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Abstract

This paper characterizes the revenue maximizing allocation mechanism in a T-period model under

non-commitment. A risk neutral seller has one object to sell and faces a risk neutral buyer whose

valuation is private information and drawn from an arbitrary bounded subset of the real line. The seller

has all the bargaining power; she designs a mechanism to sell the object at t but cannot commit not to

propose another mechanism at t+ 1 if trade does not occur at t: A mechanism consists of a game form

and is endowed with a communication device (mediator). The buyer may employ mixed strategies. We

show that the optimal mechanism is to post a price in each period. A methodological contribution of

the paper is to develop a procedure to characterize the optimal dynamic incentive schemes under non-

commitment in asymmetric information environments that is valid irrespective of the structure of the

agent�s type. Keywords: mechanism design, non-commitment, bargaining under incomplete information,

optimal auctions, durable good monopoly. JEL Classi�cation Codes: C72, D44, D82.
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1. Introduction

This paper establishes that the revenue maximizing allocation mechanism in a T -period model where the

seller behaves sequentially rationally, is to post a price in each period. It also develops a methodology

to derive the optimal mechanism under non-commitment in asymmetric information environments. The

bargaining under incomplete information literature1 acknowledges that bargainers behave sequentially

rationally. If it is common knowledge that gains of trade exist, parties cannot credibly commit to stop

negotiating at a point where no agreement is reached.2 It examines possible outcomes of negotiations

between individuals under the assumption that players make deterministic o¤ers at each round. Often

the right to make o¤ers is assigned to one of the negotiating parties. Suppose that the uninformed one

makes the o¤ers. Would it be bene�cial for her instead of making a take-it-or-leave-it o¤er at each round,

to employ more sophisticated bargaining procedures? Would that possibility allow her to learn the other

party�s private information faster? What is the optimal negotiating process from the uninformed party�s

point of view? The aim of this paper is to answer these questions.

Our characterization extends the literature on optimal negotiation/selling mechanisms, by requiring

the seller to behave sequentially rationally, and it provides a foundation for take-it-or-leave-it o¤ers in the

bargaining and the durable goods monopoly literatures.

In the optimal auction literature it is assumed that the individual choosing the rules, the mechanism

designer, can commit never to propose another mechanism in the future, even in the event that the

mechanism she initially chose failed to realize any of the existing gains of trade. This excludes the possibility

of employing a mechanism in the future that may perform better. It requires that the seller behave in a

non-credible way at t = 2; as it is often far-fetched to assume that the seller will indeed throw away a

valuable object at t = 2 if it does not sell at t = 1:3 Riley and Zeckhauser (1983) provide a characterization

of the optimal selling procedure under commitment in an similar environment that is closest to ours and

show that at the optimum the seller posts a price.4 In this paper we drop the assumption of commitment

and characterize the optimum requiring that the seller behaves optimally given the information that she

has at each point.

On the other hand, the literatures on bargaining under incomplete information and on durable goods

monopoly, (Stokey (1981), Bulow (1982), Gul-Sonnenschein-Wilson (1986)), acknowledge the impossibility

of commitment, and require that the seller behaves sequentially rationally, but restrict her strategy to be

1See, for instance, Sobel and Takahashi (1983) and Fudenberg, Levine and Tirole (1985).
2Bargainers do commit to the protocol within each negotiation round. "Non-commitment" means that bargainers do not

stop negotiating if they now that gains of trade exist.
3Real world examples about the inability of the sellers to commit can be found in McAfee and Vincent (1997).
4The optimal auction literature, (see the seminal contributions of Myerson (1981) and Riley and Samuelson (1981)) char-

acterizes the optimal selling procedure under commitment when the seller faces many buyers whose valuations are private and

independently distributed. For the case of a single buyer the optimal auction is a posted price.
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a sequence of posted prices. In this paper we provide a foundation for posted prices, or take-it-or-leave-it

o¤ers, by considering all possible alternative institutions and showing that a seller who behaves sequentially

rationally, can do no better than to simply post prices. Our result provides a foundation for posted prices

in the durable-good monopoly literature. Hart and Tirole (1988), HT, analyze a similar problem in a �nite-

horizon framework under non-commitment and commitment and renegotiation. In the non-commitment

case the seller�s strategy consists of a sequence of prices. Our model di¤ers from the one in HT in that

we consider a continuum of types and in that we allow the seller to employ arbitrary mechanisms. McAfee

and Vincent (1997) examine sequentially optimal auctions under the assumption that the seller�s strategy

is a sequence of reservation prices, and the buyers follow a stationary strategy.

We look at the following scenario. An uninformed party, the seller, owns a unit of an indivisible object

and faces a buyer whose valuation is unknown to the seller. It is commonly known that the buyer�s

valuation is distributed according to some distribution F whose support is a measurable and bounded

subset of the real line. The seller and the buyer interact for T <1 periods, (or stages), and they discount

future payo¤s with the same discount factor �: The game ends as soon as trade takes place, or in the

bargaining interpretation of the model, as soon as agreement in reached. At each stage the seller proposes

a procedure to sell the object, which can be arbitrarily complicated. In particular, the seller proposes a

game in normal form for the buyer to play. The outcome of this stage game determines the probability of

trade and the payment at that stage. The seller also uses a mediator where the buyer can send messages,

and in turn receive recommendations on how to play the given game that the seller proposed. We require

that both the seller and the buyer behave optimally at each stage. This implies that the seller at each stage

t, and after each sequence of moves where no trade has taken place up to t; chooses a game form and a

mediator optimally given the information that she has obtained from her interaction with the buyer up to t:

Technically, we require the buyer�s and the seller�s strategies together with the seller�s beliefs to be a Perfect

Bayesian Equilibrium, PBE; and our objective is to characterize a PBE that guarantees highest expected

discounted revenue for the seller. We show that even though the seller can be employing any procedure,

the optimal procedure is to simply post a price in each period. And in the bargaining interpretation of the

model, our result says that if the uniformed party is choosing the negotiation procedure at each stage, she

can do no better, than simply making take-it-or-leave-it o¤ers.

Another contribution of this work is methodological. This is the �rst paper that provides a complete

characterization of the optimal mechanism under non-commitment in an asymmetric information envi-

ronment, where the agent�s type is not restricted to be �nite. In order to do so, we develop a solution

method that is valid irrespective of whether the type space is �nite or a continuum.5 The early papers on

5 In fact our analysis is very general, and valid for both the case of a continuum of types and �nite types, since we allow the

support of the distribution of the buyer�s type to be any measurable bounded subset of the real line. In a T� period model

even if one starts with a continuum of types, because of the complexity of the strategy spaces the support of the principal�s
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dynamic mechanism design, (Freixas, Guesnerie and Tirole (1985), FGT, La¤ont and Tirole (1988)), LT,

establish that under non-commitment the principal cannot appeal to the standard revelation principle in

order to characterize the optimal mechanism. This makes the characterization of the optimal contract ex-

tremely di¢ cult.6 For this reason FGT characterize the optimal incentive schemes among the class of linear

incentive schemes. LT consider arbitrary schemes but examine only special classes of equilibria, without

characterizing the optimum. A remarkable result is derived in a recent paper by Bester and Strausz (2001),

BS, who show that when the principal faces one agent whose type space is �nite, she can, without loss of

generality, restrict attention to mechanisms where the message space has the same cardinality as the type

space. As BS illustrate, in order to �nd the optimal mechanism one has to check which incentive compat-

ibility constraints are binding. In an environment with limited commitment, constraints may be binding

�upwards�and �downwards�. Even if one could obtain an analog of the BS result for the continuum type

case, which is indeed challenging, it does not seem straightforward to generalize the procedure of checking

which incentive compatibility constraints are binding. Our method is based on looking for equilibrium

outcomes and is valid irrespective of the structure of the type space.

In the model employed in this paper the seller in each stage proposes a mechanisms that consists of a

game form endowed with a communication device (mediator). As a consequence, the buyer at each stage is

choosing costless actions, the messages that he sends to the mediator, as well as costly actions, the action

chosen in the game form. To the best of our knowledge this is the �rst paper that allows for such general

model of mechanisms in an environment where the mechanism designer behaves sequentially rationally.

Now given that a mechanism in the paper is de�ned as a game form together with a mediator, a question

that naturally arises is what the seller observes at each stage, that is whether the seller observes merely

the action chosen by the buyer and whether trade took place or not, or she also observes the exchange

of messages between the buyer and the mediator. We provide the characterization of the optimum under

various assumptions regarding the amount of information that the seller observes at each stage. This is the

�rst work that examines the role of costly as well as cheap information simultaneously. How transparent

institutions are is intimately related with the "commitment power" of the mechanism designer: if she

obtains no information throughout play, then the "commitment solution" is sequentially rational.

posterior beliefs at t = 2 can be arbitrarily complicated, (whereas in the case where one starts with a �nite type space, the

type space at the beginning of a subsequent period is again �nite). And since the game that starts at t = 2 is isomorphic to

the whole game - with the di¤erence that it lasts one period less, we write our model directly for arbitrary type spaces.
6See the discussion in La¤ont and Tirole (1993), Ch. 9, and Salanie (1998), Ch.6.
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2. The Environment

In this section we describe the formal setup considered in this paper. We �rst describe players and their

preferences, the timing of the game; we then de�ne mechanisms, assessments, social choice functions,

outcomes of the game, what we mean by implementation, and �nally our equilibrium concept.

A risk neutral seller owns a unit of an indivisible object. Her valuation for the object is normalized

to zero. She faces one risk neutral buyer whose valuation v is private information and is distributed on

V according to F . The convex hull of V is an interval [a; b] where �1 < a � b < 1: All elements of
the game except the realization of the buyer�s valuation are common knowledge. Time t is discrete and

t = 1; :::; T <1 : Both the seller and the buyer discount the future with the same discount factor, �. The

seller�s goal is to maximize expected discounted revenue. The buyer aims to maximize surplus. We now

describe the timing of the game.

Timing

� At the beginning of period t = 1 nature determines the valuation of the buyer. Subsequently the

seller proposes a mechanism: The mechanism is played and if the buyer obtains the object the game

ends, else we move on to period t = 2:

� At t = 2 the seller proposes a mechanism. The mechanism is played and if the buyer obtains the

object the game ends, else we move on to period t = 3:

....

� At t = T the seller proposes a mechanism. The mechanism is played and the game ends at the end

of period T irrespective of whether trade takes place or not.

� At any t the buyer can obtain his outside payo¤ which is normalized to zero, by not participating in
the mechanism proposed by the seller.

We continue by de�ning what we mean by the word "mechanism."

Mechanisms

A mechanism consists of a game form and a communication system, (mediator). A game form Gt =

(St; gt) consists of a set of actions St and a mapping gt : St ! [0; 1]� R that maps an action st 2 St into
outcomes. An outcome of a mechanism is a probability that the buyer obtains the object at period t, rt(st) 2
[0; 1] and an expected payment zt(st) 2 R: A pair (rt(st); zt(st)) is called a contract. A communication

system, (mediator) consists of a set of reports that the buyer sends Bt; a set of recommendations Nt that
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the buyer may receive, and a mapping ct : Bt ! �(Nt) that maps a report of the buyer �t to probability

measures over recommendations nt 2 Nt: The number ct(nt j�t ) denotes the conditional probability that
nt would be the recommendation received by the buyer when he reports �t:

7 A game form together with

a mediator is a mechanism. The set of all possible mechanisms is denoted byM.

The purpose of the mediator is to allow the informed party, (the buyer), to send payo¤ irrelevant,

"cheap" messages to the uninformed party, (the seller).8 The message � that the buyer submits to the

mediator is cheap because his payo¤ at t is determined only by the action st. The same is true for the

recommendation that the buyer receives from the mediator nt: Even though both pieces of information �t
and nt are "cheap" they di¤er in the following sense. Messages �t have to satisfy best response constraints,

whereas nt comes out of the communication device and hence is not subject to such constraints. From the

seminal contribution of the literature on strategic information transmission by Crawford and Sobel (1982),

CS, we know that such "cheap" information a¤ects equilibria because it a¤ects the beliefs of the responder,

which in our case is the seller. Through the exchange of cheap messages the mediator may expand the

set of equilibrium payo¤s. This completes our discussion on the role of mediators in the de�nition of

mechanisms. Now we can move on and talk about strategies and assessments.

Assessments

An assessment consists of a strategy pro�le and a belief system. A strategy pro�le � = (�i)i=S;B; speci-

�es a strategy for each player. In order to talk about strategies we need a couple of more pieces of notation.

Let �(Bt) denote the set of probability measures over Bt and let �(St) denote the set of probability mea-

sures over St: With a slight abuse of notation we use �t to denote a probability distribution over messages

in Bt. Let IS and IB denote the information sets of the seller and the buyer respectively. A strategy for the

seller, �S ; is a sequence of maps from IS toM. A behavioral communication strategy of the buyer, �B; con-

sists of a mapping from V � IB to a probability distribution over reports; and a mapping from V � IB�Nt
to a probability distribution over St, that is �tB(v; i

t
B) = f(�t; �t) s.t. �t 2 �(Bt); �t : Nt ! �(St) jv; ig :

We use �(s jnt ) to denote the probability that the buyer chooses s given that he receives recommendation
nt: A belief system, �; maps IS to the set of probability distributions over V: Let F (vjitS) denote the seller�s
beliefs about the buyer�s valuation at information set itS ; t = 1; :::; T: Sometimes when we are referring to

7As we will argue later our analysis can also handle the possibility that the seller submits messages into the communication

device, so long as these messages are observed by the buyer.
8Mediators also function as coordination devices. From the literature on correlated and communication equilibrium we

know that "helping" players to coordinate play, may extend the set of equilibria, and hence the set of implementable social

choice functions. In our single-agent environment the role of the communication device as a way to coordinate play in each

stage is indeed limited: in a one player game there is no need for coordination.
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a particular information set we simplify the notation by setting F (vjitS) = Ft(v); t = 1; :::; T .9 For t = 1
F (vji1S) = F (v), that is, the seller has correct prior beliefs. A strategy pro�le � and a belief system � is

an assessment.

Given an assessment, (no need to be an equilibrium), the outcome from the ex-ante point of view

is an allocation rule p(�; �) and a payment rule x(�; �): The rule p(�; �)(v) is the expected, discounted

probability that a v�type buyer will obtain the object given the assessment (�; �) when his valuation is v

p(�; �)(v) =
TX
t=1

�
�t1ftrade at tgj(�; �); v

�
and x(�; �)(v) is the expected, discounted payment that a v�type buyer will incur given (�; �) and it is
formally de�ned as

x(�; �)(v) =

TX
t=1

�t
�
1ftrade at tg � fexpected payment at tg j(�; �); v

�
:

It is possible that di¤erent strategy pro�les lead to the same allocation rule and payment rules.

It will be useful to de�ne the outcomes of assessments at a continuation game that starts at t when the

seller�s information set is iSt . At t and each history of moves where trade has not taken place up to t; the

situation is isomorphic to the game as a whole, with the only di¤erence being that the seller�s beliefs are

now given by Ft(:jiSt ): Then we can talk about the social choice function implemented by the assessment
(�; �) at the continuation game that starts at t; when the seller�s information set is iSt : Let p

t;iSt (�; �);

xt;i
S
t (�; �) denote the allocation and the payment rule implemented by the restriction of a strategy pro�le

� at a continuation game that starts at information set iSt . The objects p
t;iSt (�; �); xt;i

S
t (�; �) are the

analogs of p(�; �); x(�; �) for the particular continuation game under consideration. As before, we will

often suppress the notation (�; �):

In order to talk about implementation we de�ne what we mean by social choice functions in the

environment under consideration.

Social Choice Functions, Allocation Rules and Payment Rules

In the environment under consideration a social choice function speci�es for each valuation of the buyer

v and each period t a probability of trade rt(v) 2 [0; 1] and an expected payment zt(v) 2 R: Given a social
choice function frt(v); zt(v)gTt=1 we can de�ne the corresponding allocation rule p and payment rule x by

p(v) = r1(v) + (1� r1(v))� [r2(v) + (1� r2(v))� [:::::]] and

x(v) = z1(v) + (1� r1(v))� [z2(v) + (1� r2(v))� [:::::]] :
9But the reader should keep in mind that there are many di¤erent histories that lead to no trade up to period t and for

each of such history there is in general a di¤erent posterior.
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Allocation rules map valuations to expected discounted probabilities of trade and payment rules map

valuations to expected discounted payments. The expected payo¤ of the buyer and the seller respectively,

from the interim point of view is given by

Expected Payo¤ of type v buyer = p(v)v � x(v) and

Expected Payo¤ of the seller =
Z b

a
x(v)dF (v);

where the integral in the expression of the seller�s expected payo¤ comes from the fact that the seller does

not know the valuation of the buyer. There are many di¤erent social choice functions frt(v); zt(v)gTt=1 that
lead to the same p(v) and x(v); and hence to the same payo¤s to the buyer and the seller. All such social

choice functions are equivalent for our purposes and hence when we talk about a social choice function we

will simply mean their "reduced versions"given by p and x: Now that we have speci�ed what we mean by

a social choice function we can talk about implementation.

An assessment (�; �) implements the (reduced) social choice function p and x if for all v 2 V p(�; �)(v) =
p(v) and x(�; �)(v) = x(v).

The set of social choice functions that we implement depends on the solution concept. In this paper

we require assessments to form a Perfect Bayesian Equilibrium.

Solution Concept

A Perfect Bayesian Equilibrium, (PBE), is a strategy pro�le, �; and a belief system, �; that satisfy:

1. For all v 2 [a; b] the buyer�s strategy is a best response at each itb and t; given the seller�s strategy.

2. Given Ft(:jitS) and the buyer�s strategy, the seller chooses at each itS and t an optimal mechanism.

3. Ft(:jitS) is derived from Ft�1 given itS using Bayes�rule whenever possible.

At a PBE we require strategies to dictate optimal behavior at each information set. How do the

buyer�s and the seller�s information sets look like depends on what they observe during play. The amount

of information that the seller observes determines, is some sense, her commitment power10 and we call it

degree of transparency of mechanisms.

Transparency of Mechanisms

De�nition 1 The degree of transparency of a mechanism is the amount of information that the seller

observes at each stage.

10 If the seller does not observe anything, then all BNE0s are PBE0s and the "commitment solution" is sequentially rational.
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We assume that the seller observes the message that the buyer submits to the mediator, the action

that he chooses as well as whether trade takes place or not. In the "Technical Appendix for Sequentially

Optimal Mechanisms" we establish that our result in a number of alternative assumptions regarding the

degree of transparency of mechanisms. Throughout we assume that the buyer observes the mechanism

that the seller proposes at each stage as well as whether trade takes place or not.

The buyer�s strategy is a best response at each node, if there is no type v and no information set iBt
where the buyer can obtain higher expected payo¤ by behaving di¤erently. The buyer can deviate either

by claiming a di¤erent report to the mediator or by choosing a di¤erent action. The requirement that the

buyer cannot bene�t by submitting a di¤erent message to the mediator implies for all v 2 V and itB 2 IB
that the following inequality must holdZ

nt2N
ct(nt j�t )�(st jnt )[r(st)v � z(st) + pt+1;i

S
t+1(v)v � xt+1;iSt+1(v)]dnt (1)

�
Z
nt2N

ct(nt

����̂t )�(st jnt )[r(st)v � z(st) + pt+1;iSt+1(v)v � xt+1;iSt+1(v)]dnt;
for all �t that are in the support of the buyer�s communications strategy at t, and all �̂t 2 Bt. Myerson
(1991) refers to the above constraints as adverse selection constraints. The requirement that the buyer is

choosing an optimal action implies that the following inequality must hold

r(st)v � z(st) + pt+1;i
S
t+1(v)v � xt+1;iSt+1(v) (2)

� r(ŝt)v � z(ŝt) + pt+1;i
S
t+1(v)v � xt+1;iSt+1(v);

for all actions in st 2 St that �(st jnt ) assigns positive probability, and for all ŝt 2 St: Myerson (1991)
calls these moral hazard constraints: the buyer chooses the action that he prefers most. Inequalities (1)

and (2) guarantee that the buyer�s strategy is a best response at each information set.

Remark: It may seem that constraints (1) are redundant given that the buyer can still choose any

action he likes. This would be true in a static scenario, but in our case a message submitted by the buyer

to the mediator �t in�uences the probability distribution of recommendations that he receives from the

mediator, the n0ts: For the cases that the seller observes �t or �t and nt; these pieces of information may

a¤ect her posterior beliefs about the buyer�s valuation and pt+1;i
S
t+1 and xt+1;i

S
t+1 will be functions of �t

and nt: Hence the set of PBE0s depends on the amount of information observed by the seller since this

determines her beliefs.

Our objective is to �nd an assessment that is a Perfect Bayesian Equilibrium, PBE; and guarantees

highest expected revenue for the seller among all PBE0s. In order to �nd a revenue maximizing PBE

we will search for a social choice function that maximizes expected revenue among all social choice func-

tions that are implemented by assessments that are PBE0s: The following section describes the technical

di¢ culties of the problem at hand, as well as our solution method.
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3. Technical Difficulties & The Procedure

In this section we explain why one cannot employ the revelation principle in order to characterize a revenue

maximizing PBE and we discuss two possible ways that one can follow to sidestep these di¢ culty.

In an environment where the mechanism designer has limited commitment we cannot employ the

revelation principle to �nd the optimal mechanism at each stage. Information revelation is costly because

the mechanism designer, the seller in this case, cannot commit not to use it and exploit the buyer in the

future. The buyer of course anticipates this; and as it was realized in the earlier literature on mechanism

design without commitment, (Freixas, Guesnerie and Tirole (1985), Hart and Tirole (1988), La¤ont and

Tirole (1988) and (1993)), with the exception of the �nal period, one cannot use the standard revelation

principle in order to �nd the optimal mechanism in each stage.11 Without the help of the revelation

principle one may need to consider mechanisms with arbitrary message spaces, which is indeed what we

do here, but then it becomes quite challenging even to write down the seller�s optimization problem. And

as we already discussed in the introduction, the version of the revelation principle in Bester and Strausz

(2001), is only valid for �nite types. Indeed it is di¢ cult to translate the idea that it is enough to have one

message per type in the case of a continuum of types.

There are at least two ways to proceed without the help of the revelation principle. One can look for

equilibria or look for equilibrium outcomes.

Looking for equilibria is indeed very ambitious given the size of strategy spaces and the complexity of

the game. Mechanisms employed at t = 1; :::; T depend on the seller�s posterior. Along the equilibrium

path the posterior is determined by Bayes�rule from the buyer�s strategy, the mechanism proposed by the

seller, and the action chosen by the buyer. There can be in�nitely many choices at t = 1 that end up in

no trade since lotteries are allowed. Each of these choices leads to a di¤erent posterior and an optimal

period-1 mechanism. At an equilibrium the mechanism at t = 1 has to be optimally chosen taking into

account not only revenue at t = 1 but also what beliefs the seller will have after each history where there

is no trade at t = 1, which in turn will determine the optimal mechanism for t = 2 and so on: And in order

for someone to �nd the revenue maximizing PBE; one has to �nd all PBEs of the game, then calculate

the corresponding revenue, and �nally compare the seller�s revenue at each of these PBEs: A paper that

follows the �rst approach and looks for equilibria is La¤ont and Tirole (1988). That paper looks for perfect

11To see why, suppose that at period one the seller employs a direct revelation mechanism, the buyer has claimed to have

valuation v; and according to this mechanism no trade takes place. If the seller behaves sequentially rationally, she will try to

sell the object at t = 2 using a di¤erent mechanism. And in the case that the buyer has revealed his true valuation at t = 1,

the seller has complete information at t = 2: She can therefore use this information to extract all the surplus from the buyer.

In this situation the buyer will have an incentive to manipulate the seller�s beliefs. One would expect, and it is indeed true,

that he will not always reveal his valuation truthfully at the beginning of the relationship. Proposition 1 in La¤ont and Tirole

(1988) establishes that there is no PBE where each type of the buyer chooses a di¤erent action at t = 1: Hence truth-telling

with probability one cannot occur at any PBE at t = 1:
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Bayesian equilibria of a two-period regulation game under non-commitment, where the �rm�s type is drawn

from a continuum. They provide some properties of equilibria but they do not obtain a characterization

of an optimal equilibrium.12 Indeed looking for equilibria is very di¢ cult, even in our model which is in

some dimensions simpler than LT (1988).

We are able to sidestep the di¢ culties that arise in the analysis of LT (1988) by looking at equilibrium

outcomes instead of equilibria. Investigating properties of equilibrium outcomes is much simpler. In one

sentence, what we do is to characterize the properties of p(�; �)0s and x(�; �)0s that are implemented by

assessments that are PBE0s and then choose the one that the seller prefers: This idea was inspired from

Riley and Zeckhauser (1983). Obviously the set of PBE�implementable allocation and payment rules is a
subset of the BNE implementable ones. In order to characterize this subset we examine what restrictions

the requirement that (�; �) be a PBE implies on p and x: In this way we obtain allocation rules and

payment rules that satisfy necessary conditions of being PBE implementable. We then choose the p and

x that the seller likes best among those that satisfy the necessary conditions of being PBE implementable

and verify that there exists indeed a PBE that implements them. In one sense, this is in line with the

approach of the revelation principle which prescribes a way to obtain all the set of BNE implementable

allocation and payment rules: "just look at the social choice functions that can be implemented by truth-

telling equilibria of direct revelation mechanisms." While our focus is still on equilibrium outcomes, rather

than equilibria, we do not work with a "canonical family" of mechanisms. This alternative route in the

case that we are interested in BNE implementable social choice functions is as simple as working with

direct revelation mechanisms, but has the additional advantage that it also allows us to obtain properties

of PBE-implementable social choice functions. Focusing on outcomes renters mechanism design "without

commitment" a tractable problem, even if one works with mechanisms with arbitrary message spaces.

In the section that follows, we employ the procedure sketched here to formulate the seller�s problem.

12First they show that there is no separating equilibrium, that is, there exists no equilibrium where each type of the agent

chooses a di¤erent action at t = 1: Then they consider the situation where the uncertainty about the agents�type is very small,

that is, the agent�s type belongs in a very small interval. In this case the distortion of a full pooling continuation equilibrium

compared to the commitment optimum, goes to zero as the length of the interval of possible types goes to zero. They also

show that there exist other equilibria that have the property that the distortion compared to the commitment case goes to

zero as the length of the interval of possible types goes to zero. These equilibria exhibit, what they call in�nite reswitching

or pooling over a large scale. Hence for small uncertainty, that is when the agent�s type is almost known, these three kinds

of continuation equilibria are candidates for an optimum. For the case that uncertainly is not trivial the authors do not say

which equilibria may be optimal.
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4. Formulation of the Problem

Here we employ the idea we sketched in the previous section in order to write down the seller�s maximization

problem. The seller�s seeks to solve

max
p;x

Z
V
x(v)dF (v)

subject to p; x being PBE implementable.

Let�s translate the requirement that p and x be PBE implementable. First of all p has to satisfy resource

constraints. Since there is only one object to be allocated, it must be the case that p(v) 2 [0; 1] for all v:
Second, at a PBE the buyer�s and the seller�s strategy must be a best response at each information set.

For the buyer this implies at the very least, that there is no type v that can bene�t by behaving as type v0

does. For the seller this implies that at each information set her strategy must specify an optimal sequence

of mechanisms employed in the remainder of the game. Finally from the fact that the buyer can always

choose not to participate in a mechanism, we get that the buyer�s expected payo¤ for the continuation of

the game must be non-negative. It follows that if p and x are implemented by a PBE they must, at the

very least, satisfy the constraints of the following Program, which we call Program A:

max
p;x

Z
V
x(v)dF (v)

Subject to:

IC "incentive constraints," the buyer�s strategy is such that

p(v)v � x(v) � p(v0)v � x(v0); for all v; v0 2 V

PC "voluntary participation constraints,"

p(v)v � x(v) � 0 for all v 2 V

RES "resource constraints" for all v 2 V

0 � p(v) � 1

SRC(t; itS) "sequential rationality constraints," for all t; t = 2; :::; T; and each history of no

trade at t, itS ;the seller chooses a mechanism that maximizes revenue:

max

p
t;it
S ;x

t;it
S

Z
Y
t;it
S

x
t;itS (v)dFt;itS (v) (3)

subject to:
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IC(t; itS) : pt;i
t
S (v)v � xt;itS (v) � pt;itS (v0)v � xt;itS (v0); for all v; v0 2 Yt;itS

PC(t; itS): pt;i
t
S (v)v � xt;itS (v) � 0 for all v 2 Yt;itS

RES(t; itS) : 0 � pt;itS (v) � 1 for all v 2 Yt;itS ;
where Yt;itS is the support of the posterior Ft;itS :

SRC(t + j; it+jS ) for all j = 1; :::T � t and each history of no trade at t + j; it+jS ;

pt+j;i
t+j
S ; xt+j;i

t+j
S satisfy sequential rationality constraints.

Beliefs posterior beliefs Ft;itS are derived using the buyer�s strategy and Bayes�rule when-

ever possible.

Summarizing, if p; x are implemented by an assessment (�; �) that is a PBE; then conditions IC;

PC, RES(t) and SRC(t) will be satis�ed. These are hence necessary conditions for p and x to be PBE

implementable. In what follows we will obtain a solution of Program A, p and x; and establish that there

exists indeed an assessment that is a PBE and it implements p and x: The solution proceeds by induction.

First we examine the problem when T = 1 and show that the optimum is implemented by posting a price.

Then we move on to T = 2 and establish again that at an optimum the seller posts a price in each period.

Finally, by induction we show that the same result holds for any T <1.

5. The solution for T = 1

Here we solve the problem when the game lasts for only one period. For T = 1 all sequential rationality

constraints become irrelevant. Players�strategies must be merely mutual best responses and all BNE0s

are PBE0s: Then the seller�s problem reduces to

max
p;x

Z
V
x(v)dF (v)

subject to:

IC p(v)v � x(v) � p(v0)v � x(v0); for all v; v0 2 V
PC p(v)v � x(v) � 0 for all v 2 V
RES 0 � p(v) � 1: for all v 2 V:

Even though this problem is isomorphic to the problem in the classical works of Myerson (1981) or

Riley and Zeckhauser (1983), their solution approach does not go through because it requires that the

type space be an interval. The key step there is to rewrite revenue as a function solely of the allocation,

which is the gist of the famous revenue equivalence theorem. That step relies on the type space being an

interval, which is not necessarily true in our model, where we work with probability measures that have

support arbitrary measurable subsets of the real line. For the problem at hand it is essential to allow for
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such generality in the distributions. For any T > 1 in order to solve for the revenue maximizing PBE

we need to know what will be the optimal mechanism in the �nal period of the game. That problem is

isomorphic to the problem when T = 1: And because we allow for the use of general mechanisms by the

seller and mixed strategies by the buyer, posteriors maybe quite complicated indeed. For this reason we

have to propose a solution that is valid for arbitrary posterior distributions and arbitrary type spaces -

that are nor necessarily �nite, nor convex.

The idea is to solve an arti�cial problem where the type space is an interval, but its solution restricted

to V solves Program A. In particular, in the Proposition that follows we establish that we can obtain a

solution of Program A by solving an arti�cial problem, Program B, where we require the constraints to

hold on the whole convex hull of V which is the interval [a; b]:

Program B for T = 1 :

max
p;x

Z b

a
x(v)dF (v)

subject to:

IC p(v)v � x(v) � p(v0)v � x(v0); for all v; v0 2 [a; b]
PC p(v)v � x(v) � 0 for all v 2 [a; b]
RES 0 � p(v) � 1: for all v 2 [a; b]:

Proposition 1 13Let pA; and pB denote solutions of Program A and Program B respectively, and let R(pA)

and R(pB) denote the seller�s expected revenue at each of these solutions: Then

R(pA) = R(pB):

Proof. See Skreta (2004b).

Before proceeding let us o¤er a very brief sketch of the proof of Proposition 1. Programs A and B

have the same objective function and they di¤er only in the constraint set. Program B has a lot more

constraints than Program A therefore R(pA) � R(pB): We establish that the reverse inequality is true by
showing that a solution p and x of Program A appropriately extended on [a; b] satis�es all the constraints

of Program B. In particular we extend a solution of A, call it �pA; as follows. For a type v in [a; b]nV we

set the value of �pA equal to the value of pA at the largest type in V less or equal to v: Since pA is incentive

compatible on V and no real options have been added, the resulting allocation rule is feasible for program

B. It follows that the values of these programs must be the same.

Now that we have replaced the type space with its convex hull, we can obtain properties of feasible

allocation and payment rules using standard techniques. Let U�;�(�B(v); v) = p(v)v � x(v) denote the
13The conjecture that such a result may be available arose from discussions with Kim-Sau Chung.
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buyer�s expected discounted payo¤ when his valuation is v given the assessment (�; �): From Lemma 2 in

Myerson (1981) we have:

Lemma 1 If p; x are implemented by a BNE; they satisfy IC; PC and RES constraints and the follow-

ing conditions must hold: for all v 2 [a; b] (a) p(v) is increasing in v (b) U�;�(�B(v); v) =
R v
a p(s)ds +

U�;�(�B(a); a) (c) U�;�(�B(a); a) � 0 and (d) 0 � p(v) � 1:

Using these properties and standard arguments, we can write the seller�s expected revenue as a function

only of the allocation rule and the payo¤ that accrues to the lowest type of the buyer14Z b

a
x(v)dF (v) =

Z b

a
p(v)vdF (v)�

Z b

a
p(v)[1� F (v)]dv � U�;�(�B(a); a):

From the analysis in Myerson (1981), we know that if p solves

max
p2=

Z b

a
p(v)vdF (v)�

Z b

a
p(v)[1� F (v)]dv; (4)

where

= = fp : [a; b]! [0; 1]: p is increasingg : (5)

and x(v) = p(v)v�
R v
a p(s)ds;which guarantees that U�;�(�B(a); a) = 0; then this is an optimal mechanism.

Our objective is to choose a function p that is increasing and such that (4) is maximized. Because (4)

is linear in p it follows that the maximizer is an extreme point of the feasible set. Extreme points of the

set of increasing functions from [0; 1] to [0; 1] are step functions that jump from zero to one. The optimal

allocation rule has the bang-bang property: the seller trades with zero probability with types below a

cuto¤ of v�; (p(v) = 0 for v � v�); whereas trades with probability 1 with types v� � v; (p(v) = 1 for

v � v�). This allocation rule can be implemented by posting a price of v�: The cuto¤ in Myerson (1981)
is given by a point where the (ironed) virtual valuation is zero. Here the cut-o¤ v� is the smallest point

with the property that the integral of the virtual valuation to any point to the right of it is non-negative.

The Proposition that follows states this result and provides a formal de�nition of the cut-o¤ v�:

14 If F has a density then revenue can be rewritten asZ b

a

x(v)dF (v) =

Z b

a

p(v)

�
vf(v)�

Z b

v

f(s)ds

�
dv � U�;�(�B(v); v)

=

Z b

a

p(v) [vf(v)� [1� F (v)]] dv � U�;�(�B(v); v):

If the density is strictly positive, then we obtain the familiar expressionZ b

a

p(v)

�
v � [1� F (v)

f(v)

�
f(v)dv � U�;�(�B(v); v):
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Proposition 2 15When T = 1 the seller maximizes revenue by posting a price v�; where

v� � inf
�
v 2 [a; b] s.t.

Z ~v

v
sdF (s)�

Z ~v

v
[1� F (s)]ds � 0; for all ~v 2 [v; b]

�
: (6)

The revenue maximizing allocation and payment rule are given by

p(v) = 1 if v � v�

= 0 if v < v�
and

x(v) = v� if v � v�

= 0 if v < v�
: (7)

The proof of this result can be found in the "Technical Appendix for Sequentially Optimal Mecha-

nisms."

This characterization is a generalization of the analysis in Myerson (1981) and Riley and Zeckhauser

(1983), �commitment solution,� for distributions that have arbitrary support.16 It is also valid for cases

that the posterior does not necessarily satisfy the monotone hazard rate property. Myerson (1981) contains

an analysis that describes how to deal with this case for distributions that have strictly positive densities,

using the well-known, by now, �ironing technique.�The approach we use here is di¤erent from the ironing

technique, but has the advantage that (6) allows us to obtain comparative statics results on how the price

posted depends on F; something that is not that obvious with the �ironing� in Myerson (1981). When

T > 1 the sequential rationality constraints at T imply that for all histories iTS , p
T;iTS and xT;i

T
S solve a

problem that is isomorphic to the one just solved. It will be then crucial for our analysis to be able to

say how the price that the seller will post at the �nal period of the game depends of the posterior (see

the proofs of Lemmata 2, 4, and 7.) In this section we have obtained a solution for the case that T = 1

that is valid for arbitrary distributions and it also allows to obtain comparative statics results on how the

price that the seller posts depends on the distribution of the buyer�s valuation; we now continue with the

solution of the problem when T = 2:

6. Sequentially Optimal Mechanisms When T = 2

In this section we characterize sequentially optimal mechanisms when T = 2: As in the case where T = 1;

we �rst show that it is without loss of generality to solve an arti�cial program where we replace the type

15 I thank Phil Reny for suggesting parts of the proof of Proposition 2.
16The "commitment solution" is also the optimal BNE�implementable allocation and payment rule in a T period long

game; T arbitrarily large, where we do not require the seller�s strategy to be sequentially rational. The revenue maximizing

allocation rule in a multi-stage game with commitment can be then implemented by the following assessment: the seller makes

a take-it-or-leave-it o¤er in each period, t = 1; :::; T of v�: The buyer�s strategy is as follows: for v � v� the buyer accepts

the seller�s o¤er at t = 1 and for v < v� the buyer rejects the seller�s o¤er at t = 1; :::; T: It is very easy to see that players�

strategies are mutual best responses hence the given assessment is a BNE:
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space with its convex hull. Program B for T = 2 is given by

max
p;x

Z b

a
x(v)dF (v)

subject to:

IC p(v)v � x(v) � p(v0)v � x(v0); for all v; v0 2 [a; b]
PC p(v)v � x(v) � 0 for all v 2 [a; b]
RES 0 � p(v) � 1: for all v 2 [a; b]:
SRC(t = 2; i2S) "sequential rationality constraints." For each information set of no

trade at t = 2, i2S ; the seller chooses a mechanism that maximizes revenue:

max
p
2;i2
S ;x

2;i2
S

Z
�Y
2;i2
S

x
2;i2S (v)dF2;i2S

(v)

subject to

IC(t = 2; i2S) p
2;i2S (v)v � x2;i2S (v) � p2;i2S (v0)v � x2;i2S (v0); for all v; v0 2 �Y2;i2S

PC(t = 2; i2S) p
2;i2S (v)v � x2;i2S (v) � 0 for all v 2 �Y2;i2S

RES(t = 2; i2S) "resource constraints" 0 � p2;i
2
S (v) � 1 for all v 2 �Y2;i2S

Beliefs posterior beliefs F2;i2S are derived using the buyer�s strategy and Bayes�rule

whenever possible.

Program B is exactly the same as Program A but with V and YT;iTS replaced by their convex hulls [a; b]

and �YT;iTS respectively.

Proposition 3 The value of Program A and Program B is the same.

Program B at t = 2 and i2S has more constraints than the corresponding program A at this information

set, hence the value of Program B will be weakly less, but from the of Proposition 1 we know that at each

information set a solution of SRC(t = 2; i2S) extended on �Y2;i2S = [v; �v] solves Program B at t = 2 and i2S :

Therefore, essentially nothing changes on the set of constraints described in SRC(t = 2; i2S): Using exactly

the same arguments as in the proof of Proposition 1, one can show that a solution p and x of Program

A appropriately extended on [a; b] satis�es all the constraints of Program B. Since these two programs

have the same objective function and di¤er only in the constraint set, it follows that the values of these

programs must be the same.

Then from standard arguments we have that Program B can be rewritten as

max
p;x

Z b

a
p(v)vdF (v)�

Z b

a
p(v)[1� F (v)]dv (8)
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subject to:

=[a;b] = fp : [a; b]! [0; 1]: p is increasingg ;

x(v) = p(v)v �
Z v

a
p(s)ds and

p(v) 2 [0; 1] for all v 2 [a; b]:

SRC(t = 2; i2S) "sequential rationality constraints." For each history i
2
S

max

p
2;i2
S ;x

2;i2
S

Z
�Y
2;i2
S

p
2;i2S (v)vdF2;i2S

(v)�
Z
�Y
2;i2
S

p
2;i2S (v)[1� F2;i2S (v)]dv

subject to

= �Y
2;i2
S

=
n
p2;i

2
S : �Y2;i2S

! [0; 1]: p2;i
2
S is increasing

o
;

x2;i
2
S (v) = p

2;i2S (v)v �
Z v

v
p2;i

2
S (s)ds and

p2;i
2
S (v) 2 [0; 1] for all v 2 �Y2;i2S :

How does a solution of this program look like? Without the sequential rationality constraints, we know

that posting a price of v� in each period solves the seller�s problem: This is optimal, given that the seller

can commit not to try to sell the item using a di¤erent mechanism in a subsequent period and this solution

does not satisfy the sequential rationality constraints. If the object remains unsold at date t = 2 the

seller knows that there exist gains from trade but they were not realized because the price she posted was

above the buyer�s valuation. Then posting a price of v� at t = 2 is not sequentially rational given that the

buyer�s type lies in [0; v�]: If the seller behaves sequentially rationally she will try to sell the item at t = 2

using a di¤erent mechanism that maximizes revenue from that point on, which clearly changes strategic

considerations at t = 1. Does is pay for the seller to use the �rst stage mechanism as an experimentation

device to learn where does the buyer�s valuation lie? That is, does the seller use a mechanism in the �rst

period that allows her to infer with precision the type of the buyer, hoping that she can use her sharper

estimate to extract the buyer�s surplus in a subsequent period? Or is it too costly in terms of expected

revenue to do so? Does the seller o¤er a set of lotteries at period t = 1 or does she simply post a price?

What is the most lucrative way to learn? Our characterization will provide answers to these questions.

Before we move to the solution let us take a closer look at the objective function of the problem described

in (8). One may think that even if there is a second stage where the seller can use the information that

she learns about the buyer, still at least for t = 1; the seller wants to trade with probability zero with

types of the buyer below v� and with probability one with types above v�. This reasoning is not complete

since sequential rationality constraints imply that after any history of no trade at t = 1 the seller will at
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t = 2 post a price that is optimally chosen given some posterior. Then overall in the game we will have

p(v) = �(= 0 + � � 1); for some types below v�. So even if we were restricting attention to posted prices,
the seller may not wish to set prices such that p(v) = 1 for v � v� because it may be too costly to have
to deal with the remaining types [a; v�] at t = 2. "Too costly" here means that the price at t = 2 that is

optimal given F (v)
F (v�) ; may be too low from the ex-ante point of view: remember that from the ex-ante point

of view the seller would love to commit to set p(v) = 0 for v 2 [a; v�]: But then a higher price then v� may
do the job. This will indeed turn out to be the case but in order to establish it we have to show that there

is nothing else that does better. Posted prices allow only for a certain class of posteriors: truncations of

the original distribution. That is, possible posteriors are of the form F (v)
F (�v) ; for some �v 2 [a; b]; and hence

the price posted at t = 2 will be simply a function of �v: Is it then possible to have a posterior F2 whose

support has convex hull [a; �v], such that z2(F2) > z2(�v)? We will show that any posterior that can arise at

a PBE; where we allow the seller to employ arbitrarily complicated mechanisms, and the buyer arbitrarily

complicated strategies, does not allow the seller to support higher prices at t = 2: This is an important

step of our characterization.

Our objective is to �nd a revenue maximizing PBE�implementable allocation and payment rule. The
set of feasible social choice functions depends on (i) how big is the class of mechanisms that the seller

employs (ii) the generality of the buyer�s strategy (iii) the degree of transparency of mechanisms. We will

obtain the solution by gradually looking at more general set-ups.

Outline of the Solution

First, we restrict attention to allocation rules implemented by strategy pro�les, where the seller at

t = 1 employs simple mechanisms that separate types into two groups: "high" and "low" ones, and show

that a revenue maximizing allocation rule among this class is implemented by posting a price in each

period. Then we look at another simple environment where the seller employs mechanisms at t = 1 that

are equivalent to a set of probability-payment pairs, (a set of contracts); the seller observes the contract

chosen by the buyer at t = 1 and the buyer employs pure and "simple" strategies. Finally, we consider the

general case where the mechanism consists of a game form and a mediator, and the buyer employs mixed

strategies where potentially non-convex sets of types choose the same action with positive probability at

t = 1. The degree of transparency of mechanisms in this general case is as follows. We assume that the

seller observes the message that the buyer submits to the mediator, the action that he chooses as well as

whether trade takes place or not. After we describe necessary conditions that allocation rules satisfy if

they are implemented by strategy pro�les that are PBE0s, we then show that the seller prefers allocation

rules implemented by the simple assessments examined in the �rst step. But then at an optimum the

seller posts a price in each period. This result is robust in a number of di¤erent assumptions regarding the

degree of transparency of mechanisms. Details can be found in the "Technical Appendix for Sequentially
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Rational Mechanisms." In the next section we start our exploration with the characterization of a solution

in the case that the seller employs mechanisms at t = 1 that contain two options.

6.1 Revenue Maximizing PBE among 2-Option Mechanisms

Here we look for the revenue maximizing allocation rule among the ones implemented by strategy pro�les

where the seller employs very simple mechanisms. We call this class of strategy pro�les two-options at

t = 1; price below the optimal at t = 2:

First, the seller proposes at t = 1 a mechanism that simply consists of a game form with two actions.

Action sr leads to contract (r; z) and action s1 leads to contract (1; z1); there is no mediator. In this simple

setup the �rst period mechanism reduces to a set of two contracts M1 = f(r; z); (1; z1)g ; where r 2 [0; 1]
and z; z1 2 R. Option (r; z) is targeted to �low�types and option (1; z1) is targeted to �high�valuation
types. The only possibility that trade does not take place at t = 1 is when the buyer chooses the low

probability option. The buyer�s strategy is as follows: at t = 1 types v 2 [a; �v) choose (r; z) and types in
(�v; b] choose (1; z1), where �v 2 [a; b].17 Now at t = 2 after the history where the buyer chose (r; z) at t = 1
and no trade took place, the seller chooses a price ẑ2; such that ẑ2 � z2(�v); where z2(�v) would have been
the optimal cut-o¤ given beliefs F2(v) =

F (v)
F (�v) : The buyer at t = 2 accepts ẑ2 for v 2 [ẑ2; �v) and rejects ẑ2

for v 2 [a; ẑ2): Type �v is indi¤erent between choosing: (r; z) at t = 1 and (1; ẑ2) at t = 2 versus choosing
(1; z1) at t = 1; that is �v = z1�z�(1�r)�ẑ2

1�r�(1�r)� : Such an assessment is not necessarily a PBE since the seller

at t = 2 may be choosing a cut-o¤ below the optimal one. The allocation rules implemented by such an

assessment is of the form
p(v) = r for v 2 [a; ẑ2)

p(v) = r + (1� r)� for v 2 [ẑ2; �v)
p(�v) 2 (r � (1� r)�; 1)
p(v) = 1 for v 2 (�v; b]:

(9)

De�nition 2 We call P�2 the set of allocation rules that have the shape described in (9) for some �v 2 [a; b];
r 2 [0; 1]; and ẑ2 � z2(�v); where z2(�v) is the optimal price at t = 2 given beliefs F2(v) = F (v)

F (�v) .

The next result states that a revenue maximizing element of P�2 can be implemented by a PBE of the
game where the seller posts a price in each period.

Proposition 4 Let p� denote a solution of maxp2P�2 R(p): Then p
� can be implemented by a PBE of the

game where the seller posts a price in each period.

Proposition 4 establishes that if the seller restricts attention to period one mechanisms that contain

two options: one targeted to the �low�types, (r; z); and one targeted to the �high�types, (1; z1); then at

17We assume that ra� z � 0 so that all types of the buyer have expected payo¤ at least as high as their outside option.
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the optimum this kind of mechanism reduces to a posted price: the options available are (0; 0) and (1; z1):

Before moving on to attack the problem in its most general form, we illustrate the procedure in a (one

more!) simpli�ed version of the problem.

6.2 The Revenue Maximizing PBE when Mechanisms are Sets of Contracts and Buyer

employs Pure and "Simple" Strategies.

Here we characterize a revenue maximizing PBE in yet another simpli�ed version of the game under

consideration. In this simpler version i) a mechanism is a set of contracts: it is simply a deterministic

game form; there are no mediators, and each action s leads to a di¤erent contract (r; z); ii) the seller

observes the action chosen by the buyer and whether trade took place or not, iii) the buyer�s strategy is

pure and "simple" in the sense that the set of types that choose a particular action at t = 1 is convex.

Fix a PBE and let (r; z) denote the contract that is chosen by the smallest type, which is a; at t = 1:

Moreover let [a; �v] denote the types that choose (r; z): (It is possible that this interval is degenerate, that

is a = �v); and let z2(�v) denote the price that the seller will post at t = 2 after the history that the buyer

chose (r; z) at t = 1 and no trade took place. Since at a PBE the buyer�s strategy must be a best response

at each node, types above z2(�v) will accept this price at t = 2 and types below z2(�v) will reject.

Necessary Conditions: If an allocation rule is implemented by a PBE of this class it is of the form

p(v) = r for v 2 [a; z2(�v)) (10)

p(v) = r + (1� r)� for v 2 [z2(�v); �v)

r + (1� r)� � p(v) � 1 for v 2 [�v; b]:

33Now we will demonstrate that at a revenue maximizing PBE of this simpler game, the seller posts a

price in each period. In establishing this we need an intermediate result.

Lemma 2 Suppose that the posterior is given by F2(v) =
F (v)
F (�v) ; then z2 is increasing in �v: Moreover if the

posterior has a density, then z2 is continuous in �v:18

Proposition 5 Suppose that i) a mechanism is a set of contracts (r; z); ii) the seller observes the contract

chosen by the buyer and whether trade took place or not, iii) the buyer�s strategy is pure and "simple" in

the sense that the set of types that choose a contract at t = 1 is convex. Then at a revenue maximizing

PBE the seller posts a price in each period.

Proof. We establish that each allocation of the form described in (10) is dominated in terms of expected

revenue by an allocation rule in P�2 : Take an allocation rule among the ones given in (10), call it p. Expected
18Lemma 2 refers to properties of the price that the seller posts in the �nal period of the game and it is valid for any T not

simply T = 2:
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revenue can be then written asZ z2(�v)

a
rvdF (v)�

Z z2(�v)

a
r[1� F (v)]dv

+

Z �v

z2(�v)
(r + (1� r)�)vdF (v)�

Z �v

z2(�v)
(r + (1� r)�)[1� F (v)]dv

+

Z b

�v
p(v)vdF (v)�

Z b

�v
p(v)[1� F (v)]dv:

We construct an allocation rule, which we call p̂; that is an element of P�2 and it generates higher revenue
than p. For the range [a; �v) we set p̂(v) = p(v): For types in v 2 [�v; b]; we choose p̂ optimally imposing
the constraint that the resulting allocation rule is increasing on [a; b] and ignoring all sequential rationality

constraints for types v 2 [�v; b]: For types [�v; b] it is, in some sense, as if we are solving a "commitment
problem." Let

v�� � inf
�
v 2 [�v; b] s.t.

Z ~v

v
sdF (s)�

Z ~v

v
[1� F (s)]ds � 0; for all ~v 2 [v; b]

�
; (11)

then for the same reasons as in the proof of Proposition 2 we would like to set p̂ equal to its lowest possible

value for the types v 2 [�v; v��); which it is now p(v) = r + (1� r)�; and set it equal to its largest possible
value for the region where the virtual valuation is on average positive, that is p(v) = 1: The optimal

allocation is

p̂(v) = r for v 2 [a; z2(�v))

p̂(v) = r for v 2 [a; z2(�v))

p̂(v) = r + (1� r)� for v 2 [�v; v��)

p̂(v) = 1 for v 2 [v��; b]:

Now from Lemma 2 we have that z2(�v) � z2(v��), hence the resulting allocation rule is an element of P�2
and it generates higher revenue for the seller than p. But from Proposition 4 we know that the revenue

maximizing allocation rule is implemented by a PBE of the game where the seller posts a price in each

period.

The characterization of a revenue maximizing PBE in the cases where we allow for arbitrarily compli-

cated mechanisms and strategies of the buyer, will proceed in lines parallel to the ones outlined above.

6.3 The Solution with General Mechanisms & Strategies

We turn to characterize a revenue maximizing PBE allowing for arbitrary mechanisms and strategies.

Necessary Conditions at a PBE
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We start by drawing the allocation rule from the smallest types. Let s denote an action that leads to

(r; z), where this is the contract with the smallest \r", with the property that type a is either "choosing"

(r; z) with strictly positive probability at t = 1; or is indi¤erent between doing and not doing so. The set

of types that choose with positive probability s is not necessarily be convex, nor will all types choose that

action with probability one.

Proposition 6 If an allocation rule is implemented by an assessment that is a PBE it satis�es the fol-

lowing properties (i) increasing in v on [a; b] (ii) 0 � p(v) � 1 for v 2 [a; b] and (iii)

p(v) = r for v 2 [a; z2(F2))
r � p(z2(F2)) � r + (1� r)�

p(v) = r + (1� r)� for v 2 (z2(F2); �v)
r + (1� r)� � p(�v) � 1

(12)

for some �v 2 [a; b]; r 2 [0; 1]; and z2(F2) optimal given F2; where F2 is a probability measure that has
support a subset of the interval [a; �v]:

De�nition 3 We call P2 the set of allocation rules that satisfy the properties described in Proposition 6:

Remark 1 It is possible that z2 = a in which case we have that p(a) 2 [r; r + (1� r)�]. It is also possible
that �v = a in which case p(a) 2 [r + (1� r)�; 1] or that �v = b in which case p(b) 2 [r + (1� r)�; 1]:

Before proceeding let us comment on the shape of PBE�implementable allocation rules. First since
we have not speci�ed anything for types in [�v; b]; we do not know exactly the shape of the allocation rule:

it depends on the seller�s and the buyer�s strategy. But for certain if p is implemented by an assessment

that is a PBE it has to be an increasing function. Now for v 2 [a; �v] it is surprising to see that the shape
of a PBE�implementable allocation rule is the same as the one that we would get in the case that all
types in [a; �v] were choosing with probability one a report to the mediator � and action s that leads to

(r; z); only the location of the second period price di¤ers. In the case where all types in [a; �v] choose (�; s)

with probability one, that price, call it z2(�v); should have been optimal given posterior beliefs
F (v)
F (�v) : But in

general, z2(F2) is optimally chosen given some posterior F2 whose support has convex hull [a; �v]: Of course

now that we are considering general mechanisms and strategies, F2 can be quite complicated and not just

mere truncations of the original distribution.

Given the shape of PBE�implementable allocation rules the proof of Proposition 5 will go through as
is, if it turned out that z2(F2) � z2(�v): Next we establish that it is indeed the case that z2(F2) � z2(�v):

This is done in three steps. First we show that allowing the possibility to observe message � will not lead

to beliefs that support higher prices at t = 2; compared to the case where the seller simply observes s:

Second, we use this observation to conclude that we can without any loss view a mechanism as a game form

23



where each action leads to a di¤erent contract. Third we show, that allowing for mixed or complicated

strategies for the buyer does not lead to z2(F2) > z2(�v) either.

Can the seller bene�t from observing the cheap messages �?

First we establish that allowing the seller to observe the cheap messages � does not bene�t her. One

may be wondering, and quite rightly so, whether cheap messages � can a¤ect the seller�s beliefs, given that

the seller observes costly information as well. Does the presence of costly information hinder the role of

the "cheap" information? Suppose that the choice of action s follows two di¤erent messages that the buyer

submits to the mediator. That is, sometimes the buyer is reporting message � and then choosing s; and

sometimes reporting �̂ and then choosing s: Let ~F2 denote the seller�s posterior after she observes (�; s)

and let F̂2 denote the seller�s posterior after she observes (�̂; s): Also let F2 denote the seller�s posterior

after she observes only action s. Our objective is to compare z2(F2) with z2(F̂2) and z2( ~F2):

First let us examine how z2(F̂2) and z2( ~F2) relate to each other.

Lemma 3 Consider a PBE and let z2( ~F2) respectively z2(F̂2) denote the prices that the seller will post

after she observed � and s and �̂ and s respectively. Then it must be the case that z2( ~F2) = z2(F̂2):

Proof: Suppose not, and without any loss assume that z2( ~F2) < z2(F̂2): Then for all v 2 V we have

that

[r(s) + (1� r(s))�] v �
h
z � (1� r(s))�z2( ~F2)

i
> [r(s) + (1� r(s))�] v �

h
z � (1� r(s))�z2(F̂2)

i
;

hence for all v 2 [z2( ~F2); b] the buyer strictly prefers to report � instead of �̂ at least for the portion of
the time that those types plan to chose s: But then when the seller sees �̂ and s; she can infer that the

valuation of the buyer is below z2( ~F2); which in turn implies that a price of z2(F̂2) > z2( ~F2) cannot be

optimal. Contradiction. Hence given some mechanism the choice of s uniquely determines the optimal

price at t = T:

Now we turn to investigate the relationship of z2(F2) with z2(F̂2) and z2( ~F2):

Lemma 4 "Cheap" information in �0s does not lead to higher prices at t = 2 that is z2(F2) � z2( ~F2) =
z2(F̂2):

Remark 2 Lemma 4 has been established assuming that there are only two di¤erent reports � and �̂

followed by the same action s: This was done for expositional simplicity and it is without any loss.

Mechanisms as Sets of Contracts
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With the help of Lemma 4, we now establish that it is without any loss to think of mechanisms as

being merely sets of contracts.

Lemma 5 It is without any loss to view mechanisms as a set of contracts.

Proof. From Lemma 4 it follows that it does not pay for the seller to observe �: Since here by assumption

we are considering the case that the seller does not observe n; 19 than we can merely think of a mechanism

as a game form. Now, our general formulation allows for mechanisms that consist of game forms where

more than one action leads to the same contract. That is, we allow for game forms that contain s and ŝ

such that r(s) = r(ŝ) and z(s) = z(ŝ): Following the same reasoning as in the proof of Lemma 3, one can

show that if both these actions are chosen with strictly positive probability, than it is the case that the

price at t = 2 after the seller observes �; s is equal to the price at t = 2 after the seller observes �; ŝ: But

then from Lemma 4 we know that these prices cannot be higher than the one where all types choosing

either s or ŝ choose only one of the two. From this observation it follows that it does not pay for the seller

to employ game forms where more then one action leads to the same contract. We can then merely think

of a game form as a set of contracts.

Summarizing, we have established that the possibility that the seller observes the payo¤ irrelevant

messages �0s will not enable her to support higher prices at t = 2 compared to the case where she cannot:

With the help of this observation, we have concluded in Lemma 5, that it is without any loss to think of a

mechanism as being simply a set of contracts; the seller observes which contract was chosen and whether

trade takes place or not. All this analysis was performed assuming that the buyer maybe using a mixed

strategy.

Does the seller bene�t from "sophisticated" strategies of the buyer?

Now we turn to investigate whether allowing for the buyer to employ mixed strategies will lead to

posteriors that support higher prices at t = 2 compared to the case that he uses pure strategies:

This will be established in three steps. First we sketch an example in order to illustrate that is indeed

possible that strictly positive measures of types are randomizing. This is not immediately obvious since

from Proposition 6 we know that the shape of the allocation rules is as if all types in [a; �v] are choosing

(r; z) with positive probability. Then, we investigate which types in [a; �v] may be choosing a contract

other then (r; z) with positive probability, and �nally we establish that posteriors that are consistent with

equilibrium behavior when the buyer is mixing and/or non-convex sets of types are choosing (r; z); do not

support higher prices at t = 2:

Let us �rst describe an example that shows that it is possible for types in [a; �v] to be choosing with

positive probability a contract di¤erent from (r; z):

19The case where the seller observes n is discussed in the section of robustness.
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Example 1 (Randomizations and Complicated Strategies of the Buyer are possible). Consider a strategy

pro�le where the mechanism that the seller proposes at t = 1 contains three contracts (0; 0); (�; z�) and

(1; z1): Suppose that after the history where the buyer chose (0; 0) at t = 1 the optimal price at t = 2 is

such that �z2 = z�: Then, all types of the buyer are indi¤erent between choosing (0; 0) at t = 1 and (1; z2)

at t = 2 and choosing (�; z�) at t = 1 and (0; 0) at t = 2. The reason for this is that for all v

0v � 0 + �(v � z2) = �v � z� + (1� �)(0v � 0) or

�v � �z2 = �v � z�:

Then the buyer�s strategy may dictate "sophisticated" mixing between (0; 0) and (�; z�) at t = 1:

The next result states which types in [a; �v] maybe choosing at t = 1 a contract other than (r; z) with

positive probability.

Lemma 6 Suppose that a mechanism is a set of contracts, and consider a PBE where [a; �v]; denotes the

convex hull of the set of types that choose contract (r; z) with positive probability at t = 1: Also let z2 denote

the cut-o¤ that the seller will chose at T = 2 after the history that the buyer chose (r; z) at t = 1 and no

trade took place. Then only types in [z2; �v] may be choosing a contract di¤erent from (r; z) with positive

probability at t = 1:

We use Lemma 6 to describe possible posteriors that can arise at a PBE: Let m(v) denote the prob-

ability that type v is choosing contract (r; z): We will assume that m is a measurable function of v; with

m(v) 2 [0; 1] for all v 2 [a; �v]: From Lemma 6 it follows that m(v) = 1 for v 2 [a; z2): For the cases where
a < z2; then it is immediate that, even if we allow for any possible randomization, the posterior at T = 2;

after the buyer chose (r; z) at t = 1 is going to be of the form

Fm2 (v) =

8><>:
F (v)

F (z2)+
R �v
z2
m(s)dF (s)

; v 2 [a; z2)
F (z2)+

R v
z2
m(s)dF (s)

F (z2)+
R �v
z2
m(s)dF (s)

; v 2 [z2; �v]
; (13)

wherem is a measurable function of v; withm(v) 2 [0; 1] for all v 2 [a; �v] and where F (z2)+
R �v
z2
m(s)dF (s) >

0 since z2 > a:

Now that we know how the set of possible beliefs looks like when the buyer potentially employs mixed

strategies, or nonconvex sets of types choose a given action, we investigate whether such beliefs support

higher prices at t = 2; compared to the case where all types in [a; �v] choose a given contract with probability

one.

Lemma 7 Let z2 > a denote an optimal cut-o¤ at t = 2 given beliefs Fm2 (v) given by (13); z2(�v) denote

an optimal cut-o¤ at t = 2 given beliefs F2(v) =
F (v)
F (�v) ; then z2(�v) � z2:

20

20The case that z2 = a is trivial, since it follows immediately that z2(�v) � z2:
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The reason why this is true follows from the fact that only types above z2 maybe be choosing a

contract other then (r; z) with positive probability. To put it very roughly, there is less weight put on

the higher types of [a; �v]: Equilibrium considerations force that only types above the second-period cut-o¤

maybe randomizing between di¤erent contracts and for this reason the cut-o¤ that is optimal given such

posteriors will be weakly lower than the one when all types in [a; �v] choose (r; z):

Lemmata 4, and 7 are valid for the last period of the game irrespective of the length of the game, that is

they are valid for any T not just T = 2: They are key steps in our characterization: complicated strategies

or mixed strategies of the buyer do not pay in the sense that the set of possible posterior beliefs induced

by such strategies does not allow the seller to support higher prices at t = 2; compared to the case where

convex set of types choose the same action with probability one: We are now ready to state our result.

Theorem 1 Under non-commitment the seller maximizes expected revenue by posting a price in each

period.

Proof. The result can be established following the exact lines of the Proof of Proposition 5 and replacing

z2(�v) with z2(F2): From Lemmata 4 and 7 we have that z2(F2) � z2(�v); and from Lemma 2 we have that

z2(�v) � z2(v
��). From the last two inequalities we get that z2(F2) � z2(v

��) and therefore the resulting

allocation rule is an element of P�2 : But Proposition 4 tells us that an optimal allocation rule out of P�2 is
implemented by a PBE of the game where the seller posts a price in each period.

Let us recap the arguments used to establish Theorem 1: we started with an allocation rule p that

satis�es necessary conditions of being implemented by a PBE� we have only imposed all the sequential

rationality constraints for the range [a; �v): Then taking as given the shape of p for [a; �v); we optimally

chose p̂(v) for v 2 [�v; b] ignoring all sequential rationality constraints and imposing only the requirement
that the resulting allocation rule be monotonic on [a; �v). Using the observations from Lemmata 4 and 7,

we established that p̂ is an element of P�2 : Since we can follow these steps for each allocation rule in P2;
and an optimal one among the allocation rules in P�2 can be indeed implemented by a PBE of the game

where the seller posts a price in each period, we can conclude that at an optimal PBE the seller posts a

price in each period:

Intuitively the reason why simply posting a price is optimal, is that proposing a mechanism at t = 1

with more options has higher cost than bene�t. The potential bene�t from o¤ering a mechanism with

many options, is that it may allow for more possibilities for types to self-select at t = 1; which in turn in

case that no trade takes place at period t = 1; provides the seller with more precise information about the

seller�s valuation at t = 2: The cost is that by providing more possibilities to self-select also increases the

possibilities to masquerade as another type. It turns out that the cost of having higher types behaving as

if they are lower ones, is higher than the gain obtained by having more precise information at t = 2.
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7. Robustness: Longer Horizon & Alternative Degrees of Transparency

Our objective has been to characterize the revenue maximizing PBE in a multi-stage game where the seller

chooses mechanisms at each stage. As we have discussed, the set of PBE0s depends (i) on the generality of

mechanisms that the seller employs (ii) on the generality of the buyer�s strategy and (iii) on the length of

the time horizon and �nally (iv) on the degree of transparency of mechanisms, which is intimately related

with the "commitment" power of the seller.

We will now argue that our result is robust in a number of di¤erent directions. First our result is valid

for any T < 1: The main structure of the proof of the T = 2 case extends to longer horizons, but some
of the details of the arguments become more involved. The interested reader is referred to the "Technical

appendix for Sequentially Optimal Mechanisms" for the details. This document also contains three more

extensions that are related to the degree of transparency of mechanisms. Here we have assumed that the

seller observes the message that the buyer submits to the mediator, �; the action that he chooses s; and

whether trade takes place or not.21 We obtain the same result if we assume any of the following assumptions

regarding the degree of transparency of mechanisms (i) the seller observes the cheap messages �; n; the

costly action s; and whether trade takes place or not, (ii) the seller observes only the cheap messages �; n

and whether trade took place or not and �nally (iii) the seller observes only whether trade takes place or

not.

Now regarding the generality of the strategy that the buyer maybe employing, we have not imposed any

restrictions. The buyer may be employing mixed strategies and non-convex set of types maybe choosing

the same messages and actions. Regarding the generality of de�nition of "mechanisms" we have been very

general: we have assumed that a mechanism consists of a deterministic22 game form, and a mediator that

maps a report by the buyer to a recommendation. We have also examined a number of alternative scenaria

regarding the degree of transparency of mechanisms.

It maybe worth comparing our de�nition of mechanism with the various de�nitions employed in the

literature so far. In LT, who consider an environment closest to ours, a mechanism is, in our terminology,

a set of contracts. In HT and in the literature that follows them, see for instance Rey and Salanie (1996),

a mechanism consists of a set of messages for the agent and a deterministic mapping that maps reports

to allocations. (These authors argue that in a set-up where the principal has no private information

the principal�s reports are immaterial and can be subsumed in the allocation.) In all these papers the

principal observes everything. In Bester and Strausz (2001) a mechanism is a deterministic game form

G = (g; S) : the agent chooses s which leads to an outcome g(s) in some set X: Regarding the degree of

21 It actually turned out that the message send by the buyer to the mediator is redundant, and this case then reduces to the

case where the seller observes only the costly action of the buyer, s; as well as whether trade takes place or not.
22The mapping from actions s to contracts (r(s),z(s)) is deterministic; but recall that the buyer can be randomizing over

s0s:
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transparency in BS (2001), the principal observes s and can base the future mechanisms, (or other currently

non-contractible actions), on the choice of s: In Bester and Strausz (2003) a mechanism is again of the

form G = (g; S); but there g is random, that is a choice of s induces via g(s) a probability distribution

over S; and the principal does NOT observe s - observes only g(s):23

Assuming that game forms are deterministic is without any loss of generality for most degrees of

transparency of mechanisms. In particular, it is without loss in cases where the seller observes (i) �, s and

whether trade took place or not, (ii) �, n; s and whether trade took place or not (iii) merely whether trade

took place or not and (iv)�, n and whether trade took place or not. To see why this is the case in (i) and

(ii); suppose that given an action s, g(s) is (r; z) with probability � and (r̂; ẑ) with probability (1��): Given
that the seller observes s her beliefs about the buyer�s valuation will be the same irrespective of whether the

outcome of the game form is (r; z) or (r̂; ẑ) - in other words the second period price will be simply a function

of s; call it z2(s): Types below z2(s) reject this price at t = 2; hence for those types the expected outcome

from choosing s is p = �r+(1��)r̂ and x = �z+(1��)ẑ. Now types above z2(s) accept the price at t = 2
and for those types the expected outcome from choosing s is given by p = �(r+(1�r)�)+(1��)(r̂+(1�r̂)�)
and x = �(z+(1� r)�z2(s))+(1��)(ẑ+(1� r̂)�z2(s)); which can be also rewritten as p = �r+(1��)r̂+
[1� �r � (1� �)r̂)] � and x = �z + (1 � �)ẑ+ [1� �r � (1� �)r̂)] �z2(s). These outcomes can arise by a
deterministic mapping that maps s to ~r = �r+ (1� �)r̂ and ~z = �z + (1� �)ẑ: Therefore in cases (i) and
(ii); where the actions chosen by the buyer are observed by the seller, it is without any loss to assume that

game forms are deterministic. For cases (iii) and (iv) where the seller does not observe s nor the contract,

it is clear that it does not matter whether the game form is random or it is deterministic.

There are two cases that we have not addressed, but our analysis can be easily amended to address

them. The �rst case is when game forms are random, the seller observes contracts, but does not observe s.

In this case the same contract may have been chosen by types that choose di¤erent s0s: Moreover because

of the randomness, it is as if the buyer is choosing with positive probability contracts among which he is

not indi¤erent. In this case there is, in some sense, a weak link between the information that the seller

obtains and the (costly) action that is chosen by the buyer. The same weak relationship between costly

actions of the buyer and the information that the seller observes exists in the scenario where best response

constraints are imposed ex-ante only, (the buyer�s strategy must only satisfy (1) and not necessarily (2)),24

and the seller does not observe the message that the buyer sends to the mediator.25 These two cases, even

though super�cially they appear unrelated, they can be addressed following the same steps. The analysis

would proceed more or less along the lines of the section that provides a characterization of the result

23The fact that the principal does not observe s; [and cannot either precisely determine it from g(s); since g(s) is random],

is termed noisy communication by those authors.
24 In this case the mechanism designer has the power to employ mediators that enforce actions to the buyer: the buyer is

only free to a¤ect the "recommendations" he receives through the report that he submits to the mediator.
25The mechanims in Bester and Strausz (2003) can be viewed in this way.
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for minimal amounts of information, studied in Section 1.2 in the "Technical Appendix for Sequentially

Optimal Mechanisms." Preliminary work suggests that our result will go through. We leave the details for

future work.

8. Commitment and Non-Commitment: Revenue Comparisons

In this section we compare the expected revenue for the seller when she employs a revenue maximizing

mechanism under commitment and under non-commitment. Given commitment posting a price equal to

v�; (given by (6)), in each period is optimal. We have shown that when the seller behaves sequentially

rationally the revenue maximizing mechanism is to post a price in each period. Let zt denote the price

posted at t: This sequence of prices has to be sequentially rational. The seller can replicate the situation

under non-commitment in the commitment case by posting z1 at t = 1 and z2 at t = 2; instead of posting

v� in each period: From this observation it follows that in general

RC � RNC(�);

where RC denotes the highest revenue that the seller can achieve under commitment and RNC the highest

revenue under non-commitment. When the buyer and the seller are very patient, (in this model the buyer

and the seller have the same discount factor), the seller will �nd it bene�cial to move all trade in the

last period of the game. In the last period of the game she has commitment power. If � = 1 by shifting

all trade at T she obtains expected revenue equal to RC ; which is the best she can hope for. It follows

that when � = 1 expected revenue under commitment and under non-commitment coincide. On the other

hand, for � very small the value of the object at t = 2 is almost zero to the buyer no matter what his

valuation is, so there is not much surplus for the seller to extract. When the seller and the buyer are very

impatient the situation is almost equivalent to the full commitment case. The seller posts at t = 1 the

revenue maximizing price as in the environment with commitment; therefore we get that RNC(0) = RC .

From the above observations it follows that for extreme values of the discount factor the seller can achieve

the same expected revenue under commitment and under non-commitment. For intermediate values of

the discount factor it holds that RNC < RC : To get some idea about the magnitude of the di¤erence in

expected revenue we present an example.

Example 2 Suppose that T = 2: Assume that the buyer�s valuation is uniformly distributed on the interval

[0,1]. For this environment the optimal mechanism under commitment is to post a price v� = 0:5 in each

period. The corresponding expected revenue is RC = 0:25: Now let us look at the non-commitment case.

Let �v denote the valuation of the buyer who is indi¤erent between accepting z1 at t = 1 and accepting z2 at

t = 2: It is given by �v = z1��z2
1�� : For the assumed prior we have that, if the buyer rejects the price o¤er at

30



t = 1; then F2(v) = v
�v : The price posted at t = 2 is given by z2 =

�v
2 : Substituting this expression of z2 into

�v we get that z1 = �v (1� 0: 5�) : Given the above relationship between z1; �v and z2 the seller will pick

�v 2 argmax(1� �v)�v (1� 0: 5�) + �
�
�v � �v

2

� �v
2
:

The following table gives the solution for di¤erent values of the discount factor.

Discount Factor � Price at t=1, z1 Price at t=2, z2 �v RNC

0:0001 0:49999 0:25001 0:50002 0:24999

0:3 0:46612 0:27419 0:54839 0:23306

0:4 0:45714 0:28571 0:57143 0:22857

0:45 0:45330 0:29245 0:58491 0:22665

0:5 0:45 0:3 0:6 0:225

0:7 0:44474 0:34211 0:68422 0:22237

0:9 0:46538 0:42308 0:84615 0:23269

0:9999 0:49995 0:4999 0:9998 0:24998

1 0:5 0:5 1 0:25

9. Concluding Remarks

This paper establishes that the revenue maximizing allocation mechanism in a T -period model under

non-commitment is to post a price in each period. It also develops a procedure to derive the optimal

mechanism under non-commitment in asymmetric information environments. This method does not rely

on the revelation principle.

Previous work has assumed that the seller�s strategy is to post a price and the problem of the seller is to

�nd what price to post. We provide a reason for the seller�s choice to post a price, even though she can use

in�nitely many other possible institutions: posted price selling is the optimal strategy in the sense that it

maximizes the seller�s revenue. We hope that the methodology developed in this paper will prove useful in

deriving the optimal dynamic incentive schemes under non-commitment in other asymmetric information

environments.

In the future we plan to study the problem in an in�nite-horizon framework, which may be a more

appropriate model to study mechanism design under non-commitment. This problem is involved with

issues which require careful analysis beyond the scope of this paper.

31



10. Appendix

Proof of Proposition 4

The seller�s expected revenue given a strategy pro�le that implements an element of P�2 is given by

R(p) =

Z ẑ2

a
rsdF (s)�

Z ẑ2

a
r[1� F (s)]ds

+

Z �v

ẑ2

(r + (1� r)�)sdF (s)�
Z �v

ẑ2

(r + (1� r)�)[1� F (s)]ds

+

Z b

�v
sdF (s)�

Z b

�v
[1� F (s)]ds

Di¤erentiating with respect to r we get that

@R(p)

@r
=

Z ẑ2

a
sdF (s)�

Z ẑ2

a
[1� F (s)]ds

+

Z �v

ẑ2

(1� �)sdF (s)�
Z �v

ẑ2

(1� �)[1� F (s)]ds

which does not depend on r. If @R(p)@r � 0; then at an optimum it must be r = 1 and if @R(p)@r < 0 then at

an optimum it must be r = 0:

Now let us investigate the optimal value of ẑ2: Since z2(�v) is optimal given beliefs F2(v) =
F (v)
F (�v) it

follows that

(F (�v)� F (z2(�v))) z2(�v) � (F (�v)� F (ẑ2)) ẑ2: (14)

Let ẑ1 the price that the seller must most at t = 1 to keep type �v indi¤erent between ẑ1 at t = 1 and z2(�v):

It is given by ẑ1 = (1� �)�v + z2(�v) � z1 = (1� �)�v + z2 from which we get that

(1� F (�v)) ẑ1 � (1� F (�v)) z1: (15)

And combining (14) and (15) we obtain that

(1� F (�v)) ẑ1 + (F (�v)� F (z2(�v))) �z2(�v)

� (1� F (�v)) z1 + (F (�v)� F (ẑ2)) �ẑ2;

for all ẑ2 � z2(�v): It follows that at an optimum ẑ2 = z2(�v):

Proof of Lemma 2

We argue by contradiction. Suppose that z2(v̂) < z2(�v); then [F (v̂)�F (�v)]z2(�v) > [F (v̂)�F (�v)]z2(v̂).
Moreover by the de�nition of z2(�v) it follows that [F (�v)� F (z2(�v))]z2(�v) � [F (�v)� F (z2(v̂))]z2(v̂): Com-
bining these two inequalities we get

1

F (v̂)
[(F (v̂)� F (�v)) z2(�v) + (F (�v)� F (z2(�v))) z2(�v)]

>
1

F (v̂)
[(F (v̂)� F (�v)) z2(v̂) + (F (�v)� F (z2(v̂))) z2(v̂)]
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contradicting the de�nition of z2(v̂):

Proof of Proposition 6

Consider a PBE assessment (�; �) and let p denote the allocation rule implemented by it. Let s denote

an action that leads to (r; z), where this is the contract with the smallest \r", with the property that type

a is either "choosing" (r; z) with strictly positive probability at t = 1; or is indi¤erent between doing and

not doing so. Also let Y denote the set of types of the buyer that report message � and choose s at t = 1

with strictly positive probability, and let [a; �v]; with a � �v; denote its convex hull. From the solution for

T = 1 we have that after the history that the buyer reported message �, chose action s; and no trade took

place at t = 1; the seller will maximize revenue by posting a price in period t = 2. Let us call this price as

z2 and de�ne

vL = inf fv 2 Y s.t. v accepts z2 at 2g

vH = sup fv 2 Y s.t. v accepts z2 at 2g :

By de�nition types vL and vH either choose (r; z) at t = 1 and accept z2 at t = 2 with positive probability

or are indi¤erent between this sequence of actions and the actions that they are actually choosing.

First we show that for v 2 (vL; vH) we have that p(v) = r + (1 � r)�; then we establish that z2 = vL
and �nally we show that for v 2 (a; vL) we have that p(v) = r:

Step 1: For v 2 (vL; vH); where vL 6= vH we have that p(v) = r+(1� r)�:We will establish this result
by observing that if a v 2 (vL; vH) is choosing a sequence of actions with positive probability, then it must
be that the expected discounted probability p̂ and the expected discounted payment x̂ must be such that

p̂ = r+(1�r)� and x̂ = z+(1�r)�z2: Otherwise depending on whether p̂ < r+(1�r)� or p̂ � r+(1�r)�
either type v � " or v + " have a pro�table deviation.

Step 2 : We show that the smallest type that accepts z2 must be equal to it:vL = z2: First observe

that the fact that at a PBE the buyer�s strategy must be a best response to the seller�s strategy implies

that

(r + (1� r)�) vL � (z + (1� r)�z2) � rvL � z:

We now show that this inequality must hold with equality. We argue by contradiction. Suppose not, that

is

(r + (1� r)�) vL � (z + (1� r)�z2) > rvL � z:

then the seller can increase z2 by �z such that

(r + (1� r)�) vL � (z + (1� r)�z2)��z = rvL � z;
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and raise higher revenue at the continuation game that starts at 2: All types v � vL still prefer to choose
(1; z2) at t = 2 then to choose (0; 0): Hence at a PBE we have that

(r + (1� r)�) vL � (z + (1� r)�z2) = rvL � z; (16)

from which it is immediate that vL = z2:

Step 3: For v 2 (a; vL); where a 6= vL we have that p(v) = r: Again if a v 2 (a; vL) is choosing a
sequence of action with positive probability then it must be that the expected discounted probability p̂ and

the expected discounted payment x̂ must be such that p̂ = r and x̂ = z: Otherwise depending on whether

p̂ < r or p̂ � r either type v � " or v + " have a pro�table deviation.
From Steps 1-3 it follows that p(v) = r + (1� r)� for v 2 (vL; vH); and p(v) = r; for v 2 (a; vL) where

vL = z2: Hence the allocation rule is

p(v) = r for v 2 [a; z2)
r � p(z2) � r + (1� r)�

p(v) = r + (1� r)� for v 2 (z2; �v)
r + (1� r)� � p(�v) � 1

:

Note that p(a) cannot be strictly less then r by the de�nition of (r; z); (in order for p(a) � r it must be the
case that type a is choosing a sequence of actions that implement p̂ < r; but this contradicts the de�nition

of (r; z) which is the smallest \r" contract that type a chooses with positive probability at t = 1; or is

indi¤erent between choosing or not:

Proof of Lemma 4

Suppose that the interval [a; �v] is the convex hull of the types that choose the costly action s and

suppose that a type v in [a; �v] chooses the "cheap" message � with probability �(v) and the cheap message

�̂ with probability 1 � �(v): We assume that both messages are chosen with positive probability, which
implies that

R �v
a �(t)dF2(t) > 0 and

R �v
a (1 � �(t))dF2(t) > 0: Thus the seller�s posteriors at the beginning

of the �nal period of the game after observing the costless message � and s; and respectively �̂ and s,

given by ~F2(s) =
R s
a �(t)dF2(t)R �v
a �(t)dF2(t)

and F̂2(s) =
R s
a (1��(t))dF2(t)R �v
a (1��(t))dF2(t)

, where F2 is the seller�s posterior in the case

that she observes only s: From Lemma 3 we know that in order that both these payo¤ irrelevant messages

to be employed in equilibrium it must be the case that z2( ~F2) = z2(F̂2). Our goal is to establish that

z2(F2) � z2( ~F2) = z2(F̂2). Assume wlog that z2(F2) < z2( ~F2):
By the de�nition of z2(F2) we have thatZ z2( ~F2)

z2(F2)
sdF2(s)�

Z z2( ~F2)

z2(F2)
[1�

Z s

a
dF2(t)]ds � 0: (17)
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But since z2(F2) is not a maximizer for beliefs ~F2 we have that26Z z2( ~F2)

z2(F2)
s�(s)dF2(s)�

Z z2( ~F2)

z2(F2)
[

Z �v

a
�(t)dF2(t)�

Z s

a
�(t)dF2(t)]ds < 0: (18)

Similarly we have thatZ z2(F̂2)

z2(F2)
s(1� �(s))dF2(s)�

Z z2(F̂2)

z2(F2)
[

Z �v

a
(1� �(t))dF2(t)�

Z s

a
(1� �(t))dF2(t)]ds < 0 (19)

adding (18) and (19) and recalling that z2( ~F2) = z2(F̂2) we obtain thatZ z2(F̂2)

z2(F2)
[s(1� �(s)) + �(s)s] dF2(s)�

Z z2(F̂2)

z2(F2)
[

Z �v

a
[(1� �(t)) + �(t)] dF2(t)�

Z s

a
[(1� �(t)) + �(t)] dF2(t)]ds

=

Z z2(F̂2)

z2(F2)
sdF2(s)�

Z z2(F̂2)

z2(F2)
[

Z �v

a
dF2(t)�

Z s

a
dF2(t)]ds

=

Z z2(F̂2)

z2(F2)
sdF2(s)�

Z z2(F̂2)

z2(F2)
[1�

Z s

a
dF2(t)]ds < 0; (20)

Where the last equality follows from the fact that
R �v
a dF2(t) = 1: But (20) contradicts (17).

Proof of Lemma 6

We argue by contradiction. Suppose that there exists v̂ 2 [a; z2) that is randomizing between (r; z) and
some other contract at t = 1:27 From Proposition 6 we know that it must be the case that for v 2 [a; z2)
we have that p(v) = r: Then if v̂ is randomizing it must be choosing a contract (r̂; ẑ) such either (a)

r = r̂ + (1� r̂)�; (b) r̂ = r:
First to see that (a) is impossible note that since v̂ is choosing (r̂; ẑ) at t = 1 and accepts (1; ẑ2)

at t = 2; then it must be the case that ẑ2 � v̂: If a = ẑ2 then type a is indi¤erent between (r̂; ẑ) and

(r; z) contradicting the de�nition of (r; z): If on the other hand, a < ẑ2 then for type ẑ2 it must hold

that r̂ẑ2 � ẑ = (r̂ + (1� r̂)�) ẑ2 � ẑ � (1 � r̂)�ẑ2 = rẑ2 � z: But since a < ẑ2 and r̂ � r we have that

26From straightforward calculations we get the two expressions of revenue at the continuation game that starts at t = 2Z �v

a

sd ~F2(s)�
Z �v

a

[1� ~F2(s)]ds =
1R �v

a
�(t)dF2(t)

�Z �v

a

s�(s)dF2(s)�
Z �v

a

[

Z b

a

�(t)dF2(t)�
Z s

a

�(t)dF2(t)]ds

�
:

andZ �v

a

sdF̂2(s)�
Z �v

a

[1�F̂2(s)]ds =
1R b

a
(1� �(t))dF2(t)

�Z �v

a

s(1� �(s))dF2(s)�
Z �v

a

[

Z b

a

(1� �(t))dF2(t)�
Z s

a

(1� �(t))dF2(t)]ds
�
:

Note that since 1R �v
a �(t)dF2(t)

and 1R b
a (1��(t))dF2(t)

are constants we can ignore them.
27The only relevant case is the case a < z2 since the case a � z2 trivially implies that all types that may be randomizing

are greater or equal to z2:
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r̂a � ẑ > (r̂ + (1� r̂)�) a � ẑ � (1 � r̂)�ẑ2 = ra � z contradicting the fact that a is choosing (r; z) with
positive probability.

Possibility (b) is not relevant either since r = r̂ implies z = ẑ; which implies in turn that (r̂; ẑ) is the

same contract at (r; z): To see this we argue by contradiction. Suppose not, and wlog let ẑ < z: Depending

on whether ẑ2 < z2 or ẑ2 � z2; there are two cases to consider: If ẑ2 < z2 then for all v 2 [a; b] we have
that r̂v � ẑ > rv � z and (r̂ + (1� r̂)�)v � ẑ � (1� r̂)�ẑ2 > (r + (1� r)�)v � z � (1� r)�z2; but then the
types that are choosing (r; z) with strictly positive probability are not best-responding, contradicting the

supposition that we are looking at a PBE: Now in the case that z2 < ẑ2 then for all v 2 [a; b] we have that
r̂v � ẑ > rv � z and (r̂+ (1� r̂)�)v � ẑ � (1� r̂)�ẑ2 < (r+ (1� r)�)v � z � (1� r)�z2; which implies that
all types in [a; z2) strictly prefer (r̂; ẑ) over (r; z) and all types above z2 strictly prefer (r; z) over (r̂; ẑ):

These observations imply that the seller posts at t = 2 a price ẑ2 > z2 given a posterior that has support

a subset of [a; z2]; contradicting the fact that we are looking at PBE: Hence r = r̂ implies that z = ẑ; but

then (r; z) and (r̂; ẑ) are the same contract.

Proof of Lemma 7

Let us �rst de�ne

�(v; ~v jF2 ) = F (�v) �
1

F (�v)

�Z ~v

v
sdF (s)�

Z ~v

v
(F (�v)� F (t))dt

�
; (21)

and

�(v; ~v jFm2 ) =
�
F (z2) +

Z �v

z2

m(t)dF (t)

�
�
�Z ~v

v
sdFm2 (s)�

Z ~v

v
[1� Fm2 (s)]ds

�
:

For v; ~v 2 [a; z2); we have that

�(v; ~v jFm2 ) =
�Z ~v

v
tdF (t)�

Z ~v

v

�
F (�v2) +

Z �v

�v2

m(s)dF (s)� F (t)
�
dt

�
:

Hence for v; ~v 2 [a; z2) �(v; ~v jFm2 ) and �(v; ~v jF2 ) di¤er by a constant. To make �(v; ~v jF2 ) more easily
comparable with �(v; ~v jFm2 ), let us do some rewriting. By adding and subtracting

R ~v
v F (z2)dt to �(v; ~v jF2 )

we get that

�(v; ~v jF2 ) =
Z ~v

v
tdF (t)�

Z ~v

v
(F (z2) + F (�v)� F (z2)� F (t)) dt:

Now because m(v) 2 [0; 1]; we have that F (z2)+F (�v)�F (z2) � F (z2)+
R �v
z2
m(t)dF (t) which implies that

�(v; ~v jFT ) � �̂(v; ~v jFmT ); (22)

for all v; ~v 2 [a; z2).
Suppose that z2(�v) < z2; now by the de�nition of z2(�v) it follows that

�(z2(�v); ~v jF2 ) � 0; for all ~v 2 [z2(�v); z2];
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which together with (22) implies that

�(z2(�v); ~v jFm2 ) � 0; for all ~v 2 [z2(�v); z2];

and by the de�nition of z2 we have that

�(z2; ~v jFm2 ) � 0; for all ~v 2 [z2; �v];

but the last two inequalities imply

�(z2(�v); ~v jFm2 ) � 0; for all ~v 2 [z2(�v); �v];

contradicting the de�nition of z2: Hence we have shown that z2(�v) � z2:
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