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Abstract

We introduce test statistics based on generalized empirical likelihood methods that can be used to test simple hypotheses
involving the unknown parameter vector in moment condition time series models. The test statistics generalize those in
Guggenberger and Smith [2005. Generalized empirical likelihood estimators and tests under partial, weak and strong
identification. Econometric Theory 21 (4), 667—709] from the i.i.d. to the time series context and are alternatives to those in
Kleibergen [2005a. Testing parameters in GMM without assuming that they are identified. Econometrica 73 (4),
1103-1123] and Otsu [2006. Generalized empirical likelihood inference for nonlinear and time series models under weak
identification. Econometric Theory 22 (3), 513-527]. The main feature of these tests is that their empirical null rejection
probabilities are not affected much by the strength or weakness of identification. More precisely, we show that the statistics
are asymptotically distributed as chi-square under both classical asymptotic theory and weak instrument asymptotics of
Stock and Wright [2000. GMM with weak identification. Econometrica 68 (5), 1055-1096]. We also introduce a
modification to Otsu’s (2006) statistic that is computationally more attractive. A Monte Carlo study reveals that the finite-
sample performance of the suggested tests is very competitive.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There has recently been a lot of interest in robust inference in weakly identified models."! This paper adds to
this literature by introducing two types of test statistics that can be used to test simple hypotheses involving the
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unknown parameter vector in nonlinear moment condition time series models. The main feature of these
statistics is that they lead to tests whose empirical rejection probabilities (ERPs) under the null hypothesis do
not depend much on the strength or weakness of identification of the model. More precisely, we show that the
statistics are asymptotically distributed as chi-square under both classical and the weak instrument asymptotic
theory of Stock and Wright (2000). This is in contrast to many of the classical test statistics, like, for example,
Wald statistics, that have a chi-square under the former but a nonstandard asymptotic distribution under the
latter theory.

The first test statistic is given as the renormalized criterion function of the generalized empirical likelihood
(GEL) estimator, see Smith (1997, 2001) and Newey and Smith (2004), and the second one as a quadratic form
in the first-order condition (FOC) of the GEL estimator; both statistics are evaluated at the hypothesized
parameter vector. The statistics generalize those in Guggenberger and Smith (2005) (GS henceforth) from the
1.i.d. and martingale difference sequence (m.d.s.) setup to the time series case. One advantage of the second
statistic over the first one is that the degrees of freedom parameter of its asymptotic chi-square distribution
equals p, the dimension of the unknown parameter vector, while for the first statistic the degrees of freedom
parameter equals k, the number of moment conditions. This negatively affects power properties of tests based
on the first statistic in over-identified situations. To adapt the statistics to the time series context, we work with
smoothed counterparts of the moment indicator functions based on a kernel function k(-) and a bandwidth
parameter S,, an approach which was originally used in Kitamura and Stutzer (1997) and Smith (1997, 2001).
This method for the construction of test statistics in the weakly identified framework was suggested by
Guggenberger (2003, Introduction of the first chapter). See also Otsu (2006). To clarify the need for
smoothing, we also derive the non-pivotal limit distributions of the unsmoothed statistics in GS in the weak
identification time series context considered here.

While most of the papers on robust testing with weak identification are written for the linear i.i.d.
instrumental variables (IV) model, there are two closely related procedures for robust inference in nonlinear
time series models available in the literature. Firstly, Kleibergen (2005a) introduces a test statistic that is given
as a quadratic form in the FOC of the generalized method of moments (GMM, Hansen, 1982) continuous
updating estimator (CUE). The statistic includes consistent estimators for the long-run covariance matrix of
the sums of the renormalized moment indicators and derivatives thereof. Kleibergen (2005a) suggests the use
of heteroskedasticity and autocorrelation consistent (HAC) estimators, see Andrews (1991). Secondly, Otsu’s
(2006) procedure is based on the criterion function of the GEL estimator. An asymptotic chi-square null
distribution with p degrees of freedom is obtained by evaluating the GEL criterion function at transformed
moment indicators of dimension p rather than at the original moment indicators that are k-dimensional. In
Section 2.4 below we give a detailed comparison of the various approaches. There we also introduce
modifications to Otsu’s (20006) statistic that are computationally more attractive and two hybrid statistics that
can be viewed as compromises between our GEL-type and Kleibergen’s (2005a) GMM-type procedures.

Besides technicalities, the main assumptions needed to establish the asymptotic chi-square null distribution
of the new test statistics introduced in this paper are that (1) an appropriate HAC estimator of the long-run
covariance matrix of the sums of the moment indicators is consistent and that (2) a central limit theorem
(CLT) holds for the moment indicators and derivatives thereof with respect to the weakly identified
parameters. These assumptions are very similar to the ones used in Kleibergen (2005a). They are stated and
discussed in the Appendix.

The tests in this paper are first introduced for simple hypotheses on the full parameter vector. They are then
generalized to sub-vector tests under the assumption that the parameters not under test are strongly identified,
see e.g. Kleibergen (2004, 2005a), GS, and Otsu (2006). The idea is to replace the parameters not under test by
consistently estimated counterparts in the test statistics.

To investigate the finite-sample performance of the new tests, we compare them to those in Kleibergen
(20052a) and Otsu (2006) in a comprehensive Monte Carlo study that focuses on a time series linear model with
AR(1) or MA(1) variables. We find that both in terms of size and power the new tests compare very favorably
to the alternative procedures. Even though the tests are first-order equivalent, there can be huge power
differences between Kleibergen’s (2005a), Otsu’s (2006), and the tests in this paper.

To implement the tests here and those in Kleibergen (2005a) and Otsu (2006) a bandwidth S,, has to be
chosen. Andrews (1991) and Newey and West (1994) provide theory of how to choose the bandwidth, if the
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goal is to minimize the mean-squared error of a (HAC) covariance matrix estimator. However, in the testing
context here, we are really interested in size and power properties of the tests and it is unclear how to develop a
theory of bandwidth choice. One could still follow the procedures in Andrews (1991) or Newey and West
(1994) but very likely this would not lead to any optimality result. The bandwidth choice is an important
problem that is beyond the scope of this paper. Future research has to tackle this challenging question.

The remainder of the paper is organized as follows. In Section 2, the model and the full- and sub-vector test
statistics are introduced and their asymptotic theory is discussed. The tests are compared to Kleibergen’s
(2005a) and Otsu’s (2006) approaches. Section 3 contains the Monte Carlo study. All technical assumptions
and proofs are relegated to the Appendix.

The symbols “—4” and “—,” denote convergence in distribution and convergence in probability,
respectively. Convergence ‘“‘almost surely” is written as “a.s.” and “with probability approaching 17 is
replaced by “w.p.a.1”. The space C'(S) contains all functions that are i-times continuously differentiable on
the set S. Furthermore, vec(M) stands for the column vectorization of the k x p matrix M, ie. if M =
(m,...,my,) then vec(M) = (m}, ... ,m;)’, “M’"” denotes the transpose matrix of M, (M), the element in the
ith row and jth column, “M >0’ means that M is positive definite, Apin(M) and Anax(M) are the minimum and

maximum eigenvalues of M, respectively, and || M| = \/Amax(M'M). By I, we denote the p-dimensional
identity matrix.

2. Robust testing
2.1. Model and notation

The paper considers models specified by a finite number of moment restrictions. More precisely, let {z;:i =

1,...,n} be R'-valued time series data, where n € N denotes the sample size. Let g, H x © — R*, where H c R
and @ C R? denotes the parameter space. The model has a true parameter 6, for which the moment condition
Eg,(zi,00) =0 2.1)

is satisfied. For g,(z;, 0), usually the shorter ¢;(0) is used. The function g is allowed to depend on the sample size n
to model weak identification, see Assumption ID below. For example, consider the i.i.d. linear IV model given by
the structural and reduced form equations y = Y8y +u, Y = ZIl + V,where yu e R", Y,V e R"™?, Z ¢ Rk,
and IT € R¥*?. The matrices ¥ and Z contain the endogenous variables and instrumental variables, respectively.
Denote by Y;, Vi, Zi,... (i =1,...,n) the ith row of the matrix Y, V, Z, ... written as a column vector. Assume
EZu;=0 and EZ;V;=0. The first condition implies that Eg,(0y) =0, where for each i=1,...,n,
gi(0)=Z;(y; — Y’0). Note that in this example g;(0) depends on n if the reduced form coefficient matrix IT is
modeled to depend on n, see Stock and Wright (2000), where IT = IT,, = (n~'/*I1 4, I1 3) and II 4 and IT are fixed
matrices with p, and pp columns, p = p, + pp, and I has full column rank.
Interest focuses on testing a simple hypothesis

Ho: 0y =0 versus the alternative Hj: 0y+0. (2.2)

Define the recentered and rescaled sample average

¥, (0):=n"?(G(0) — EG(0)), where §(0)=n"" Z g,(0) and let

i=1

A(0)= lim EW¥,(0)¥,(0) e RF*k (2.3)

be the long-run covariance matrix of ¢,(0).> Let 6 = (o/,f'), where o € 4, AC R4, fc B, BC R'B,
©® =A4x B, and p, + pp = p. The case pp =0 is allowed. In the following, we adopt Assumption C from

*Note that A(0), typically referred to as “long-run variance” in much of the econometrics literature, is proportional to the spectral
density at zero frequency. Kernel-based spectral density estimation goes back to work by statisticians in the 1950s, see e.g. Parzen (1956,
1957) where consistency of spectral estimates is established for stationary time series, while studentization of mean-like statistics by a
spectral density estimate goes back at least to Hannan (1957).
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Stock and Wright (2000) in which oy and f, are modeled as weakly and strongly identified parameter vectors,
respectively. For a detailed discussion of this assumption, see Stock and Wright (2000, pp. 1060-1061). Let
A" C B denote an open neighborhood ,80.3

Assumption ID. The true parameter 0y = (), ;)" is in the interior of the compact set @ = 4 x B and (i)
EG(0) = n~'2my,,(0) + my(B), where my,,m;: @ — R* and (if pz>0) my: B— R¥ are continuous functions
such that m,(0) — m;(0) uniformly on @, m;(0y) = 0 and m»(f) = 0 if and only if f = f; (ii) my € Cl(N);
(iii) let M»(f):=(0m,/0p)(pP) € RFxrB. M,(By) has full column rank ppg.

Following the suggestion in Guggenberger (2003), we work with smoothed counterparts of the moment
indicators g;(60) to handle the general time series setup considered here as in Kitamura and Stutzer (1997) and
Smith (1997, 2001). See also Smith (2000, 2005) and Otsu (2006). An alternative procedure would be to work
with a blocking method as in Kitamura (1997). For i = 1,...,n, define

i—1
9 O=S," > k(j/S)g;_(0), (2.4)
j=i—n

where S, is a bandwidth parameter (S, — oo as n — o0) and k(-) is a kernel. For simplicity, from now on the
truncated kernel is used which is given by

k(x)=1 1if |x|<1 and k(x)=0 otherwise (2.5)
and thus g,,(0) = S, ! ;“;gjj,;;{—sjﬂ}gi,j(e).“ Define

GuO)y=n""""g,,(0) and A©O)=S, > g;(0)g;(0) /n. (2.6)
i=1 i=1

Under assumptions given in Lemma 2 below, the estimator A (60) is shown to be consistent for 24(6y), whereas
the “‘unsmoothed” version of the estimator, Q(0y), for

Q)= g{0)g,(0) /n, 2.7)
i=1

used in GS, while being consistent in an i.i.d. or m.d.s. setup, would not be consistent in the general time series
context considered here. See GS’s discussion of their assumption My, (ii). The consistency of 4(0) is crucial
for the testing procedures suggested in the next section. See Theorem 1 and Remark (2) below where we
derive and discuss the asymptotic distribution of the test statistics in GS under the time series context
considered here.

The statistics below are based on the GEL estimator. In what follows, a brief definition of the GEL
estimator is given. For a more comprehensive discussion see Smith (1997, 2001), Newey and Smith (2004), and
GS. Let p be a real-valued function Q — R, where Q is an open interval of the real line that contains 0 and

A (0)={A e R*: /g, (0) € Qfori=1,...,n} (2.8)
If defined, let pj(v):z(aip/avi)(v) and p;:=p,(0) for nonnegative integers j.

Kleibergen (2005a, eq. (13), p. 1107) allows for a Jacobian matrix Jg(0p):=lim,_ o E((@@(G)/80)|H:HO) (using our notation) that may or
may not be of fixed full rank and may even equal zero (see the bottom of his p. 1108). Our Assumption ID can also account for this. For
example, the case where Jy(0y) = 0 corresponds to our setup with ) = oy and neither § nor m, present. See (A.6) below.

“In general, one could employ kernels in the class #"; of Andrews (1991, p. 821) taking into account technical modifications in Jansson
(2002); see, for example, Smith (2001) and Otsu (2006). Here we focus on the truncated kernel because it significantly simplifies the proofs
and notation. In addition, for the testing purpose in this paper, it is not clear on what basis a kernel should be chosen and Monte Carlo
simulations reveal that the finite-sample performance is not very sensitive to the kernel choice, see also Newey and West (1994) for similar
findings in the HAC literature.
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The GEL estimator is the solution to a saddle point problem

@::arg min sup IA’p(G,A), where (2.9)
J€An(0)

Po(0,2):=2 " (p(X'g;,(0)) — py)/n. (2.10)
i=1

Assumption p. (i) p is concave on Q; (ii) p is C* in a neighborhood of 0 and p, = p, = —1.

Examples of GEL estimators include the CUE, see Hansen et al. (1996), empirical likelihood (EL, see
Imbens, 1997; Qin and Lawless, 1994), and exponential tilting (ET, see Kitamura and Stutzer, 1997; Imbens
et al., 1998) which correspond to p(v) = —(1 + 0)2/2, p(v) = In(1 — v), and p(v) = — exp v, respectively.

2.2. Test statistics

Here, statistics are introduced that can be used to test (2.2) in the time series model given by (2.1). It is
established that they are asymptotically pivotal quantities and have limiting chi-square null distributions
under Assumption ID. Therefore, these statistics lead to tests whose ERPs under the null should not be
affected much by the strength or weakness of identification. There are other statistics that share this property
in the general time series setup considered here, namely Kleibergen’s (2005a) GMM-based and Otsu’s (2006)
GEL-based statistic. There are various other robust tests introduced for i.i.d. models, e.g. Kleibergen (2002),
Caner (2003), and Moreira (2003). Kleibergen’s and Otsu’s statistics are compared to the approach of this
paper in more detail below.

Let p be any function satisfying Assumption p. The first statistic is given by

GELR,(0)=S, lnﬁp(e, A6))/2, where if it exists,

MO)=arg max P,(6,2). (2.11)
2€An(0)

The statistic GELR,(0) has a nonparametric likelihood ratio interpretation, see GS, where motivation is
provided in the i.i.d. context. The generalization of the GELR, statistic in GS to the time series context has
now been independently introduced by Otsu (2006), see his Sggr statistic. R

The second set of statistics is based on the FOC with respect to 6 of the GEL estimator 6. If the minimum of
the objective function P(0, /(0)) is obtained in the interior of @, the score vector with respect to 6 must equal 0
at 0. Using the envelope theorem it can be shown that this results in

0'=4(0) > p1(A0) g, (0)Gin(0)/n, where if defined (2.12)
i=1

Gin(0):=(3g;,/30)(0) € RE; (2.13)

see Newey and Smith (2004) and GS for a rigorous argument of this statement in the i.i.d. case. For 0 € 0,
define

D,(0)= Z 01((0) ,,(0)Gin(0) /11 € RF*P, (2.14)
=1
Thus, (2.12) may be written as i(@)/Dp(g) = (/. The test statistic is given as a quadratic form in the score vector
2(0)'D,(0) evaluated at the hypothesized parameter vector 0 and renormalized by the appropriate rate
S, (0):=S;2n2(0) D, (0)(D,(0) 4(0)"' D,(0)) "' D, (6) 2(6) /2. (2.15)
In addition, the following variant of S,(0):
LM ,(0)=ng,(0) A(0)~" D,(0)(D,(0) 4(0)' D,(0))" D,(0) 4(60)~'G,,(0) /2 (2.16)
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is considered that substitutes S, 12(0) in S,(0) by the asymptotically equivalent expression —2(9)_1@,(0), see
Eq. (A.24) below. The names S,(0) and LM ,(0) of the statistics are taken from GS and are based on the
interpretation of the statistics as score and Lagrange multiplier statistics, respectively; see GS for more
discussion. If p(v) = In(1 — v) we use the notation LMgy(0) for LM ,(0) and likewise for other statistics and
functions p.

The next theorem discusses the asymptotic distribution of these test statistics evaluated at 6y. To illustrate
the need for smoothing, we also derive the asymptotic distribution of the test statistics in GS. In the following,
the superscript ‘*x” stands for unsmoothed expressions. Let A A(0), P (6 A), 2*(0), and D*(G) be defined
analogously to A (6) P,,(H 2), A0), and D,(0) except that the smoothed expressions ¢;,(0) and G(0) are
replaced by the unsmoothed expressions g;(0) and

Gi(0):=(dg;/00)(0). (2.17)
The unsmoothed test statistics in GS corresponding to GELR,(0), S,(0), and LM ,(0) can then be written as

GELR(0) = nP, (0, ),

S5(0) = nA*(0) D (0)(D%(0) Q(0) ' D(0) "' D(0Y 2*(0) and

LM(0) = ng(0) Q(0)™" D3 (0)(D5(0) Q(0)™' D(0))™' D3y (0) 2(0) ' G(0). (2.18)

When deriving the asymptotic distribution of these statistics we assume that
n
Q(09)—p2(0p) for Q(0p)= lim E Z 9:(00)g:(60) /n>0. (2.19)
n—oo
i=1

The technical assumptions My, and their interpretation are given in the Appendix.

Theorem 1. Suppose ID, p, and My, ()~(iii) hold. Then for S, — oo asn — oo and S, = o(n'/?) it follows that:
(1) GELR (90)—>d)( (k) and (1) GELR "(00)—a&'Q(00)~ te,

where & is a random vector distributed as N(0, A(0y)). If in addition My, (iv)~(vii) hold then
(i) S,(00), LM ,(00)— ax*(p) and (i)’ S3(6o), LM, “(00)—aC,

where é is a random variable defined in (A.36) in the Appendix and where for the unsmoothed statistics we
assume (2.19) and the analogous formula (A.10) for derivatives of ¢;(0).

Remarks. (1) Theorem 1 implies a straightforward method to construct confidence regions or hypothesis tests
for 6y based on the smoothed statistics. For example, a critical region for test (2.2) at significance level r is
given by {GELR,(00)>y2(k)}, where z>(k) denotes the (1 — r)-critical value from the y*(k) distribution. In
contrast to classical test statistics such as a Wald statistic, the statistics GELR,(0y), S,(0y), and LM ,(0y) are
asymptotically pivotal statistics under Assumption ID. Therefore, ERPs under the null of tests based on these
statistics should not vary much with the strength or weakness of identification in finite samples. For the
statistics S,(60p) and LM ,(8y) to be pivotal, it is crucial that D,(0) (appropriately renormalized) and n'2g (0)
are asymptotically independent under both weak and strong identification, see the proof of the theorem. Also
see Smith (2001) which demonstrates this property for the strongly identified case. Theorem 1 also shows that
the asymptotic null distribution of the test statistics does not depend on the choice of p.

(2) Theorem 1(i)’ and (ii)’ shows that in the general time series context considered here, smoothing of the
moment conditions is necessary to obtain test statistics whose asymptotic distributions are nuisance parameter
free. While n'/2g,(0p) and n'/?G(0,) differ only by a proportionality factor (see Lemma 1), the crucial
consequence of smoothing is that the (renormalized) quantities g,(0p) and D,(0y) are asymptotically
independent while their unsmoothed counterparts g(6,) and D7(0p) are not. See Egs. (A.29), (A.34), and
subsequent analysis in the Appendix. Another important result of smoothing is that the estimator 4() is
consistent for 24(6y) while the unsmoothed counterpart Q(6,) is generally inconsistent.
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Important recent work by Kiefer et al. (2000) and Kiefer and Vogelsang (2002a,b,2005) shows that in
regression models with correlated errors a #- or F-test can be successfully implemented without using a
consistent HAC estimator of the long-run variance matrix of the parameter estimator. They use (inconsistent)
variance estimators—implemented with bandwidth b equal to the sample size or equal to a fixed portion of the
sample size—that converge to a limiting random matrix that is proportional to the long-run variance matrix.
They show that their test statistics converge in distribution to nuisance parameter free functionals of a Wiener
process. In their model there are no (weak) instruments as in ours, but even with strong instruments (i.e.
P4 = 0) (A.36) shows that generally LM ;(Qo)ﬁdxz(p) because generally Q(6y) and 4(6,) differ.

We now consider a simple example to show that in our model we do not obtain a nuisance parameter free
distribution if we use the unsmoothed statistics. We focus on GELR;(GO) whose limit distribution is given by
E'Q(0y)"¢. Consider the linear IV regression model given in (3.1) below where for simplicity we assume that
there is only one instrument and, as described in Section 3.1, u; and Z; are independent zero mean AR(1)
processes with autoregressive (AR) parameter equal to ¢, and ¢, respectively. Then,

n
Qo) = lim > B Z/n=EuBZ; =(1—¢p) (1 - ¢3)7",
i=1

n
A(0y) = lim nEg(6p)* = lim > EuwEZ:Z;/n
=

n—o00 &
ij=1

n—1

= Q00| 1+2 lim Y 6.0,
i=1
= Q001 +2¢,¢6,(1 — )L (2.20)

see e.g. Hamilton (1994, p. 53).° Therefore, GELRZ(OO)—>dc;(2(1), where c:=1+2¢,¢,(1 — qbud)z)*l. A test
based on GELR; using x*(1) critical values overrejects (underrejects) under the null if ¢>1 (¢<1). Opposing
values of ¢, and ¢, reduce the degree of overrejection and can even lead to underrejection. Our Monte Carlo
study below finds that this property seems to hold more generally for all the statistics considered in this paper.
For example, for ¢, = ¢, we have ¢ = 1 4 2¢*(1 — ¢2)~" while for ¢, = —¢, we have ¢ = 1 — 2¢2(1 + ¢2)~".
While the latter quantity is always smaller than 1 for ¢,#0 and converges to 0 for|¢,| — 1, the former
quantity is always bigger than 1 for ¢,#0 and diverges to +oco for |¢,| — 1.

(3) A drawback of GELR,(0p) is that its limiting null distribution has degrees of freedom equal to k, the
number of moment conditions rather than the dimension of the parameter vector p. In general, this has a
negative impact on the power properties of hypothesis tests based on GELR,(6y) in over-identified situations.
On the other hand, the limiting null distribution of S,(0y) and LM ,(0y) has degrees of freedom equal to p.
Therefore, the power of tests based on these statistics should not be negatively affected by a high degree of
over-identification.

(4) Assumption My, (given in the Appendix) is compatible with many time series models and, besides
technicalities, essentially states (i) that the Bartlett HAC estimator consistently estimates the long-run variance
matrix 4(0y) and (ii) that a CLT holds for the times series (vec G',(0o), g/(0p)) with full rank asymptotic
covariance matrix V(0)), where G;4(0y) is the submatrix of G;(0)) corresponding to the weakly identified
parameters, see the Appendix for a detailed discussion. Part (ii) is very closely related to Assumption 1 in
Kleibergen (2005a) that states a CLT for (vec Gi(6y),d;(0y)) with possibly singular covariance matrix.
Therefore, the approach taken in this paper generalizes the setup in GS whose applications were restricted to
m.d.s.

(5) The theorem does not give any guidelines on how to choose the bandwidth S, in finite samples. In fact,
just as for the choice of the kernel k, it is difficult to provide theory for its choice in the testing context
considered here, where size and power properties matter. One could still follow Andrews (1991) and choose S,
such that the mean-squared error of the covariance matrix estimator is minimized after a time series model has

>Note that for any ¢ € R we have Z;’;ll ((n—i)/mq =1 —g)g+n")y—n"'(1 — g"t")) /(1 — g)* which for |¢| <1 converges to q/(1 —¢q)
as n — oo.
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been specified. However, it is unclear what effect this procedure would have on size and power of the test and
it would be surprising if this procedure led to any optimality property.

2.3. Sub-vector statistics

We are now interested in testing
Hy:o0 =o versus Hj:oag#0, (2.21)

where o9 € RP4 and 0 = (o, ;). Let 0 = (o), 05, f), where o € 4, 4; C R (j = 1,2),p4, + P4, =p4-and
B € B, BC RPE. We assume that the true parameter 0y = (o, %, f)’ is in the interior of the compact space
O, where ® = A4, x A> x B. We now modify Assumption ID. Let .4/~ C A, x B be an open neighborhood of

(202, By)-

Assumption 1D, . () Eg(0) = n~"2m,,(0) + my(aa, B), where my,,m;: © — RK and @if P4, + pp>0) my: Ay x
B — RX are continuous functions such that my,(0) — my(0) uniformly on @, m(0y) = 0 and my (o, f) = 0 if
and only if (s, ) = (202, Bo); (if) > € C'(N); (i) Tet Ma(-):=(0ma /(o4 B))() € R¥CAPE. Mi(as, By) has
full column rank p 4, + pp.

Assumption 1D, implies that og; is weakly and (o2, ) is strongly identified. To adapt the full-vector test
statistics to the sub-vector case, the basic idea is to replace f by an estimator (o). Define the GEL estimator

B(x) for By:
Poy=argmin - sup (. BY. 7). (2.22)
redAn(@ B

Our assumptions below imply consistency B:ZB(OCO)_)pﬂO and efficiency under the null hypothesis: also see
Smith (2001). Let

Oo:=(0), Boto))  and  Op=(ct), B (2.23)

We now introduce the sub-vector statistics. Recall the definition of GELR,(0) in (2.11). Evaluated at o = a,
the GELR, sub-vector test statistic is given by

GELR™(019):=GELR,(0o). (2.24)

We now generalize the statistics S, and LM, to the sub-vector case. The motivation of these statistics is
analogous to the sub-vector statistics in GS. We need additional notation. For a full column rank matrix
AeRP? and 0<K € RF let Py(K)y=A(A'K'A)"'A'K~" and M 4(K)=I; — P4(K). We abbreviate this
notation to Py and M if K=1;. If p=0, set M4 = I;. Let

Dy(0):="" p1((00) 9s(00))Gina(00) /n € RFP4, (2.25)

i=1

where Gj,4(0) is defined by G;,(0) = (G,4(0), Gip(0)) for G, 4(0) € R¥<P4 and Ginp(0) € R¥*PB: see Eq. (2.13).
The definition of D,(«) coincides with the one of D,(0y) when «y is the full vector 0y. If pg>0 let

M(aoy=400)" Mz, >,(4(00)/2). (2.26)

and otherwise let M(ao):Z(@o)_l, where

G(O)=n"" Z G(0) € R™?,  G(0) = (G4(0), Gp(0)) (2.27)

i=1

®In this subsection, m(-) and M>(-) (defined already in 1Dy, above as functions of ) now denote functions of o, and f.
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for G, (0) € R¥*P4 and 63(0) € R¥*PB_ The sub-vector test statistic S;“b(aco) is constructed as a quadratic form
in the vector of FOC i(@o)/Dp(go) with weighting matrix given by M (o). Let
83 (@0)=nS,,>2(00) Dy(00)(D,(20) M (20) Dy(e0)) ™ Dy(e0) 200) /2. (2.28)
The statistic LM ;“b(oco) is constructed like S;“b(oco) but replaces n'/2S;, 1/1(50) by the asymptotically equivalent
expression —A(0)~'n'/2g,(0). Therefore,
LM (00):=n5,,(00) A(00) ™" D (ct0)(D,(ot0) M(20) D p(210)) ™" D (0) A(0) "G, (o) /2. (2:29)
Under Assumption M,, given in the Appendix we have the following theorem.’
Theorem 2. (i) Assume 1<p,<p. Suppose Assumptions ID
GELR"™ (o)~ a7’ (k — pp).
(ii) If in addition M, (v)—(vii) hold, then
S3P(g) and LM (00)— ax’(p.)-

2> Mao(D)—(1v), and p hold. Then,

Under the assumption used here, that the parameters not under test are strongly identified, there are various
other alternatives for sub-vector inference besides GELR;”b(oco), S;“b(oco), and LM f)“b(oco). See, for example, the
tests by Kleibergen (2004, 2005a) and Otsu (2006). An interesting recent contribution by Kleibergen (2005b)
introduces boundedly pivotal tests for the linear IV model without additional identification assumptions.
Alternatively, confidence intervals can be constructed by a projection argument; see Dufour (1997). However,
this approach is conservative and in general computationally cumbersome. In a recent paper, Dufour and
Taamouti (2005) show that the Anderson and Rubin (1949) statistic is an exception, in that a closed form
solution is available. Another alternative is Guggenberger and Wolf (2004) who suggest a subsampling
approach. In contrast to some of the above procedures, subsampling leads to sub-vector tests whose null
rejection probability converges to the desired nominal level without additional identification assumptions for
each fixed degree of identification. Guggenberger and Wolf’s (2004) Monte Carlos suggest that for sub-vector
inference subsampling seems to do better in terms of power than Kleibergen (2004, 2005a) and Dufour and
Taamouti (2005). In their simulation study, the former procedure tends to underreject when the components
not under test are only weakly identified and the latter seems to underreject across all the scenarios. On the
other hand, they find that for full-vector inference, subsampling is outperformed by the procedures in GS and
Kleibergen (2005a). Andrews and Guggenberger’s (2005b,c) size correction methods for subsampling tests
could also be applied to sub-vector tests.

2.4. Comparison with Kleibergen (2005a) and Otsu (2006)

Here, we compare our (full-vector) statistics to the K and Kgew statistics of Kleibergen (2005a) and Otsu
(2006). These statistics, S, and LM ,, and the ones defined below have the same first-order theory under the
null hypothesis; asymptotically they are all distributed as y’(p) under the null.

Kleibergen’s K statistic is defined as

K(0):=ng(0) A(0)"' Do(D}, A(0) ' Dy)"' D, 4(0)"'G(0), where
Dy=G(0) — QO)[I, ® (A(0)"'G(0))] € R*? and (2.30)

A(0) and 52(6) are consistent estimators for A(f) and the long-run covariance matrix lim,_, E{n”z;"jzl

[Gi(0) — EG;(O)][U, ® gj(H)’) -E(,® gj(Q)’)]}, respectively. Kleibergen (2005a) suggests the use of HAC

estimators for 2(0) and 5(9); see e.g. Andrews (1991). The statistics LM, and the K statistic are given as
quadratic forms in the FOC of the GEL and the GMM CUE estimator, respectively. The intuition for tests

"Note that there is a typo in GS (p. 685, last line): p, should be p.
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based on these statistics is as follows: under strong identification, GEL and GMM estimators are consistent.
In consequence, in large samples the FOC for the estimator also holds at the true parameter vector 0.
Therefore, the statistics are quadratic forms which are expected to be small at the true vector 6y. Even though
the GMM CUE and GEL CUE are numerically identical (see Newey and Smith, 2004, footnote 2), their FOC
are different and therefore LM cyg and K will typically differ. For i.i.d. or m.d.s. scenarios GS specify for

which estimators 4 (0) and £~2(6) in the K statistic, K and LM cyg are identical. These statements in GS cannot
be generalized to the general time series setup, where K and LM ¢y are different. One reason for that is that in
this latter statistic functions of the smoothed indicators g;, and G;, are used, e.g. g,, while the former statistic
uses functions of the unsmoothed indicators, e.g. g.

To assess which factor in LM, accounts for most of the finite-sample differences between K(0) and LM, we
also consider the followmg hybrld statistics K, H; (0) in our Monte Carlo study below. K, #, (0) replaces qn(é))
in LM, by 24(0)%;

K11, (0):=2nG(0) 4(0) ™' D, (0)(D,(0) 4(0) ™' D, (0)) ™' D,(0) A(0) ' §(0). (2.31)
K, 1,(0) replaces Z(()) in K, i, (0) by 22(0) (where 2(00)—>pA(00) is a HAC estimator):
K .11,(0):=ng(0) 4(0)"" D, (0)(D,(0) A(0)~" D, (0)) "' D,(0) 4(0) "' §(0). (2.32)

By Lemma 1 below these changes do not affect the limit distribution, and, as for LM,, we have
K, H; (O0)—ax*(p) for j = 1,2. Kleibergen’s (2005a) statistic K(0) and the hybrid statistic K, ,(0) only differ
by the choice of the matrix Dy and D,(0), respectively.
Otsu’s (2006) statistic is given by

KeL(0)=S;,'n sup P,(0,4(0)"'D,(0)y)/2, where
yel'(0)

rO)y={y € R*; 4(0)"'D,(0)y € 4,(0)} and (2.33)

Z(@) and D,(0) are defined in (2.6) and (2.14), respectively. Here, I/(\GEL(G) has been formulated based on the
truncated kernel but can of course be implemented using more general kernels, see Otsu (2006); also instead of
A(0), any other consistent covariance matrix estimator could be used. Kggr(0) is not given as a quadratic form
in the FOC and the above intuition does not apply. In contrast to the GELR, statistic, however, the
asymptotic null distribution of Kger does not depend on the number of moment conditions k. This is achieved
by considering the transformed moment indicators gmA(O) lD/,(O) in (2.33) rather than g}, as in (2.11). A
drawback of Otsu’s (2006) approach is that two maximizations are necessary to calculate the statistic, one to
calculate A(6) in D,(0) of (2.14) and one in (2.33). The latter maximization may be simply avoided as follows.
Define k-vectors

1, (0):= — S, 4(0)' D, (0)(D,(0) A(0) ™ D,(0))™" D, (0) 4(0)™'G,(0).

i, (0):=A4(0)"" D, (0)(D, (0 4(0)~" D,(0))~" D, (0)' 1(0). (2.34)
Define the statistic

GELR,(0, 0):=S;,'nP (0, 1) /2. (2.35)
Theorem 3. Suppose ID, p, and Mg, (1)—(vii) hold. Then for S, — 0o asn — oo and S, = o(n'/?) it follows that

GELR, (00, 11,(60)), GELR (00, t,,(00)—a7°(p).

Remark. The function p used in obtaining p,(0) or fi,(0) through D,(6) and 4(0) may be allowed to differ
from that defining GELR,(0,p) as long as both functions satisfy Assumption p. Note that even though
the statistics in Theorem 3 are first-order equivalent to Otsu’s (2006) KGEL(QO) test statistic, they are
in general not numerically equal. We compare their performance in the Monte Carlo study in the
next section.

8We would like to thank a referee for suggesting these hybrid statistics. The Monte Carlo study below indicates that K, 1, (0) has very
favorable size and K, g, (6) has very favorable power properties.
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3. Monte Carlo study

In this section, the finite-sample properties of the hypotheses tests in Theorems 1 and 3 are investigated in a
Monte Carlo study and compared to the tests suggested in Kleibergen (2005a) and Otsu (2006). To better
understand the performance differences between LM, and K, we also include the hybrid statistics K, z;; for
j =1,2 defined in (2.31) and (2.32) in our study.

3.1. Design

The data generating process is given by the linear IV time series model

y=Y0+u,
Y=ZIO+V. G.1)

There is only a single right-hand side endogenous variable Y and no included exogenous variables. Let
Z e R™ where k is the number of instruments and n the sample size. The reduced form matrix IT € R¥ equals
a vector of ones times a constant 1, that determines the strength or weakness of identification. Similar to the
design in Otsu (2006), each column of Z and u is generated as zero mean AR(1) or MA(1) processes (with AR
and moving-average (MA) parameters ¢ and v, respectively) with innovations distributed as independent
N(0, 1) random variables and V" has i.i.d. N(0, 1) components. To generate an AR(1) process, u; = du;—; + &;
say, we set uyp = 0. MA(1) processes {u;} with MA parameter v are generated as u; = ¢; — vg;_1. The
innovations of the process for u, ¢ say, and the ith component of } are correlated; their joint distribution is
N(0, 2), where = € R**? with diagonal elements equal to unity and off-diagonal elements Puv-

Interest focuses on testing the scalar null hypothesis Hy: 0y = 0 versus the alternative hypothesis Hy: 0y #0.
Results are reported at nominal levels of 5% for sample size n = 200. The following 60 parameter
combinations are considered. Twelve combinations of k, I, and p,,;

k=2,10,20, II, =.01,.5, p,, =0,.5 (3.2)
times the five AR(1)/MA(1) specifications
$=0,5.9 v=.5.9 (3.3)

are considered. We also consider an additional 12 x 4 = 48 parameter combinations where this time the AR/
MA parameter for the AR(1) or MA(1) processes in the columns of Z equals —1 times the AR/MA parameter
for the AR(1) or MA(1) process u and the latter parameter takes on the values ¢ = .5,.9 or v =.5,.9. We call
these cases designs with “opposing” AR/MA parameters whereas the other cases are called designs with
“same” AR/MA parameters.

We  report results for the seven statistics LMy, Kgp Hj» for j=1,2, GELRgt(00, ugL(00)),
GELRgr (00, i1 (00)), KGEL, and K in the study For K, u, and K we use a Bartlett kernel to calculate the
covariance matrix estimators and for KGEL we use the EL specification. We use the ET specification for the
statistics from Theorem 3 because in finite samples 1 — pgy (00)'¢,(00) or 1 — figr (09) g;,(00) is sometimes
negative which prevents us from calculating the EL criterion function.

To implement the statistics, the bandwidth S, has to be chosen. We consider fixed bandwidths S, =
1,...,15 and also calculate the i.i.d. versions of the test statistics. Note that for the Bartlett kernel, S, =1
leads to numerically identical results for K as no smoothing. To solve the maximization problems in A in the
GEL-based statistics, a Newton—Raphson algorithm is used. Size and power properties are investigated by
considering 8) = 0, 1, and —1. All results reported below are based on 20,000 simulation repetitions.

“We also included five additional tests based on Sgr, GELREL, a variant of K that uses a recentered HAC estimator (as suggested in
Kleibergen, 2005a, p. 1112), and two variants of EGEL that use a recentered Bartlett HAC estimator and a Bartlett HAC estimator. The
first four of those tests have far less desirable size properties in our study across virtually all designs and bandwidths than all the other tests
and the last test is dominated in terms of size by I?GEL. Therefore, detailed results for those tests are not discussed here. Size problems of
the i.i.d. versions of Sg; and GELRg in finite samples were also reported in GS.
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3.2. Results

There are various patterns in our simulation results that allow us to restrict our discussion to a certain
subset of the many designs:

As to be expected, all the tests have reliable size properties for the i.i.d. case ¢ = 0 without any smoothing.
For each of the test statistics the ERPs under the null are very similar for the three cases of same AR/MA
parameters when ¢ = .5, v = .5,.9, whereas the case ¢ = .9 is characterized by uniformly much higher ERPs.
Furthermore, opposing values of the AR or MA parameters in the u and Z processes typically lead to ERPs
under the null that are—with few exceptions—uniformly smaller (or equal) than the nominal size across all
test statistics, bandwidth choices S,, and parameter combinations, and ERPs are smallest when ¢ = .9. This
generalizes our findings in Remark (2) above from the unsmoothed statistic GELR: to all the statistics
considered in this study. In sum, our discussion of potential size distortion of the testing procedures can be
reduced to the AR(1) cases ¢ = .5 and .9 where the AR parameters of u and Z have the same sign. The power
results for 6y = —1 and 1 are qualitatively very similar and therefore we restrict attention to the former.
Furthermore, power results for all AR/MA cases are virtually identical for almost all cases and statistics
except for the case of same AR parameter when ¢ = .9; therefore, as for size, we can w.l.o.g. restrict our
discussion to the two cases of same AR parameter ¢ = .5 and .9.

The ERPs under the null and alternative are qualitatively identical for the two cases p,;,; = 0,.5 across all
statistics and almost all designs'® and thus, in what follows, we restrict attention to p,;, = .5.

As to be expected from our theory, the ERPs under the null do generally not vary much with IT;, the
strength of the instruments. Therefore regarding size properties, we restrict the following discussion to the case
I1, = .01. In contrast to size, power properties do of course strongly depend on I1;, with ERPs of the test
statistics being often in the close vicinity of the nominal size of the test when IT; = .01."" Therefore, for power,
we restrict attention to IT; = .5.

Based on the above discussion we select the following figures. Figs. 1(1- 4) contain size and Figs. 2 (1-3),
3(1-3) power curves of the LMgy, KEL,H]., for j = 1,2, GELRg1(00, tgr (60)), GELRgT(0, [ig; (60)) (referred

to as GELR;| and GELR, in the figures), I?GEL, and K tests as functions of the bandwidths S, =1,...,15 for
the cases

Fig. 1. £=2,20, I, =.01, p,, =.5 ¢=.5,9, 0p=0 (size),
Fig. 2: k=2,10,20, I1, = .5, p,y = .5, ¢ =.5, Op = —1 (power),
Fig. 3: k=2,10,20, I1, = .5, p,y =.5, ¢ =.9, 0p = —1 (power), 3.4)

where the processes # and Z have AR parameters of the same sign. For convenience, at S,, = 0 we report the
results for the unsmoothed i.i.d. versions of the statistics. Since we do not provide a data driven method of
choosing S, we report results for an array of S, values. To interpret the figures, as long as there is no data
driven choice for S, it is desirable for a testing procedure to have ERPs under the null that come close to the
nominal size for a wide array of bandwidth choices; in other words, little dependence of the performance of the
test on the choice of the bandwidth is desired.

All results not reported here are available from the authors upon request.

We now discuss the size and power results in more detail using the above figures as guiding examples.

We first discuss the size results. As to be expected from Theorem 1, all tests are typically size-distorted in the
time series models with same AR/MA parameters when there is no smoothing. Typically, the higher the AR
coefficient ¢ the higher the size distortion, e.g. compare Figs. 1(1 and 2) to 1(3 and 4), respectively. On the
other hand, as to be expected from Remark (2) above, for opposing values of the AR parameter the ERPs of
all test statistics are very small and in the vicinity of the nominal size or even below when ¢ =.9. For all
designs, ERPs under the null are typically nonincreasing functions of S, for all tests in the study and in most

'%The only exception under the null is the test based on K1 m, that has higher ERPs for intermediate bandwidth values for p,,;, = .5 for
the case kK = 20 and I1; = .01 across almost all AR/MA designs.

""Two exceptions to this statement about power for IT; = .01 are (1) the case of same AR parameter ¢ = .9, where the power of all the
test statistics over all parameter combinations is higher than 50% for small numbers of S, and (2) all other MA/AR cases for kK = 20 and
puy = 0, where the power of Kgp i, can reach values of up to 40% for some intermediate bandwidths.
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cases the maximum smoothing number S, = 15 considered here is enough to reduce ERPs to about the
nominal level or even less. However, for various scenarios with few instruments, Otsu’s (2006) Kggp test
continues to overreject even for S, = 15, see Figs. 1(1) and especially 1(3), where k = 2. The computationally
simpler modifications of Kggp from Theorem 3 improve on the size distortion of Kggr, see Figs. 1(1 and 3).
Across virtually all designs and uniformly in S, >1, the ERPs under the null of the test statistic Kg 7, are
smallest among all test statistics considered and with the exception of few highly persistent designs (such as in
Fig. 1(3) where ¢ =.9) the ERPs of this test equal or are below the nominal size for any S, >1. The two
closely related statistics LM gy and KgL i, typically require more smoothing to reduce the ERPs under the null
below the nominal size and in few highly persistent cases (such as in Fig. 1(3) where ¢ = .9) S, = 15 is not even
quite sufficient to control size for KeLn,- Comparing KgL ., on the one and LMEg; and KEL ., on the other
side, the former statistic oftentimes leads to a quite conservative test which has negative effects on power
relative to the other statistics as seen below. In that respect, LM gy seems to offer a good compromise between
the two hybrid statistics in terms of size and power trade-off. Recalling the construction of the hybrid statistics
in (2.31) and (2.32), one might expect the performance of the hybrid tests to be in between the ones of the
LMg and K test, with KeLn, and KEL H, being closer to LM g and K, respectively. The Monte Carlos do
not confirm this expectation. While Ky g, is typically smallest, there is no simple ranking among LMEL,
KELn,,and K; e.g. compare Figs. 1(2/4), where the ERPs of the K test for small S, are far smaller/higher than
for the Kgy u, test. While replacing g,(0) in LM, by 2g(0) in K, 7, (0) uniformly decreases ERPs, this effect is
oftentimes overcompensated by replacing A(G) in K, 1, (0) by 2A (0) in K, 17, (0). The latter statistic differs from
K only through the matrix D, but no consistent ranking in terms of size of the two tests can be derived from
our simulation study.

Summarizing we find that for sufficient smoothing, the testing procedures have ERPs under the null that
come close to the nominal size. One exception is the test based on the statistic Kggr that seems to somewhat
overreject even for S, = 15 when k£ is small.

Next the power results are summarized. We first discuss the separate effects of k, ¢, and S, on the power
properties of the tests. It seems that increasing & has a negative impact on the power properties of Kggr and K
(see Figs. 2(1- 3) and 3(1- 3)). On the other hand, for LM g and KP,H]., for j = 1,2, the effect of k on power is
mixed and seems to depend on the bandwidth S,. For example, in Figs. 2(1 and 2), power decreases for
increasing k for small and large bandwidths S, but increases for increasing k for intermediate bandwidths S,,.
Increasing the AR coefficient ¢ generally seems to have a negative impact on power (compare Figs. 2 and 3).
While the power of Kggr and K seems to be a decreasing function of S, the effect of the bandwidth on the
power of the other statistics depends on the scenario. For example, in Fig. 3(1) power decreases in .S,, while in
all the other figures power is not a monotonic function of S,,.

Next we compare the power properties of the tests to each other. Overall, K, i, seems to have best power
properties across all statistics considered. The power gains over the other tests can be dramatic in cases of
large k£ and high ¢, see Fig. 3. When k = 2 and ¢ = .5, the K test takes on the power lead for small values of
the bandwidth, see Fig. 2(1). However, the power of K and especially the power of Kggr is very low relative to
the other tests when k is large; even when k& = 2 the power loss can be dramatic when S, is large, see Fig. 2(1).
With regards to power there seems to be a consistent ranking of LMgy, K, n,, and K, i, with LM having
power between K, my and K, ). In that respect, LM g seems to offer a good trade-off between the excellent
size and power properties of K, g, and K, ,, respectively. Given the sometimes large differences in power
between K p.H and K, we conclude that the components D, and Dy in these statistics have an important
impact on the performance of the tests. With respect to the statistics GELRgr(6o, ug(0p)) and
GELRgt(00, [igr (00)) we find that overall the former has very competitive while the latter has very poor
power properties.

GS found that the comparative advantage of GEL-based tests in i.i.d. simulations occurs in situations
with thick tailed or asymmetric error distributions. Here, we find that even with normal errors,
GEL-based tests can outperform the K test, depending on the scenario, most crucially the number of
instruments.

In summary we find that both the finite-sample size and power properties of the tests based on the new
statistic LMy, are very competitive. The new hybrid tests K, y,and K, i, provide very good size and power
properties, respectively. Based on our simulations, we also recommend the statistic GELRgt(0y, pg (00))-
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Appendix

Additional notation is given and then the assumptions for Theorem 1 are stated.

As discussed above, for the validity of the tests in Theorem 1, consistency of 4(0p)/2 in (2.6) for the long-run
variance matrix 4(6) is essential. To show consistency of 4(0y)/2, we assume consistency of the classical
Bartlett kernel HAC estimator (which holds under appropriate assumptions given in Andrews, 1991,
Proposition 1) and then show that the HAC estimator differs from 4(6)/2 by a op(1) term only. The latter is
similar to Lemmas 2.1 and A.3 in Smith (2001, 2005). The same procedure can be applied to other long-run
variance expressions, such as 44(0), defined in My, (vii) below and its corresponding estimator 4,4(0o)/2,
where

A4(00)=S, Y _ (vec Gina(00))g},(60) /1. (A1)

i=1
We now give the details.
In (2.17), decompose Gi(0) into (Gi4(0), Gig(0)), where Gi4(0) € R**P4 and Gi5(0) € RFPB.
Denote by k* the Bartlett kernel given by

K*(x)=1—|x/2| if |x|<2 and k*(x)=0 otherwise. (A.2)

The Bartlett kernel is essentially the convolution of the truncated kernel, in fact, k*(x) = [k(x — y)k(y)dy/2,
see Smith (2001, Example 2.1). The Bartlett HAC estimator of the long—run covariance between sequences of
mean zero random vectors » = (r;),_; , and s = (s;),_; , 1s given by

..........

n—1
Tu(r, s)y= Z k*(i/Sn)f,(r,s), where

Jj=—n+1
n
> risi/n forj=0,
_ i=j+1
Ii(r,s)= " (A.3)
> rigs;/n for j<O0,
i=—j+l

see Andrews (1991, eq. (3.2)). Under certain assumptions, that include stationarity, it can be shown that (see
Andrews, 1991, Assumption A, Proposition 1)

Ju(Gi 9= o4, Tu(vec Gig, g:)—pAa, (A4

where the argument 0y was left out to simplify notation. Below it is shown that the Bartlett HAC estimator
and 4(6y)/2 have the same probability limit.'*> Therefore, assuming (A.4) and some technicalities, 4(0y)/2 is
consistent for the long—run variance 4(6,). The same statement is true for 4,4(6y) and its estimator.

2Note that the assumptions ],l(vec Gig,9;))—pd4 and j,l(vec(G,-A — EGiy), 9;)—p4.4 are equivalent under weak conditions, for example,
under stationarity. Therefore, for consistency of the HAC estimator the possibly non-zero mean of vec G4 does not matter as long as
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A.1. Assumptions

A.1.1. Full-vector tests

The assumptions of Theorem 1 are now stated and discussed. For the asymptotic distribution of GELR,
Assumption My, (i)—(iii) are needed. For the statistics LM ,(6y) and S,(0p) we also need My (iv)~(vii). For
notational simplicity, the argument 0, is left out in My, (v)—(vii) and in the following discussion. Denote by Z
the set of integer numbers.

Assumption My . Suppose (i) max; <<, [l9:(0)]l = 0p(S;'n'/?); (ii) for S, — oo and S, = o(n'/?) we have
Jn((9i(00)). (9:(00)))—4(69)>0; sup; ;~1 Ellg,(60)g(6o)l| <oo: for any sequence m — oo and m = o(n'/?),

supgez EN(L/mm) S, ST 974000900l = o(1); Sun™ 321 19:4(00)3(00) | = Op(1); (i) W(0o)—a¥(0p),
where ¥(05) = N(0, 4(0));

(iv) M 1,(00):=(0m1,/00)|g—g, — M1(00):=(0m, /30)]y_g, € R, (A.5)
EG(00) = n"2 M1,(00) + (0, Ma(By)) — (0, Ma(By)); (A.6)
v) .7,1((vec Gia),(9:))—>pAa (A4 is defined in (vii)); sup; ;> Ellvec GiAg}||<oo; for any sequence m — oo
and m = o(n'/?), sup,., E|(1/nm) ZJ | ZH'” vec Giriagill = o(1); @B—>pE@B; (vi) maxi<i<, |Giall =

Op(S;l 1/2)3 Snn_] Zi:l lvec GmAgjn” = p(l)a maxi<i<x |Gigll = Op(S;ln); Snn_3/2z i—1 lvec Gmqu” =
op(1); (vii) n™V/2 371 | ((vec(Gia — EGig)), g} —aN(0, V), where

n !
V= nlingo var <n1/2 Z(vec G;A,g;)> € RKPA+D>kp4+D) (A.7)
i=1
has full column rank. Decompose V into
Aaa A4 D gk xp 4k
V= A, 4 ) where A 44 € RPA™*PAX, (A.8)

A discussion of Assumption My, now follows. Assuming S, = cn* for positive constants ¢ and a< %, a
sufficient condition for My, (i) is given by the moment condition sup; E|lg,(6)||I° <oo for some E>2/(1 —

2a), see GS, Eq. (2.4), for a similar statement and a proof. Analogous sufficient conditions can be formulated
for Mg, (vi).

The high-level assumption 7,1((g,-), (9))—>p4 In My (ii) is satisfied under sufficient conditions given in
Andrews (1991, Proposition 1) which include stationarity. We prefer the high-level assumption to the sufficient
condition because it may hold even when the data are not stationary, e.g. in cases of non-identically
distributed data. My (ii) then guarantees that A— p24, see Lemma 2 below. The technical assumption
SUpez Ell(1/nm) Z/ | Zﬂkm gl+,g]|| = o(1) can be 1nterpreted as a mild form of mixing, see also analogous
assumptions in My, (v), and is needed in the proof of Lemma 2. The assumption S,n~! St 19ngill = Op(1) is
needed in the proof of Theorem 1(i) to show that S, > " l(,oz(i 9i) + 19,9,/ is 0p(1). To motivate this
assumption, note that if a CLT holds then we have g;, = Op(S,, 1/2) The analogous assumptions in My, (v) and
(vi) are needed in deriving (A.28) and can be motivated in the same manner, noting that also vec G4 =
0,(S, /%) by My, (iv) and (vii).

My, (iii) is the “high-level”” assumption also used in Stock and Wright (2000).

(footnote continued)
Eg; = 0. More precisely, it can be shown that under stationarity

Ju(vec Giy, g;) — Ju(vec(Giy — EGia), g;) = Ju(vec EGiy, g;)—50.
This can be shown by establlshlng that forany s=1,...,p,k and t =1,...,k and for some ¢ <oo it holds that (Ej,,(vecEG,-A,gi))m =0
and (n/S )E(J (vec EG,A,g,))S,\c see Hannan (1970, p. 280) for similar calculations. Because by assumption (n/Sﬁ) — oo, the latter
implies consistency.
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A sufficient condition for Mg (iv) is given by: for some open neighborhood .# C © of 0, g(-) is
differentiable at 0 a.s. for each 0 € .#, g(0) is integrable for all 0 € .# (with respect to the probability
measure), supge/ﬁH(A}(@)H is integrable, m, € C'(0), and M,,(-) converges uniformly on @ to some function.
These conditions allow the interchange of the order of integration and differentiation in Assumption ID, i.e.
(0Eg/00)l9—g, = EG(0,). Note that by ID the limit matrix (0, M»(B,)) is singular of rank p.

Let

GulOy=n"">" G0 (A9)
i=1

and decompose @n(ﬁ) as (@n 4(0), (A?HB(H)), where A(A;n 4(0) € RF*P4 and (A?HB(H) € R¥’B. The assumption
max<;< |Gigll = op(S;ln) in My, (vi) ensures that G, — 2Gp = 0p(1). This can be shown along the lines of
Lemma 1. B

Besides technical assumptions, My, essentially states that the HAC estimator J, is consistent (parts (ii) and
(v)) and that a CLT holds for ((vec(Giy — EGi4)), ¢}) (parts (iii) and (vii)). For the latter, primitive sufficient
conditions based on mixing properties can be stated along the lines of Wooldridge and White (1988). The CLT
assumption is very closely related to Assumption 1 in Kleibergen (2005a). Assumption (v) needs to be
substituted by an assumption analogous to (2.19) when dealing with the unsmoothed statistics. When deriving
the limit distribution of S;(@o) and LM (o) we assume

n

> vec Gia(00)gi(0) /n—p Q24 (00)= lim E > vee Gia(00)gi(0o)/n. (A.10)

i=1 i=1

A.1.2. Sub-vector tests

For the sub-vector tests we give high-level assumptions. More primitive assumptions along the lines of
Assumption My, could be stated at the cost of additional space.

Let GAI.(H):zn_1 > (@g;/00;)(0) and likewise GnA/.(O):zn‘l S (0g;,/02,)(0).
Assumption M,. For any consistent estimators B, E—>pﬁ0 we have (1) max; <i<n Supgeg lg:(0p)|| = op(S,jln'/z);
ST TS gi(00) = 0p(1): (i) for S, — 00, S, = o(n'/?) we have A(0p)—p24(60)>0; Jmax(4(0p)) is bounded
wpa L Sum™' S 1909 (05) | = Op(1): (i) Ga(67) exists: Ga(0)—,EGs(07) = (n=/(@m1, [Op)(6 )+
(©my /OB (002, B) — (D2 /OP) (oo, Bo);  m 1S, S, Gip(0p) = op(1); maxi<i<a |Gip(OPI = 0p(S; 'n);  (iv)
G(00)— pEG(0); ¥u(00)—>a'P(0p), where ¥(0p) = N(0, 4(0y)); (v) (@vec G4, /OP)(0) exists on a neighborhood
of 0y and (dvec GAI/GB)(QE) —p0; (Vi) maxi<i<allGia, (Op)] = 0p(S;1n!/2); pm1237 ((vec(Gia, (B0)—
EGis,(00)),  (9/(00) — Eg,(0))) —aN(0, V*), where V* is the appropriate submatrix of ¥ defined in
Mg, (vii); V*>0; (vii) S,n~" 31 vec(GmAl(0[39)g,»n(9/~}9/—>p2AA1 (defined in (A.11)); S,n=' Y0, [lvec Ginay (0
g0 = Op(1); Sn32 37 vee Ginay 099 (05| = 0p(1);  similar to (i), 642(9[;9 exists and
G 4y (09— p(@m2 /OP) (02, Bo); maxi<in | Gy (0| = 0p(S;, ).

In M, (vi) write

Aayay Aa kxp sk

Ve = / where A4, 4, € RPATPAE, (A.11)
A A A 141

Mutatis mutandis the assumptions in M, can be interpreted as their counterparts in M. For example,

M, (ii) guarantees that )vmm(Z (09)) is bounded away from zero w.p.a.1. which is needed when deriving a slight

variation of Lemma 4. Sufficient conditions for the high-level assumptions above can be given along the lines

of GS, e.g. for (0 vec @Al /6ﬁ)(0g)—>p0 in M, (v), see their M,(v), (vii), and ID,. Likewise, sufficient conditions
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stated in terms of HAC estimators can be given for M, (ii) and the first part of M, (vii); see also M,(viii) in
GS for more primitive conditions.

A.2. Proofs

The next lemmas are helpful in the proof of the main result. Note that the assumptions made in Lemma 1
are implied by Mg (1), (iii), (vi), and (vii), e.g. G4(0p) = Op(n‘l/z) follows from My, (vii) and Eq. (A.5). Recall
GnA (0) =n"! Z?:] GinA (9)

Lemma 1. Suppose S, — oo and S, = o(n'/?).
If max |lg;| = op(S,'n'/?).5 = Op(n™"2)  then n'(g, —29) = 0y(1).
sIsn

If max [[Gull = 0y(S;'n'/),Gs = Op(n™'%)  then n'*(Gys —2G.1) = 0y(1),
where again 0 is left out to simplify the notation.

Proof. For the first equation tedious but straightforward calculations imply that

min(i—1,Sy)

n n i—1 n
n! Z Gin=1" Z S;l Z kG /Sngi—; = n! Z S;l Z 9i-j
i=1 i=1 Jj=i—n i=1

Jj=max(i—n,—Sy)

Vl—Sn Sn . n .
28, +1 S - Sp+1

=n g itn g
i=Sp+1 Sn i=1 Sn i=n—Sp+1 Sn
n n—Sp 1
-l -1 1
=2n Zg,-+n _Z Sng,
i=1 i=Sp+1
Sn n .
_1 i—S, - S, +n—i+1
AP IE AP s, :
i=1 i=n—Sp+1
n
=217 > " g+ op(n7'?), (A.12)
i=1
where the last equation uses max; <<, [|g;| = 0p(S;, 'n'/?) and g = Op(n~'/?) to show that the remainder terms

are op(nfl/ 2). The proof of the second equation can be derived in exactly the same way. O

It is now shown that under Mg,, 2/2 and ZA/Z are consistent for 4 and 4. The first part of the following
lemma is similar to Lemma A.3 in Smith (2001). Note that the assumptions in the lemma are part of My, (ii)
and (v).

Lelrcnma 2. For S,— oo assume S,=o(n"?). If sup Elggjll<oo and sup..zEl(1/nS,) Y7,
S, ’
S gj+i9;l = o(1) then

A = 27,((9), (9) = op(1).
If sup; ;> Ellvec Giagjll <oo and sup,cz E|l(1/nS,) 377, S vec Gjyiag)ll = o(1) then
A4 = 2T,((vee Gig), (g)) = 0p(1), (A.13)

where the argument 0y is left out to simplify the notation.
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Proof. For the first statement easy calculations lead to

n—1 min(n,n—i)

209D N —4= > n" N kygg, for
i=—n+1 Jj=max(1,1-i)
n—j
kip=2k(i/Sn) = Sy > k(U — )/ Swk(l/Sy). (A.14)
I=1—j

Using the definitions of k and k* tedious calculations show that for 0<i<.S,
STNS, —i—)) for 1<j<S, —i+1,
kj=1{ =S, for S, —i+1<j<n—S,, (A.15)
-S ' n—j—8,+1) forn—S,<j<n—i,
that for —S,<i<0
S7HS, —)) for 1 —i<j<S,+ 1,
ki=< =S, for S, +1<j<n—S, —i, (A.16)
S;I(S,,+i—n+j—l) forn— S, —i<j<n,
that k; = —S, ' if S, <|i| <25, and that k;; = 0 otherwise. Using the moment assumptions, it then follows that

2J, 2((9,),(9;) — A reduces to op(1) expressions. For example, by Markov’s inequality the summand Pr(|| —
ZZS” nls;! it g/+lJ/|| >¢) can be bounded by

28n n—i n—Sy min(n—;,28n)

—1 g1 —1 —1 —1 /

&S, n Z Z g/-HJJ S, E 9i+i9; |- (A.17)
i=Sp j= j=1 i=Snp

Using sup,. E||(1/nS, )Z] I Zk+,f” gj+i9;l = o(1) it then follows that the RHS of this expression is o(1). The
proof of the second claim is completely analogous and therefore omitted. [

Given the results in Lemma 1 and consistency of A /2 and A 4/2, the proof of Theorem 1 is along the same
lines as the proofs of Theorems 3 and 4 in GS.

As in GS, the proof hinges on the following two lemmas. Let ¢,:=S,n~"/> max; <;<y [1g;,(00)|l. Let A,:={1 €
A< S 26 Y if ¢, #0 and A, = RF otherwise.

Lemma 3. Assume maxi<i<, g:00)] = 0p(S;'n'/%). Then sup,c,, 1<icnl? giun(00)l—p0 and A, C A,(0p)
w.p.a.l.

Proof. The case ¢, =0 is trivial and thus w.lo.g. ¢,#0 can be assumed. Note that [g,,(0y)]<
S;l Z};Ln k(i/Swllgi—j(0o)|l and thus by the definition of k(-)

min(Sy,i—1)
4 < —1 .
max g, < max ;1> gy (0o
Jj=max(—Sp,i—n)
<@Sy+ 1S, max lg(0)l| = op(S, 'n'"?). (A.18)

Therefore, ¢, = op(1) and the first part of the statement follows from

sup M~/gin(00)| <Snn71/2c;1/2 lrEaX ”gm(QO)”

leAp1<i<n

= S, Pl Ps T e, = 2 = o,(1), (A.19)

which also immediately implies the second part. [
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Lemma 4. Suppose max, <<, [|9:(00)| = 0p(S;'1n"/2), Jmin(4(00)) =¢ w.p.a.1 for some £>0, G,(0p) = Op(n~"/%)
and Assumption p holds.

Then /(0o) €4,(00) satisfying P,(0o, 2(0p)) = sup
SuPze/’fn (OO)P/’(GO’/I) = Op(Snl’lfl).

Proof. W.lo.g. ¢,#0 and thus A4, can be assumed compact. Let 190 €A, be such that

s 6g) P,(00, %) exists w.p.a.l, X(0p) = Op(S,n~"/?) and

IA’p(BO,)V.go) = max;eq, 13,,(00,1). Such a 190 € A, exists w.p.a.l because a continuous function takes on its
maximum on a compact set and by Lemma 3 and Assumption p, ﬁ,,(@o, 7) (as a function in A for fixed 6y) is C*
/162;7(90) Pp(HO» /L)
w.p.a.1 which then proves the first part of the lemma. By a second-order Taylor expansion around 4 = 0, there
isa /130 on the line segment joining 0 and 4y, such that for some positive constants C; and C,

on some open neighborhood of A, w.p.a.l. It is now shown that actually ﬁp(Ho,igo) = sup

0 = S,Py(0,0)< S, P,(00, 29,)
= — 28,7, 3,00) + 24, [Su D 225, 9ia(00)9(00)g(00) /1 | 20, (A.20)
i=1

< — 28,724, G,(00) — C1 A(00)a, <28l | 13,00} — Call2g, I (A21)

w.p.a.l, where the second inequality follows as maxlg,-g,,pz(/lz;gm(%))< —% w.p.a.l from Lemma 3,

continuity of p,(-) at zero, and p, = —1. The last inequality follows from /lmin(Z(Ho))>s>0 w.p.a.l. Now,
(A.21) implies that (C2/2)ll 40, Il < S,llG,(00) W.p.a.1, the latter being 0,(S,n~'/?) by assumption. It follows
that g, € int(4,) w.p.a.l. To prove this, let ¢>0. Because 4, = Op(Snn“/z) and ¢, = op(1), there exist
M, <00 and n, € N such that Pr(||S, 'n'*26, I < M;)>1 — ¢/2 and Pr(c; /> > M,)> 1 — ¢/2 for all n>n,. Then
Pr(Zg, € int(A4,)) = Pr(S, 'n'/? 2. | <cx'?) = Pr((IS, 10"/ 20| S M) A (' > M) > 1 — & for n>n,.

Hence, the FOC for an interior maximum (0P,/04)(0y,4) =0 hold at A= L9, W.p.a.l. By Lemma 3,
20, €4,(0y) w.p.a.1 and thus by concavity of IA’p(Ho, 4) (as a function in A for fixed 6y) and convexity of /1An(00)
it follows that IA’,)(QO, Aoy) = SUP, ¢ (0,) IA’p(Ho, A) w.p.a.l which implies the first part of the lemma. From above
/gy = Op(Syn~"/?). Thus the second and by (A.21)the third parts of the lemma follow. [

Proof of Theorem 1. (i) Lemma 4 implies that the FOC
w0 (2 g(0)g;(0) = 0 (A.22)
i=1

have to hold at (6y, 1g:=4(8y)) w.p.a.1. Expanding the FOC in 4 around 0, there exists a mean value 7. between
0 and 4y (that may be different for each row) such that

n
~ 24 ’ —1,4 ~ = o=
0=—G,00) + | Su Y P2 4in(00))9i(00)in(00) /| S, 20 = =5 (00) — 43S, Ao, (A.23)
i=1
where the matrix Z;has been implicitly defined. Because 4y = Op(S,,n*I/ 2), Lemma 3 and Assumption p imply
that max1<i<n|p2a/gm(90)) + 1|—,0. By Assumption My, (i) and Lemma 2 it follows thatA} —524(09)>0
and thusA}is invertible w.p.a.1 and (A})_l—>p4|(00)_1/2. Therefore,
S, = —(4)7',(00) (A.24)

w.p.a.l. Inserting this into a second-order Taylor expansion for ﬁ(@, A) (with mean value A* as in (A.21) above)
it follows that w.p.a.1

= PPN Y R B
S, 'nPy (00, 20) = 2ng,(00) 45 G,(00) — ng,(00) A3 4,245 G, (00). (A.25)



156 P. Guggenberger, R.J. Smith | Journal of Econometrics 142 (2008) 134-161

By Lemma 1 and My, (ii)) n'/?g,(00) = 2n"/*G(00) + 0p(1)—a2N(0, 4(0)) and therefore S, 'nP (00, 20)/2
i)

—ar’(k)

(1)" Note that Assumption M(i)—(iii) in GS (p. 673), for @ = {0p} is implied by Assumption Mg, (i)—(iii)
above. The result then follows from (2.19) and the proof of Theorem 3 in GS.

(i) Define D:=D,(0y)A where the p x p diagonal matrix A:==diag(n'/?,...,n'/2, 1,...,1) has first p , diagonal
elements equal to n'/? and the remainder equal to unity. Then (in the remainder of the proof the argument 6, is
left out for notational simplicity) it follows that

LM, =ng, A DDA~ D' DA 'G,/2. (A.26)
It follows from (A.24) and n'/%g, = Op(1) that
S 20y = —A7'n"2G,/2 4 0,(1) (A.27)

and therefore the statement of the theorem involving S, follows immediately from the one for LM,.
Therefore, only the statistic LM, is dealt with using its representation in Eq. (A.26).

First, it is shown that the matrix D is asymptotically independent of n'/?g,. By a mean-value expansion
about 0 it follows that p,(Zyg;,) = —1 + p»(&))g}, 20 for a mean value ; between 0 and Agg;, and thus by (2.14),
(A.27), and the definition of A it follows that (modulo op(1) terms)

D= =3 072Gt G = S 3 (02 G, G, 125,12

i=1 i=1

= ( ~12 Z Gina — Sun™ Z Ginaglyd~'n'?G,/2, 2M2(ﬁo)> (A.28)

where for the last equality we use (A.5) and Assumptions My, (v)—(vi). By Assumption My, (v) and Eq. (A.13)
it follows that A4 = S,n~! S vec(Gina)d,/2—>pA 4 and thus

vee(D,n'?g,) = wi + Mv + op(1), where (A.29)

wi=vec(0, —2M(f,),0) € RPa+hrB+k  and

-1 A4~
& 4 n_ [ vec Gy
M=| 0 0 , U n_l/zz (A.30)
0 I

M and v have dimensions (kp, + kpg + k) x (kp,+ k) and (kp, + k) x 1, respectively. By Assumption ID,
My, (vii), Lemma 1, and (A.5) it follows that v—42N(w», V'), where

wai=((vecM 1) ,0) (A.31)

and M, are the first p, columns of M. Therefore

v 0 0
vee(D,n'%G,)—>aN | wi +2Mw2,41 0 0 0 | |, (A.32)
0 0 4

where Y'=A4,44— 4 AA_IA/A has full column rank. Eq. (A.32) proves that D and n'/?g, are asymptotically
independent.

The asymptotic distribution of LM, is derived next. Denote by D and g the limiting normal random
matrices corresponding to D and n'/?g,, respectively, see (A.32). Below it is shown that the function / :

R? — RP*k defined by h(d)=(d'A~'d)"'?d" for d e R®” is continuous on a set C C R with
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Pr(D € C) = 1. By the continuous mapping theorem and My, (v) it follows that

212D A DYy DA 012G, oD 47 D) V2D A g2, (A.33)

By the independence of D and g, the latter random variable is distributed as {, where (~N(0, 7,).

Finally, the continuity claim for % is dealt with. Note that 4 is continuous at each d € R¥*? that has full
column rank. It is therefore sufficient to show that D has full column rank a.s. From (A.32) it follows that the
last pp columns of D equal —2M>(B,) which has full column rank by assumption. Define O:={o € RfP4
35 € R4 s.t. 0 = vec(0) and the k x p matrix (3, —2M(f,)) has linearly dependent columns}. Clearly, O is
closed and therefore Lebesgue measurable. Furthermore, O has empty interior and thus has Lebesgue measure
0. For the first p, columns of D, D, , say, it has been shown that vec D,  1s normally distributed with full rank
covariance matrix ¥. This implies that for any measurable set O" c R4 with Lebesgue measure
0,Pr(vec(D, )€ O") = 0, in particular, for Ot = O. This proves the continuity claim for 4.

(i)’ Note that under (2.19) the analogue to (A.8) in GS is n'/2g = —Q'n'/%G + oy(1). It follows that S% and
LM, have the same asymptotic distribution and it is thus enough to prove the result for LM. As in the proof
of Theorem 4 in GS (line 121, p. 706) we have a formula

vec(D*,n'%g) = w + M*v+ op(1) (A.34)

with D* defined in GS (line 101, p. 681) wi = vec(0, —M>(B,),0), and v* = n~'/23" ((vec Gix),g}) but,
because of (2.19) and (A.10), we have—in contrast to GS—that

Ly, Q7'
M*— 0 0 € Rpa+kpp+k)+(kp 4+k) (A.35)
0 Iy

By Assumption My, (vii) we have v*—¢N(ws, V), with w, defined in (A.31). Thus vec(D*, n'/2§)— 4, where { is
a random variable distributed as N(wi + M*w,, M* VM*/) Because in general —A4 4 + QAQ*IA #0, it follows

that D* and n'/?g are typically not asymptotically independent. Therefore, in general, n'/?g is no longer
asymptotically N(0, 4) conditional on D*, and consequently LM, is not asymptotically %>. More specifically,

let {; € R¥” and {, € R* be random matrices such that { = ((vec{,), ;). It then follows that
LM;—ME:C’ZQ_IQ(CQ9_151)715,19_152- O (A.36)

Proof of Theorem 2. (i) We first show that E—> pBo- Note that Assumptions M, (i), (i), and (iv) do not assume

consistency of B A proof as for Lemma 3 using the first portion of M, (i) shows that

sup 1291 (0p)|— 10, (A.37)
peB,jeAn, 1 <i<n
where the definition of ¢, is changed to ¢, = S,n~"/? max, <;<, supges 19:,(0p)ll. By sup, 7 2 00 )IA’ (00, 7) =

O, (S, n~') (which holds by Lemma 4) a variant of Lemma 9 in GS (defining A= — S,n~"/2g (00) /I g,,(00)|| in
their proof, using sup;c 4, 1<j<, |P2(4 gm(GO)) + 1|— ;0 which holds by (A.37), and using imaX(A(Oo)) bounded
w.p.a.1 which holds by M, (ii)) yields 3,(00) = O,(n~'/?). Using Eq. (A.12) in the proof of Lemma 1 (with g;
and g,, replaced by g,(@o) and g,»n(go) respectively) and Mao(i) ﬁ,,(/éo) = p(n_l/ %) implies that ﬁ(@o) = op(1).
By the first part of My, (iv) and ID,, we have o,(1) = q(90) = my(cl02, [)’) + 0p(1) which by ID,, implies ﬁ—>pﬁ0

A variant of Lemma 4 using gn(HO) = p(;1*1/2) shows that i:= /1(60) exists and thus an FOC of P (00,/0

w.r.t. A holds w.p.a.1. An analysis as in the proof of Theorem 5 of GS using Eq. (A.20) and an analogue of Eq.
(A.27) then yields

GELRS™ (o) = n',,(00) 4(00)~"1'/5,,(00) /4 + 0p(1). (A.38)
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Using the implicit function and envelope theorems the FOCin 0,0 =n~! 3", pl(/fgm(@o)) (agm/aﬁ)’(éo)s,;li,
has to hold. Combining this with a mean-value expansion of (A.22) in (f5, 1) about (f,,0) we get

0 B—Bo
where
" 0 7 4. (00)@g.. /OBY (O
Mo Z o pi( _.él/m( oA))( 9in/OB) ( AO)/ (A40)
=\ P1(49in(00))(@g;,/OB)O3)  Supr(Z 9in(00))9:n(05)9:(00)

and (E/,Z/) are mean values on the line segment joining (ﬁ, /i\) and (f;,0"). Note that by the last two conditions
in M, (iii) and by an analysis as in (A.12) in the proof of Lemma 1, we have (@ng — 2@3)(0ﬂ~) = op(1) for any
argument ()»Bv as in M,,. Again by M,/(iii), we have aB(GZ?v)—>pM2,;(oc02, Bo), where Myp(-):=(0m,/0p)
(-) € R*’B Therefore by M, (ii), M—, M, where (writing Mas for Mag(on, ) and 4 for 4(6y))

_ 0 My\ _ | -> H
M:: — 2 . M = —2_] 5
My A4 H P

Z=(Myyd™ ' Mop)™', H=XMyyA™' and P=A4"'—A""MypZM)pa~". (A.41)
By (A.39) w.p.a.l

2B — o) .S, ' 7Y = MO 1 G, (00)) = 2M (O, 2G(00) Y + (1), (A.42)
where the second equality holds by Lemma 1 using M, (i) and (iv). An expansion of ﬁ(@o) in f around f, and
the above lead to (up to op(1) terms)

n'/2G,00) = n'22G(00) = n'*2[g(00) + GpO)B — Bo)] = 2(Ix — MapH)n'*G(0o) (A.43)
for some appropriate mean value 0, where the first equality can be established by an analogous expansion for
n'/2G,(0o), Lemma 1, and n'/2(f — B,) = Op(1). Note that My (4) = I = MogH and A7 2 My, ()4 =

M R Then, by (A.38) and M, (iv), GELR"(0g)—a&' M Mg for ¢~N(0, I;) and since 4~1/2 M is

A=12pm, A-120

of rank pp we obtain GELR;ub(oco)—>d;{2(k — pp) as claimed.
(ii) By a modification of (A.27), the result for LM;“b(cxo) implies the result for S;ub(oco). Renormalize
D:=D,(x)A, where A:=diag(n'/?,...,n'/2,1,...,1) has P4, elements equal to n'/? and P, elements equal to 1.

The key portion of the proof is to show asymptotic independence of D and nl/zﬁn@o). By a mean-value
expansion about 6y we have for a mean value 62; (that may be different for each row) and (A.42)

n'/? vec @,1 (@0) =n'"? vec @Al (0o) + (Ovec @Al /6/3)(92;)111/2(3 - Bo)
= n'? vec G4, () — (vec G 4, J3B)ORHR'*§(0)) + op(1)
= n'"2vec G 4, (0) + op(1) (A.44)

by Assumption M, (v). By My (vi) we thus have vec 6‘A1 (50) = Op(n"/ 2). Then, by an analysis as in Lemma 1
and the first part of M, (vi) it follows that

n'’? vec 6,,,41(50) = n'?2 vec 61‘11 (0o) + op(1). (A.45)
By M, (vii), (A.43), and (A.45) it then follows that

vee(D,n'*G,(00)) = 2m + 2Mv + oy(1), (A.46)
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where M € R*PA4,Hhp 4, Hxkp 4,+0) 5109

~Iip,  Aq 47"
M= opA] ]0 o "
o 0 Ipy—MyH)
0 I
n_ [ vec G, (0p)
vi=n""/? Z l ,  m=vec(0, —(0my /0a), 0), (A.47)
i=1 gi(go)

where the arguments (xo, ) in My and (0m,/0a,) and 0y in 4,4, and 4 are omitted. Note here that the last
two conditions in M, (vii) and analysis as in Lemma 1 imply 6nA1(§0) - 26/11(50) = 0p(1). By My, (vi), v is
asymptotically normal with full rank covariance matrix V* and thus the asymptotic covariance matrix of
vee(D, n'/2G,(0,)) is given by 4MV*M'. For independence of D and n'/2g,(0,) the upper right k(pa, +pa,) x k
submatrix of MV*M’ must be 0. This is clear for the kp Ay X k-dimensional submatrix and we only have to
show that the kp X k upper right submatrix

[— A4, + A4, A7 I = MoyH) AV — Moy HY (A.48)

is 0. Using I — MypH = MMzﬁ(A), the matrix in (A.48) equals —AAIA‘IPMZﬁ(A)MMzﬂ(A)A which is clearly
0. This proves the independence claim. Denote by D and g the limiting normal distributions of D and
nl/@(@o), implied by (A.46). Set M* = A~ MMzﬁ(A) and note that 2]\A4(oc0)—>pM* for the matrix in (2.26). The

function 4 : R¥P4 — RP4*K defined by h(d):=(d' M*d)~"/*d for d € R¥*?4 is continuous on a set C C RF*74
with Pr(D € C) = 1 (which is proved along the same lines as in Theorem 1). By the continuous mapping
theorem and (A.43)

(D'M*D)~"2D' 470G, (00)—4(D' M*D)~"/*D' 47'g~2N(0, 1,, ). (A.49)
Because Z(@g)—>p2A the claim follows. [

Proof of Theorem 3. Let 1y:=u,(0). Inserting this into a second-order Taylor expansion for 13,,(6, w) around
1 = 0 with mean value u, cf. Eq. (A.21) above,

SuPo(00, 1t9) = — 28ut63,(00) + 1 | Su > P2 9:1(000)9:,(00)g,,(00) /1| 1t

i=1

= — 28,u4,3,(00) + 1y Ao, (A.50)

o~

where 45 has been implicitly defined. As in the proof of Theorem 1(ii) define D:=D,(0y)A. Hence, we may
write g = —S,4(00)"' D(D'A(0y) "' D)~ D'A(05)"'G,(0). From Assumption My, (ii) and Lemma 2, both
imin(Z(Ho)) and }vmin(Z(Go)_l)>s> 0 w.p.a.l. Therefore, as the expression in (A.33) and D are Op(1), it follows

that p, = Op(S,,n*I/z). By an analogous argument to that in the proof of Lemma 4, y, € int(A4,) w.p.a.l.
Therefore, Lemma 3 and Assumption p imply that max;<;<, |p»(% ¢;,(00)) + 11—p0 and, thus from the last

part of Assumption My, (ii), Zﬁ_)p — 24(0p). Thus, substituting for g,
S, 'nPy(09, ptg) = ng, (60 A(0p) ' D(D'A(60) ™" D)™ D' A(B0) "G, (60) + 0p(1)
= 2LM ,(0p) + 0p(1)—= a2/2(p), (A.51)
from the proof of Theorem 1(ii) as Z—>p2A(90) and by Lemma 1 and Mjy,(iii) n'/2g (0y) =

2n'2G§(00) + 0p(1)—42N(0, 4(6p)). The result for S;'nP,(0o,[i(0))/2 then also follows immediately as
M00) = =S, 4(00) "G, (00) + 0p(S,n~/?). O
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