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Abstract. This article considers a mean zero stationary first-order autoregressive (AR)
model. It is shown that the least squares estimator and t statistic have Cauchy and
standard normal asymptotic distributions, respectively, when the AR parameter qn is very
near to one in the sense that 1 � qn ¼ o(n�1).
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1. INTRODUCTION

A recent paper by Giraitis and Phillips (2006) (also see Park, 2002 and Phillips
and Magdalinos, 2007), establishes the asymptotic distribution of the least
squares (LS) estimator q̂n in a stationary first-order AR model without intercept
when the AR parameter qn deviates from unity by more than O(n�1), i.e.,
n(1 � qn) ! 1. The result is ð1 � q2

nÞ
�1=2n1=2ðq̂n � qnÞ !d Nð0; 1Þ. That is,

provided qn is not too close to unity, the LS estimator has a standard normal
distribution. The LS t statistic also has a standard normal distribution.

In addition, results in the literature can be used to obtain the asymptotic
distribution of the LS estimator in a stationary AR model when qn deviates from
unity by O(n�1), but not o(n�1), the so-called near unit root case, e.g., see Elliott
(1999), Elliott and Stock (2001), and Müller and Elliott (2003). In this case,
nðq̂n � qnÞ and the LS t statistic have distributions that are functions of an
Ornstein–Uhlenbeck process plus an independent normal random variable that
arises due to the stationary initial condition. Bobkowski (1983), Cavanagh (1985),
Chan and Wei (1987), and Phillips (1987) consider the AR model with an initial
condition that is not stationary. In this case, the independent normal random
variable does not appear in the limit distribution.

In this article, we consider the case of a stationary AR model with AR
parameter qn < 1 that is �very nearly� unity in the sense that qn deviates from
unity by o(n�1). We show that the LS estimator has a Cauchy distribution and the
LS t statistic has a standard normal distribution. The rate of convergence of the
LS estimator is arbitrarily fast in the sense that any rate can be obtained by letting
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qn approach one sufficiently fast. These asymptotic results hold because the initial
condition dominates the asymptotics. In a model with an estimated intercept or
intercept and time trend, the asymptotics are substantially different because the
estimation of an intercept eliminates the effect of the initial condition when qn is
very nearly a unit root. In this case, the asymptotic distributions of the LS
estimator and LS t statistic are functions of a demeaned or detrended
Ornstein–Uhlenbeck process; see Elliott (1999, Lemma 2) and Müller and
Elliott (2003, eqn (3.3)) for the partial sum process in this case and Andrews and
Guggenberger (2007, eqn (9.5)) for the t statistic.

The results just described have implications for unit root tests in an AR
model with no intercept. The same asymptotic results for the LS estimator and t
statistic (as described in the previous paragraph) hold when the initial condition
is determined by an AR parameter qn that is very nearly unity and the AR
parameter in the model is exactly unity. Because the LS estimator converges to
one at a rate faster than 1/n, the usual LS-estimator-based unit root test under-
rejects the null hypothesis of a unit root asymptotically when the true root is
unity and the initial condition is very nearly a unit root. In addition, because the
a quantile of the standard normal distribution is larger than that of the LS t
statistic �unit root distribution,� the same is true for the usual LS t-statistic-based
unit root test. Hence, both of these unit root tests are robust to the initial
condition being very nearly a unit root distribution. These results are related to
results of Phillips (2006) for the unit root model with an initial condition that is
determined by a unit root process that starts at a time tn < 0, where tn! �1
as n ! 1.

Finite-sample numerical results (not reported here) indicate that the asymptotic
results established here only hold for q being extremely close to one.

Below, we denote convergence in distribution, convergence in probability, and
weak convergence as n ! 1 by �!d�, �!p�, and �)� respectively.

2. RESULTS

We consider a (strictly) stationary mean zero first-order autoregressive model:

Yn;i ¼ qnYn;i�1 þ Ui; for i ¼ 1; . . . ; n; ð1Þ

where qn 2 (�1, 1) is a nonrandom scalar and the innovations fUi : i ¼
0, ±1, . . .g and initial condition Yn,0 satisfy the following assumptions.

Assumption I. fUi : i ¼ 0, ±1, . . .g are i.i.d. with mean zero and variance
r2

U 2 ð0;1Þ.

Assumption S. Yn;0 ¼
P1
j¼0

qj
nU�j.

The sum in Assumption S converges almost surely (a.s.), e.g., see Brockwell and
Davis (1987, Proposition 3.1.1).
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Under Assumption S, we have

varðYn;0Þ ¼ r2
U=ð1� q2

nÞ: ð2Þ

If qn is local to unity in the sense that qn ¼ 1 � hn/n for 0 < hn ! h 2 (0, 1),
then (2) implies that varðY 2

n;0Þ is O(n) (and not o(n)). In the near unit root literature
it is often assumed that Yn,0 has a distribution that does not depend on n and thus
varðY 2

n;0Þ ¼ Oð1Þ; e.g., see Chan and Wei (1987) and Phillips (1987). This yields a
triangular array model with random variables fYn,i : 0 � i � ng that are not
stationary in each row. Also, it eliminates the impact of the initial condition Yn,0

on the asymptotic theory. There are some papers on near unit root, however, that
consider a model with stationary initial condition as in the model considered here;
e.g., see Elliott (1999), Elliott and Stock (2001), and Müller and Elliott (2003). In
these papers, the initial condition has an impact on the asymptotic theory in the
AR model.

The LS estimator of qn, q̂n, and the studentized t statistic, Tn(q), are defined by

q̂n ¼
Pn

i¼1 Yn;i�1Yn;iPn
i¼1 Y 2

n;i�1
and TnðqÞ ¼

n1=2ðq̂n � qÞ
r̂n

; ð3Þ

where r̂n is the usual LS standard deviation estimator. That is, r̂2
n ¼ r̂2

Unðn�1
Pn

i¼1
Y 2

n;i�1Þ
�1 and r̂2

Un ¼ ðn� 1Þ�1
Pn

i¼1ðYn;i � q̂n Yn;i�1Þ2 is the sum of squared residuals
divided by n � 1.

The main result of this note is the following.

Theorem 1. Suppose Assumptions I and S hold and qn 2 (�1, 1) is such that
qn ¼ 1 � hn/n and hn ! 0 as n ! 1. Then,

ð2hnÞ�1=2nðq̂n � qnÞ !d C and TnðqnÞ !d Z;

where C is a Cauchy random variable and Z is a standard normal random variable.

Comments.

1. Theorem 1 shows that the rate of convergence of the LS estimator to the true
AR parameter is arbitrarily fast. That is, any rate can be obtained by having
qn converge to one (equivalently, hn converge to zero) sufficiently fast. This
occurs because the signal from the regressor Yn,i�1 can be made arbitrarily
strong by having qn converge to one very fast, whereas the noise in the
innovation Un,i is not affected by qn.

2. The intuition behind the result in Theorem 1 is that when hn ! 0 the AR
parameter qn is so close to one that the initial condition Yn,0 is the realization
of the process that is almost a unit root process, Yn,0 ¼ qnYn,�1 þ U0 for
qn ¼ 1 � o(n�1), where Yn;�1 ¼

P1
j¼0 qj

nU�j�1, and it dominates the behavior
of Yn,i for all i ¼ 0, . . ., n. In particular, (2hn)

1/2n�1/2Yn,[nr]/rU ) Z for a
standard normal random variable Z that does not depend on r for r 2 [0, 1].
In contrast, if Assumption S is replaced by Yn,0 ¼ op(n), then n�1/2

Yn,[nr] ) rUW for a Brownian motion W on [0, 1].
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3. The results of Theorem 1 still hold if qn ¼ 1 in (1), but qn in Assumption S
satisfies the assumptions of Theorem 1. That is, the LS estimator and t
statistic when the model is a unit root model with a very nearly unit root
initial condition have Cauchy and normal distributions. The proof just
requires minor changes from that of Theorem 1.

For comparative purposes, we now consider the case in which qn ¼ 1 � hn/n and
hn ! h 2 (0, 1]. The result for h 2 (0, 1) is closely related to results in Elliott
(1999), Elliott and Stock (2001), and Müller and Elliott (2003), although they do
not consider the no-intercept model. The result for h ¼ 1 is due to Giraitis and
Phillips (2006).

For a Brownian motion W on [0, 1] and an independent standard normal
random variable Z, define the Ornstein–Uhlenbeck process Ih(r) and the process
I�h ðrÞ for r 2 [0, 1] by

IhðrÞ ¼
Z r

0

expð�ðr � sÞhÞdW ðsÞ
and

I�h ðrÞ ¼ IhðrÞ þ ð2hÞ�1=2 expð�hrÞZ for h > 0: ð4Þ

Proposition 2. Suppose Assumptions I and S hold and qn 2 (�1, 1) is such that
qn ¼ 1 � hn/n and hn ! h 2 (0, 1] as n ! 1. Then,

(a) for h 2 (0, 1),

nðq̂n � qnÞ !d

Z 1

0

I�h ðrÞdW ðrÞ
� �� Z 1

0

I�h ðrÞ
2dr

� �
and

TnðqnÞ !d

Z 1

0

I�h ðrÞdW ðrÞ
� �� Z 1

0

I�h ðrÞ
2dr

� �1=2
:

(b) for h ¼ 1,

ð1� q2
nÞ
�1=2n1=2ðq̂n � qnÞ !d Z and TnðqnÞ !d Z:

Comment. The a.s. limit as h ! 0 of (2h)�1/2 times the first limit random variable
in Proposition 2(a) yields a random variable whose distribution is Cauchy, which
corresponds to the first asymptotic distribution in Theorem 1. The a.s. limit as
h ! 0 of the second limit random variable in Proposition 2(a) yields a random
variable whose distribution is standard normal, which corresponds to the second
asymptotic distribution in Theorem 1.

3. PROOFS

In the integral expressions below, we often leave out the lower and upper limit zero
and one, the argument r, and dr to simplify notation. For example,

R 1
0 IhðrÞ2dr is

written as
R

I2h . For simplicity, in the proofs, we drop the subscript n on Yn,i.
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The proofs of Theorem 1 and Proposition 2 use the following lemmas.

Lemma 3. Suppose Assumptions I and S hold and qn 2 (�1, 1) is such that qn ¼
1 � hn/n and hn ! h 2 [0, 1) as n ! 1. Then,

ð2hnÞ1=2n�1=2Yn;0=rU !d Z � Nð0; 1Þ:

Define h�n > 0 by qn ¼ expð�h�n=nÞ. By a mean value expansion of expð�h�n=nÞ,
we have h�n=hn ! 1 if hn ¼ O(1), where qn ¼ 1 � hn/n (see the proof of Lemma
3). The next lemma shows that Lemma 1 in Phillips (1987) continues to hold
under our slightly more general assumption that qn ¼ expð�h�n=nÞ, where h�n
may depend on n, rather than the sequence qn ¼ exp(�h/n) used in Phillips
(1987).

By recursive substitution, we have

Yn;i ¼ ~Yn;i þ expð�h�ni=nÞYn;0; where

~Yn;i ¼
Xi

j¼1
expð�h�nði� jÞ=nÞUj:

ð5Þ

Under Assumption I, it is standard that the innovations satisfy a functional
central limit theorem:

Sn ) W ; where SnðrÞ ¼ n�1=2
X½nr�

i¼1
Ui=rU for r 2 ½0; 1� ð6Þ

and W is a standard Brownian motion. (The same result holds with martingale
difference sequences fUi : i ¼ 0, ±1, . . .g and the results in this article could be
generalized correspondingly.)

Lemma 4. Suppose Assumption I holds and qn 2 (�1, 1) satisfies qn ¼ 1 � hn/n,
where hn ! h 2 [0, 1). Then, the following results hold jointly,

(a) n�1=2~Yn;½nr� ) rU IhðrÞ for r 2 [0, 1],
(b) n�3=2

Pn
i¼1

~Yn;i�1 ) rU
R

Ih,
(c) n�2

Pn
i¼1

~Y 2
n;i�1 ) r2

U

R
I2h ,

(d) n�1
Pn

i¼1
~Yn;i�1Ui ) r2

U

R
IhðrÞdW ðrÞ, and

(e) r̂2
Un !p r2

U .

Lemmas 3 and 4 and some calculations show that when hn ! 0 the initial
condition component of Yn,i in (5) dominates in the asymptotics for the
components of the LS estimator. The following lemma provides the results.

Lemma 5. Suppose Assumptions I and S hold and qn 2 (�1, 1) satisfies qn ¼
1 � hn/n, where hn ! 0. Let Z and Z� be independent standard normal random
variables. Then, the following results hold jointly,
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(a) ð2hnÞ1=2n�3=2
Pn

i¼1 Yn;i�1 !d rU Z,
(b) 2hnn�2

Pn
i¼1 Y 2

n;i�1 !d r2
U Z2, and

(c) ð2hnÞ1=2n�1
Pn

i¼1 Yi�1Ui !d r2
U ZZ�.

Proof of Theorem 1. Lemma 5(b) and (c) and the continuous mapping theorem
(CMT) yield

ð2hnÞ�1=2nðq̂n � qnÞ ¼
ð2hnÞ1=2n�1

Pn
i¼1 Yi�1Ui

2hnn�2
Pn

i¼1 Y 2
i�1

!d
r2

U ZZ�

r2
U Z2

¼ Z�

Z
: ð7Þ

Given that Z�/Z is a ratio of two independent standard normal random
variables, the limit distribution is Cauchy. Furthermore, by Lemma 5(b) and (c)
and Lemma 4(e), we have

TnðqnÞ ¼
q̂n � qnPn

i¼1 Y 2
i�1

� ��1=2
r̂Un

¼ ð2hnÞ1=2n�1
Pn

i¼1 Yi�1Ui

2hnn�2
Pn

i¼1 Y 2
i�1

� �1=2
r̂Un

!d
r2

U ZZ�

ðr2
U Z2Þ1=2rU

¼ sgnðZÞZ�: ð8Þ

By independence of Z and Z�, the conditional distribution of sgn(Z)Z� given
sgn(Z) ¼ ±1 is N(0, 1) and, hence sgn(Z)Z� is N(0, 1) unconditionally. u

Proof of Lemma 3. As in the text, define h�n by qn ¼ expð�h�n=nÞ. We have qn ¼
1 � hn/n and hn ¼ O(1) implies that qn ! 1. Hence, expð�h�n=nÞ ¼ qn ! 1 and
h�n ¼ oðnÞ. By a mean value expansion of expð�h�n=nÞ about 0,

0 ¼ qn � qn ¼ expð�h�n=nÞ � ð1� hn=nÞ ¼ hn=n� expð�h��n =nÞh�n=n; ð9Þ

where h��n ¼ oðnÞ given that h�n ¼ oðnÞ. Hence, hn � ð1þ oð1ÞÞh�n ¼ 0, h�n=hn ! 1,
and it suffices to prove the result with h�n in place of hn.

Let fmn : n � 1g be a sequence such that mnh�n=n ! 1. By Assumption S, we
can write ð2h�n=nÞ1=2Y0=rU ¼ A1n þ A2n for A1n ¼ ð2h�n=nÞ1=2

Pmn
j¼0 qjU�j=rU and

A2n ¼ ð2h�n=nÞ1=2
P1

j¼mnþ1 qjU�j=rU . Note that EA2n ¼ 0 and

varðA2nÞ ¼ ð2h�n=nÞ
X1

j¼mnþ1
q2j

¼ ð2h�n=nÞq2ðmnþ1Þ=ð1� q2Þ
¼ ð2h�n=nÞq2ðmnþ1Þ=ðð2h�n=nÞð1þ oð1ÞÞÞ
¼ Oðexpð�2ðmn þ 1Þh�n=nÞÞ
¼ oð1Þ; ð10Þ
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where the third equality holds because q2 ¼ expð�2h�n=nÞ ¼ 1� ð2h�n=nÞð1þ oð1ÞÞ
by a mean value expansion and the last equality holds because mnh�n=n ! 1 by
assumption. Therefore, A2n !p 0.

The result now follows from A1n !d Z, which holds by the central limit
theorem (CLT) given in Corollary 3.1 in Hall and Heyde (1980) for their Xn,i

being equal to ð2h�n=nÞ1=2qiU�i=rU . Without loss of generality, suppose rU ¼ 1.
To apply their Corollary 3.1 we have to verify their (3.21), a Lindeberg condition,
and a conditional variance condition. By independence of fUi : i ¼ 0, ±1, . . .g,
(3.21) in Hall and Heyde (1980) holds automatically and conditioning on Fn,i�1 is
superfluous. To check the remaining two conditions, note first that

Pmn
i¼0 EX 2

n;i ¼
2h�n

Pmn
i¼0 q2i=n! 1, which holds because

Pmn
i¼0 q2i ¼ ð1 � q2ðmnþ1ÞÞ=ð1 � q2Þ,

q2ðmnþ1Þ ¼ expð�2h�nðmn þ 1Þ=nÞ ! 0, and

nð1� q2Þ ¼ nð1� qÞð1þ qÞ ¼ hnð1þ qÞ ! 2h: ð11Þ

In addition, for e > 0,

Xmn

i¼0
EX 2

n;iIðjXn;ij > eÞ � ð2h�n=nÞ
Xmn

i¼0
q2i

 !
E U 2

0 Ið2h�nU2
0 =n > e2Þ

� �
¼ Oð1Þoð1Þ; ð12Þ

where the inequality uses the identical distributions of U�j and the equality uses
the result above that ð2h�n=nÞ

Pmn
i¼0 q2i ! 1 and the dominated convergence

theorem. u

Proof of Lemma 4. The proof of parts (a)–(d) follows from the proof of Lemma
1 in Phillips (1987) by using (i) the functional central limit theorem in (6) and (ii)
an application of the extended CMT see Theorem 1.11.1 in van der Vaart and
Wellner (1996), rather than the CMT used in Phillips (1987). The extended CMT
is needed because the continuous function depends on n. For illustration, we
prove part (a). By (5), we have

n�1=2~Y½nr�=rU ¼
X½nr�

j¼1
expð�h�nð½nr� � jÞ=nÞUj=ðn1=2rU Þ

¼
X½nr�

j¼1
expð�h�nð½nr� � jÞ=nÞ

Z j=n

ðj�1Þ=n
dSnðsÞ

¼
X½nr�

j¼1

Z j=n

ðj�1Þ=n
expð�h�nðr � sÞÞdSnðsÞ þ opð1Þ

¼
Z r

0

expð�h�nðr � sÞÞdSnðsÞ þ opð1Þ

¼ SnðrÞ þ h�n

Z r

0

expð�hnðr � sÞÞSnðsÞdsþ opð1Þ

) W ðrÞ þ h
Z r

0

expð�hðr � sÞÞW ðsÞds ¼ IhðrÞ; ð13Þ
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where the second to last equality uses integration by parts, the convergence
statement uses (6) and the extended CMT. The function gn : Dn ! E in van der
Vaart and Wellner (1996) is given by gnðxÞðrÞ ¼ h�n

R r
0 expð�h�nðr � sÞÞx ds, where

Dn ¼ D[0, 1] is the (not separable) metric space of continuous from the right –
limits from the left (CADLAG) functions on the interval [0, 1] equipped with the
uniform metric and E ¼ C[0, 1] is the set of continuous functions on the interval
[0, 1] also equipped with the uniform metric. Their set D0 is also chosen as D[0, 1].
If xn ! x in D[0, 1] then gn(xn) ! g(x) in C[0, 1] because the function
h�n expð�h�nðr � sÞÞ converges uniformly (in r 2 [0, 1]) to h exp(�h(r � s)) and
any function in D[0, 1] is bounded.

To prove part (e), we write

r̂2
Un¼ðq̂�qÞ2

Xn

i¼1
Y 2

i�1=ðn�1Þþ2ðq̂�qÞ
Xn

i¼1
Yi�1Ui=ðn�1Þþ

Xn

i¼1
U 2

i =ðn�1Þ: ð14Þ

The first two summands are Op(n
�1) by (7) and Lemma 5(b) and (c). The third

summand is r2
U þ opð1Þ by the law of large numbers. u

Proof of Lemma 5. By a mean value expansion,

max
1�j�2n

j1� qjj ¼ max
1�j�2n

j1� expð�h�nj=nÞj

¼ max
1�j�2n

j1� ð1� h�nj expðmjÞ=nÞj

� 2h�n max
1�j�2n

j expðmjÞj ¼ oð1Þ; ð15Þ

for 0 � jmj j � h�nj=n � 2h�n, where the last equality in (15) holds because
h�n ! 0:
To prove part (a), by (5) we have

ð2hnÞ1=2n�3=2
Xn

i¼1
Yi�1=rU

¼ ð2hnÞ1=2n�3=2
Xn

i¼1

~Yi�1=rU þ ðð2hn=nÞ1=2Y0=rU Þ
Xn

i¼1
qi�1=n

!d Z ð16Þ

because the first summand is op(1) by Lemma 4(b),
Pn

i¼1 qi�1=n ! 1 by (15), and
(2hn/n)

1/2Y0/rU !d Z by Lemma 3.
For part (b), note that by (5),

2hnn�2
Xn

i¼1
Y 2

i�1=r
2
U ¼ 2hnn�2

Xn

i¼1
ð~Yi�1 þ qi�1Y0Þ2=r2

U

¼ B1n þ B2n þ B3n; ð17Þ

where B1n ¼ 2hnn�2
Pn

i¼1
~Y 2

i�1=r
2
U , B2n ¼ 4hnn�2

Pn
i¼1

~Yi�1qi�1Y0=r2
U , and B3n ¼

ð2hnn�1Y 2
0 =r

2
U Þn�1

Pn
i¼1 q2ði�1Þ. Lemma 3 implies B3n!dZ

2 because n�1
Pn

i¼1
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q2(i�1) !1 by (15). Note that jB1nj � 2hn sup1�i�n jn�1=2~Yi�1=rU j2 ¼ hnOpð1Þ ¼
opð1Þ, where the first equality holds by Lemma 4(a) and the CMT. Finally, by the
Cauchy–Schwarz inequality, jB2nj � 2B1=2

1n B1=2
3n ¼ opð1ÞOpð1Þ ¼ opð1Þ.

To prove part (c), we decompose

ð2hnÞ1=2n�1
Xn

i¼1
Yi�1Ui=r

2
U ¼ C1n þ C2n; ð18Þ

where C1n ¼ ð2hnÞ1=2n�1
Pn

i¼1
~Yi�1Ui=r2

U and C2n ¼ ðð2hn=nÞ1=2Y0=rU Þn�1=2
Pn

i¼1
qi�1Ui/rU. By Lemma 4(d) and hn ! 0, C1n ¼ o(1)Op(1) ¼ op(1). For C2n, note
that by Lemma 3, (2hn/n)

1/2Y0/rU !d Z and by Assumptions I and S this random
variable is independent of n�1=2

Pn
i¼1 qi�1Ui/rU. As in the proof of Lemma 3, an

application of Corollary 3.1 in Hall and Heyde (1980) shows that the latter sum
converges in distribution to Z� � N(0, 1). Note that (15) implies that for Xni ¼
n�1/2qi�1Ui/rU we have

Pn
i¼1 EX 2

ni ¼
Pn

i¼1ðq2Þi�1=n ! 1. The Lindeberg condi-
tion is verified as in (12). From the calculations above, it is clear that the
convergence in parts (a)–(c) holds jointly. u

The proof of Proposition 2 uses the following result that follows from
Lemmas 3 and 4. Part (a) also can be found in eqn (3) of Elliott and Stock
(2001).

Corollary 6. Suppose Assumptions I and S hold and qn 2 (�1, 1) satisfies
qn ¼ 1 � hn/n, where hn ! h 2 (0, 1). Then, the following limits hold jointly:

(a) n�1=2Yn; ½nr� ) rU I�h ðrÞ,
(b) n�3=2

Pn
i¼1 Yn;i�1 ) rU

R
I�h ,

(c) n�2
Pn

i¼1 Y 2
n;i�1 ) r2

U

R
I�2h , and

(d) n�1
Pn

i¼1 Yn;i�1Ui ) r2
U

R
I�h ðrÞdW ðrÞ.

Proof of Corollary 6. Part (a) follows by

n�1=2Y½nr�=rU ¼ n�1=2~Y½nr�=rU þ n�1=2 expð�hn½nr�=nÞY0=rU

) IhðrÞ þ ð2hÞ�1=2 expð�rhÞZ; ð19Þ

where the equality holds by (5), and the convergence holds by Lemma 4(a),
Lemma 3 and exp(�hn[nr]/n) ! exp(�rh) uniformly in r 2 [0, 1]. By (5), Z and
the Brownian motion W are clearly independent. Parts (b)–(d) are now proved
exactly as in Lemma 1 in Phillips (1987). u

Proof of Proposition 2. The result of part (a) (where h 2 (0, 1)) follows
directly from parts (c) and (d) of Corollary 6 and Lemma 4(e).
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For part (b) (where h ¼ 1), it follows from (2) that EY 2
n0 ¼ oðnÞ and thus

Assumption A.2 in the Corrigendum to Giraitis and Phillips (2006) holds. The
result follows from their Theorem 2.1 and Lemmas 2.1 and 2.2. u
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