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Abstract

We introduce test statistics based on generalized empirical likelihood methods that can be used to test simple hypotheses

involving the unknown parameter vector in moment condition time series models. The test statistics generalize those in

Guggenberger and Smith [2005. Generalized empirical likelihood estimators and tests under partial, weak and strong

identification. Econometric Theory 21 (4), 667–709] from the i.i.d. to the time series context and are alternatives to those in

Kleibergen [2005a. Testing parameters in GMM without assuming that they are identified. Econometrica 73 (4),

1103–1123] and Otsu [2006. Generalized empirical likelihood inference for nonlinear and time series models under weak

identification. Econometric Theory 22 (3), 513–527]. The main feature of these tests is that their empirical null rejection

probabilities are not affected much by the strength or weakness of identification. More precisely, we show that the statistics

are asymptotically distributed as chi-square under both classical asymptotic theory and weak instrument asymptotics of

Stock and Wright [2000. GMM with weak identification. Econometrica 68 (5), 1055–1096]. We also introduce a

modification to Otsu’s (2006) statistic that is computationally more attractive. A Monte Carlo study reveals that the finite-

sample performance of the suggested tests is very competitive.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There has recently been a lot of interest in robust inference in weakly identified models.1 This paper adds to
this literature by introducing two types of test statistics that can be used to test simple hypotheses involving the
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unknown parameter vector in nonlinear moment condition time series models. The main feature of these
statistics is that they lead to tests whose empirical rejection probabilities (ERPs) under the null hypothesis do
not depend much on the strength or weakness of identification of the model. More precisely, we show that the
statistics are asymptotically distributed as chi-square under both classical and the weak instrument asymptotic
theory of Stock and Wright (2000). This is in contrast to many of the classical test statistics, like, for example,
Wald statistics, that have a chi-square under the former but a nonstandard asymptotic distribution under the
latter theory.

The first test statistic is given as the renormalized criterion function of the generalized empirical likelihood
(GEL) estimator, see Smith (1997, 2001) and Newey and Smith (2004), and the second one as a quadratic form
in the first-order condition (FOC) of the GEL estimator; both statistics are evaluated at the hypothesized
parameter vector. The statistics generalize those in Guggenberger and Smith (2005) (GS henceforth) from the
i.i.d. and martingale difference sequence (m.d.s.) setup to the time series case. One advantage of the second
statistic over the first one is that the degrees of freedom parameter of its asymptotic chi-square distribution
equals p, the dimension of the unknown parameter vector, while for the first statistic the degrees of freedom
parameter equals k, the number of moment conditions. This negatively affects power properties of tests based
on the first statistic in over-identified situations. To adapt the statistics to the time series context, we work with
smoothed counterparts of the moment indicator functions based on a kernel function kð�Þ and a bandwidth
parameter Sn, an approach which was originally used in Kitamura and Stutzer (1997) and Smith (1997, 2001).
This method for the construction of test statistics in the weakly identified framework was suggested by
Guggenberger (2003, Introduction of the first chapter). See also Otsu (2006). To clarify the need for
smoothing, we also derive the non-pivotal limit distributions of the unsmoothed statistics in GS in the weak
identification time series context considered here.

While most of the papers on robust testing with weak identification are written for the linear i.i.d.
instrumental variables (IV) model, there are two closely related procedures for robust inference in nonlinear
time series models available in the literature. Firstly, Kleibergen (2005a) introduces a test statistic that is given
as a quadratic form in the FOC of the generalized method of moments (GMM, Hansen, 1982) continuous
updating estimator (CUE). The statistic includes consistent estimators for the long-run covariance matrix of
the sums of the renormalized moment indicators and derivatives thereof. Kleibergen (2005a) suggests the use
of heteroskedasticity and autocorrelation consistent (HAC) estimators, see Andrews (1991). Secondly, Otsu’s
(2006) procedure is based on the criterion function of the GEL estimator. An asymptotic chi-square null
distribution with p degrees of freedom is obtained by evaluating the GEL criterion function at transformed
moment indicators of dimension p rather than at the original moment indicators that are k-dimensional. In
Section 2.4 below we give a detailed comparison of the various approaches. There we also introduce
modifications to Otsu’s (2006) statistic that are computationally more attractive and two hybrid statistics that
can be viewed as compromises between our GEL-type and Kleibergen’s (2005a) GMM-type procedures.

Besides technicalities, the main assumptions needed to establish the asymptotic chi-square null distribution
of the new test statistics introduced in this paper are that (1) an appropriate HAC estimator of the long-run
covariance matrix of the sums of the moment indicators is consistent and that (2) a central limit theorem
(CLT) holds for the moment indicators and derivatives thereof with respect to the weakly identified
parameters. These assumptions are very similar to the ones used in Kleibergen (2005a). They are stated and
discussed in the Appendix.

The tests in this paper are first introduced for simple hypotheses on the full parameter vector. They are then
generalized to sub-vector tests under the assumption that the parameters not under test are strongly identified,
see e.g. Kleibergen (2004, 2005a), GS, and Otsu (2006). The idea is to replace the parameters not under test by
consistently estimated counterparts in the test statistics.

To investigate the finite-sample performance of the new tests, we compare them to those in Kleibergen
(2005a) and Otsu (2006) in a comprehensive Monte Carlo study that focuses on a time series linear model with
AR(1) or MA(1) variables. We find that both in terms of size and power the new tests compare very favorably
to the alternative procedures. Even though the tests are first-order equivalent, there can be huge power
differences between Kleibergen’s (2005a), Otsu’s (2006), and the tests in this paper.

To implement the tests here and those in Kleibergen (2005a) and Otsu (2006) a bandwidth Sn has to be
chosen. Andrews (1991) and Newey and West (1994) provide theory of how to choose the bandwidth, if the
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goal is to minimize the mean-squared error of a (HAC) covariance matrix estimator. However, in the testing
context here, we are really interested in size and power properties of the tests and it is unclear how to develop a
theory of bandwidth choice. One could still follow the procedures in Andrews (1991) or Newey and West
(1994) but very likely this would not lead to any optimality result. The bandwidth choice is an important
problem that is beyond the scope of this paper. Future research has to tackle this challenging question.

The remainder of the paper is organized as follows. In Section 2, the model and the full- and sub-vector test
statistics are introduced and their asymptotic theory is discussed. The tests are compared to Kleibergen’s
(2005a) and Otsu’s (2006) approaches. Section 3 contains the Monte Carlo study. All technical assumptions
and proofs are relegated to the Appendix.

The symbols ‘‘!d’’ and ‘‘!p’’ denote convergence in distribution and convergence in probability,

respectively. Convergence ‘‘almost surely’’ is written as ‘‘a.s.’’ and ‘‘with probability approaching 1’’ is

replaced by ‘‘w.p.a.1’’. The space CiðSÞ contains all functions that are i-times continuously differentiable on
the set S. Furthermore, vecðMÞ stands for the column vectorization of the k � p matrix M, i.e. if M ¼

ðm1; . . . ;mpÞ then vecðMÞ ¼ ðm01; . . . ;m
0
pÞ
0, ‘‘M 0’’ denotes the transpose matrix of M, ðMÞi;j the element in the

ith row and jth column, ‘‘M40’’ means that M is positive definite, lminðMÞ and lmaxðMÞ are the minimum and

maximum eigenvalues of M, respectively, and kMk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðM

0MÞ
p

. By Ip we denote the p-dimensional

identity matrix.

2. Robust testing

2.1. Model and notation

The paper considers models specified by a finite number of moment restrictions. More precisely, let fzi: i ¼
1; . . . ; ng be Rl-valued time series data, where n 2 N denotes the sample size. Let gn:H �Y! Rk, where H � Rl

and Y � Rp denotes the parameter space. The model has a true parameter y0 for which the moment condition

Egnðzi; y0Þ ¼ 0 (2.1)

is satisfied. For gnðzi; yÞ, usually the shorter giðyÞ is used. The function g is allowed to depend on the sample size n

to model weak identification, see Assumption ID below. For example, consider the i.i.d. linear IV model given by
the structural and reduced form equations y ¼ Yy0 þ u, Y ¼ ZPþ V , where y; u 2 Rn, Y ;V 2 Rn�p, Z 2 Rn�k,
and P 2 Rk�p. The matrices Y and Z contain the endogenous variables and instrumental variables, respectively.
Denote by Y i, V i, Zi; . . . ði ¼ 1; . . . ; nÞ the ith row of the matrix Y , V , Z; . . . written as a column vector. Assume
EZiui ¼ 0 and EZiV

0
i ¼ 0. The first condition implies that Egiðy0Þ ¼ 0, where for each i ¼ 1; . . . ; n,

giðyÞ:¼Ziðyi � Y 0iyÞ. Note that in this example giðyÞ depends on n if the reduced form coefficient matrix P is
modeled to depend on n, see Stock and Wright (2000), whereP ¼ Pn ¼ ðn

�1=2PA;PBÞ andPA andPB are fixed
matrices with pA and pB columns, p ¼ pA þ pB, and PB has full column rank.

Interest focuses on testing a simple hypothesis

H0: y0 ¼ y versus the alternative H1: y0ay. (2.2)

Define the recentered and rescaled sample average

CnðyÞ:¼n1=2ðbgðyÞ � EbgðyÞÞ; where bgðyÞ:¼n�1
Xn

i¼1

giðyÞ and let

DðyÞ:¼ lim
n!1

ECnðyÞCnðyÞ
0
2 Rk�k ð2:3Þ

be the long-run covariance matrix of giðyÞ.
2 Let y ¼ ða0;b0Þ0, where a 2 A, A � RpA , b 2 B, B � RpB ,

Y ¼ A� B, and pA þ pB ¼ p. The case pB ¼ 0 is allowed. In the following, we adopt Assumption C from
2Note that DðyÞ, typically referred to as ‘‘long-run variance’’ in much of the econometrics literature, is proportional to the spectral

density at zero frequency. Kernel-based spectral density estimation goes back to work by statisticians in the 1950s, see e.g. Parzen (1956,

1957) where consistency of spectral estimates is established for stationary time series, while studentization of mean-like statistics by a

spectral density estimate goes back at least to Hannan (1957).
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Stock and Wright (2000) in which a0 and b0 are modeled as weakly and strongly identified parameter vectors,
respectively. For a detailed discussion of this assumption, see Stock and Wright (2000, pp. 1060–1061). Let
N � B denote an open neighborhood b0.

3

Assumption ID. The true parameter y0 ¼ ða00; b
0
0Þ
0 is in the interior of the compact set Y ¼ A� B and (i)

EbgðyÞ ¼ n�1=2m1nðyÞ þm2ðbÞ, where m1n;m1:Y! Rk and (if pB40) m2:B! Rk are continuous functions

such that m1nðyÞ ! m1ðyÞ uniformly on Y, m1ðy0Þ ¼ 0 and m2ðbÞ ¼ 0 if and only if b ¼ b0; (ii) m2 2 C1ðNÞ;

(iii) let M2ðbÞ:¼ðqm2=qbÞðbÞ 2 Rk�pB . M2ðb0Þ has full column rank pB.

Following the suggestion in Guggenberger (2003), we work with smoothed counterparts of the moment
indicators giðyÞ to handle the general time series setup considered here as in Kitamura and Stutzer (1997) and
Smith (1997, 2001). See also Smith (2000, 2005) and Otsu (2006). An alternative procedure would be to work
with a blocking method as in Kitamura (1997). For i ¼ 1; . . . ; n, define

ginðyÞ:¼S�1n

Xi�1
j¼i�n

kðj=SnÞgi�jðyÞ, (2.4)

where Sn is a bandwidth parameter (Sn !1 as n!1) and kð�Þ is a kernel. For simplicity, from now on the
truncated kernel is used which is given by

kðxÞ ¼ 1 if jxjp1 and kðxÞ ¼ 0 otherwise (2.5)

and thus ginðyÞ ¼ S�1n

PminfSn ;i�1g
j¼maxf�Sn ;i�nggi�jðyÞ.

4 Define

bgnðyÞ:¼n�1
Xn

i¼1

ginðyÞ and bDðyÞ:¼Sn

Xn

i¼1

ginðyÞginðyÞ
0=n. (2.6)

Under assumptions given in Lemma 2 below, the estimator bDðy0Þ is shown to be consistent for 2Dðy0Þ, whereas
the ‘‘unsmoothed’’ version of the estimator, bOðy0Þ, for

bOðyÞ:¼Xn

i¼1

giðyÞgiðyÞ
0=n, (2.7)

used in GS, while being consistent in an i.i.d. or m.d.s. setup, would not be consistent in the general time series
context considered here. See GS’s discussion of their assumption My0 (ii). The consistency of bDðyÞ is crucial
for the testing procedures suggested in the next section. See Theorem 1 and Remark (2) below where we
derive and discuss the asymptotic distribution of the test statistics in GS under the time series context
considered here.

The statistics below are based on the GEL estimator. In what follows, a brief definition of the GEL
estimator is given. For a more comprehensive discussion see Smith (1997, 2001), Newey and Smith (2004), and
GS. Let r be a real-valued function Q! R, where Q is an open interval of the real line that contains 0 and

bLnðyÞ:¼fl 2 Rk: l0ginðyÞ 2 Q for i ¼ 1; . . . ; ng. (2.8)

If defined, let rjðvÞ:¼ðq
jr=qvjÞðvÞ and rj:¼rjð0Þ for nonnegative integers j.
3Kleibergen (2005a, eq. (13), p. 1107) allows for a Jacobian matrix Jyðy0Þ:¼limn!1 EððqbgðyÞ=qyÞjy¼y0 Þ (using our notation) that may or

may not be of fixed full rank and may even equal zero (see the bottom of his p. 1108). Our Assumption ID can also account for this. For

example, the case where Jyðy0Þ ¼ 0 corresponds to our setup with y0 ¼ a0 and neither b nor m2 present. See (A.6) below.
4In general, one could employ kernels in the class K1 of Andrews (1991, p. 821) taking into account technical modifications in Jansson

(2002); see, for example, Smith (2001) and Otsu (2006). Here we focus on the truncated kernel because it significantly simplifies the proofs

and notation. In addition, for the testing purpose in this paper, it is not clear on what basis a kernel should be chosen and Monte Carlo

simulations reveal that the finite-sample performance is not very sensitive to the kernel choice, see also Newey and West (1994) for similar

findings in the HAC literature.
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The GEL estimator is the solution to a saddle point problembyr:¼ arg min
y2Y

sup
l2bLnðyÞ

bPrðy; lÞ; where ð2:9Þ

bPrðy; lÞ:¼2
Xn

i¼1

ðrðl0ginðyÞÞ � r0Þ=n. ð2:10Þ

Assumption r. (i) r is concave on Q; (ii) r is C2 in a neighborhood of 0 and r1 ¼ r2 ¼ �1.

Examples of GEL estimators include the CUE, see Hansen et al. (1996), empirical likelihood (EL, see
Imbens, 1997; Qin and Lawless, 1994), and exponential tilting (ET, see Kitamura and Stutzer, 1997; Imbens
et al., 1998) which correspond to rðvÞ ¼ �ð1þ vÞ2=2, rðvÞ ¼ lnð1� vÞ, and rðvÞ ¼ � exp v, respectively.

2.2. Test statistics

Here, statistics are introduced that can be used to test (2.2) in the time series model given by (2.1). It is
established that they are asymptotically pivotal quantities and have limiting chi-square null distributions
under Assumption ID. Therefore, these statistics lead to tests whose ERPs under the null should not be
affected much by the strength or weakness of identification. There are other statistics that share this property
in the general time series setup considered here, namely Kleibergen’s (2005a) GMM-based and Otsu’s (2006)
GEL-based statistic. There are various other robust tests introduced for i.i.d. models, e.g. Kleibergen (2002),
Caner (2003), and Moreira (2003). Kleibergen’s and Otsu’s statistics are compared to the approach of this
paper in more detail below.

Let r be any function satisfying Assumption r. The first statistic is given by

GELRrðyÞ:¼S�1n nbPrðy; lðyÞÞ=2; where if it exists,

lðyÞ:¼ arg max
l2bLnðyÞ

bPrðy; lÞ. ð2:11Þ

The statistic GELRrðyÞ has a nonparametric likelihood ratio interpretation, see GS, where motivation is
provided in the i.i.d. context. The generalization of the GELRr statistic in GS to the time series context has
now been independently introduced by Otsu (2006), see his bSGEL statistic.

The second set of statistics is based on the FOC with respect to y of the GEL estimator by. If the minimum of
the objective function bPðy; lðyÞÞ is obtained in the interior of Y, the score vector with respect to y must equal 0
at by. Using the envelope theorem it can be shown that this results in

00 ¼ lðbyÞ0Xn

i¼1

r1ðlðbyÞ0ginð
byÞÞGinð

byÞ=n; where if defined ð2:12Þ

GinðyÞ:¼ðqgin=qyÞðyÞ 2 Rk�p; ð2:13Þ

see Newey and Smith (2004) and GS for a rigorous argument of this statement in the i.i.d. case. For y 2 Y,
define

DrðyÞ:¼
Xn

i¼1

r1ðlðyÞ
0ginðyÞÞGinðyÞ=n 2 Rk�p. (2.14)

Thus, (2.12) may be written as lðbyÞ0Drð
byÞ ¼ 00. The test statistic is given as a quadratic form in the score vector

lðyÞ0DrðyÞ evaluated at the hypothesized parameter vector y and renormalized by the appropriate rate

SrðyÞ:¼S�2n nlðyÞ0DrðyÞðDrðyÞ
0bDðyÞ�1DrðyÞÞ

�1DrðyÞ
0lðyÞ=2. (2.15)

In addition, the following variant of SrðyÞ:

LMrðyÞ:¼nbgnðyÞ
0bDðyÞ�1DrðyÞðDrðyÞ

0bDðyÞ�1DrðyÞÞ
�1DrðyÞ

0bDðyÞ�1bgnðyÞ=2 (2.16)
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is considered that substitutes S�1n lðyÞ in SrðyÞ by the asymptotically equivalent expression �bDðyÞ�1bgnðyÞ, see
Eq. (A.24) below. The names SrðyÞ and LMrðyÞ of the statistics are taken from GS and are based on the
interpretation of the statistics as score and Lagrange multiplier statistics, respectively; see GS for more
discussion. If rðnÞ ¼ lnð1� nÞ we use the notation LMELðyÞ for LMrðyÞ and likewise for other statistics and
functions r.

The next theorem discusses the asymptotic distribution of these test statistics evaluated at y0. To illustrate
the need for smoothing, we also derive the asymptotic distribution of the test statistics in GS. In the following,
the superscript ‘‘�’’ stands for unsmoothed expressions. Let bL�nðyÞ, bP�rðy; lÞ, l�ðyÞ, and D�rðyÞ be defined
analogously to bLnðyÞ, bPrðy; lÞ, lðyÞ, and DrðyÞ except that the smoothed expressions ginðyÞ and GinðyÞ are
replaced by the unsmoothed expressions giðyÞ and

GiðyÞ:¼ðqgi=qyÞðyÞ. (2.17)

The unsmoothed test statistics in GS corresponding to GELRrðyÞ, SrðyÞ, and LMrðyÞ can then be written as

GELR�rðyÞ ¼ nbP�rðy; lÞ,
S�rðyÞ ¼ nl�ðyÞ0D�rðyÞðD

�
rðyÞ

0bOðyÞ�1D�rðyÞÞ
�1D�rðyÞ

0l�ðyÞ and

LM�
rðyÞ ¼ nbgðyÞ0bOðyÞ�1D�rðyÞðD

�
rðyÞ

0bOðyÞ�1D�rðyÞÞ�1D�rðyÞ0bOðyÞ�1bgðyÞ. ð2:18Þ

When deriving the asymptotic distribution of these statistics we assume that

bOðy0Þ!pOðy0Þ for Oðy0Þ:¼ lim
n!1

E
Xn

i¼1

giðy0Þgiðy0Þ
0=n40. (2.19)

The technical assumptions My0 and their interpretation are given in the Appendix.

Theorem 1. Suppose ID, r, and My0(i)–(iii) hold. Then for Sn !1 as n!1 and Sn ¼ oðn1=2Þ it follows that:
(i)
 GELRrðy0Þ!dw2ðkÞ and ðiÞ0 GELR�rðy0Þ!dx
0Oðy0Þ

�1x,

where x is a random vector distributed as Nð0;Dðy0ÞÞ. If in addition My0 (iv)–(vii) hold then
(ii)
 Srðy0Þ;LMrðy0Þ!dw2ðpÞ and ðiiÞ0 S�rðy0Þ;LM�
rðy0Þ!d

ex,
where ex is a random variable defined in (A.36) in the Appendix and where for the unsmoothed statistics we

assume (2.19) and the analogous formula (A.10) for derivatives of giðy0Þ.
Remarks. (1) Theorem 1 implies a straightforward method to construct confidence regions or hypothesis tests
for y0 based on the smoothed statistics. For example, a critical region for test (2.2) at significance level r is
given by fGELRrðy0ÞXw2r ðkÞg, where w2r ðkÞ denotes the ð1� rÞ-critical value from the w2ðkÞ distribution. In
contrast to classical test statistics such as a Wald statistic, the statistics GELRrðy0Þ, Srðy0Þ, and LMrðy0Þ are
asymptotically pivotal statistics under Assumption ID. Therefore, ERPs under the null of tests based on these
statistics should not vary much with the strength or weakness of identification in finite samples. For the
statistics Srðy0Þ and LMrðy0Þ to be pivotal, it is crucial that Drðy0Þ (appropriately renormalized) and n1=2bgnðy0Þ
are asymptotically independent under both weak and strong identification, see the proof of the theorem. Also
see Smith (2001) which demonstrates this property for the strongly identified case. Theorem 1 also shows that
the asymptotic null distribution of the test statistics does not depend on the choice of r.

(2) Theorem 1ðiÞ0 and ðiiÞ0 shows that in the general time series context considered here, smoothing of the
moment conditions is necessary to obtain test statistics whose asymptotic distributions are nuisance parameter
free. While n1=2bgnðy0Þ and n1=2bgðy0Þ differ only by a proportionality factor (see Lemma 1), the crucial
consequence of smoothing is that the (renormalized) quantities bgnðy0Þ and Drðy0Þ are asymptotically
independent while their unsmoothed counterparts bgðy0Þ and D�rðy0Þ are not. See Eqs. (A.29), (A.34), and
subsequent analysis in the Appendix. Another important result of smoothing is that the estimator bDðy0Þ is
consistent for 2Dðy0Þ while the unsmoothed counterpart bOðy0Þ is generally inconsistent.
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Important recent work by Kiefer et al. (2000) and Kiefer and Vogelsang (2002a,b,2005) shows that in
regression models with correlated errors a t- or F-test can be successfully implemented without using a
consistent HAC estimator of the long-run variance matrix of the parameter estimator. They use (inconsistent)
variance estimators—implemented with bandwidth b equal to the sample size or equal to a fixed portion of the
sample size—that converge to a limiting random matrix that is proportional to the long-run variance matrix.
They show that their test statistics converge in distribution to nuisance parameter free functionals of a Wiener
process. In their model there are no (weak) instruments as in ours, but even with strong instruments (i.e.
pA ¼ 0) (A.36) shows that generally LM�

rðy0ÞQdw2ðpÞ because generally Oðy0Þ and Dðy0Þ differ.
We now consider a simple example to show that in our model we do not obtain a nuisance parameter free

distribution if we use the unsmoothed statistics. We focus on GELR�rðy0Þ whose limit distribution is given by
x0Oðy0Þ

�1x. Consider the linear IV regression model given in (3.1) below where for simplicity we assume that
there is only one instrument and, as described in Section 3.1, ui and Zi are independent zero mean AR(1)
processes with autoregressive (AR) parameter equal to fu and fZ, respectively. Then,

Oðy0Þ ¼ lim
n!1

Xn

i¼1

Eu2
i Z2

i =n ¼ Eu2
i EZ2

i ¼ ð1� f2
uÞ
�1
ð1� f2

ZÞ
�1,

Dðy0Þ ¼ lim
n!1

nEbgðy0Þ2 ¼ lim
n!1

Xn

i;j¼1

EuiujEZiZj=n

¼ Oðy0Þ 1þ 2 lim
n!1

Xn�1
i¼1

n� i

n
ðfufZÞ

i

" #
¼ Oðy0Þ½1þ 2fufZð1� fufZÞ

�1
�; ð2:20Þ

see e.g. Hamilton (1994, p. 53).5 Therefore, GELR�rðy0Þ!dcw2ð1Þ, where c:¼1þ 2fufZð1� fufZÞ
�1. A test

based on GELR�r using w2ð1Þ critical values overrejects (underrejects) under the null if c41 (co1). Opposing
values of fu and fZ reduce the degree of overrejection and can even lead to underrejection. Our Monte Carlo
study below finds that this property seems to hold more generally for all the statistics considered in this paper.
For example, for fu ¼ fZ we have c ¼ 1þ 2f2

uð1� f2
uÞ
�1 while for fu ¼ �fZ we have c ¼ 1� 2f2

uð1þ f2
uÞ
�1.

While the latter quantity is always smaller than 1 for fua0 and converges to 0 forjfuj ! 1, the former
quantity is always bigger than 1 for fua0 and diverges to þ1 for jfuj ! 1.

(3) A drawback of GELRrðy0Þ is that its limiting null distribution has degrees of freedom equal to k, the
number of moment conditions rather than the dimension of the parameter vector p. In general, this has a
negative impact on the power properties of hypothesis tests based on GELRrðy0Þ in over-identified situations.
On the other hand, the limiting null distribution of Srðy0Þ and LMrðy0Þ has degrees of freedom equal to p.
Therefore, the power of tests based on these statistics should not be negatively affected by a high degree of
over-identification.

(4) Assumption My0 (given in the Appendix) is compatible with many time series models and, besides
technicalities, essentially states (i) that the Bartlett HAC estimator consistently estimates the long-run variance
matrix Dðy0Þ and (ii) that a CLT holds for the times series ðvec G0iAðy0Þ; g

0
iðy0ÞÞ

0 with full rank asymptotic
covariance matrix V ðy0Þ, where GiAðy0Þ is the submatrix of Giðy0Þ corresponding to the weakly identified
parameters, see the Appendix for a detailed discussion. Part (ii) is very closely related to Assumption 1 in
Kleibergen (2005a) that states a CLT for ðvec G0iðy0Þ; g

0
iðy0ÞÞ

0 with possibly singular covariance matrix.
Therefore, the approach taken in this paper generalizes the setup in GS whose applications were restricted to
m.d.s.

(5) The theorem does not give any guidelines on how to choose the bandwidth Sn in finite samples. In fact,
just as for the choice of the kernel k, it is difficult to provide theory for its choice in the testing context
considered here, where size and power properties matter. One could still follow Andrews (1991) and choose Sn

such that the mean-squared error of the covariance matrix estimator is minimized after a time series model has
5Note that for any q 2 R we have
Pn�1

i¼1 ððn� iÞ=nÞqi ¼ ðð1� qÞðqþ n�1Þ � n�1ð1� qnþ1ÞÞ=ð1� qÞ2 which for jqjo1 converges to q=ð1� qÞ

as n!1.



ARTICLE IN PRESS
P. Guggenberger, R.J. Smith / Journal of Econometrics 142 (2008) 134–161 141
been specified. However, it is unclear what effect this procedure would have on size and power of the test and
it would be surprising if this procedure led to any optimality property.
2.3. Sub-vector statistics

We are now interested in testing

H0: a0 ¼ a versus H1: a0aa, (2.21)

where a0 2 RpA and y0 ¼ ða00; b
0
0Þ
0. Let y ¼ ða01; a

0
2;b
0
Þ
0, where aj 2 Aj, Aj � R

pAj ðj ¼ 1; 2Þ, pA1
þ pA2

¼ pA, and

b 2 B, B � RpB . We assume that the true parameter y0 ¼ ða001; a
0
02;b

0
0Þ
0 is in the interior of the compact space

Y, where Y ¼ A1 � A2 � B. We now modify Assumption ID. Let N � A2 � B be an open neighborhood of
ða02;b0Þ.

Assumption IDa0 . (i) EbgðyÞ ¼ n�1=2m1nðyÞ þm2ða2;bÞ, where m1n;m1:Y! Rk and (if pA2
þ pB40) m2:A2 �

B! Rk are continuous functions such that m1nðyÞ ! m1ðyÞ uniformly on Y, m1ðy0Þ ¼ 0 and m2ða2;bÞ ¼ 0 if

and only if ða2;bÞ ¼ ða02;b0Þ; (ii) m2 2 C1ðNÞ; (iii) let M2ð�Þ:¼ðqm2=qða02;b
0
Þ
0
Þð�Þ 2 Rk�ðpA2

þpBÞ. M2ða02;b0Þ has
full column rank pA2

þ pB.
6

Assumption IDa0 implies that a01 is weakly and ða02;b0Þ is strongly identified. To adapt the full-vector test
statistics to the sub-vector case, the basic idea is to replace b by an estimator bbðaÞ. Define the GEL estimatorbbðaÞ for b0:bbðaÞ:¼ arg min

b2B
sup

l2bLnða0 ;b0Þ0

bPðða0;b0Þ0; lÞ. (2.22)

Our assumptions below imply consistency bb:¼bbða0Þ!pb0 and efficiency under the null hypothesis: also see
Smith (2001). Letby0:¼ða00;bbða0Þ0Þ0 and yb:¼ða00;b

0
Þ
0. (2.23)

We now introduce the sub-vector statistics. Recall the definition of GELRrðyÞ in (2.11). Evaluated at a ¼ a0,
the GELRr sub-vector test statistic is given by

GELRsub
r ða0Þ:¼GELRrð

by0Þ. (2.24)

We now generalize the statistics Sr and LMr to the sub-vector case. The motivation of these statistics is

analogous to the sub-vector statistics in GS. We need additional notation. For a full column rank matrix

A 2 Rk�p and 0oK 2 Rk�k, let PAðKÞ:¼AðA0K�1AÞ�1A0K�1 and MAðKÞ:¼Ik � PAðKÞ. We abbreviate this
notation to PA and MA if K ¼ Ik. If p ¼ 0, set MA ¼ Ik. Let

Drða0Þ:¼
Xn

i¼1

r1ðlðby0Þ0ginð
by0ÞÞGinAð

by0Þ=n 2 Rk�pA , (2.25)

where GinAðyÞ is defined by GinðyÞ ¼ ðGinAðyÞ;GinBðyÞÞ for GinAðyÞ 2 Rk�pA and GinBðyÞ 2 Rk�pB ; see Eq. (2.13).
The definition of Drða0Þ coincides with the one of Drðy0Þ when a0 is the full vector y0. If pB40 let

bMða0Þ:¼bDðby0Þ�1M bGBð by0ÞðbDðby0Þ=2Þ, (2.26)

and otherwise let bMða0Þ:¼bDðby0Þ�1, where
bGðyÞ:¼n�1

Xn

i¼1

GiðyÞ 2 Rk�p; bGðyÞ ¼ ð bGAðyÞ; bGBðyÞÞ (2.27)
6In this subsection, m2ð�Þ and M2ð�Þ (defined already in IDy0 above as functions of b) now denote functions of a2 and b.
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for bGAðyÞ 2 Rk�pA and bGBðyÞ 2 Rk�pB . The sub-vector test statistic Ssub
r ða0Þ is constructed as a quadratic form

in the vector of FOC lðby0Þ0Drð
by0Þ with weighting matrix given by bMða0Þ. Let

Ssub
r ða0Þ:¼nS�2n lðby0Þ0Drða0ÞðDrða0Þ

0 bMða0ÞDrða0ÞÞ
�1Drða0Þ

0lðby0Þ=2. (2.28)

The statistic LMsub
r ða0Þ is constructed like Ssub

r ða0Þ but replaces n1=2S�1n lðby0Þ by the asymptotically equivalent

expression �bDðby0Þ�1n1=2bgnð
by0Þ. Therefore,

LMsub
r ða0Þ:¼nbgnð

by0Þ0bDðby0Þ�1Drða0ÞðDrða0Þ
0 bMða0ÞDrða0ÞÞ

�1Drða0Þ
0bDðby0Þ�1bgnð

by0Þ=2. (2.29)

Under Assumption Ma0 given in the Appendix we have the following theorem.7

Theorem 2. (i) Assume 1ppAop. Suppose Assumptions IDa0 , Ma0(i)–(iv), and r hold. Then,

GELRsub
r ða0Þ!dw2ðk � pBÞ.

(ii) If in addition Ma0 (v)–(vii) hold, then

Ssub
r ða0Þ and LMsub

r ða0Þ!dw2ðpAÞ.

Under the assumption used here, that the parameters not under test are strongly identified, there are various
other alternatives for sub-vector inference besides GELRsub

r ða0Þ;S
sub
r ða0Þ, and LMsub

r ða0Þ. See, for example, the
tests by Kleibergen (2004, 2005a) and Otsu (2006). An interesting recent contribution by Kleibergen (2005b)
introduces boundedly pivotal tests for the linear IV model without additional identification assumptions.
Alternatively, confidence intervals can be constructed by a projection argument; see Dufour (1997). However,
this approach is conservative and in general computationally cumbersome. In a recent paper, Dufour and
Taamouti (2005) show that the Anderson and Rubin (1949) statistic is an exception, in that a closed form
solution is available. Another alternative is Guggenberger and Wolf (2004) who suggest a subsampling
approach. In contrast to some of the above procedures, subsampling leads to sub-vector tests whose null
rejection probability converges to the desired nominal level without additional identification assumptions for
each fixed degree of identification. Guggenberger and Wolf’s (2004) Monte Carlos suggest that for sub-vector
inference subsampling seems to do better in terms of power than Kleibergen (2004, 2005a) and Dufour and
Taamouti (2005). In their simulation study, the former procedure tends to underreject when the components
not under test are only weakly identified and the latter seems to underreject across all the scenarios. On the
other hand, they find that for full-vector inference, subsampling is outperformed by the procedures in GS and
Kleibergen (2005a). Andrews and Guggenberger’s (2005b,c) size correction methods for subsampling tests
could also be applied to sub-vector tests.
2.4. Comparison with Kleibergen (2005a) and Otsu (2006)

Here, we compare our (full-vector) statistics to the K and bKGEL statistics of Kleibergen (2005a) and Otsu
(2006). These statistics, Sr and LMr, and the ones defined below have the same first-order theory under the
null hypothesis; asymptotically they are all distributed as w2ðpÞ under the null.

Kleibergen’s K statistic is defined as

KðyÞ:¼nbgðyÞ0eDðyÞ�1DyðD
0
y
eDðyÞ�1DyÞ

�1D0y
eDðyÞ�1bgðyÞ; where

Dy:¼ bGðyÞ � eOðyÞ½Ip � ðeDðyÞ�1bgðyÞÞ� 2 Rk�p and ð2:30ÞeDðyÞ and eOðyÞ are consistent estimators for DðyÞ and the long-run covariance matrix limn!1 Efn�1
Pn

i;j¼1

½GiðyÞ � EGiðyÞ�½ðIp � gjðyÞ
0
Þ � EðIp � gjðyÞ

0
Þ�g, respectively. Kleibergen (2005a) suggests the use of HAC

estimators for eDðyÞ and eOðyÞ; see e.g. Andrews (1991). The statistics LMr and the K statistic are given as

quadratic forms in the FOC of the GEL and the GMM CUE estimator, respectively. The intuition for tests
7Note that there is a typo in GS (p. 685, last line): pA should be pB.
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based on these statistics is as follows: under strong identification, GEL and GMM estimators are consistent.
In consequence, in large samples the FOC for the estimator also holds at the true parameter vector y0.
Therefore, the statistics are quadratic forms which are expected to be small at the true vector y0. Even though
the GMM CUE and GEL CUE are numerically identical (see Newey and Smith, 2004, footnote 2), their FOC
are different and therefore LMCUE and K will typically differ. For i.i.d. or m.d.s. scenarios GS specify for

which estimators eDðyÞ and eOðyÞ in the K statistic, K and LMCUE are identical. These statements in GS cannot
be generalized to the general time series setup, where K and LMCUE are different. One reason for that is that in
this latter statistic functions of the smoothed indicators gin and Gin are used, e.g. bgn, while the former statistic
uses functions of the unsmoothed indicators, e.g. bg.

To assess which factor in LMr accounts for most of the finite-sample differences between KðyÞ and LMr we
also consider the following hybrid statistics Kr;Hj

ðyÞ in our Monte Carlo study below. Kr;H1
ðyÞ replaces bgnðyÞ

in LMr by 2bgðyÞ8;
Kr;H1

ðyÞ:¼2nbgðyÞ0bDðyÞ�1DrðyÞðDrðyÞ
0bDðyÞ�1DrðyÞÞ

�1DrðyÞ
0bDðyÞ�1bgðyÞ. (2.31)

Kr;H2
ðyÞ replaces bDðyÞ in Kr;H1

ðyÞ by 2eDðyÞ (where eDðy0Þ!pDðy0Þ is a HAC estimator):

Kr;H2
ðyÞ:¼nbgðyÞ0eDðyÞ�1DrðyÞðDrðyÞ

0eDðyÞ�1DrðyÞÞ
�1DrðyÞ

0eDðyÞ�1bgðyÞ. (2.32)

By Lemma 1 below these changes do not affect the limit distribution, and, as for LMr, we have
Kr;Hj

ðy0Þ!dw2ðpÞ for j ¼ 1; 2. Kleibergen’s (2005a) statistic KðyÞ and the hybrid statistic Kr;H2
ðyÞ only differ

by the choice of the matrix Dy and DrðyÞ, respectively.
Otsu’s (2006) statistic is given bybKGELðyÞ:¼S�1n n sup

g2GðyÞ

bPrðy; bDðyÞ�1DrðyÞgÞ=2; where

GðyÞ:¼fg 2 Rp; bDðyÞ�1DrðyÞg 2 bLnðyÞg and ð2:33ÞbDðyÞ and DrðyÞ are defined in (2.6) and (2.14), respectively. Here, bKGELðyÞ has been formulated based on the
truncated kernel but can of course be implemented using more general kernels, see Otsu (2006); also instead ofbDðyÞ, any other consistent covariance matrix estimator could be used. bKGELðyÞ is not given as a quadratic form
in the FOC and the above intuition does not apply. In contrast to the GELRr statistic, however, the
asymptotic null distribution of bKGEL does not depend on the number of moment conditions k. This is achieved
by considering the transformed moment indicators g0in

bDðyÞ�1DrðyÞ in (2.33) rather than g0in as in (2.11). A
drawback of Otsu’s (2006) approach is that two maximizations are necessary to calculate the statistic, one to
calculate lðyÞ in DrðyÞ of (2.14) and one in (2.33). The latter maximization may be simply avoided as follows.
Define k-vectors

mrðyÞ:¼� Sn
bDðyÞ�1DrðyÞðDrðyÞ

0bDðyÞ�1DrðyÞÞ
�1DrðyÞ

0bDðyÞ�1bgnðyÞ,

~mrðyÞ:¼bDðyÞ�1DrðyÞðDrðyÞ
0bDðyÞ�1DrðyÞÞ

�1DrðyÞ
0lðyÞ. ð2:34Þ

Define the statistic

GELRrðy;mÞ:¼S�1n nbPrðy; mÞ=2. (2.35)

Theorem 3. Suppose ID, r, and My0 (i)–(vii) hold. Then for Sn !1 as n!1 and Sn ¼ oðn1=2Þ it follows that

GELRrðy0;mrðy0ÞÞ;GELRrðy0; ~mrðy0ÞÞ!dw2ðpÞ.

Remark. The function r used in obtaining mrðyÞ or ~mrðyÞ through DrðyÞ and lðyÞ may be allowed to differ
from that defining GELRrðy; mÞ as long as both functions satisfy Assumption r. Note that even though
the statistics in Theorem 3 are first-order equivalent to Otsu’s (2006) bKGELðy0Þ test statistic, they are
in general not numerically equal. We compare their performance in the Monte Carlo study in the
next section.
8We would like to thank a referee for suggesting these hybrid statistics. The Monte Carlo study below indicates that Kr;H1
ðyÞ has very

favorable size and Kr;H2
ðyÞ has very favorable power properties.



ARTICLE IN PRESS
P. Guggenberger, R.J. Smith / Journal of Econometrics 142 (2008) 134–161144
3. Monte Carlo study

In this section, the finite-sample properties of the hypotheses tests in Theorems 1 and 3 are investigated in a
Monte Carlo study and compared to the tests suggested in Kleibergen (2005a) and Otsu (2006). To better
understand the performance differences between LMr and K, we also include the hybrid statistics Kr;Hj

for
j ¼ 1; 2 defined in (2.31) and (2.32) in our study.
3.1. Design

The data generating process is given by the linear IV time series model

y ¼ Yy0 þ u,

Y ¼ ZPþ V . ð3:1Þ

There is only a single right-hand side endogenous variable Y and no included exogenous variables. Let
Z 2 Rn�k, where k is the number of instruments and n the sample size. The reduced form matrixP 2 Rk equals
a vector of ones times a constant P1 that determines the strength or weakness of identification. Similar to the
design in Otsu (2006), each column of Z and u is generated as zero mean AR(1) or MA(1) processes (with AR
and moving-average (MA) parameters f and n, respectively) with innovations distributed as independent
Nð0; 1Þ random variables and V has i.i.d. Nð0; 1Þ components. To generate an AR(1) process, ui ¼ fui�1 þ �i
say, we set u0 ¼ 0. MA(1) processes fuig with MA parameter n are generated as ui ¼ �i � n�i�1. The
innovations of the process for u, �i say, and the ith component of V are correlated; their joint distribution is
Nð0;SÞ, where S 2 R2�2 with diagonal elements equal to unity and off-diagonal elements ruV .

Interest focuses on testing the scalar null hypothesis H0: y0 ¼ 0 versus the alternative hypothesis H1: y0a0.
Results are reported at nominal levels of 5% for sample size n ¼ 200. The following 60 parameter
combinations are considered. Twelve combinations of k, P1, and ruV :

k ¼ 2; 10; 20; P1 ¼ :01; :5; ruV ¼ 0; :5 (3.2)

times the five AR(1)/MA(1) specifications

f ¼ 0; :5; :9; n ¼ :5; :9 (3.3)

are considered. We also consider an additional 12� 4 ¼ 48 parameter combinations where this time the AR/
MA parameter for the AR(1) or MA(1) processes in the columns of Z equals �1 times the AR/MA parameter
for the AR(1) or MA(1) process u and the latter parameter takes on the values f ¼ :5; :9 or n ¼ :5; :9. We call
these cases designs with ‘‘opposing’’ AR/MA parameters whereas the other cases are called designs with
‘‘same’’ AR/MA parameters.

We report results for the seven statistics LMEL, KEL;Hj
, for j ¼ 1; 2, GELRETðy0;mELðy0ÞÞ,

GELRETðy0; ~mELðy0ÞÞ, bKGEL, and K in the study.9 For Kr;H2
and K we use a Bartlett kernel to calculate the

covariance matrix estimators and for bKGEL we use the EL specification. We use the ET specification for the
statistics from Theorem 3 because in finite samples 1� mELðy0Þ

0ginðy0Þ or 1� emELðy0Þ0ginðy0Þ is sometimes
negative which prevents us from calculating the EL criterion function.

To implement the statistics, the bandwidth Sn has to be chosen. We consider fixed bandwidths Sn ¼

1; . . . ; 15 and also calculate the i.i.d. versions of the test statistics. Note that for the Bartlett kernel, Sn ¼ 1
leads to numerically identical results for K as no smoothing. To solve the maximization problems in l in the
GEL-based statistics, a Newton–Raphson algorithm is used. Size and power properties are investigated by
considering y0 ¼ 0; 1, and �1. All results reported below are based on 20; 000 simulation repetitions.
9We also included five additional tests based on SEL, GELREL, a variant of K that uses a recentered HAC estimator (as suggested in

Kleibergen, 2005a, p. 1112), and two variants of bKGEL that use a recentered Bartlett HAC estimator and a Bartlett HAC estimator. The

first four of those tests have far less desirable size properties in our study across virtually all designs and bandwidths than all the other tests

and the last test is dominated in terms of size by bKGEL. Therefore, detailed results for those tests are not discussed here. Size problems of

the i.i.d. versions of SEL and GELREL in finite samples were also reported in GS.
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3.2. Results

There are various patterns in our simulation results that allow us to restrict our discussion to a certain
subset of the many designs:

As to be expected, all the tests have reliable size properties for the i.i.d. case f ¼ 0 without any smoothing.
For each of the test statistics the ERPs under the null are very similar for the three cases of same AR/MA
parameters when f ¼ :5, n ¼ :5; :9, whereas the case f ¼ :9 is characterized by uniformly much higher ERPs.
Furthermore, opposing values of the AR or MA parameters in the u and Z processes typically lead to ERPs
under the null that are—with few exceptions—uniformly smaller (or equal) than the nominal size across all
test statistics, bandwidth choices Sn, and parameter combinations, and ERPs are smallest when f ¼ :9. This
generalizes our findings in Remark (2) above from the unsmoothed statistic GELR�r to all the statistics
considered in this study. In sum, our discussion of potential size distortion of the testing procedures can be
reduced to the AR(1) cases f ¼ :5 and :9 where the AR parameters of u and Z have the same sign. The power
results for y0 ¼ �1 and 1 are qualitatively very similar and therefore we restrict attention to the former.
Furthermore, power results for all AR/MA cases are virtually identical for almost all cases and statistics
except for the case of same AR parameter when f ¼ :9; therefore, as for size, we can w.l.o.g. restrict our
discussion to the two cases of same AR parameter f ¼ :5 and :9.

The ERPs under the null and alternative are qualitatively identical for the two cases ruV ¼ 0; :5 across all
statistics and almost all designs10 and thus, in what follows, we restrict attention to ruV ¼ :5.

As to be expected from our theory, the ERPs under the null do generally not vary much with P1, the
strength of the instruments. Therefore regarding size properties, we restrict the following discussion to the case
P1 ¼ :01. In contrast to size, power properties do of course strongly depend on P1, with ERPs of the test
statistics being often in the close vicinity of the nominal size of the test when P1 ¼ :01.

11 Therefore, for power,
we restrict attention to P1 ¼ :5.

Based on the above discussion we select the following figures. Figs. 1(1– 4) contain size and Figs. 2 (1–3),
3(1–3) power curves of the LMEL, KEL;Hj

, for j ¼ 1; 2, GELRETðy0;mELðy0ÞÞ, GELRETðy0; ~mELðy0ÞÞ (referred

to as GELR1 and GELR2 in the figures), bKGEL, and K tests as functions of the bandwidths Sn ¼ 1; . . . ; 15 for
the cases

Fig. 1: k ¼ 2; 20; P1 ¼ :01; ruV ¼ :5; f ¼ :5; :9; y0 ¼ 0 (size),

Fig. 2: k ¼ 2; 10; 20; P1 ¼ :5; ruV ¼ :5; f ¼ :5; y0 ¼ �1 (power),

Fig. 3: k ¼ 2; 10; 20; P1 ¼ :5; ruV ¼ :5; f ¼ :9; y0 ¼ �1 (power), ð3:4Þ

where the processes u and Z have AR parameters of the same sign. For convenience, at Sn ¼ 0 we report the
results for the unsmoothed i.i.d. versions of the statistics. Since we do not provide a data driven method of
choosing Sn, we report results for an array of Sn values. To interpret the figures, as long as there is no data
driven choice for Sn, it is desirable for a testing procedure to have ERPs under the null that come close to the
nominal size for a wide array of bandwidth choices; in other words, little dependence of the performance of the
test on the choice of the bandwidth is desired.

All results not reported here are available from the authors upon request.
We now discuss the size and power results in more detail using the above figures as guiding examples.
We first discuss the size results. As to be expected from Theorem 1, all tests are typically size-distorted in the

time series models with same AR/MA parameters when there is no smoothing. Typically, the higher the AR
coefficient f the higher the size distortion, e.g. compare Figs. 1(1 and 2) to 1(3 and 4), respectively. On the
other hand, as to be expected from Remark (2) above, for opposing values of the AR parameter the ERPs of
all test statistics are very small and in the vicinity of the nominal size or even below when f ¼ :9. For all
designs, ERPs under the null are typically nonincreasing functions of Sn for all tests in the study and in most
10The only exception under the null is the test based on KEL;H2
that has higher ERPs for intermediate bandwidth values for ruV ¼ :5 for

the case k ¼ 20 and P1 ¼ :01 across almost all AR/MA designs.
11Two exceptions to this statement about power for P1 ¼ :01 are (1) the case of same AR parameter f ¼ :9, where the power of all the

test statistics over all parameter combinations is higher than 50% for small numbers of Sn and (2) all other MA/AR cases for k ¼ 20 and

ruV ¼ 0, where the power of KEL;H2
can reach values of up to 40% for some intermediate bandwidths.
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cases the maximum smoothing number Sn ¼ 15 considered here is enough to reduce ERPs to about the
nominal level or even less. However, for various scenarios with few instruments, Otsu’s (2006) bKGEL test
continues to overreject even for Sn ¼ 15, see Figs. 1(1) and especially 1(3), where k ¼ 2. The computationally
simpler modifications of bKGEL from Theorem 3 improve on the size distortion of bKGEL, see Figs. 1(1 and 3).
Across virtually all designs and uniformly in SnX1, the ERPs under the null of the test statistic KEL;H1

are
smallest among all test statistics considered and with the exception of few highly persistent designs (such as in
Fig. 1(3) where f ¼ :9) the ERPs of this test equal or are below the nominal size for any SnX1. The two
closely related statistics LMEL and KEL;H2

typically require more smoothing to reduce the ERPs under the null
below the nominal size and in few highly persistent cases (such as in Fig. 1(3) where f ¼ :9) Sn ¼ 15 is not even
quite sufficient to control size for KEL;H2

. Comparing KEL;H1
on the one and LMEL and KEL;H2

on the other
side, the former statistic oftentimes leads to a quite conservative test which has negative effects on power
relative to the other statistics as seen below. In that respect, LMEL seems to offer a good compromise between
the two hybrid statistics in terms of size and power trade-off. Recalling the construction of the hybrid statistics
in (2.31) and (2.32), one might expect the performance of the hybrid tests to be in between the ones of the
LMEL and K test, with KEL;H1

and KEL;H2
being closer to LMEL and K , respectively. The Monte Carlos do

not confirm this expectation. While KEL;H1
is typically smallest, there is no simple ranking among LMEL,

KEL;H2
, and K; e.g. compare Figs. 1(2/4), where the ERPs of the K test for small Sn are far smaller/higher than

for the KEL;H2
test. While replacing bgnðyÞ in LMr by 2bgðyÞ in Kr;H1

ðyÞ uniformly decreases ERPs, this effect is
oftentimes overcompensated by replacing bDðyÞ in Kr;H1

ðyÞ by 2eDðyÞ in Kr;H2
ðyÞ. The latter statistic differs from

K only through the matrix Dr but no consistent ranking in terms of size of the two tests can be derived from
our simulation study.

Summarizing we find that for sufficient smoothing, the testing procedures have ERPs under the null that
come close to the nominal size. One exception is the test based on the statistic bKGEL that seems to somewhat
overreject even for Sn ¼ 15 when k is small.

Next the power results are summarized. We first discuss the separate effects of k, f, and Sn on the power
properties of the tests. It seems that increasing k has a negative impact on the power properties of bKGEL and K

(see Figs. 2(1– 3) and 3(1– 3)). On the other hand, for LMEL and Kr;Hj
, for j ¼ 1; 2, the effect of k on power is

mixed and seems to depend on the bandwidth Sn. For example, in Figs. 2(1 and 2), power decreases for
increasing k for small and large bandwidths Sn but increases for increasing k for intermediate bandwidths Sn.
Increasing the AR coefficient f generally seems to have a negative impact on power (compare Figs. 2 and 3).
While the power of bKGEL and K seems to be a decreasing function of Sn, the effect of the bandwidth on the
power of the other statistics depends on the scenario. For example, in Fig. 3(1) power decreases in Sn while in
all the other figures power is not a monotonic function of Sn.

Next we compare the power properties of the tests to each other. Overall, Kr;H2
seems to have best power

properties across all statistics considered. The power gains over the other tests can be dramatic in cases of
large k and high f, see Fig. 3. When k ¼ 2 and f ¼ :5, the K test takes on the power lead for small values of
the bandwidth, see Fig. 2(1). However, the power of K and especially the power of bKGEL is very low relative to
the other tests when k is large; even when k ¼ 2 the power loss can be dramatic when Sn is large, see Fig. 2(1).
With regards to power there seems to be a consistent ranking of LMEL, Kr;H1

, and Kr;H2
with LMEL having

power between Kr;H1
and Kr;H2

. In that respect, LMEL seems to offer a good trade-off between the excellent
size and power properties of Kr;H1

and Kr;H2
, respectively. Given the sometimes large differences in power

between Kr;H2
and K , we conclude that the components Dr and Dy in these statistics have an important

impact on the performance of the tests. With respect to the statistics GELRETðy0;mELðy0ÞÞ and
GELRETðy0; ~mELðy0ÞÞ we find that overall the former has very competitive while the latter has very poor
power properties.

GS found that the comparative advantage of GEL-based tests in i.i.d. simulations occurs in situations
with thick tailed or asymmetric error distributions. Here, we find that even with normal errors,
GEL-based tests can outperform the K test, depending on the scenario, most crucially the number of
instruments.

In summary we find that both the finite–sample size and power properties of the tests based on the new
statistic LMEL are very competitive. The new hybrid tests Kr;H1

and Kr;H2
provide very good size and power

properties, respectively. Based on our simulations, we also recommend the statistic GELRETðy0; mELðy0ÞÞ.
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Appendix

Additional notation is given and then the assumptions for Theorem 1 are stated.
As discussed above, for the validity of the tests in Theorem 1, consistency of bDðy0Þ=2 in (2.6) for the long-run

variance matrix Dðy0Þ is essential. To show consistency of bDðy0Þ=2, we assume consistency of the classical
Bartlett kernel HAC estimator (which holds under appropriate assumptions given in Andrews, 1991,
Proposition 1) and then show that the HAC estimator differs from bDðy0Þ=2 by a opð1Þ term only. The latter is
similar to Lemmas 2.1 and A.3 in Smith (2001, 2005). The same procedure can be applied to other long-run
variance expressions, such as DAðy0Þ, defined in My0(vii) below and its corresponding estimator bDAðy0Þ=2,
where

bDAðy0Þ:¼Sn

Xn

i¼1

ðvec GinAðy0ÞÞg0inðy0Þ=n. (A.1)

We now give the details.
In (2.17), decompose GiðyÞ into ðGiAðyÞ;GiBðyÞÞ, where GiAðyÞ 2 Rk�pA and GiBðyÞ 2 Rk�pB .
Denote by k� the Bartlett kernel given by

k�ðxÞ:¼1� jx=2j if jxjp2 and k�ðxÞ ¼ 0 otherwise. (A.2)

The Bartlett kernel is essentially the convolution of the truncated kernel, in fact, k�ðxÞ ¼
R

kðx� yÞkðyÞdy=2,
see Smith (2001, Example 2.1). The Bartlett HAC estimator of the long–run covariance between sequences of
mean zero random vectors r ¼ ðriÞi¼1;...;n and s ¼ ðsiÞi¼1;...;n is given by

eJnðr; sÞ:¼
Xn�1

j¼�nþ1

k�ðj=SnÞeGjðr; sÞ; where

eGjðr; sÞ:¼

Pn
i¼jþ1

ris
0
i�j=n for jX0;

Pn
i¼�jþ1

riþjs
0
i=n for jo0;

8>>>><>>>>: ðA:3Þ

see Andrews (1991, eq. (3.2)). Under certain assumptions, that include stationarity, it can be shown that (see
Andrews, 1991, Assumption A, Proposition 1)eJnðgi; giÞ!pD; eJnðvec GiA; giÞ!pDA, (A.4)

where the argument y0 was left out to simplify notation. Below it is shown that the Bartlett HAC estimator
and bDðy0Þ=2 have the same probability limit.12 Therefore, assuming (A.4) and some technicalities, bDðy0Þ=2 is
consistent for the long–run variance Dðy0Þ. The same statement is true for DAðy0Þ and its estimator.
12Note that the assumptions eJnðvec GiA; giÞ!pDA and eJnðvecðGiA � EGiAÞ; giÞ!pDA are equivalent under weak conditions, for example,

under stationarity. Therefore, for consistency of the HAC estimator the possibly non-zero mean of vec GiA does not matter as long as
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A.1. Assumptions

A.1.1. Full-vector tests

The assumptions of Theorem 1 are now stated and discussed. For the asymptotic distribution of GELRr

Assumption My0(i)–(iii) are needed. For the statistics LMrðy0Þ and Srðy0Þ we also need My0(iv)–(vii). For
notational simplicity, the argument y0 is left out in My0(v)–(vii) and in the following discussion. Denote by Z

the set of integer numbers.

Assumption My0 . Suppose (i) max1pipn kgiðy0Þk ¼ opðS
�1
n n1=2Þ; (ii) for Sn !1 and Sn ¼ oðn1=2Þ we haveeJnððgiðy0ÞÞ; ðgiðy0ÞÞÞ!pDðy0Þ40; supi;jX1 Ekgiðy0Þg

0
jðy0Þko1; for any sequence m!1 and m ¼ oðn1=2Þ,

supk2Z Ekð1=nmÞ
Pn

j¼1

Pkþm
i¼k gjþiðy0Þg

0
jðy0Þk ¼ oð1Þ; Snn�1

Pn
i¼1 kginðy0Þginðy0Þ

0
k ¼ Opð1Þ; (iii) Cnðy0Þ!dCðy0Þ,

where Cðy0Þ 	 Nð0;Dðy0ÞÞ;

ðivÞ M1nðy0Þ:¼ðqm1n=qyÞjy¼y0 !M1ðy0Þ:¼ðqm1=qyÞjy¼y0 2 R
k�p, ðA:5Þ

E bGðy0Þ ¼ n�1=2M1nðy0Þ þ ð0;M2ðb0ÞÞ ! ð0;M2ðb0ÞÞ; ðA:6Þ

(v) eJnððvec GiAÞ; ðgiÞÞ!pDA (DA is defined in (vii)); supi;jX1 Ekvec GiAg0jko1; for any sequence m!1

and m ¼ oðn1=2Þ, supk2Z Ekð1=nmÞ
Pn

j¼1

Pkþm
i¼k vec GjþiAg0jk ¼ oð1Þ; bGB!p E bGB; (vi) max1pipn kGiAk ¼

opðS
�1
n n1=2Þ; Snn�1

Pn
i¼1 kvec GinAg0ink ¼ Opð1Þ; max1pipn kGiBk ¼ opðS

�1
n nÞ; Snn�3=2

Pn
i¼1 kvec GinBg0ink ¼

opð1Þ; (vii) n�1=2
Pn

i¼1 ððvecðGiA � EGiAÞÞ
0; g0iÞ

0
!dNð0;V Þ, where

V :¼ lim
n!1

var n�1=2
Xn

i¼1

ðvec G0iA; g
0
iÞ

 !0
2 RkðpAþ1Þ�kðpAþ1Þ (A.7)

has full column rank. Decompose V into

V ¼
DAA DA

D0A D

 !
; where DAA 2 RpAk�pAk. (A.8)

A discussion of Assumption My0 now follows. Assuming Sn ¼ cna for positive constants c and ao 1
2
, a

sufficient condition for My0 (i) is given by the moment condition supiX1 Ekgiðy0Þk
xo1 for some x42=ð1�

2aÞ; see GS, Eq. (2.4), for a similar statement and a proof. Analogous sufficient conditions can be formulated
for My0(vi).

The high-level assumption eJnððgiÞ; ðgiÞÞ!pD in My0 (ii) is satisfied under sufficient conditions given in
Andrews (1991, Proposition 1) which include stationarity. We prefer the high-level assumption to the sufficient
condition because it may hold even when the data are not stationary, e.g. in cases of non-identically
distributed data. My0(ii) then guarantees that bD!p2D, see Lemma 2 below. The technical assumption
supk2Z Ekð1=nmÞ

Pn
j¼1

Pkþm
i¼k gjþig

0
jk ¼ oð1Þ can be interpreted as a mild form of mixing, see also analogous

assumptions in My0 (v), and is needed in the proof of Lemma 2. The assumption Snn�1
Pn

i¼1 kging0ink ¼ Opð1Þ is
needed in the proof of Theorem 1(i) to show that Sn

Pn
i¼1 ðr2ðel0ginÞ þ 1Þging0in=n is opð1Þ. To motivate this

assumption, note that if a CLT holds then we have gin ¼ OpðS
�1=2
n Þ. The analogous assumptions in My0(v) and

(vi) are needed in deriving (A.28) and can be motivated in the same manner, noting that also vec GinA ¼

OpðS
�1=2
n Þ by My0(iv) and (vii).

My0(iii) is the ‘‘high-level’’ assumption also used in Stock and Wright (2000).
(footnote continued)

Egi ¼ 0. More precisely, it can be shown that under stationarity

eJnðvec GiA; giÞ �
eJnðvecðGiA � EGiAÞ; giÞ ¼

eJnðvecEGiA; giÞ!p0.

This can be shown by establishing that for any s ¼ 1; . . . ; pAk and t ¼ 1; . . . ; k and for some co1 it holds that ðEeJnðvecEGiA; giÞÞs;t ¼ 0

and ðn=S2
nÞEð

eJnðvecEGiA; giÞÞ
2
s;tpc; see Hannan (1970, p. 280) for similar calculations. Because by assumption ðn=S2

nÞ ! 1, the latter

implies consistency.
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A sufficient condition for My0 (iv) is given by: for some open neighborhood M � Y of y0, bgð�Þ is

differentiable at y a.s. for each y 2M, bgðyÞ is integrable for all y 2M (with respect to the probability

measure), supy2Mk
bGðyÞk is integrable, m1n 2 C1ðYÞ, and M1nð�Þ converges uniformly on Y to some function.

These conditions allow the interchange of the order of integration and differentiation in Assumption ID, i.e.

ðqEbg=qyÞjy¼y0 ¼ E bGðy0Þ. Note that by ID the limit matrix ð0;M2ðb0ÞÞ is singular of rank pB.

Let

bGnðyÞ:¼n�1
Xn

i¼1

GinðyÞ (A.9)

and decompose bGnðyÞ as ð bGnAðyÞ; bGnBðyÞÞ, where bGnAðyÞ 2 Rk�pA and bGnBðyÞ 2 Rk�pB . The assumption
max1pipn kGiBk ¼ opðS

�1
n nÞ in My0 (vi) ensures that

bGnB � 2 bGB ¼ opð1Þ. This can be shown along the lines of
Lemma 1.

Besides technical assumptions, My0 essentially states that the HAC estimator eJn is consistent (parts (ii) and
(v)) and that a CLT holds for ððvecðGiA � EGiAÞÞ

0; g0iÞ
0 (parts (iii) and (vii)). For the latter, primitive sufficient

conditions based on mixing properties can be stated along the lines of Wooldridge and White (1988). The CLT
assumption is very closely related to Assumption 1 in Kleibergen (2005a). Assumption (v) needs to be
substituted by an assumption analogous to (2.19) when dealing with the unsmoothed statistics. When deriving
the limit distribution of S�rðy0Þ and LM�

rðy0Þ we assumeXn

i¼1

vec GiAðy0Þg0iðy0Þ=n!pOAðy0Þ:¼ lim
n!1

E
Xn

i¼1

vec GiAðy0Þg0iðy0Þ=n. (A.10)

A.1.2. Sub-vector tests

For the sub-vector tests we give high-level assumptions. More primitive assumptions along the lines of
Assumption My0 could be stated at the cost of additional space.

Let bGAj
ðyÞ:¼n�1

Pn
i¼1ðqgi=qajÞðyÞ and likewise bGnAj

ðyÞ:¼n�1
Pn

i¼1 ðqgin=qajÞðyÞ.

Assumption Ma0 . For any consistent estimators eb; b!pb0 we have (i) max1pipn supb2B kgiðybÞk ¼ opðS
�1
n n1=2Þ;

S�1n n�1
Pn

i¼1 gið
by0Þ ¼ opð1Þ; (ii) for Sn !1, Sn ¼ oðn1=2Þ we have bDðyebÞ!p2Dðy0Þ40; lmaxðbDðby0ÞÞ is bounded

w.p.a.1; Snn�1
Pn

i¼1 kginðyebÞginðybÞ
0
k ¼ Opð1Þ; (iii) bGBðyebÞ exists; bGBðyebÞ!pE bGBðyebÞ ¼ ðn�1=2ðqm1n=qbÞðyebÞþ

ðqm2=qbÞða02; ebÞ ! ðqm2=qbÞða02;b0Þ; n�1S�1n

Pn
i¼1 GiBðyebÞ ¼ opð1Þ; max1pipn kGiBðyebÞk ¼ opðS

�1
n nÞ; (iv)bgðby0Þ!pEbgðby0Þ;Cnðy0Þ!dCðy0Þ, where Cðy0Þ 	 Nð0;Dðy0ÞÞ; (v) ðq vec bGA1

=qbÞðyÞ exists on a neighborhood

of y0 and ðq vec bGA1
=qbÞðyebÞ !p0; (vi) max1pipn kGiA1

ðyebÞk ¼ opðS
�1
n n1=2Þ; n�1=2

Pn
i¼1 ððvecðGiA1

ðy0Þ�

EGiA1
ðy0ÞÞÞ

0, ðgiðy0Þ � Egiðy0ÞÞ
0
Þ
0
!dNð0;V

aÞ, where Va is the appropriate submatrix of V defined in

My0(vii); Va40; (vii) Snn�1
Pn

i¼1 vecðGinA1
ðyebÞÞginðyebÞ0!p2DA1

(defined in (A.11)); Snn�1
Pn

i¼1 kvec GinA1
ðyebÞ

ginðyebÞ0k ¼ Opð1Þ; Snn�3=2
Pn

i¼1 kvec GinA2
ðyebÞginðyebÞ0k ¼ opð1Þ; similar to (iii), bGA2

ðyebÞ exists andbGA2
ðyebÞ!pðqm2=qbÞ ða02;b0Þ; max1pipn kGiA2

ðyebÞk ¼ opðS
�1
n nÞ.

In Ma0 (vi) write

Va ¼
DA1A1

DA1

D0A1
D

 !
where DA1A1

2 RpA1
k�pA1

k. (A.11)

Mutatis mutandis the assumptions in Ma0 can be interpreted as their counterparts in My0 . For example,

Ma0(ii) guarantees that lminðbDðby0ÞÞ is bounded away from zero w.p.a.1. which is needed when deriving a slight

variation of Lemma 4. Sufficient conditions for the high-level assumptions above can be given along the lines

of GS, e.g. for ðq vec bGA1
=qbÞðyebÞ!p0 in Ma0(v), see their Ma(v), (vii), and IDa. Likewise, sufficient conditions
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stated in terms of HAC estimators can be given for Ma0 (ii) and the first part of Ma0(vii); see also Ma(viii) in

GS for more primitive conditions.
A.2. Proofs

The next lemmas are helpful in the proof of the main result. Note that the assumptions made in Lemma 1
are implied by My0(i), (iii), (vi), and (vii), e.g. bGAðy0Þ ¼ Opðn

�1=2Þ follows from My0(vii) and Eq. (A.5). RecallbGnAðyÞ ¼ n�1
Pn

i¼1 GinAðyÞ.

Lemma 1. Suppose Sn !1 and Sn ¼ oðn1=2Þ.

If max
1pipn

kgik ¼ opðS
�1
n n1=2Þ; bg ¼ Opðn

�1=2Þ then n1=2ðbgn � 2bgÞ ¼ opð1Þ.

If max
1pipn

kGiAk ¼ opðS
�1
n n1=2Þ; bGA ¼ Opðn

�1=2Þ then n1=2ð bGnA � 2 bGAÞ ¼ opð1Þ,

where again y0 is left out to simplify the notation.

Proof. For the first equation tedious but straightforward calculations imply that

n�1
Xn

i¼1

gin ¼ n�1
Xn

i¼1

S�1n

Xi�1
j¼i�n

kðj=SnÞgi�j ¼ n�1
Xn

i¼1

S�1n

Xminði�1;SnÞ

j¼maxði�n;�SnÞ

gi�j

¼ n�1
Xn�Sn

i¼Snþ1

2Sn þ 1

Sn

gi þ n�1
XSn

i¼1

Sn þ i

Sn

gi þ n�1
Xn

i¼n�Snþ1

n� i þ Sn þ 1

Sn

gi

¼ 2n�1
Xn

i¼1

gi þ n�1
Xn�Sn

i¼Snþ1

1

Sn

gi

þ n�1
XSn

i¼1

i � Sn

Sn

gi þ n�1
Xn

i¼n�Snþ1

�Sn þ n� i þ 1

Sn

gi

¼ 2n�1
Xn

i¼1

gi þ opðn
�1=2Þ, ðA:12Þ

where the last equation uses max1pipn kgik ¼ opðS
�1
n n1=2Þ and bg ¼ Opðn

�1=2Þ to show that the remainder terms
are opðn

�1=2Þ. The proof of the second equation can be derived in exactly the same way. &

It is now shown that under My0 ,
bD=2 and bDA=2 are consistent for D and DA. The first part of the following

lemma is similar to Lemma A.3 in Smith (2001). Note that the assumptions in the lemma are part of My0(ii)
and (v).

Lemma 2. For Sn !1 assume Sn ¼ oðn1=2Þ. If supi;jX1 Ekgig
0
jko1 and supk2Z Ekð1=nSnÞ

Pn
j¼1PkþSn

i¼k gjþig
0
jk ¼ oð1Þ then

bD� 2eJnððgiÞ; ðgiÞÞ ¼ opð1Þ.

If supi;jX1 Ekvec GiAg0jko1 and supk2Z Ekð1=nSnÞ
Pn

j¼1

PkþSn
i¼k vec GjþiAg0jk ¼ oð1Þ then

bDA � 2eJnððvec GiAÞ; ðgiÞÞ ¼ opð1Þ, (A.13)

where the argument y0 is left out to simplify the notation.
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Proof. For the first statement easy calculations lead to

2eJnððgiÞ; ðgiÞÞ �
bD ¼ Xn�1

i¼�nþ1

n�1
Xminðn;n�iÞ

j¼maxð1;1�iÞ

kijgjþig
0
j for

kij:¼2k�ði=SnÞ � S�1n

Xn�j

l¼1�j

kððl � iÞ=SnÞkðl=SnÞ. ðA:14Þ

Using the definitions of k and k� tedious calculations show that for 0pioSn

kij ¼

S�1n ðSn � i � jÞ for 1pjpSn � i þ 1;

�S�1n for Sn � i þ 1ojpn� Sn;

�S�1n ðn� j � Sn þ 1Þ for n� Snojpn� i;

8><>: (A.15)

that for �Snoio0

kij ¼

S�1n ðSn � jÞ for 1� ipjpSn þ 1;

�S�1n for Sn þ 1ojon� Sn � i;

S�1n ðSn þ i � nþ j � 1Þ for n� Sn � ipjpn;

8><>: (A.16)

that kij ¼ �S�1n if Snpjijp2Sn and that kij ¼ 0 otherwise. Using the moment assumptions, it then follows that

2eJnððgiÞ; ðgiÞÞ �
bD reduces to opð1Þ expressions. For example, by Markov’s inequality the summand Prðk �P2Sn

i¼Sn
n�1S�1n

Pn�i
j¼1 gjþig

0
jk4eÞ can be bounded by

e�1S�1n n�1 E
X2Sn

i¼Sn

Xn�i

j¼1

gjþig
0
j

�����
����� ¼ e�1S�1n n�1 E

Xn�Sn

j¼1

Xminðn�j;2SnÞ

i¼Sn

gjþig
0
j

�����
�����. (A.17)

Using supk2Z Ekð1=nSnÞ
Pn

j¼1

PkþSn
i¼k gjþig

0
jk ¼ oð1Þ it then follows that the RHS of this expression is oð1Þ. The

proof of the second claim is completely analogous and therefore omitted. &

Given the results in Lemma 1 and consistency of bD=2 and bDA=2, the proof of Theorem 1 is along the same
lines as the proofs of Theorems 3 and 4 in GS.

As in GS, the proof hinges on the following two lemmas. Let cn:¼Snn�1=2 max1pipn kginðy0Þk. Let Ln:¼fl 2

Rk : klkpSnn�1=2c
�1=2
n g if cna0 and Ln ¼ Rk otherwise.

Lemma 3. Assume max1pipn kgiðy0Þk ¼ opðS
�1
n n1=2Þ. Then supl2Ln ;1pipn jl

0ginðy0Þj!p0 and Ln � bLnðy0Þ
w.p.a.1.

Proof. The case cn ¼ 0 is trivial and thus w.l.o.g. cna0 can be assumed. Note that kginðy0Þkp
S�1n

Pi�1
j¼i�n kðj=SnÞkgi�jðy0Þk and thus by the definition of kð�Þ

max
1pipn

kginðy0Þkp max
1pipn

S�1n

XminðSn;i�1Þ

j¼maxð�Sn ;i�nÞ

kgi�jðy0Þk

pð2Sn þ 1ÞS�1n max
1pipn

kgiðy0Þk ¼ opðS
�1
n n1=2Þ. ðA:18Þ

Therefore, cn ¼ opð1Þ and the first part of the statement follows from

sup
l2Ln ;1pipn

jl0ginðy0ÞjpSnn�1=2c�1=2n max
1pipn

kginðy0Þk

¼ Snn�1=2c�1=2n n1=2S�1n cn ¼ c1=2n ¼ opð1Þ, ðA:19Þ

which also immediately implies the second part. &
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Lemma 4. Suppose max1pipn kgiðy0Þk ¼ opðS
�1
n n1=2Þ, lminðbDðy0ÞÞXe w.p.a.1 for some e40, bgnðy0Þ ¼ Opðn

�1=2Þ

and Assumption r holds.
Then lðy0Þ 2 bLnðy0Þ satisfying bPrðy0; lðy0ÞÞ ¼ supl2bLn ðy0Þ

bPrðy0; lÞ exists w.p.a.1, lðy0Þ ¼ OpðSnn�1=2Þ and

supl2bLn ðy0Þ
bPrðy0; lÞ ¼ OpðSnn�1Þ.

Proof. W.l.o.g. cna0 and thus Ln can be assumed compact. Let ly0 2 Ln be such thatbPrðy0; ly0 Þ ¼ maxl2Ln
bPrðy0; lÞ. Such a ly0 2 Ln exists w.p.a.1 because a continuous function takes on its

maximum on a compact set and by Lemma 3 and Assumption r, bPrðy0; lÞ (as a function in l for fixed y0) is C2

on some open neighborhood of Ln w.p.a.1. It is now shown that actually bPrðy0; ly0 Þ ¼ supl2bLnðy0Þ
bPrðy0; lÞ

w.p.a.1 which then proves the first part of the lemma. By a second-order Taylor expansion around l ¼ 0, there
is a l�y0 on the line segment joining 0 and ly0 such that for some positive constants C1 and C2

0 ¼ Sn
bPrðy0; 0ÞpSn

bPrðy0; ly0Þ

¼ � 2Snl
0
y0
bgnðy0Þ þ l0y0 Sn

Xn

i¼1

r2ðl
�0

y0
ginðy0ÞÞginðy0Þginðy0Þ

0=n

" #
ly0 ðA:20Þ

p� 2Snl
0
y0
bgnðy0Þ � C1l

0
y0
bDðy0Þly0p2Snkly0k kbgnðy0Þk � C2kly0k

2 ðA:21Þ

w.p.a.1, where the second inequality follows as max1pipn r2ðl
�0

y0
ginðy0ÞÞo� 1

2
w.p.a.1 from Lemma 3,

continuity of r2ð�Þ at zero, and r2 ¼ �1. The last inequality follows from lminðbDðy0ÞÞXe40 w.p.a.1. Now,

(A.21) implies that ðC2=2Þkly0kpSnkbgnðy0Þk w.p.a.1, the latter being OpðSnn�1=2Þ by assumption. It follows

that ly0 2 intðLnÞ w.p.a.1. To prove this, let �40. Because ly0 ¼ OpðSnn�1=2Þ and cn ¼ opð1Þ, there exist

M�o1 and n� 2 N such that PrðkS�1n n1=2ly0kpM�Þ41� �=2 and Prðc
�1=2
n 4M�Þ41� �=2 for all nXn�. Then

Prðly0 2 intðLnÞÞ ¼ PrðkS�1n n1=2ly0koc
�1=2
n ÞX PrððkS�1n n1=2ly0kpM�Þ ^ ðc

�1=2
n 4M�ÞÞ4 1� � for nXn�.

Hence, the FOC for an interior maximum ðqbPr=qlÞðy0; lÞ ¼ 0 hold at l ¼ ly0 w.p.a.1. By Lemma 3,

ly0 2 bLnðy0Þ w.p.a.1 and thus by concavity of bPrðy0; lÞ (as a function in l for fixed y0) and convexity of bLnðy0Þ

it follows that bPrðy0; ly0Þ ¼ supl2bLnðy0Þ
bPrðy0; lÞ w.p.a.1 which implies the first part of the lemma. From above

ly0 ¼ OpðSnn�1=2Þ. Thus the second and by (A.21)the third parts of the lemma follow. &

Proof of Theorem 1. (i) Lemma 4 implies that the FOC

n�1
Xn

i¼1

r1ðl
0ginðyÞÞginðyÞ ¼ 0 (A.22)

have to hold at ðy0; l0:¼lðy0ÞÞ w.p.a.1. Expanding the FOC in l around 0, there exists a mean value el between
0 and l0 (that may be different for each row) such that

0 ¼ �bgnðy0Þ þ Sn

Xn

i¼1

r2ðel0ginðy0ÞÞginðy0Þginðy0Þ
0=n

" #
S�1n l0 ¼ �bgnðy0Þ � bDelS�1n l0, (A.23)

where the matrix bDel has been implicitly defined. Because l0 ¼ OpðSnn�1=2Þ, Lemma 3 and Assumption r imply

that max1pipnjr2ðel0ginðy0ÞÞ þ 1j!p0. By Assumption My0(ii) and Lemma 2 it follows that bDel !p2Dðy0Þ40

and thus bDel is invertible w.p.a.1 and ð bDelÞ�1!pDðy0Þ
�1=2. Therefore,

S�1n l0 ¼ �ðbDelÞ�1bgnðy0Þ (A.24)

w.p.a.1. Inserting this into a second-order Taylor expansion for bPðy; lÞ (with mean value l� as in (A.21) above)
it follows that w.p.a.1

S�1n nbPrðy0; l0Þ ¼ 2nbgnðy0Þ
0bD�1el bgnðy0Þ � nbgnðy0Þ

0bD�1el bDl�
bD�1el bgnðy0Þ. (A.25)
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By Lemma 1 and My0 (iii) n1=2bgnðy0Þ ¼ 2n1=2bgðy0Þ þ opð1Þ!d2Nð0;Dðy0ÞÞ and therefore S�1n nbPrðy0; l0Þ=2
!dw2ðkÞ .

(i)0 Note that Assumption M(i)–(iii) in GS (p. 673), for Y ¼ fy0g is implied by Assumption My0(i)–(iii)
above. The result then follows from (2.19) and the proof of Theorem 3 in GS.

(ii) Define D:¼Drðy0ÞL where the p� p diagonal matrix L:¼diagðn1=2; . . . ; n1=2, 1; . . . ; 1Þ has first pA diagonal
elements equal to n1=2 and the remainder equal to unity. Then (in the remainder of the proof the argument y0 is
left out for notational simplicity) it follows that

LMr ¼ nbg0nbD�1DðD0bD�1DÞ�1D0bD�1bgn=2. (A.26)

It follows from (A.24) and n1=2bgn ¼ Opð1Þ that

S�1n n1=2l0 ¼ �D�1n1=2bgn=2þ opð1Þ (A.27)

and therefore the statement of the theorem involving Sr follows immediately from the one for LMr.
Therefore, only the statistic LMr is dealt with using its representation in Eq. (A.26).

First, it is shown that the matrix D is asymptotically independent of n1=2bgn. By a mean-value expansion
about 0 it follows that r1ðl

0
0ginÞ ¼ �1þ r2ðxiÞg

0
inl0 for a mean value xi between 0 and l00gin and thus by (2.14),

(A.27), and the definition of L it follows that (modulo opð1Þ terms)

D ¼ � n�1
Xn

i¼1

ðn1=2GinA;GinBÞ � Snn�3=2
Xn

i¼1

½r2ðxiÞðn
1=2GinA;GinBÞg

0
inD
�1n1=2bgn�=2

¼ � n�1=2
Xn

i¼1

GinA � Snn�1
Xn

i¼1

GinAg0inD
�1n1=2bgn=2; 2M2ðb0Þ

 !
, ðA:28Þ

where for the last equality we use (A.5) and Assumptions My0 (v)–(vi). By Assumption My0(v) and Eq. (A.13)
it follows that bDA ¼ Snn�1

Pn
i¼1 vecðGinAÞg

0
in=2!pDA and thus

vecðD; n1=2bgnÞ ¼ w1 þMvþ opð1Þ; where (A.29)

w1:¼vecð0;�2M2ðb0Þ; 0Þ 2 RkpAþkpBþk and

M:¼

�IkpA
DAD�1

0 0

0 Ik

0BB@
1CCA; v:¼n�1=2

Xn

i¼1

vec GinA

gin

 !
; ðA:30Þ

M and v have dimensions ðkpA þ kpB þ kÞ � ðkpA þ kÞ and ðkpA þ kÞ � 1, respectively. By Assumption ID,
My0(vii), Lemma 1, and (A.5) it follows that v!d2Nðw2;V Þ, where

w2:¼ððvecM1AÞ
0; 0Þ0 (A.31)

and M1A are the first pA columns of M1. Therefore

vecðD; n1=2bgnÞ!dN w1 þ 2Mw2; 4

C 0 0

0 0 0

0 0 D

0B@
1CA

0B@
1CA, (A.32)

where C:¼DAA � DAD�1D0A has full column rank. Eq. (A.32) proves that D and n1=2bgn are asymptotically
independent.

The asymptotic distribution of LMr is derived next. Denote by D and g the limiting normal random
matrices corresponding to D and n1=2bgn; respectively, see (A.32). Below it is shown that the function h :
Rk�p ! Rp�k defined by hðdÞ:¼ðd 0D�1dÞ�1=2d 0 for d 2 Rk�p is continuous on a set C � Rk�p with
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PrðD 2 CÞ ¼ 1. By the continuous mapping theorem and My0(v) it follows that

2�1=2ðD0bD�1DÞ�1=2D0bD�1n1=2bgn!dðD
0
D�1DÞ�1=2D

0
D�1g=2. (A.33)

By the independence of D and g, the latter random variable is distributed as z, where z
Nð0; IpÞ.

Finally, the continuity claim for h is dealt with. Note that h is continuous at each d 2 Rk�p that has full

column rank. It is therefore sufficient to show that D has full column rank a.s. From (A.32) it follows that the

last pB columns of D equal �2M2ðb0Þ which has full column rank by assumption. Define O:¼fo 2 RkpA :

9eo 2 Rk�pA ; s.t. o ¼ vec ðeoÞ and the k � p matrix ðeo;�2M2ðb0ÞÞ has linearly dependent columnsg. Clearly, O is
closed and therefore Lebesgue measurable. Furthermore, O has empty interior and thus has Lebesgue measure

0. For the first pA columns of D, DpA
say, it has been shown that vec DpA

is normally distributed with full rank

covariance matrix C. This implies that for any measurable set Oþ � RkpA with Lebesgue measure

0,PrðvecðDpA
Þ 2 OþÞ ¼ 0, in particular, for Oþ ¼ O: This proves the continuity claim for h.

(ii)0 Note that under (2.19) the analogue to (A.8) in GS is n1=2l0 ¼ �O�1n1=2bgþ opð1Þ. It follows that S�r and
LM�

r have the same asymptotic distribution and it is thus enough to prove the result for LM�
r. As in the proof

of Theorem 4 in GS (line 12", p. 706) we have a formula

vecðD�; n1=2bgÞ ¼ w�1 þM�vþ opð1Þ (A.34)

with D� defined in GS (line 10", p. 681) w�1 ¼ vecð0;�M2ðb0Þ; 0Þ; and v� ¼ n�1=2
Pn

i¼1 ððvec GiAÞ
0; g0iÞ

0 but,
because of (2.19) and (A.10), we have—in contrast to GS—that

M�:¼

�IkpA
OAO�1

0 0

0 Ik

0B@
1CA 2 RðkpAþkpBþkÞþðkpAþkÞ. (A.35)

By Assumption My0(vii) we have v�!dNðw2;V Þ, with w2 defined in (A.31). Thus vecðD�; n1=2bgÞ!dz, where z is

a random variable distributed as Nðw�1 þM�w2;M
�VM�0 Þ. Because in general �DA þ OAO�1Da0, it follows

that D� and n1=2bg are typically not asymptotically independent. Therefore, in general, n1=2bg is no longer

asymptotically Nð0;DÞ conditional on D�, and consequently LM�
r is not asymptotically w2. More specifically,

let z1 2 Rk�p and z2 2 Rk be random matrices such that z ¼ ððvec z1Þ
0; z02Þ

0. It then follows that

LM�
r!d

ex:¼z02O�1z1ðz01O�1z1Þ�1z01O�1z2: & (A.36)

Proof of Theorem 2. (i) We first show that bb!pb0. Note that Assumptions Ma0(i), (ii), and (iv) do not assume

consistency of bb. A proof as for Lemma 3 using the first portion of Ma0(i) shows that

sup
b2B;l2Ln ;1pipn

jl0ginðybÞj!p0, (A.37)

where the definition of cn is changed to cn ¼ Snn�1=2 max1pipn supb2B kginðybÞk. By supl2bLn ðy0Þ
bPrðy0; lÞ ¼

OpðSnn�1Þ (which holds by Lemma 4) a variant of Lemma 9 in GS (defining l :¼� Snn�1=2bgnð
by0Þ=kbgnð

by0Þk in
their proof, using supl2Ln;1pipn jr2ðl

0ginð
by0ÞÞ þ 1j!p0 which holds by (A.37), and using lmaxðbDðby0ÞÞ bounded

w.p.a.1 which holds by Ma0(ii)) yields bgnð
by0Þ ¼ Opðn

�1=2Þ. Using Eq. (A.12) in the proof of Lemma 1 (with gi

and gin replaced by gið
by0Þ and ginð

by0Þ, respectively) and Ma0(i), bgnð
by0Þ ¼ Opðn

�1=2Þ implies that bgðby0Þ ¼ opð1Þ.

By the first part of Ma0 (iv) and IDa0 we have opð1Þ ¼ bgðby0Þ ¼ m2ða02;bbÞ þ opð1Þ which by IDa0 implies bb!pb0.
A variant of Lemma 4 using bgnð

by0Þ ¼ Opðn
�1=2Þ shows that bl:¼lðby0Þ exists and thus an FOC of bPrð

by0; lÞ
w.r.t. l holds w.p.a.1. An analysis as in the proof of Theorem 5 of GS using Eq. (A.20) and an analogue of Eq.
(A.27) then yields

GELRsub
r ða0Þ ¼ n1=2bgnð

by0Þ0Dðy0Þ�1n1=2bgnð
by0Þ=4þ opð1Þ. (A.38)
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Using the implicit function and envelope theorems the FOC in y, 0 ¼ n�1
Pn

i¼1 r1ðbl0ginð
by0ÞÞ ðqgin=qbÞ

0
ðby0ÞS�1n

bl,
has to hold. Combining this with a mean-value expansion of (A.22) in ðb; lÞ about ðb0; 0Þ we get

0

�bgnðy0Þ

 !
þM

bb� b0
S�1n
bl

 !
¼ 0, (A.39)

where

M:¼n�1
Xn

i¼1

0 r1ðbl0ginð
by0ÞÞðqgin=qbÞ

0
ðby0Þ

r1ðl
0
ginð
by0ÞÞðqgin=qbÞðybÞ Snr2ðl

0
ginð
by0ÞÞginðybÞginð

by0Þ0
0@ 1A (A.40)

and ðb
0
; l
0
Þ are mean values on the line segment joining ðbb;blÞ and ðb00; 00Þ. Note that by the last two conditions

in Ma0 (iii) and by an analysis as in (A.12) in the proof of Lemma 1, we have ð bGnB � 2 bGBÞðyebÞ ¼ opð1Þ for any

argument yeb as in Ma0 . Again by Ma0 (iii), we have bGBðyebÞ!pM2bða02;b0Þ, where M2bð�Þ:¼ðqm2=qbÞ

ð�Þ 2 Rk�pB .Therefore by Ma0(ii), M!pM, where (writing M2b for M2bða02; b0Þ and D for Dðy0Þ)

M:¼� 2
0 M 0

2b

M2b D

 !
; M

�1
¼ �2�1

�S H

H 0 P

 !
,

S:¼ðM 0
2bD
�1M2bÞ

�1; H:¼SM 0
2bD
�1 and P:¼D�1 � D�1M2bSM 0

2bD
�1. ðA:41Þ

By (A.39) w.p.a.1

n1=2ððbb� b0Þ
0;S�1n

bl0Þ0 ¼M�1ð00; n1=2bgnðy0Þ
0
Þ
0
¼ 2M�1ð00; n1=2bgðy0Þ0Þ0 þ opð1Þ, (A.42)

where the second equality holds by Lemma 1 using Ma0(i) and (iv). An expansion of bgðby0Þ in b around b0 and
the above lead to (up to opð1Þ terms)

n1=2bgnð
by0Þ ¼ n1=22bgðby0Þ ¼ n1=22½bgðy0Þ þ bGBðyÞðbb� b0Þ� ¼ 2ðIk �M2bHÞn1=2bgðy0Þ (A.43)

for some appropriate mean value y, where the first equality can be established by an analogous expansion for

n1=2bgnð
by0Þ, Lemma 1, and n1=2ðbb� b0Þ ¼ Opð1Þ. Note that MM2bðDÞ ¼ Ik �M2bH and D�1=2MM2b ðDÞD

1=2 ¼

M
D�1=2M2b

. Then, by (A.38) and Ma0 (iv), GELRsub
r ða0Þ!dx

0M
D�1=2M2b

x for x
Nð0; IkÞ and since D�1=2M2b is

of rank pB we obtain GELRsub
r ða0Þ!dw2ðk � pBÞ as claimed.

(ii) By a modification of (A.27), the result for LMsub
r ða0Þ implies the result for Ssub

r ða0Þ. Renormalize

D:¼Drða0ÞL, where L:¼diagðn1=2; . . . ; n1=2; 1; . . . ; 1Þ has pA1
elements equal to n1=2 and pA2

elements equal to 1.

The key portion of the proof is to show asymptotic independence of D and n1=2bgnð
by0Þ. By a mean-value

expansion about y0 we have for a mean value yeb (that may be different for each row) and (A.42)

n1=2 vec bGA1
ðby0Þ ¼ n1=2 vec bGA1

ðy0Þ þ ðq vec bGA1
=qbÞðyebÞn1=2ðbb� b0Þ

¼ n1=2 vec bGA1
ðy0Þ � ðq vec bGA1

=qbÞðyebÞHn1=2bgðy0Þ þ opð1Þ

¼ n1=2 vec bGA1
ðy0Þ þ opð1Þ ðA:44Þ

by Assumption Ma0 (v). By Ma0(vi) we thus have vec bGA1
ðby0Þ ¼ Opðn

�1=2Þ. Then, by an analysis as in Lemma 1

and the first part of Ma0 (vi) it follows that

n1=2 vec bGnA1
ðby0Þ ¼ n1=22 vec bGA1

ðy0Þ þ opð1Þ. (A.45)

By Ma0(vii), (A.43), and (A.45) it then follows that

vecðD; n1=2bgnð
by0ÞÞ ¼ 2mþ 2Mvþ opð1Þ, (A.46)
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where M 2 RðkpA1
þkpA2

þkÞ�ðkpA1
þkÞ and

M:¼

�IkpA1
DA1

D�1

0 0

0 Ik

0BB@
1CCA IkpA1

0

0 Ik �M2bH

 !
,

v:¼n�1=2
Xn

i¼1

vec GiA1
ðy0Þ

giðy0Þ

 !
; m:¼vecð0;�ðqm2=qa2Þ; 0Þ, ðA:47Þ

where the arguments ða02; b0Þ in M2b and ðqm2=qa2Þ and y0 in DA1
and D are omitted. Note here that the last

two conditions in Ma0 (vii) and analysis as in Lemma 1 imply bGnA1
ðby0Þ � 2 bGA1

ðby0Þ ¼ opð1Þ. By Ma0 (vi), v is

asymptotically normal with full rank covariance matrix V a and thus the asymptotic covariance matrix of

vecðD; n1=2bgnð
by0ÞÞ is given by 4MV aM 0. For independence of D and n1=2bgnð

by0Þ the upper right kðpA1
þ pA2

Þ � k

submatrix of MVaM 0 must be 0. This is clear for the kpA2
� k-dimensional submatrix and we only have to

show that the kpA1
� k upper right submatrix

½�DA1
þ DA1

D�1ðIk �M2bHÞD�ðIk �M2bHÞ0 (A.48)

is 0. Using Ik �M2bH ¼MM2b ðDÞ, the matrix in (A.48) equals �DA1
D�1PM2b ðDÞMM2b ðDÞD which is clearly

0. This proves the independence claim. Denote by D and g the limiting normal distributions of D and

n1=2bgnð
by0Þ, implied by (A.46). Set M� ¼ D�1MM2bðDÞ and note that 2 bMða0Þ!pM� for the matrix in (2.26). The

function h : Rk�pA ! RpA�k defined by hðdÞ:¼ðd 0M�dÞ�1=2d 0 for d 2 Rk�pA is continuous on a set C � Rk�pA

with PrðD 2 CÞ ¼ 1 (which is proved along the same lines as in Theorem 1). By the continuous mapping
theorem and (A.43)

ðD0M�DÞ�1=2D0D�1n1=2bgnð
by0Þ!dðD

0
M�DÞ�1=2D

0
D�1g
2Nð0; IpA

Þ. (A.49)

Because bDðby0Þ!p2D the claim follows. &

Proof of Theorem 3. Let m0:¼mrðy0Þ. Inserting this into a second-order Taylor expansion for bPrðy; mÞ around
m ¼ 0 with mean value em, cf. Eq. (A.21) above,

Sn
bPrðy0;m0Þ ¼ � 2Snm00bgnðy0Þ þ m00 Sn

Xn

i¼1

r2ðem0ginðy0ÞÞginðy0Þginðy0Þ
0=n

" #
m0

¼ � 2Snm00bgnðy0Þ þ m00bDemm0, ðA:50Þ

where bDem has been implicitly defined. As in the proof of Theorem 1(ii) define D:¼Drðy0ÞL. Hence, we may

write m0 ¼ �Sn
bDðy0Þ�1DðD0bDðy0Þ�1DÞ�1D0bDðy0Þ�1bgnðy0Þ. From Assumption My0(ii) and Lemma 2, both

lminðbDðy0ÞÞ and lminðbDðy0Þ�1ÞXe40 w.p.a.1. Therefore, as the expression in (A.33) and D are Opð1Þ, it follows

that m0 ¼ OpðSnn�1=2Þ. By an analogous argument to that in the proof of Lemma 4, m0 2 intðLnÞ w.p.a.1.

Therefore, Lemma 3 and Assumption r imply that max1pipn jr2ðem0ginðy0ÞÞ þ 1j!p0 and, thus from the last

part of Assumption My0(ii),
bDem!p � 2Dðy0Þ. Thus, substituting for m0,

S�1n nbPrðy0; m0Þ ¼ nbgnðy0Þ
0bDðy0Þ�1DðD0bDðy0Þ�1DÞ�1D0bDðy0Þ�1bgnðy0Þ þ opð1Þ

¼ 2LMrðy0Þ þ opð1Þ!d2w2ðpÞ, ðA:51Þ

from the proof of Theorem 1(ii) as bD!p2Dðy0Þ and by Lemma 1 and My0(iii) n1=2bgnðy0Þ ¼

2n1=2bgðy0Þ þ opð1Þ!d2Nð0;Dðy0ÞÞ. The result for S�1n nbPrðy0; ~mðy0ÞÞ=2 then also follows immediately as

lðy0Þ ¼ �Sn
bDðy0Þ�1bgnðy0Þ þ opðSnn�1=2Þ. &
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