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Abstract

We provide a specification test for moment inequalities based on a dual characterization of the moment inequalities. For linear moment
inequalities, the test is the asymptotic version of the multi-dimensional linear one-sided tests. For nonlinear moment inequalities, the
implementation of the test is not practical because the dual characterization takes the form of a multi-dimensional nonlinear one-sided hypothesis.
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1. Introduction

There has been a recent surge of interest in statistical
inference in situations where parameters of interest are only
partially identified. See Manski (2003) for an overview of this
literature. In some applications, the parameter is real-valued and
the identified set is an interval whose lower and upper bounds
may be estimated from the sample. A confidence interval (CI) of
the identified set may be constructed by taking account of the
sampling variation of these estimates. The CI may be
constructed to cover the entire identified or the true value of
the parameter with a certain fixed probability. Imbens and
Manski (2004), who proposed the latter, observed that the two
CIs can be quite different. The difference of the widths of the
two CIs can be related to the difference in critical values of one-
sided and two-sided tests.

The purpose of this note is to extend Imbens and Manski's
(2004) insight to a situation where the parameter of interest is
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multi-dimensional and can be characterized by moment inequal-
ities.1 We propose a specification test to test whether such
moment inequalities can hold by providing a dual characteriza-
tion of the moment inequalities. For a model characterized by
linear moment inequalities, we find that such a test is the
asymptotic version of the multi-dimensional linear one-sided
tests as discussed by, e.g., Gourieroux et al. (1982). On the other
hand, when themodel is given by nonlinear moment inequalities,
the test will be subject to practical problems of implementation
because the dual characterization takes the form of multi-
dimensional nonlinear one-sided hypothesis. Wolak (1991)
noted that the main difficulties of the nonlinear one-sided
hypothesis tests are (i) “the lack of an empirically implementable
procedure for computing an asymptotically exact size critical
value”, (ii) “the absence of tight upper and lower bounds on the
asymptotic distribution of the test statistics”, and (iii) “the least
favorable null asymptotic distribution may not occur at the
unique parameter value satisfying all of the inequality constraints
1 Models characterized by moment inequalities have been recently considered
by Moon and Schorfheide (2004) and Pakes et al. (2005). Other related papers
include Manski and Tamer (2002), Andrews et al. (2004), Andrews and
Guggenberger (2005), Beresteanu and Molinari (2005), Rosen (2005), Romano
and Shaikh (2006), and Chernozhukov et al. (2007).
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4 We assume the maximum exists. We also assume that
P
U j, thus defined, is

differentiable on the set {μ ∈Rm;Θj≠∅}. On the set {μ∈Rm;Θj=∅} we
define

P
U jðlÞ such that the extended function

P
U j is differentiable on Rm.

5 Wolak's (1991) Lemma 1 (3) establishes that the maximum probability of
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with equality”. Our dual characterization of the models with
nonlinear moment inequalities suggests that these problems in
the nonlinear one-sided hypothesis tests will be carried over to
our specification test. We suspect that specification tests of
nonlinear models with inequalities will remain elusive unless
there is progress in testing of nonlinear one-sided hypothesis.

2. Dual characterization of moment inequalities

We first consider a linear model given by a restriction of the
form Cθ≤μ for C∈Rm×d, μ∈Rm, and θ∈Rd.2 We are
interested in the specification test

H0 : ah such that ChVl: ð1Þ

Example. Consider the linear regression model

yi ¼ x Vihþ ei and E½xiei� ¼ 0 ð2Þ

for θ∈Rd. Assume the range space of yi is partitioned into a
certain number of disjoint intervals. For example, income of an
individual is often times reported as an interval rather than a
specific value. We do not actually observe yi but instead only
observe the lower and upper interval bounds, denoted by yiL
and yiU respectively, of the interval that yi is part of, yi∈ [yiL,
yiU). Assume xi has bounded support. Then w.l.o.g. we can
assume that xi≥0. It follows that

E½xiyiL�VE½xiyi�VE½xiyiU�:

Therefore, writing A=E[xix′i], μ
L=E[xiyiL], and μU=E[xiyiU],

we obtain the restriction, μL≤Aθ≤μU or Cθ≤μ for C=
(A′,−A′)′ and μ=(μU′,−μL′)′. The specification test in Eq. (1)
tests whether there exist a θ∈Rd such that Eq. (2) holds.

We show that the null hypothesis (1) can be given a dual
characterization of the form

H0 : Blz0: ð3Þ
More precisely, we show that there exists a matrix B=B(C)

such that there is a θ satisfying Cθ≤μ if and only if Bμ≥0. See
the Appendix for an algorithm that generates such a matrix B.
Note that the hypothesis (3) is the multi-dimensional one-sided
test discussed, e.g., by Gourieroux et al. (1982) and Wolak
(1991). If C is known, then B is known, and the test can be based
on the Wald-type test statistic of the form

Wn ¼ inf
taRp

fnðBbl� tÞ VJb�1ðBbl� tÞ subject to tz0g; ð4Þ

where μb is a
ffiffiffi
n

p
-consistent asymptotically normal estimator of

μ and Jb is a consistent estimator for the asymptotic variance
matrix of Bμb.3 The asymptotic distribution ofWn is a mixture of
v 2-distributions, see Kudo (1963).
2 If x and y are both m-vectors, x≤y means xi≤yi for i=1,…, m.
3 If B is unknown but a

ffiffiffi
n

p
-consistent asymptotically normal estimator B̂of

B is available, then Jbin Wn need to be replaced by a consistent estimator of the
asymptotic covariance matrix of bBμb.
Assume now that the model is given by E[φ (w;θ)]≥μ
where φ is a nonlinear function with values in Rm. Letting
Φ(θ)≡ (Φ1(θ),…, Φm(θ))′≡E[φ(w;θ)],we can write the null
hypothesis as

H0 : ah such that UðhÞzl: ð5Þ

Assume θ∈Θ ⊂ Rd for some set Θ. To derive the dual
version of Eq. (5) define functions Φ̄j, j=1,…, m:

1. Let Φ̄1≡maxθ∈ΘΦ1(θ).
2. For j≥2, let Φ̄j≡ Φ̄j (μ1,…, μj−1)≡maxθ∈ΘjΦj(θ) if Θj≠∅,

where Θj≡{θ∈Θ:Φj ′(θ)≥μj ′ for all j′b j}.
4

Let Φ̄≡ (Φ̄1 ,…, Φ̄m)′. Clearly, there exists a θ such that
Φ(θ)≥μ if and only if Ψ (μ)≡ Φ̄(μ)−μ≥0 and thus Eq. (5)
holds if and only if

WðlÞz0: ð6Þ

If we have a
ffiffiffi
n

p
-consistent, asymptotically normal estimator

μ̂ of μ, testing Eq. (5) is equivalent to testing the one-sided
hypothesis on μ. The latter has been studied in Wolak (1991)
using a Wald-type statistic as in Eq. (4). In order to determine
the asymptotic critical value, one has to maximize the
probability of rejection over all μ vectors that satisfy the
restriction (6). However, as discussed in Wolak (1991), such a
maximization and therefore determination of a critical value
typically is computationally intractable.5

3. Discussion: CI for a scalar component of θ

The discussion in the preceding section has natural
implications for the construction of a CI for a scalar component
of a vector-valued parameter. Suppose for simplicity that the
model is given by a set of linear restrictions Cθ≤μ. We are
interested in testing whether the first component θ1 of θ is equal
to θ1

⁎. We can write the null hypothesis as

H0 : ah�1 such that C�1h�1Vl� c1h1*;

where c1 is the first column of C, C–1 is a submatrix consisting
of the remaining columns, and θ–1= (θ2,…,θd)′. The CI for θ1
can in principle be obtained as a set of all θ1

⁎ which are not
rejected by the test of the above hypothesis. The same intuition
implies that the confidence interval of a scalar component can
be very difficult to construct when a model is given by nonlinear
moment restrictions.
rejection is achieved in some particular set BuCb � fl : laCb andWjðlÞ ¼
0 for only one j ¼ 1; N ;mg, where Cb≡{μ:Ψj(μ)≥0, j=1,…, m}−{μ:Ψj

(μ)N0, j=1,…, m}. The nonlinearity implies that we cannot further reduce
the set of potential maximizers. This implies that in practice we need to
simulate the distribution of Wolak's (1991) test statistic over B, which is
generally an impossible computational task.
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We note that the confidence region of the entire parameter θ
is straightforward to implement from this perspective. In order
to understand this point, continue to suppose that the model is
given by Cθ≤μ. If we want to test whether θ=θ⁎, all we need
to do is to test whether H0:Cθ⁎≤μ. Such a test does not even
require any dual characterization. By applying the asymptotic
version of Gourieroux et al. (1982) test and comparing Cθ⁎ with
μb, the confidence region for θ⁎ can be trivially obtained. In fact,
a confidence region for θ can be constructed even for models
characterized by nonlinear restrictions E[φ(wi;θ)]≤μ as above.
If we are interested in testing θ=θ⁎, it can be done again by
comparing the sample analog n- 1∑i=1

n φ(wi;θ⁎) of E[φ(wi;θ⁎)]
with μb. Again, this can be done by applying the asymptotic
version of Gourieroux et al.'s (1982) test. Although such a
confidence region is rather straightforward to construct, at least
conceptually, this does not imply that the CI for a scalar
component is as easy to construct. See, e.g., Savin (1984), for
related discussion.
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Appendix A. Dual Characterization in Linear Models

The goal is provide an easily implementable algorithm that
yields a matrix B=B(C) with minimal number of rows such that
the null hypothesis (1) ∃θ such that (C,− Im)(θ′,μ′)′≤0 holds if
and only if Eq. (3) holds. Algorithm 1 constructs a matrix B(C)
such that Eq. (1) holds if and only if Eq. (3) holds, but the
number of rows of B may not be minimal with this property.
Then, in a second step, one eliminates redundant rows from B.
We need the following definition about manipulations M /k and
M∼k of a matrix M.

Definition. Let M∈Rm¯×d and k≤d.

(i) Let M /k∈Rm̄×d (where typically m̄Nm) be the matrix
whose rows are given (in some arbitrary sequence) by
6 Not
on the
is defin
• the rows ci of M, for all i with cik=0 and
• the rows cikcj−cjkci for all i, j with cikN0 and cjk b0,
where by cik we denote the element of M in row i and
column k.6
(ii) Let M∼k be the matrix that results from M by eliminating
its k-th column.

(iii) Let P(M)≡{x∈Rd:Mx≤0}.
(iv) For a set S⊂Rd define the projection of S in the direction

of the k-th-unit vector ek, projk(S)≡{x∈Rd:xk=0,
∃y∈R:x+yek∈S}, where xk denotes the k-th-component
of x.
e that an upper bound for m̄ is given by m2 /4. The number m̄ depends
number of nonzero components in the k-th-column of C. The matrix C /k

ed up to the ordering of its rows.
Note that it is trivial to calculate M/k and M∼k for a given
matrix M.

Algorithm 1. Set H0=C and m0=m. Step 1: Define Hi+1

∈Rmi+1×(d−1−i) and −Bi+1∈Rmi+1×mi as the first d−1− i and
last mi columns of the d−1− i+mi column matrix ([Hi− Imi

]/1)∼1,
respectively. Iterate over Step 1 for i=0,…, d−1. Then, set B≡
−Bd×…×B1.

Theorem 2 shows that the matrix B=B (C) thus obtained is
such that Eq. (1) has a solution in θ if and only if Bμ≤0. Using
Farkas' Lemma we can then eliminate rows in B that are
redundant and obtain the desired recharacterization.

The justification of Algorithm 1 is based on Theorem 2 that
provides a method of iteratively reducing the dimension of the
parameter θ by one in each step. Iterating d times eliminates θ.
More precisely, applying the theorem once, tells us that Eq. (1)
has a solution in θ if and only if ∃θ̄∈Rd−1 such that H1θ̄≤B1μ.
In the next step, apply the theorem with H1 and B1μ playing the
role of C and μ, respectively. Iterating d times, we obtain the B
in Algorithm 1.

Theorem 2. 1. ah a Rd s:t: ½C � Im� h
l

� �
V0 if and only if

2. ah̄ a Rd�1 s:t: ð½C�Im�=1Þf1 h̄
l

� �
V0.

Proof. Note that the next two statements are equivalent to
statement 1 in Theorem 2.

3. P([C-Im]) contains a point h
t

� �
aRdþm with υ=μ

4. proj1 (P([C− Im])) contains a h
t

� �
aRdþm with υ=μ (and of

course θ1=0). □

The challenge now is to reduce the dimension of θ. To do
this, we use the following version of the Fourier–Motzkin
elimination, see Ziegler (1994, Theorem 1.4) for a proof.

Lemma 1. Let C∈Rm×d and k≤d. Then projk (P(C))=P (C/k)
∩{x∈Rd:xk=0}.

Using Lemma 1, we find that the following statements are
equivalent to statement 4:

5. P([C− I
m
]/1)∩{x∈Rd+m:x

1
=0} contains a point h

t

� �
with

υ=μ and θ
1
=0.

6. f h
t

� �
aRdþm : ½C � Im�=1 h

t

� �
V0; h1 ¼ 0g contains a h

t

� �
with

υ=μ, θ1=0.
But 6 is clearly equivalent to the second statement in the

theorem.
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