost:

(v − c̄)e−ζ = κδ. (37)

Third, parallel logic applies to any seller for whom c = c̄. This seller always trades
in any period in which he is matched with at least one buyer; the probability of this
event is 1 − π0 = π̄0 = 1 − e−ζ . Denote the expected price that any seller receives as
p. Note that this expected price is not a function of the sellers’ type c; it is the same
for all active sellers in a full trade equilibrium. Then, since the c̄ seller is indifferent
between trading and staying out of the market, it must be that

(p− c̄) (1− e−ζ) = κδ. (38)

11Formula (20),
ρB (λ) = FS (C (λ)) [π0 + π̄0F

∗ (V (λ))] ,

illustrates why the full trade case is different than the general case. In the full trade case the factor
FS (C (λ)) is degenerate: for all λ ∈ p, p̄ , FS (C (λ)) = 1. As a consequence the seller’s inverse strategy
C (λ) does not affect ρB (·) . In the general case, an interval [p, λ ] ⊂ p, p̄ may exist such that, for all
λ ∈ [p, λ ], FS (C (λ)) < 1 and C (λ) does affect ρB (·) .
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In order to find the price p, we use the envelope theorem to solve for the bidding
strategies of the active buyers (i.e., those buyers for whom v ≥ v) as follows:

WB (v) = (v −B(v)) P̂B (v)−K0 (v) (39)

=

Z v

v
P̂B (x) dx,

where P̂B (v) is the type v buyer’s discounted probability of trading and

K0 (v) =
κδ

1− e−βδ + e−βδρ̂B (v)

is his discounted participation cost. Solving equation (39) for B (v) gives

B (v) = v − κδ

ρ̂B (v)
− 1

P̂B (v)

Z v

v
P̂B(x)dx. (40)

Observe that this formula calculates B(v) directly; it is not a fixed point condition. The
expected price p that a seller receives is the expected value of B (v) for that buyer who
has the highest valuation:

p =

Z 1

v
B (v) dF ∗B(v) =

1

1−GB (v)

Z 1

v
B (v) dGB(v) (41)

where the second equality follows from equation (33).
Equations (36-38) form a system of three equations in the three unknowns (c̄, v, ζ)

that, for given κ, β, and δ, must hold in any full trade equilibrium. In Theorem 14
below we prove that the converse claim is also true: given κ > 0, if β is non-negative,
δ is positive, and they are in a sufficiently small neighborhood of (0, 0), then a unique
full trade equilibrium exists that corresponds to a solution (c̄, v, ζ) of the system of
equations. The three characterizing equations (36-38) therefore identify a full trade
equilibrium.

It is useful to reduce (36-38) to two equations. Substitute

c̄ = v − κδeζ (42)

from equation (38) into equation (36) to obtain

GS

³
v − κδeζ

´
− a (1−GB (v)) = 0. (43)

This eliminates c̄. Equation (36) can be re-written as

p = c̄+
κδ

1− e−ζ

= v − κδeζ +
κδ

1− e−ζ
.
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Given κ, the new, two equation system in the two variables (v, ζ) and the two parameters
(β, δ) is then

GS

³
v − κδeζ

´
− a (1−GB (v)) = 0 (44)

p− v + κδ
eζ − 2
1− e−ζ

= 0. (45)

where equations (41) , (40) , and (35) together imply that p is a function of β and δ.

5.2 Proof of Theorem 2

The method of proof we use has five steps. First, we fix κ > 0 and tediously substitute
(41) into the system (44—45) to eliminate p. Second, we change the domain of the system
from the economically meaningful set (v, ζ, β, δ) ∈ D = (0, 1)× (0,∞)× [0, 1)× (0,∞)
to the mathematically more convenient set D1 = (0, 1) × (0, 2) × (−0.1, 1) × (−0.1, 1).
Third, we prove that at δ = 0 the system has a unique solution: (v, ζ) = (pW , ζ∗), where
ζ∗ = 1.14619 is the unique positive solution of the equation eζ − ζ − 2 = 0. Fourth, we
apply the implicit function theorem in a neighborhood of (v, ζ, β, δ) = (pW , ζ∗, 0, 0) to
establish the existence of a unique, differentiable solution (v (δ) , ζ (δ)) for the system of
equations. Fifth, by construction, we show that, if both β and δ are sufficiently small,
then the solution (v (δ) , ζ (δ)) characterizes the unique, full trade equilibrium of the
market. Lemma 13 accomplishes the first four steps and Theorem 14 accomplishes the
last step.

Lemma 13 Given κ > 0, a neighborhood X of the point (0, 0) exists such that the
system (36)-(38) has a unique, differentiable solution (c̄ (β, δ) , v (β, δ) , ζ (β, δ)) for all
(β, δ) ∈ X. At δ = 0, v (β, 0) = pW and ζ (0, 0) = ζ∗ = 1.14619 where ζ∗ is the unique
positive solution of the equation eζ − ζ − 2 = 0.

Proof. By (41),

p− v =
1

1−GB (v)

Z 1

v
(B (v)− v) dGB(v) (46)

and, by (40),

B (v)− v = v − v −
Z v

v

P̂B (x)

P̂B (v)
dx− κδ

ρ̂B (v)

=

Z v

v

Ã
1− P̂B (x)

P̂B (v)

!
dx− κδ

ρ̂B (v)
.

Algebra shows that

1− P̂B (x)

P̂B (v)
= βδ

1− e−βδ

βδ

ρ̂B (v)− ρ̂B (x)

ρ̂B (v) (1− e−βδ + e−βδρ̂B (x))
; (47)
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substituting this into (40) gives

B (v)− v = δ

µ
β
1− e−βδ

βδ

Z v

v

ρ̂B (v)− ρ̂B (x)

ρ̂B (v) (1− e−βδ + e−βδρ̂B (x))
dx− κ

ρ̂B (v)

¶
.

Inserting this expression for B (v)−v into (46) and substituting the resulting expression
for p− v into (45) gives

δL (v, ζ, β, δ) = 0, (48)

where

L (v, ζ, β, δ) =
1

1−GB (v)

Z 1

v

β

κ

1− e−βδ

βδ

Z v

v

ρ̂B (v)− ρ̂B (x)

ρ̂B (v) (1− e−βδ + e−βδρ̂B (x))
dxdGB (v)

− 1

1−GB (v)

Z 1

v

1

ρ̂B (v)
dGB (v)

+
eζ − 2
1− e−ζ

. (49)

The second term of L can be written as

1

1−GB (v)

Z 1

v

1

ρ̂B (v)
dGB (v)

=
1

1−GB (v)

Z 1

v

1

e−ζ + (1− e−ζ) GB(v)−GB(v)
1−GB(v)

dGB (v)

=
1

1− e−ζ
log

1

e−ζ

=
ζ

1− e−ζ
;

substituting this into (49) results in

L (v, ζ, β, δ) =
1

1−GB (v)

Z 1

v

β

κ

1− e−βδ

βδ

Z v

v

ρ̂B (v)− ρ̂B (x)

ρ̂B (v) (1− e−βδ + e−βδρ̂B (x))
dxdGB (v)

+
eζ − ζ − 2
1− e−ζ

Simplifying further, L (v, ζ, β, δ) becomes:

L (v, ζ, β, δ) =
1

(1−GB (v))
2

Z 1

v

β

κ

1− e−βδ

βδ

Z v

v

¡
1− e−ζ

¢
(GB (v)−GB (x))

ρ̂B (v) (1− e−βδ + e−βδρ̂B (x))
dxdGB (v)

+
eζ − ζ − 2
1− e−ζ

. (50)

Given this work, the system (44-45) is, for δ > 0, equivalent to the system

GS

³
v (β, δ)− κδeζ(β,δ)

´
− a (1−GB (v (β, δ))) = 0 (51)

L (v (β, δ) , ζ (β, δ) , β, δ) = 0 (52)

32



where we index v and ζ with βand δ to indicate that we solve this system for them as
functions of β and δ. Note that we have divided the second equation through by δ; this
is essential in order to ensure a non-zero Jacobian.

We apply the implicit function theorem to this system in a neighborhood of the
point (v, ζ, β, δ) = (pW , ζ∗, 0, 0) . To do so the system must be continuously differentiable
in a neighborhood of (pW , ζ∗, 0, 0) . Therefore change the domain of the system from
D = (0, 1) × (0,∞) × [0, 1) × (0,∞) to D1 = (0, 1) × (0, 2) × (−0.1, 1) × (−0.1, 1).
Equation (51) is obviously continuously differentiable on D1. To see that this is also so
for (52) recall formula (34) for ρ̂B and observe that ρ̂B (v) , ρ̂B (x) , and

¡
1− e−βδ

¢
/βδ

are continuously differentiable functions of v, ζ, β, and δ on D1.12 The function L, as a
composition of these functions, is continuously differentiable on D1 provided the factor¡
1− e−βδ + e−βδρ̂B (x)

¢
in the denominator of the inner integral is always positive. This

in fact is the case because ρ̂B (x) is increasing for x ≥ v and ρ̂B (v) = ω0 = e−ζ (see
equations 33 and 34). Therefore

1− e−βδ + e−βδρ̂B (x) ≥ 1− e−βδ + e−βδe−ζ

= e−βδ(eβδ − 1 + e−ζ).

This last expression is positive if eβδ − 1 + e−ζ > 0 or, equivalently, whenever

βδ > ln(1− e−ζ). (53)

Inspection establishes that all (v, ζ, β, δ) ∈ D1 satisfy (53) because supζ∈(0,2) ln
¡
1− e−ζ

¢
=

−.145. Therefore L (·) is continuously differentiable on D1. Finally, also note that within
its interior D1 includes all points in {(v, ζ, β, δ) ∈ D1 : β = 0 and δ = 0} .

At (β, δ) = (0, 0), L (v, ζ, 0, 0) takes the simple form

L (v, ζ, 0, 0) =
eζ − ζ − 2
1− e−ζ

.

This is a function increasing in ζ:

d

dζ

eζ − ζ − 2
1− e−ζ

=
eζ
¡
ζ + e2ζ − 3eζ + 3

¢
(1− e−ζ)2

> 0

because e2ζ − 3eζ + 3 =
¡
eζ − 3

2

¢2
+ 3−

¡
3
2

¢2
> 0. Therefore

∂L (v, ζ, 0, 0)

∂ζ
> 0. (54)

We now claim that (v, ζ) = (pW , ζ∗) is the unique solution to the system (51-52)
at (β, δ) = (0, 0) . This is seen in two steps. First, if δ = 0, equation (51) reduces to
GS (v (0))−a (1−GB (v (0))) = 0, which is just equation (1) defining pW , the Walrasian
price. Therefore, at (β, δ) = (0, 0), pW is the unique solution to (51), the system’s first

12The expression 1− e−βδ /βδ is indeterminate at δ = 0, but selecting limδ→0 1− e−βδ /βδ to
be its value at that point makes it continuous and differentiable over all of D1.
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equation. Second, inspection shows that the equation L (pW , ζ, 0, 0) = 0 reduces to
eζ − ζ − 2 = 0 at (β, δ) = (0, 0) ; its unique, positive solution is ζ = ζ∗ = 1.14619. Thus,
as claimed, (v, ζ) = (pW , ζ∗) is the unique solution to the system at (β, δ) = (0, 0) .

The Jacobian J of the system (51-52) at (v, ζ, β, δ) = (pW , ζ∗, 0, 0) is not zero:

J =

¯̄̄̄
¯ gS (pW ) + agB (pW ) 0

∗ ∂L(pW ,ζ∗,0,0)
∂ζ

¯̄̄̄
¯

= (gS (pW ) + agB (pW ))
∂L (pW , ζ∗, 0)

∂ζ
> 0,

where ∗ denotes some expression and the last line follows from inequality (54). Conse-
quently, the implicit function theorem applies: in some neighborhoodX of (β, δ) = (0, 0)
a unique solution (v (β, δ) , ζ (β, δ)) to the system (44-45) exists and is differentiable in
β and δ. The remaining function c̄ (δ) then is recovered from formula (42).¥

It remains to show that the equilibrium’s characterizing equations are also sufficient;
this is accomplished in Theorem 14 below. We have already shown that equations (36-
38) must hold in any full trade equilibrium, and that there exists a unique solution to
these equations when β and δ are sufficiently small. We start with the solution val-
ues (c̄(β, δ), v(β, δ), ζ(β, δ)) , construct the unique steady state densities fB and fS and
strategies B and S, compute the masses TB and TS that these densities and strategies
imply, and check that the ratio of these masses equals the solution value ζ. The key
insight to our construction is the observation that the strategy for buyers can be con-
structed separately from the strategy for sellers; the solution (c̄(β, δ), v(β, δ), ζ(β, δ)) is
a sufficient link between the two.

A difficulty in the construction of the buyers’ strategy B is that the lowest active
buyer type v(β, δ) (and hence also the neighboring types) may have an incentive to
deviate, by lowering his bid into the support [c, c) of the distribution of the sellers’
“offers.”13 We show that such a deviation is not profitable if β is sufficiently small.

Theorem 14 Given κ > 0, a neighborhood X of (0, 0) exists such that, for all pairs of
non-negative β and positive δ in X, a unique full trade equilibrium exists.

Proof. Consider sellers first. We already know the marginal participation type, c̄,
among sellers; it is is a component of (c̄, v, ζ) . A seller trades in any period in which
she is matched with at least one buyer; this probability is π̄0 = 1− π0 = 1− e−ζ and is
independent of her type. Using formula (7) , her discounted probability of trade is

P̂S =
1− e−ζ

1− e−βδ + e−βδ (1− e−ζ)
. (55)

For active sellers–those with costs c ≤ c̄–formula (15) gives their continuation values,

WS (c) =

Z c̄

c
P̂Sdx (56)

= P̂S (c̄− c) ,

13We are grateful to a referee for drawing our attention to the possibiity of such a deviation, thereby
discovering a flaw in the previous version’s proof.
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and formula (14) gives their equilibrium strategies,

S (c) = c+ e−βδWS (c)

= c+ e−βδP̂S (c̄− c) . (57)

Note that this is a linear function of c with slope 1 − e−βδP̂S. Sellers for whom c > c̄
best-respond by not entering.

To construct the unique, steady state distribution of seller types, FS , observe that
the seller’s best-response strategy S is increasing on [0, c̄] and satisfies S (c̄) = c̄. Since
all active sellers trade with the same probability in any period, the distribution of their
types in the market FS is just the distribution of the entering cohort conditional on
c ≤ c̄:

FS (c) =
GS (c)

GS (c̄)
. (58)

To complete the construction of the seller’s part of equilibrium, we must find the steady
state mass of active sellers TS. Mass balance holds every period in a steady state;
therefore TS

¡
1− e−ζ

¢
= δGS (c̄) and, solving,

TS =
δGS (c̄)

1− e−ζ
. (59)

Turning to the buyers, our first step is to show that buyers’ unique, symmetric,
mutual best-response strategy for v ≥ v is in fact given by (40):

B (v) = v − κδ

ρ̂B (v)
− 1

P̂B (v)

Z v

v
P̂B(x)dx (60)

where v denotes v (β, δ), a component of the characterizing equations’ solution of the
(36−38). For v < v, the best-response is not to enter. Observe that the formula implies,
as it should, that B (·) is an increasing function and that B (v) = c̄.

Standard auction-theoretic arguments (e.g., the constraint simplification theorem in
Milgrom (2004, page 105)) imply that the envelope condition (39) is sufficient to rule
out any deviation from B (v) to a bid λ ≥ c̄. For deviations from B (v) downward into
the region [c, c̄) the restriction that (β, δ) is contained in a sufficiently small neighbor-
hood of 0 is sufficient. To see this, fix κ > 0, restrict (β, δ) ∈ [0, 1] × (0, ln 2) , and
observe that this restriction implies e−βδ ∈

¡
1
2 , 1
¢
. Recall that the buyer’s payoff func-

tion (equation 9) may be written as WBδ (λ, v) = (v−λ)PB (λ)−KB (λ) where KB (λ)
is his expected discounted participation costs from following the stationary strategy of
bidding λ. Since WBδ (λ, v) is continuous at λ = c̄, a sufficient condition for ruling out
profitable downward deviations is, for all λ and v such that v ≥ c̄ > λ,14

∂WBδ (λ, v)

∂λ
= (v − λ)P 0B (λ)− PB (λ)−K 0

B (λ) > 0. (61)

14WBδ (λ, v), however ,is not a differentiable function at λ = c.
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This condition is met if −K 0
B (λ) > 1 because (v − λ) > 0, P 0B (λ) > 0, PB (λ) < 1, and

K 0
B (λ) < 0.
Differentiate −KB (λ):

−K 0
B (λ) = κδ

e−βδ

(1− e−βδ + e−βδρB (λ))
2ρ
0
B (λ)

≥ 1

2
κδρ0B (λ) (62)

because e−βδ ∈
£
1
2 , 1
¤
, ρB (λ) ∈ [0, 1] , and consequently e−βδ/

¡
1− e−βδ + e−βδρB (λ)

¢2 ≥
1
2 . The probability ρB (λ) of a seller successfully trading is given by formula (20):

ρB (λ) = FS (C (λ)) [π0 + π̄0F
∗ (V (λ))] = π0FS (C (λ))

where the second equality follows from the fact that, for deviations λ ∈ [c, c̄), F ∗ (V (λ)) =
0 because the deviating buyer’s bid λ loses whenever he faces a rival buyer.

Differentiation gives

ρ0B (λ) = e−ζfS (C (λ))
1− e−βδ + e−βδ

¡
1− e−ζ

¢
1− e−βδ

(63)

where e−ζ = π0, fS (C (λ)) is the density of sellers’ types at C (λ) , and

1− e−βδ + e−βδ
¡
1− e−ζ

¢
1− e−βδ

= C 0 (λ) =
1

S0 (C (λ))

from equation (57) . Recall the mathematical inequality that, for all β and δ, βδ ≥
1 − e−βδ.. Also recall that g > 0 bounds the density gS from below on [0, 1] , which
implies that fS (c) = gS (c) /GS (c) ≥ g. Therefore, again using e−βδ ∈

£
1
2 , 1
¤
,

ρ0B (λ) ≥ e−ζg

¡
1− e−ζ

¢
βδ

.

Then

−K 0
B (λ) ≥

1

2
e−ζg

³
1− e−ζ

´ κ

β

≥ 1

4
ge−ζ

∗
³
1− e−ζ

∗
´ κ

β
> 1

where the first inequality follows from substituting the bound for ρ0B (λ) into (62) , the
second inequality follows from writing Lemma 13’s result as ζ (β, δ) = ζ∗+ o (|| (β, δ) ||)
for some neighborhood of (0, 0) , and the third inequality follows from choosing β suffi-
ciently small relative to κ. This shows that, for (β, δ) in a sufficiently small neighborhood
of (0, 0) that is contained in [0, 1] × (0, ln 2) , W δ

λ (λ, v) > 0 for λ ∈ (c, c) and therefore
no deviation to λ < c is profitable for active buyers. Buyers’ unique symmetric mutual
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best-response strategy for v ≥ v is therefore given by (40). For v < v, the best response
is not to enter. Observe that the formula implies, as it should, that B is an increasing
function and that B (v) = c̄.

The steady state distribution, F ∗B, of the maximal rival buyer’s type is given by
formula (33). The distribution FB is uniquely recoverable from F ∗B, the distribution of
the maximal value. Equations (34) and (33) imply that in the steady state

ρ̂B (v) = e−ζ +
³
1− e−ζ

´ GB (v)−GB (v)

1−GB (v)
. (64)

On the other hand, direct computation shows that

ρ̂B (v) =
∞X
k=0

e−ζ
ζk

k!
FB (v)

k

= e−ζ[1−FB(v)]
∞X
k=0

e−ζFB(v)
[ζFB (v)]

k

k!

= e−ζ[1−FB(v)]. (65)

Equating the right-hand sides of (64) and (65) and then solving, we obtain the unique
steady state distribution FB that corresponds to ζ and v in the characterizing equations’
solution:

FB (v) = 1 +
1

ζ
log

∙
e−ζ +

³
1− e−ζ

´ GB (v)−GB (v)

1−GB (v)

¸
. (66)

To complete the construction of the buyer’s part of equilibrium, we must compute
TB, the steady state mass of buyers. Mass balance of buyers implies

TBF
0
B (v) ρ̂B (v) = aδgB (v) . (67)

Substitution of (64) and the derivative of (66) into this and solving gives the formula:

TB = ζ
aδ(1−GB (v))

1− e−ζ
= ζ

aδḠB (v)

1− e−ζ
. (68)

A review of this construction shows that strategy B, the distribution F ∗B, and the
mass TB depend only on the fundamentals GB, a, δ, and the solution (c̄, v, ζ) to the
characterizing equations, but not the sellers’ strategy S. This insulation of the buyers’
optimal actions from the sellers’ actions is, we again emphasize, the key insight behind
this construction and the proof’s overall design.

We need to check that, besides being mutual best-responses and inducing their own
steady state distributions FB and FS , the strategies result in steady state masses of
buyers and sellers that have the required ratio ζ that was computed as a component
of the solution to the characterizing equations. This is confirmed by dividing equation
(68) by (59):

TB
TS

= ζ
a(1−GB (v))

GS (c̄)
= ζ

aḠB (v)

GS (c̄)

= ζ,

where the last line follows from market clearing, equation (36).¥
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5.3 Discussion

Lemma 13, Theorem 14, and their proofs raise two issues. First, even if δ is small, why
does β have to be small relative to κ in order to insure that a solution (c̄, v, ζ) to the
equations (36-38) in fact characterizes a full trade equilibrium. Second, our theorems do
not discuss the rate at which these markets converge to full efficiency as δ approaches
zero. Why not?

The reason why an active, type v buyer might consider deviating from the bid
B (v) downward with a bid λ into the interval [c, c̄) is that the better price, if he
successfully trades, more than offsets his lower per period probability of trading and
increased participation costs. It is immediately clear why if β is small relative to κ such
a deviation is unprofitable. Consider the extreme case of infinitessimal discounting:
β is arbitrarily small. In this case, the equilibrium strategy of sellers (see equation
14) is essentially flat: S (c̄) = c and S (0) = c = c̄ − ε for some infinitesimal ε > 0.
Therefore deviating into [c, c̄) results in an infinitesimal gain in price at the cost of
a non-infinitessimal reduction in the per period probability of trade–a bad deal and
therefore not an equilibrium deal.

If β is large, the logic reverses: deviating into [c, c̄) results in an improved expected
discounted margin that more than offsets the increase in expected discounted partici-
pation costs. To illustrate, take as a baseline the second of the two full trade equilibria
that we computed in Section 2 (see Figure 2). This equilibrium, for which β = 1 and
δ = 0.02, has c̄ = 0.470, v = 0.530, and ζ = 1.103 as the solution to its characterizing
equations. A check that this is in fact is an equilibrium is to calculate that if the type
v = 0.530 buyer deviates from his equilibrium bid B (v) = 0.470 to a bid of λ = 0.465 ∈
[c, c̄) = [0.456, 0.470),then the change in his payoff is negative. Doing so causes his per
period probability of trade ρB to decrease by one-third from 0.33 to 0.22, his discounted
probability of trade PB to decreases from 0.96 to 0.93, his margin (v − λ) to increase
from 0.060 to 0.065, his expected discounted margin PB (λ) (v−λ) to increase from 0.058
to 0.061, and his discounted expected participation costs KB to increase from 0.058 to
0.087. Overall the 0.029 increase in participation costs overwhelms the 0.003 increase
in the expected discounted margin, so the net effect of the deviation is negative–as it
must be in equilibrium.

Alter the baseline case by increasing β from 1 to 10 while keeping δ fixed at 0.02.
Solving the characteristic equations for this modified situation yields c̄ = 0.476, v =
0.524, and ζ = 0.879. Construct the bidding function B (·) and the offer function S (·)
that are associated with this vector of descriptors using equations (60) and (57). Does
this (S,B) constitute an equilibrium? That it is not may be seen by checking if the type
v = 0.524 buyer can profit by deviating from the prescribed bid B (v) = 0.476 to a bid
λ = 0.430 ∈ [c, c̄) = [0.345, 0.476). Doing so decreases his per period probability of trade
ρB by one-third from 0.42 to 0.27, decreases his discounted probability of trade PB from
0.80 to 0.67, increases his margin (v − λ) from 0.048 to 0.094, increases his expected
discounted margin PB (λ) (v − λ) from 0.038 to 0.063, and increases his discounted
expected participation costs KB from 0.038 to 0.050. Overall the 0.012 increase in
participation costs does not offset 0.025 increase in the expected discounted margin, so
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the net effect of the deviation is positive. Thus (S,B) is not an equilibrium.
Inspection of these calculations makes clear the effect of an increase in β. In both the

β = 1 case and the β = 10 case the type v buyer deviates down into the interval [c, c̄)
so as to decrease his per period probability of trade ρB by one-third. In the β = 1 case
this causes his expected discounted margin PB (λ) (v − λ) to increase only 5% while in
the β = 10 case this causes his expected discounted margin to increase fully 66%. This
dramatic difference follows directly from formula (57) for the full trade offer function,

S (c) = c+ e−βδP̂S (c̄− c) ,

which implies that the slope of S(·) is quite flat for β = 1 but pretty steep for β =
10. Offsetting the change in expected discounted margin is the increase in expected
discounted participation costs. This increase results from the lower per period trading
probability ρB causing the type v buyer to wait in expectation longer before trading.
But in both cases the percentage increases are 53%: the deviation causes his expected
wait to increase from 3.0 periods to 4.6 in the β = 1 case and from 2.4 to 3.7 periods in
the β = 10 case. Therefore, to summarize, increasing β causes nonexistence of full trade
equilibria because for the type v buyer it greatly increases the elasticity of PB (λ) (v−λ)
with respect to ρB (λ), but leaves the elasticity of KB with respect to ρB (λ) unchanged.

Theorem 14 emphasizes that if β and δ are sufficiently small, then a unique full
trade equilibrium exists. Nevertheless Theorem 2, our main existence theorem, makes
no mention of uniqueness. The reason is that we do not know whether non-full trade
equilibria do or do not exist. We note, however, that these existence issues are delicate
and depend on details of the model. Formula (57) for S (·) , with its sensitivity to β, is a
direct consequence of our assumption that sellers’ can not commit to a reservation price
until after she receives her bids. For full trade equilibria, if the model permitted all
sellers with types c ∈ [0, c̄] to commit to the reservation price B (v) = c̄, then equilibria
would exist for large β provided δ were sufficiently small.15

Turn now to the second issue: the rate of convergence. Let β be sufficiently small
relative to κ so that a full trade equilibrium exists. Differentiability of the solution to
the characterizing equations in a neighborhood of (β, δ) = (0, 0) immediately implies
that the descriptors of the full trade equilibrium all converge to their limiting values
at a linear rate: c (δ) , c (δ) , v (δ) v (δ) , p̄ (δ) , p (δ) = pW + o (δ) and ζ (δ) = ζ∗ + o (δ) .
Further, convergence of interim and ex ante welfare also converge linearly, e.g., WSδ (c)
= max [0, pW − c] + o (δ) and WBδ (v) = max [0, v − pW ] + o (δ) .

The mechanics underlying these linear rates can be seen by breaking the inefficiency
of these equilibria into its two sources: delay costs and exclusion costs. First, given the
matching technology of the market, a full trade equilibrium minimizes delay because if
a seller is matched with at least one buyer, then trade occurs. Delay with its associated
costs of κ per unit time occurs because the matching technology each period fails to
match π0 = e−ζ proportion of the sellers to one or more sellers and, as a result, π0

15Ability to commit on the part of sellers would make it straightforward to compute examples of
non-full-trade equilibria. It would not, however, immediately resolve our inability to prove existence of
non-full-trade equilibria.
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proportion of sellers fail to trade each period. The welfare losses due to delay therefore
decreases with δ; this is most easily seen from equation (12) for seller’s discounted
expected participation costs coupled with the observation that ρS (S (c̄)) = π̄0 (δ) =
1− π0 (δ) = e−ζ

∗
+ o(δ). Second, exclusion costs arise from the “wedge” between c̄ (δ) ,

the highest cost seller who enters, and v (δ) , the lowest value buyer who enters. These
traders, not being active, do not trade in the full trade equilibrium, yet roughly half
would enter and trade if δ approached zero and the market approached full efficiency.
The ex ante welfare loss that this exclusion causes is proportional to (v̄ (δ)− c (δ))2 ,
i.e., it is quadratic in the thickness of the wedge. Observe that v̄ (δ)− c (δ) approaches
zero linearly because v̄ (δ) and c (δ) each approach pW at a linear rate. Given this linear
shrinkage of the wedge, ex ante welfare shrinks quadratically because each time the
wedge is halved, (i) only half as many traders are excluded and (ii) the traders who
are excluded have only half the potential gains from trade that the traders who are no
longer excluded expect to realize.16 Finally, summing these two rates gives an overall
linear rate because, for small δ, the linear convergence of the delay costs dominates the
quadratic convergence of the exclusion costs.

This rate of convergence for full trade equilibria is nice, yet we make no mention of
it in either Theorem 1 or Theorem 2. The reason is that, for a particular value of δ, the
existence of a unique full trade equilibrium does not rule out another equilibrium that
is not full trade, except for the special case of no time discounting. Proving a theorem
that establishes a linear rate of convergence for all equilibria is formidable because every
step in our proofs above becomes much more complex whether it be in deriving a set of
characterizing equations, applying the implicit function theorem, or showing that the
characterizing equations identify all equilibria.

6 Conclusions

In this paper we have shown that convergence to the competitive price and alloca-
tion can be achieved with a decentralized matching and bargaining market in which
all traders have private information about their values/costs. The significance of this
contribution is that it directly addresses a critical shortcoming in each of two litera-
tures it combines. Existing matching and bargaining models that demonstrate robust
convergence ignore the ubiquity of incomplete information. Existing double auction
models robustly demonstrate convergence in the presence of incomplete information,
but ignore the equally ubiquitous future opportunities for trade that exist in almost all
real markets. Our model and results cure both these shortcomings in the independent

16The quadratic rate of convergence to efficiency that Satterthwaite and Williams (1989a) and Rusti-
chini, Satterthwaite, and Williams (1994) obtain for the static double auction with independent private
values follows analogous logic. Traders in bidding misrepresent their true cost/value. This difference
between the bid and the cost/value creates a wedge that excludes trades that would be efficient. The
thickness of the wedge goes to zero linearly in the number of traders and, as in the case here, this causes
the expected ineficiency in per trader terms to go to zero quadratically. In the static double auction, by
construction, no delay costs exist, so the overall rate of convergence to efficiency is the quadratic rate
for the exclusion costs.
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private values case.
Of the many open questions that remain, we mention two. First, no constrained

optimal benchmark has been derived for the dynamic matching and bargaining model
with incomplete information. Presumably mechanism design techniques can be used
to establish such a benchmark.17 Then it would be possible to compare the realized
efficiency of models such as ours that have specific matching and bargaining protocols
against the efficiency of the constrained optimal mechanism. Second, we assume an
independent private values environment. Relaxing this assumption to allow costs/values
to be correlated or interdependent would, in order to be interesting, involve letting the
underlying Walrasian price vary over time according to some stochastic process. The
mechanism then would have the demanding task of converging, as the period length
becomes short, to this non-stationary price. Such a model would give insight into
how robustly decentralized matching markets can “discover” price in a dynamic market
just as the recent papers of Fudenberg, Mobius, and Szeidl (2003), Reny and Perry
(2003), and Cripps and Swinkels (2006) have shown that the static double auction can
discover price in environments more general than the independent private values with
unit demand and supply environment.

If these and other questions can be answered in future work, then this theory may
become useful in designing decentralized markets with incomplete information in much
the same way auction theory has become useful in designing specific auctions for real
allocation problems. The ubiquity of the Internet with its capability for facilitating
matches and reducing period length makes pursuit of this end attractive.
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