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Abstract

This document establishes that the result in "Sequentially Optimal Mechanisms" is robust to a

number of extensions.

1. Robustness: Longer Horizon & Alternative Degrees of Transparency

We will show that our result is robust in a number of di¤erent directions. The �rst extension considers

the possibility that the game lasts arbitrarily long, but �nitely many periods. The next three extensions

are related to the degree of transparency of mechanisms. We have so far assumed that the seller observes

the message that the buyer submits to the mediator, �; the action that he chooses s; and whether trade

takes place or not. In the �rst extension we consider the case where the seller simply observes whether

trade took place or not. In the second extension we look at an intermediate case where the seller observes

the messages that the buyer submits to the mediator, and whether trade took place or not, but does not

observe the action chosen by the buyer. Finally we allow the seller to observe everything, that is the

message that the buyer submits to the mediator �; the recommendation that he receives from the mediator

n; the action he chooses s and whether trade took place or not. This is the maximal amount of information

that the seller can observe.

1.1 Sequentially Optimal Mechanisms for 2 < T <1:

We proceed by induction and we obtain the characterization of sequentially optimal mechanisms for the

case that T > 2: The overall structure of the proof is as in the two-period case. Of course the execution

gets at times more involved and the notation a bit more cumbersome.
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Induction Hypothesis: Suppose that we have established that it is optimal to post a price if the
game lasts for T � 1 periods. Then we will establish that the same is true if the game lasts for T periods.

Our initial point is again to establish that it is without any loss to consider the arti�cial Program B

where we have replaced the type space with its convex hull. The analogue of Proposition 3 is :

Proposition A.2 Suppose that the value of Program A and Program B is the same if the game lasts

T � 1 periods, then the value of Program A and Program B is the same if the game lasts T periods.

1.1.1 Revenue Maximizing PBE among 2-Option Mechanisms

We start by looking for a revenue maximizing allocation rule among the allocation rules implemented by a

strategy pro�le of the class two-options at t = 1; price below the optimal at t = 2; and show that a revenue

maximizing allocation rule among this class is implemented by a PBE of the game where the seller posts

a price in each period. The seller proposes at t = 1 M1 = f(r; z); (1; z1)g ; where r 2 [0; 1] and z; z1 2 R.
The buyer�s strategy is as follows: types v 2 [a; �v1) choose (r; z) and types in (�v1; b] choose (1; z1) at t = 1.
Finally type �v1 is indi¤erent between choosing: (r; z) at t = 1 and (1; z2) at t = 2 versus choosing (1; z1)

at t = 1; that is �v1 =
z1�z�(1�r)�z2
1�r�(1�r)� and may be randomizing at t = 1 between these contracts. By our

induction hypothesis at t = 2 after the history where the buyer chose (r; z) at t = 1 and no trade took

place, the seller chooses a sequence of prices z2; z3; :::; zT ; such that z2 � z2(�v1); where z2(�v1) would have
been the optimal price given beliefs F2(v) =

F (v)
F (�v1)

: Such an assessment is not necessarily a PBE since the

seller after the history where the buyer chose (r; z) at t = 1; may be choosing a cut-o¤ below the optimal

one at t = 2.

Type v̂t =
z+(1�r)�t�1zt�z�(1�r)�tzt+1

r+(1�r)�t�1�r�(1�r)�t = zt��zt+1
1�� is indi¤erent between choosing (r; z) at t = 1 and (1; zt)

at t; versus choosing (r; z) at t = 1; and (1; zt+1) at t+ 1:

Sometimes it will be more convenient (but equivalent), to think of the seller as if he is choosing cuto¤s

v̂t; t = 2; :::; T then to be choosing prices z2; z3; :::; zT .

The allocation rules implemented by such strategy pro�les are of the form

p(v) = r for v 2 [a; zT (FT ))
p(v) = r + (1� r)�T�1 for v 2 [zT (FT ); v̂T�1)

:::::

p(v) = r + (1� r)�2 for v 2 [v̂3; v̂2)
p(v) = r + (1� r)� for v 2 [v̂2; �v1)

p(v) = 1 for v 2 [�v1; b];
for some �v1 2 [a; b]; r 2 [0; 1]; z 2 R

; (1)
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with v̂2 � �v2; where �v2 is the optimal cut-o¤ at t = 2 given beliefs F2(v) =
F (v)
F (�v1)

; and where v̂t is the

optimal cut-o¤ at t given beliefs Ft(v) =
Ft�1(v)

Ft�1(v̂t�1)
for t = 3; :::; T .

De�nition A.1 We call P�T the set of allocation rules that have the shape described in (1) for some
�v1 2 [a; b]; r 2 [0; 1]; and v̂2 � v2(�v1); where v2(�v1) is the optimal cut-o¤at t = 2 given beliefs F2(v) = F (v)

F (�v1)
.

We now turn to show that the revenue maximizing element of P�T can be implemented by a PBE of

the game where the seller posts a price in each period. For that we use a generalization of Lemma 2, in

the main text.

Lemma A.2 Let �vT�1 denote an optimal cut-o¤ at T � 1 given beliefs FT�1(v) = F (v)
F (�vT�2)

then it is

increasing in �vT�2:

Proof First recall from Lemma 2 that cut-o¤ �vT�1 determines the optimal price in the �nal period of

the game zT : At the beginning of t = T � 1 revenue given FT�1(v) = F (v)
F (�vT�2)

can be written as:

RT�1(�vT�1; FT�1) =
1

F (�vT�2)
[(F (�vT�2)� F (�vT�1)) zT�1 + (F (�vT�1)� F (zT )) �zT ] :

Given that the buyer�s strategy is a best response it must hold that �vT�1 =
zT�1��zT (�vT�1)

1�� : From this we

can rewrite zT�1 = (1� �)�vT�1 + �zT (�vT�1) and substituting this in the expression for revenue we obtain:

RT�1(�vT�1; FT�1) =
1

F (�vT�2)

"
(F (�vT�2)� F (�vT�1)) ((1� �)�vT�1 + �zT (�vT�1))

+ (F (�vT�1)� F (zT (�vT�1))) �zT (�vT�1)

#
;

Since 1
F (�vT�2)

is a constant �vT�1 maximizes essentially the following expression:

RT�1(�vT�1; FT�1) = (F (�vT�2)� F (�vT�1)) ((1� �)�vT�1 + �zT (�vT�1))
+ (F (�vT�1)� F (zT (�vT�1))) �zT (�vT�1)

Now let v̂T�1 denote the optimal cut-o¤ at t = T �1 given posterior FT�1(v) = F (v)
F (v̂T�2)

with v̂T�2 > �vT�2.

From the same arguments as before it follows that v̂T�2 maximizes

RT�1(v̂T�1; F̂T�1) = (F (v̂T�2)� F (v̂T�1)) ((1� �)v̂T�1 + �zT (v̂T�1))
+ (F (v̂T�1)� F (zT (v̂T�1))) �zT (v̂T�1);

and since v̂T�2 > �vT�2 this expression can be written as

RT�1(v̂T�1; F̂T�1) = (F (v̂T�2)� F (�vT�2)) ((1� �)v̂T�1 + �zT (v̂T�1))
+ (F (�vT�2)� F (v̂T�1)) ((1� �)v̂T�1 + �zT (v̂T�1))
+ (F (v̂T�1)� F (zT (v̂T�1))) �zT (v̂T�1):
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We argue by contradiction. Suppose that v̂T�1 < �vT�1 then by Lemma 8 in the main text we also have

that zT (v̂T�1) � zT (�vT�1): From these two observations it follows that

(F (v̂T�2)� F (�vT�2)) ((1� �)v̂T�1 + �zT (v̂T�1)) (2)

< (F (v̂T�2)� F (�vT�2)) ((1� �)�vT�1 + �zT (�vT�1)) :

Also observe that since �vT�1 is the optimal cut-o¤ given beliefs FT�1; then

(F (�vT�2)� F (v̂T�1)) ((1� �)�vT�1 + �zT (�vT�1)) + (F (�vT�1)� F (zT (�vT�1))) �zT (�vT�1);
� (F (�vT�2)� F (v̂T�1)) ((1� �)v̂T�1 + �zT (v̂T�1)) + (F (v̂T�1)� F (zT (v̂T�1))) �zT (v̂T�1): (3)

Combining (2) and (3) we get that

RT�1(�vT�1; F̂T�1) > RT�1(v̂T�1; F̂T�1);

contradicting the optimality of v̂T�1:

Suppose that for all for t = � ; :::; T; we have demonstrated that �vt; denotes the optimal cut-o¤ at t� 1
given beliefs Ft(v) =

F (v)
F (�vt�1)

; is increasing in �vt�1: Then, we can use identical arguments as in Lemma A 2

to establish that:

Lemma A.3 Let �vt+1 denote an optimal cut-o¤ at t + 1 given beliefs Ft+1(v) =
F (v)
F (�vt)

then for t =

2; :::; T � 2 it is increasing in �vt:
Proposition A.2 Let p� denote the solution of maxp2P�T R(p): Then p

� can be implemented by a PBE

of the game where the seller posts a price in each period.

Proof. The seller�s can be also written in more traditional way as follows:

[1� F (�v1)]z1 + [F (�v1)� F (�v2)]�z2 + :::+ [F (�vT�1)� F (zT )]�T�1zT

By recursive substitutions we can write z0ts solely as a function of v1; v2; :::; vT�1 and r

zT�1 = (1� �)v̂T�1 + �zT (v̂T�1)
zT�2 = (1� �)v̂T�2 + � [(1� �)v̂T�1 + �zT (v̂T�1)]
zT�3 = (1� �)v̂T�3 + � [(1� �)v̂T�1 + � ((1� �)v̂T�1 + �zT (v̂T�1))]

::::

z1 = [1� r � (1� r)�] �v1 + z + (1� r)� [(1� �)v̂2 + � [(1� �)v̂3(v̂2) + � [:::]] ::::] :

Observe that after substituting these cuto¤s in the objective function it becomes a linear function of r :

the derivative is independent of r: If
@R

@r
> 0;
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then set r = 1; otherwise set r = 0:

Now it remains to show that at the optimum the seller will choose v̂2 = �v2: Note that the choice v̂2
determines the posterior F3(v) =

F (v)
F (v̂2)

, which in turn determines F4 and so on:

Case 1: If r = 1 then the level of v̂2 is irrelevant since the seller trades with all types with probability
1 at t = 1:

Case 2: If r = 0 then, since v̂2 � �v2; by Lemma A.3 we also have that v̂t � �vt; t = 3; :::; T � 1 and
ẑT � zT : From these observations we get that

[1� F (�v1)] [(1� r � (1� r)�) �v1 + z + (1� r)� ((1� �)�v2 + � ((1� �)�v3(�v2) + � () :::) ::::)] (4)

> [1� F (�v1)] [(1� r � (1� r)�) �v1 + z + (1� r)� ((1� �)v̂2 + � ((1� �)v̂3(v̂2) + � () :::) ::::)] :

Also since �v2 solves the seller�s problem at the beginning of t = 2 given beliefs F2(v) =
F (v)
F (�v1)

we get:

1

F (�v1)
f[F (�v1)� F (�v2)] z2 + [F (�v2)� F (�v3)] �z3 + [F (�v3)� F (�v4)] �2z4 +

+:::+ [F (�vT�2)� F (�vT�1)] �T�3zT�1 + [F (�vT�1)� F (zT�1)] �T�2zT g

� 1

F (�v1)
f[F (�v1)� F (v̂2)] z2 + [F (v̂2)� F (v̂3)] �z3 + [F (v̂3)� F (v̂4)] �2z4 (5)

+:::+ [F (v̂T�2)� F (v̂T�1)] �T�3zT�1 + [F (v̂T�1)� F (zT�1)] �T�2zT g;

but from (4) and (5) we obtain that

[1� F (�v1)] [(1� r � (1� r)�) �v1 + z + (1� r)� ((1� �)�v2 + � ((1� �)�v3(�v2) + � () :::) ::::)]
+:::+

+ [F (�vT�1)� F (zT�1)] �T�1zT
> [1� F (�v)] [1� F (�v1)] [(1� r � (1� r)�) �v1 + z + (1� r)� ((1� �)v̂2 + � ((1� �)v̂3(v̂2) + � () :::) ::::)]

+:::+

+ [F (v̂T�1)� F (zT�1)] �T�1zT :

Hence at an optimum the seller will set v̂2 equal to its optimal value at t = 2: From these arguments it

follows that the revenue maximizing allocation rule out of P�T can be implemented by a PBE of the game
where the seller posts a price in each period.

Summarizing, if the seller restricts attention to period one mechanisms that contain just two options:

one targeted to the �low� types (r; z) and one targeted to the �high� types, then at the optimum this

mechanism reduces to a posted price: the options available are (0; 0) and (1; z1): Now we move on to
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provide necessary conditions that allocation rules satisfy if they are implemented by strategy pro�les

where the seller employs arbitrary mechanisms at t = 1:

1.1.2 The General Case when 2 � T <1

As in the case of T = 2 we start by "drawing" the allocation from the lower end of types. Let s denote

an action that leads to a contract (r; z); that is the smallest probability contract that type a is "choosing"

with strictly positive probability at t = 1. Also let [a; �v1] denote the convex hull of the set of types that

choose s; and hence (r; z); with strictly positive probability at t = 1: We will use the induction hypothesis

to establish necessary conditions that a PBE�implementable allocation rule needs to satisfy if the game
lasts for T periods.

De�nition A.2 An allocation rule is an element of PT if it satis�es the following properties (i) in-
creasing in v on [a; b] (ii) 0 � p(v) � 1 for v 2 [a; b] and (iii)

p(v) = r for v 2 [a; zT (FT ))
p(v) = r + (1� r)�T�1 for v 2 (zT (FT ); �vT�1)

:::::

p(v) = r + (1� r)� for v 2 (�v2; �v1)
r + (1� r)� � p(v) � 1 for v 2 [�v1; b]

;

for some �v1 2 [a; b]; r 2 [0; 1]; z 2 R and �v2 optimally chosen given some posterior F2 whose support has
convex hull [a; �v1], and where �vt is optimally chosen given some posterior Ft(v) =

Ft�1(v)
Ft�1(�vt�1)

for t = 3; :::; T .

We can deduce by the monotonicity of p that its value for types on the boundaries of the various

subintervals will be somewhere in between the two steps, for instance p(zT (FT )) 2 (r; r + (1� r)�T�1) or
p(�vT�1) 2 (r + (1 � r)�T�1; r + (1 � r)�T�2): It is possible that there exists zt̂ and some t̂ = 1; :::; T such
that zt̂ � a; in which case we have that p(a) 2 [r + (1� r)�t̂; r + (1� r)�t̂�1):

Proposition A.3 Let p denote an allocation rule implemented by a PBE of the game, then p 2 PT .
Proof. Consider a PBE assessment (�; �) and let p denote the allocation rule implemented by it. Let s

denote an action that leads to a contract (r; z). This is the action that leads to the smallest �r�contract that

type a is choosing with positive probability at t = 1 or is indi¤erent between choosing and not choosing.

Also let Y denote the subset of [a; �v] that contains the types of the buyer that report message � and choose

s at t = 1 with strictly positive probability, and let [a; �v]; with a � �v; denote its convex hull. From our

induction hypothesis we have that after the history where (r; z) is chosen at t = 1 and no trade takes place

at t = 1, the seller will maximize revenue by posting a price in each period. Let us call this sequence of
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prices as zt; t = 2; ::::; T and de�ne

vL(t) = inf fv 2 Y s.t. v accepts zt at tg
vH(t) = sup fv 2 Y s.t. v accepts zt at tg :

By de�nition types vL(t) and vH(t) either choose (r; z) at t = 1 and accept zt at t with positive probability

or are indi¤erent between this sequence of actions and the actions that they are actually choosing. The

proof is broken down into four steps.

Step 1: For v 2 (vL(t); vH(t)); where vL(t) 6= vH(t) we have that p(v) = r+ (1� r)�t�1: Suppose not,
then there exists v 2 (vL(t); vH(t)) such that p(v) 6= r+(1�r)�t�1; that is it is either a) p(v) > r+(1�r)�t�1

or b) p(v) < r+(1�r)�t�1: If p(v) > r+(1�r)�t�1 then type v must be choosing with positive probability
a sequence of actions that implement p̂; x̂ such that p̂ > r + (1 � r)�t�1. At a PBE the buyer�s strategy

must be a best response hence it must be the case that p̂v � x̂ � (r + (1 � r)�t�1)v � z � (1 � r)�t�1zt:
But now since p̂ > r + (1� r)�t�1 it follows that p̂vH(t)� x̂ > (r + (1� r)�t�1)vH(t)� z � (1� r)�t�1zt;
contradicting the fact that vH(t) chooses (r; z) at t = 1, (0; 0) at t = 2; :::; t � 1 and (1; zt) at t with
positive probability or is indi¤erent between doing and not doing so: Now if p(v) < r + (1 � r)�t�1 then
type v is choosing at t = 1 with positive probability a sequence of actions that implement p̂; x̂ such that

p̂ < r + (1 � r)�t�1 and because at a PBE the buyer�s strategy is a best response then we have that

p̂v � x̂ � (r + (1� r)�t�1)v � z � (1� r)�t�1zt: But now since p̂ < r + (1� r)�t and vL(t) < v it follows
that p̂vL(t)� x̂ > (r+ (1� r)�t�1)vL(t)� z� (1� r)�t�1zt; contradicting the fact that vL(t) chooses (r; z)
at t = 1, (0; 0) at t = 2; :::; t � 1 and (1; zt) at t with positive probability or is indi¤erent between doing
and not doing so:

Step 2: The smallest type that accepts the price at t is indi¤erent between accepting and rejecting,
that is �

r + (1� r)�t�1
�
vL(t)�

�
z + (1� r)�t�1zt

�
=
�
r + (1� r)�t

�
vL(t)�

�
z + (1� r)�tzt+1

�
;

and for t = T this translates to zT = vL(T ):

First observe that the fact that at a PBE the buyer�s strategy must be a best response to the seller�s

strategy implies that�
r + (1� r)�t�1

�
vL(t)�

�
z + (1� r)�t�1zt

�
�
�
r + (1� r)�t

�
vL(t)�

�
z + (1� r)�tzt+1

�
:

We now show that it must hold with equality. We argue by contradiction. Suppose not, that is�
r + (1� r)�t�1

�
vL(t)�

�
z + (1� r)�t�1zt

�
>
�
r + (1� r)�t

�
vL(t)�

�
z + (1� r)�tzt+1

�
;
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then the seller can increase zt by �z such that�
r + (1� r)�t�1

�
vL(t)�

�
z + (1� r)�t�1zt

�
� ��z =

�
r + (1� r)�t

�
vL(t)�

�
z + (1� r)�tzt+1

�
;

and raise higher revenue at the continuation game that starts at t: All types v 2 (vL(t); vH(t)) still prefer
to choose (1; zt) at t then to choose (0; 0): Hence at a PBE we have that�

r + (1� r)�t�1
�
vL(t)�

�
z + (1� r)�t�1zt

�
=
�
r + (1� r)�t

�
vL(t)�

�
z + (1� r)�tzt+1

�
: (6)

Step 3: For v < vL(t) we have that p(v) � r + (1� r)�t; for t = 2; :::; T � 1:
We now demonstrate that p(v) � r+(1�r)�t for all v < vL(t):We will argue by contradiction. Suppose

that there exists v < vL(t) such that p(v) > r+(1� r)�t: Note that since we are looking at a PBE it must
be the case that

p(v)v � x(v) �
��
r + (1� r)�t

��
v �

�
z + (1� r)�tzt+1

�
or�

p(v)� r � (1� r)�t
�
v �

�
z + (1� r)�tzt+1

�
� x(v):

Now since v < vL(t) and p(v) > r + (1� r)�t we have that

�
p(v)� r � (1� r)�t

�
vL(t) > x(v)� z � (1� r)�tzt+1 or

p(v)vL(t)� x(v) >
��
r + (1� r)�t

��
vL(t)� (z + (1� r)�tzt+1)

or by (6)

p(v)vL(t)� x(v) >
�
r + (1� r)�t�1

�
vL(t)�

�
z + (1� r)�t�1zt

�
= p(vL(t))vL(t)� x(vL(t)):

But then vL(t) can bene�t by mimicking the behavior of v: Contradiction. Therefore p(v) � r + (1� r)�t

for all v < vL(t) and t = 1; :::; T � 1: But from Step 1 we know that p(v) = r + (1 � r)�t for all v 2
(vL(t + 1); vH(t + 1)). Now by the monotonicity of p and because vL(t) � vH(t + 1)

1 we have that

p(v) = r + (1� r)�t for v 2 (vL(t+ 1); vL(t)):
Step 4: For v 2 (a; vL(T )); where a 6= vL(T ) we have that p(v) = r: Suppose not, then there exists

v 2 (a; vL(T )) such that p(v) 6= r; that is it is either a) p(v) > r or b) p(v) < r: If p(v) > r then type v
must be choosing with positive probability a sequence of actions that implement p̂; x̂ such that p̂ > r. At

1By the monotonicity of p it follows that the smallest type that accepts the price at t is weakly greater than the largest

type that accepts the price at t+ 1:
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a PBE the buyer�s strategy must be a best response hence it must be the case that p̂v � x̂ � rv � z: But
now since p̂ > r it follows that p̂vL(T ) � x̂ > rvL(T ) � z; contradicting the fact that vL(T ) chooses (r; z)
with positive probability or is indi¤erent between doing and not doing so: Now if p(v) < r then type v is

choosing at t = 1 with positive probability a sequence of actions that implement p̂; x̂ such that p̂ < r and

because at a PBE the buyer�s strategy is a best response then we have that p̂v � x̂ � rv � z: But now
since p̂ < r and a < v it follows that p̂a� x̂ > ra� z; contradicting the fact that a chooses (r; z) at t = 1
with positive probability or is indi¤erent between doing and not doing so:

From the last two steps it follows then that p(v) = r+(1�r)�t for v 2 (vL(t+1); vL(t)); for t = 1; :::; T�1
and p(v) = r; for v 2 [a; vL(T )): So for the case under consideration we have demonstrated that a PBE-
implementable allocation rule must belong in the set

p(v) = r for v 2 [a; zT (FT ))
p(v) = r + (1� r)�T�1 for v 2 (zT ; �vT�1)
p(v) = r + (1� r)�T�2 for v 2 (�vT�1; �vT�2)
p(v) = r + (1� r)�T�3 for v 2 (�vT�2; �vT�3)

:::::

p(v) = r + (1� r)�2 for v 2 (�v3; �v2)
p(v) = r + (1� r)� for v 2 (�v2; �v1)

r + (1� r)� � p(v) � 1 for v 2 (�v1; b];
for some �v1 2 [a; b]; r 2 [0; 1]; z 2 R

:

Note that p(a) cannot be strictly less then r by the de�nition of (r; z); (in order for p(a) � r it must be the
case that type a is choosing a sequence of actions that implement p̂ < r; but this contradicts the de�nition

of (r; z) which is the smallest "r" contract that type a chooses with positive probability at t = 1):

Corollary 1 Let [v̂L; v̂H ] denote the convex hull of types that choose a contract (r̂; ẑ) at t = 1 with positive
probability. Then it must be the case that

p(v) = r̂ for v 2 [v̂L; zT (FT ))
p(v) = r̂ + (1� r̂)�T�1 for v 2 (zT (FT ); v̂T�1)

:::::

p(v) = r̂ + (1� r̂)� for v 2 (v̂2; v̂H ]

;

and v̂2 optimally chosen given some posterior F2 whose support has convex hull [a; �v1], and where v̂t is

optimally chosen given some posterior Ft(v) =
Ft�1(v)

Ft�1(v̂t�1)
for t = 3; :::; T .
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The shape of PBE implementable allocation rules is actually quite unexpected. As in the case of

T = 2; the shape of allocation rules in PT is the same as the one we would get in a scenario where all
types in [a; �v1) choose a contract (r; z) with probability one at t = 1; potentially only the location of the

cuto¤s di¤ers: if all types in [a; �v1) choose (r; z) at t = 1 with probability one, then �v2 must be optimally

chosen given beliefs F2(v) =
F (v)
F (�v1)

; whereas now �v2 must be optimally chosen given some posterior F2
whose support has convex hull [a; �v1]:

Our objective is to establish that the best way to separate types in the �rst period is in two- groups:

low and high ones. As in the case of T = 2 we show that the seller does not bene�t from observing cheap

messages and from allowing sophisticated strategies for the buyer.

Can the seller bene�t from observing the cheap messages �?

Recall that it is possible that the buyer is reporting message � and then choosing s and reporting �̂ and

then choosing action s: Let ~F2 denote the seller�s posterior after he observes (�; s) and let F̂2 denote the

seller�s posterior after she observes (�̂; s): Suppose that F2 denotes the seller�s posterior after she observes

only action s: Our objective is to compare �v2(F2) with �v2(F̂2) and �v2( ~F2): First let us examine how �v2(F̂2)

and �v2( ~F2) relate to each other.

Lemma A.4 Consider a PBE and let �v2( ~F2); respectively �v2(F̂2); denote the cuto¤s that the seller

will choose at t = 2 after a history where she observed � and s; and �̂ and s respectively. Then it must be

the case that �v2( ~F2) = �v2(F̂2):

Proof. Suppose not, and without any loss let �v2( ~F2) < �v2(F̂2): Now since �v2( ~F2) =
z2��z3(�v2( ~F2))

1�� and z3 is

increasing in �v2, we have that z2( ~F2) < z2(F̂2): Then for all v 2 V it holds that

[r(s) + (1� r(s))�] v �
h
z � (1� r(s))�z2( ~F2)

i
> [r(s) + (1� r(s))�] v �

h
z � (1� r(s))�z2(F̂2)

i
;

hence for all v 2 [z2( ~F2); b] the buyer strictly prefers to report � instead of �̂; at least for the portion
of the time that those types plan to chose s: But then when the seller sees �̂ and s; she can infer that

the valuation of the buyer is below z2( ~F2); which in turn implies that a price of z2(F̂2) > z2( ~F2) cannot

be optimal. Contradiction. Hence given some mechanism and a communication strategy the choice of s

uniquely determines the optimal price at t = T:

Now we turn to investigate the relationship of �v2(F2) with �v2(F̂2) and �v2( ~F2): Using a procedure identical

to the one employed to prove Lemma 4 in the main text we obtain that:

Lemma A.5 "Cheap" information in �0s does not lead to higher prices at t = 2; the cuto¤ �v2(F2) �
�v2( ~F2) = �v2(F̂2):
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Using Lemma A.5 one can establish an analogue Lemma 5 which states that it is without any loss to

view mechanisms to a set of contracts.

Does the seller bene�t from "sophisticated" strategies of the buyer?

In order to investigate this question, we need to �nd out which types may be choosing a contract (r; z)

with positive probability, ((r; z) is again the smallest \r" contract that type a is choosing with strictly

positive probability at t = 1; or is indi¤erent between choosing or not): As in the case of T = 2 we

establish that only types in [�v2; �v1] may be choosing a contract other than (r; z):

Lemma A.6 Consider a PBE where [a; �v1]; denotes the convex hull of the set of types that choose

(r; z) with positive probability at t = 1: Also let �v2 denote the cut-o¤ that the seller will chose at t = 2

after the history that the buyer chose (r; z) at t = 1 and no trade took place. Then only types in [�v2; �v1]

may be choosing a contract di¤erent from (r; z) with positive probability at t = 1:

Proof. We will argue by contradiction. Suppose that there exist v 2 [a; �v2) choosing a contract (r̂; ẑ)
di¤erent from (r; z) with positive probability at t = 1:

Claim 1: The convex hull of the set of types that choose (r̂; ẑ) at t = 1 cannot be a singleton.
If there is just one type, call it v̂ 2 [a; �v1); choosing contract (r̂; ẑ) with positive probability at t = 1;

then it must be the case that when the seller observes (r̂; ẑ) chosen at t = 1 and no trade taking place,

then she can �gure out that the valuation of the buyer is equal to v̂ and hence she will post a price equal

to v̂ and the buyer will accept. In other words we will have that

p(v̂)v̂ � x(v̂) = (r̂ + (1� r̂)�)v̂ � (z + (1� r)�v̂) = r̂v � ẑ:

We will show that this is impossible. From the fact that (r; z) is the smallest r contract that type a is

choosing with positive probability at t = 1 we have that r̂ > r: Otherwise type a would have a pro�table

deviation. To see this, note that because type v̂ is choosing contract (r̂; ẑ) we have that

r̂v̂ � ẑ � p(a)v̂ � x(a):

If p(a) = r and r̂ < r then

r̂a� ẑ > p(a)a� x(a):

If p(a) = r + (1 � r)�t�1; for some t, (which arises is zt < a for all t = 1; :::; T ) then it must then be the
case that r̂ � r+ (1� r)�t; otherwise, that is if r̂ < r+ (1� r)�t type a would have a pro�table deviation.
We have therefore demonstrated that r̂ > r: Now from Proposition 9 we know that p(v) � r+ (1� r)� for
v 2 [a; �v1) and from the previous observation we have that r + (1� r)� < r̂ + (1� r̂)�: This together with
the monotonicity of p which imply that v̂ cannot be an element of [a; �v1):
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Claim 2: Let (v̂L; v̂H) denote the convex hull of the set of types that choose contract (r̂; ẑ) with
positive probability. Then we will show that it must be the case that (v̂L; v̂H) must be contained in one of

the subintervals (v̂L; v̂H) � (zT ; �vT�1) or (v̂L; v̂H) � (�vt; �vt�1); for some t = 2; ::::; T � 1:
Our objective is to show that the only equilibrium feasible case is when either (v̂L; v̂H) � (zT ; �vT�1)

or (v̂L; v̂H) � (�vt; �vt�1) holds. Suppose not, then it must be the case that (v̂L; v̂H) has a non-empty

intersection with two consecutive intervals, say (�vt+1; �vt) and (�vt; �vt�1); but then by Proposition 9 and

Corollary 1 we know that it must be the case

p(v) = r + (1� r)�t for v 2 (v̂L; v̂H) \ (�vt+1; �vt) and
p(v) = r + (1� r)�t�1 for v 2 (v̂L; v̂H) \ (�vt; �vt�1); (7)

but since some of these types are choosing a contract (r̂; ẑ) at t = 1 with positive probability, then it must

also be the case that either

p(v) = r̂ + (1� r̂)�t̂ for v 2 (v̂L; v̂H) \ (�vt+1; �vt) and
p(v) = r̂ + (1� r̂)�t̂�1 for v 2 (v̂L; v̂H) \ (�vt; �vt�1); (8)

for some t̂ = 1; ::::; T � 1; or

p(v) = r̂ for v 2 (v̂L; v̂H) \ (�vt+1; �vt) and
p(v) = r̂ + (1� r̂)�T�1 for v 2 (v̂L; v̂H) \ (�vt; �vt�1) (9)

Now combining (7) and (8) we have that the following must be true

r + (1� r)�t�1 = r̂ + (1� r̂)�t̂�1

r + (1� r)�t = r̂ + (1� r̂)�t̂

from the �rst equality we have that

r(1� �t�1) = r̂(1� �t̂�1) + �t̂�1

r(1� �t�1) = r̂(1� �t̂�1) + �t̂�1 � �t�1

r =
r̂(1� �t̂�1) + �t̂�1 � �t�1

(1� �t�1)
;

now substituting this expression in the second equality we get that

r̂(1� �t̂�1) + �t̂�1 � �t�1

(1� �t�1)
+

 
(1� �t�1)� r̂(1� �t̂�1)� �t̂�1 + �t�1

(1� �t�1)

!
�t = r̂ + (1� r̂)�t̂

r̂(1� �t̂�1)(1� �t)
(1� �t�1)

+
�t̂�1 � �t�1

(1� �t�1)
+

 
(1� �t�1)� �t̂�1 + �t�1

(1� �t�1)

!
�t = r̂(1� �t̂) + �t̂
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r̂(1� �t̂�1)(1� �t)
(1� �t�1)

� r̂(1� �t̂) = �t̂ � �
t̂�1 � �t�1

(1� �t�1)
�
 
(1� �t�1)� �t̂�1 + �t�1

(1� �t�1)

!
�t

r̂
�
1� �t � �t̂�1 + �t̂�1�t � 1 + �t̂ + �t�1 � �t�1�t̂

�
(1� �t�1)

=
�t̂ � �t̂�t�1 � �t̂�1 + �t�1 � �t + �t�t�1 + �t�t̂�1 � �t�1�t

(1� �t�1)

r̂
�
��t � �t̂�1 + �t̂ + �t�1

�
(1� �t�1)

=
�t̂ � �t̂�1 + �t�1 � �t

(1� �t�1)

r̂ =
�t̂ � �t̂�1 + �t�1 � �t

��t � �t̂�1 + �t̂ + �t�1
= 1;

hence the desired condition holds only for r̂ = 1� using reverse steps we can also show that in order that
the desired equalities hold it must be the case that

r = 1;

but then r = r̂ contradicting the supposition that types in (v̂L; v̂H) choose a contract (r̂; ẑ) (di¤erent from

contract (r; z)) with positive probability.

Now let us examine the other possibility. From (7) and (9) it follows that we must have

r̂ + (1� r̂)�T�1 = r + (1� r)�t�1 and
r̂ = r + (1� r)�t

Substituting the second expression into the �rst we get that

r + (1� r)�t + (1� r � (1� r)�t)�T�1 = r + (1� r)�t�1

�r�t + r�t�1 � r�T�1 + r�t�T�1 = �t�1 � �t � �T�1 + �t�T�1

r =
�t�1 � �t � �T�1 + �t�T�1

�t�1 � �t � �T�1 + �t�T�1
= 1;

which is impossible for the same reasons as before. Hence the only feasible scenario is that the convex

hull of the set of types that are choosing some contract (r̂; ẑ) with positive probability must be either

(v̂L; v̂H) � (zT ; �vT�1) or (v̂L; v̂H) � (�vt; �vt�1); which completes what we wanted to show.
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Claim 3: Claim 2 is impossible.

From Claim 2 we know that all the types that choose r̂ with positive probability must be contained in

(�vt; �vt�1). Then it must be the case that the price that the seller will post at t = 2 after the history that

the buyer chose (r̂; ẑ) at t = 1 and no trade took place must be in (�vt; �vt�1); but then p̂ = r̂ + (1 � r̂)�;
which is impossible for the reasons explained in the proof of Claim 1.

Hence only types in (v2; �v1) may be choosing some contract other than contract (r; z) with positive

probability, the reason why this is possible for those types is because we have no restrictions on the shape

of the allocation rule for types in [�v1; b]:

Let m(v) denote the probability that type v is choosing a contract (r; z): We assume that m is a mea-

surable function of v: A consequence of Lemma A.6 is that even if we allow for any possible randomization,

the posterior at t = 2 after the buyer chose (r; z) at t = 1; is going to be of the form

Fm2 (v) =

8><>:
F (v)

F (�v2)+
R �v1
�v2
m(s)dF (s)

; v 2 [a; �v2)
F (�v2)+

R v
�v2
m(s)dF (s)

F (�v2)+
R �v1
�v2
m(s)dF (s)

; v 2 [�v2; �v1];
(10)

when �v2 > 0: Suppose that the posterior at t = 2 is given by (10); m(s) 2 [0; 1]; and let �vm2 denote an

optimal cut-o¤ at t = 2 given beliefs Fm2 (v): Also let �v2 denote an optimal cut-o¤ at t = 2 given beliefs

F2(v) =
F (v)
F (�v1)

: The result that follows states that �v2 � �vm2 . The reason for this is that from Lemma A.6

we know that only types above �v2 may be actually choosing some contact other than (r; z) with positive

probability.

Lemma A.7 �v2 � �vm2 :
Proof. We argue by contradiction. Suppose that �v2 < �vm2 : From Lemmata A.2 and A.3 it follows that

�v3(�v2) � �v3(�vm2 ); ::; �vT�1(�vT�2) � �vT�1(�vmT�2); zT (vT�1) � zT (vmT�1)

Since �v2 is the optimal cut-o¤ given beliefs F2(v) =
F (v)
F (�v1)

; the di¤erence in expected revenue with cut-o¤

�v2 and cut-o¤ �vm2 is positive. Using the observations above we get that

(1� �) 1

F (�v1)

�Z �vm2

�v2

sdF (s) +

Z �vm2

�v2

F (t)dt�
Z �vm2

�v2

F (�v1)dt

�
+

1

F (�v1)
�T�1t=3 (�

t�1 � �t)
"Z vt(�vmt�1)

vt(�vt�1)
sdF (s) +

Z vt(�vmt�1)

vt(�vt�1)
F (t)dt�

Z vt(�vmt�1)

vt(�vt�1)
F (�v1)dt

#

+
1

F (�v1)
�

"Z zT (�v
m
T�1)

zT (�vT�1)
sdF (s) +

Z zT (�v
m
T�1)

zT (�vT�1)
F (t)dt�

Z zT (�v
m
T�1)

zT (�vT�1)
F (�v1)dt

#
� 0
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where we can just ignore the multiplication of every term by the positive constant 1
F (�v1)

. Because

F (�v1) >

�
F (�v2) +

Z �v1

�v2

m(s)dF (s)

�
we obtain

(1� �)
�Z �vm2

�v2

sdF (s) +

Z �vm2

�v2

F (t)dt�
Z �vm2

�v2

�
F (�v2) +

Z �v1

�v2

m(s)dF (s)

�
dt

�
+�T�1t=3 (�

t�1 � �t)
"Z vt(�vmt�1)

vt(�vt�1)
sdF (s) +

Z vt(�vmt�1)

vt(�vt�1)
F (t)dt�

Z vt(�vmt�1)

vt(�vt�1)

�
F (�v2) +

Z �v1

�v2

m(s)dF (s)

�
dt

#

+�

"Z zT (�v
m
T�1)

zT (�vT�1)
sdF (s) +

Z zT (�v
m
T�1)

zT (�vT�1)
F (t)dt�

Z zT (�v
m
T�1)

zT (�vT�1)

�
F (�v2) +

Z �v1

�v2

m(s)dF (s)

�
dt

#
> 0

contradicting the optimality �vm2 .

Given Lemmata A.5 and A.7 the result follows exactly as in Theorem 1.

Theorem A.3 Suppose that T < 1: Then, under non-commitment the seller maximizes expected
revenue by posting a price in each period.

Proof. The result can be established following the exact lines of the proof of Proposition 5: For each

allocation rule in PT we can construct an allocation rule in P�T that generates higher expected revenue for
the seller. As in the proof of Proposition 5 we ignore all sequential rationality constraints and chose p in

the range [�v1; b] optimally, respecting only the requirement that p is monotonic. We get that

p̂(v) = r + (1� r)� for v 2 [�v1; v��)
p̂(v) = 1 for v 2 [v��; b];

where v�� is given by (11, main text). From Lemmata A.5 and A.7 we have that v2 � �v2(�v1) and from

Lemma A.3 we have that v2(�v1) � v2(v��). From the last two inequalities we get that v2 � v2(v��): The
optimal allocation rule is an element of P�T : From Proposition A.2 we know that the revenue maximizing

allocation rule is implemented by a PBE of the game where the seller posts a price in each period.

1.2 Alternative Degrees of Transparency

In the next three units we establish that our result is robust to a number of alternative assumptions

regarding the degree of transparency of mechanisms.
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1.3 Sequentially Optimal Mechanisms with Minimal Amount of Information

Suppose that all that the seller observes is whether the buyer obtained the object or not. Then at t = 2

after the history where no trade took place at t = 1 the seller�s beliefs will be the same irrespective of

the actions and the exchange of messages that took place at t = 1: We show that if an allocation rule is

implemented by a PBE of the game where the seller simply observes whether trade took place or not,

then it can be written as a linear combination of allocation rules in (12) in the main text. We sketch the

main two steps required to establish this.

Let [a; �v]; with a < �v; denote the convex hull of the set of types that at t = 1 choose with positive

probability actions that lead with strictly positive probability to no-trade.2Those types choose actions

that lead to contracts of the following form: (r1; z1); (r2; z2); (r3; z3); ::::; (rk; zk); where ri < 1; i = 1; ::; k:3

Since the seller does not observe any of this and the only information she obtains is whether trade took

place or not, she will post the same price at t = 2 irrespective of the actions and the messages chosen

by the buyer. Let ẑ denote the price that the seller will post at t = 2, after the history of no trade

at t = 1: Now the fact that at a PBE the buyer�s strategy has to be a best response at each node

implies that types above ẑ will be accepting this price at t = 2: For v 2 [ẑ; �v] we must then have that
p(v) = ri+(1� ri)� = ri+ �� �ri = (1� �)ri+ �; which is increasing in ri: Hence by the monotonicity of p
we have that higher types are choosing higher probability contracts at t = 1: This in turn implies that the

seller�s beliefs assign weakly less weight to types closer to �v then to types closer to ẑ: This observation is

formalized in the proof of Lemma A.1, that follows, where we establish that ẑ � z2(�v); (again z2(�v) is the
price that will be optimal if the posterior is given by F2(v) =

F (v)
F (�v) :) With some abuse of notation let r(v),

z(v) denote the contract that is chosen by type v at t = 1: Then after the history where no trade took

place at t = 1 the seller�s beliefs at T = 2 are given by F2(v) =
R v
a (1�r(s))dF (s)R �v
a (1�r(s))dF (s)

; where
R �v
a (1�r(s))dF (s) > 0

because a < �v and (1� r(s)) > 0 for all s 2 [a; �v]:
Lemma A.1 Let ẑ denote the optimal price at T = 2 given beliefs F2(v) =

R v
a (1�r(s))dF (s)R �v
a (1�r(s))dF (s)

:Then we

have that ẑ2 � z2(�v):
Proof. The price at t = 2 is given by

z2 � inf
�
v 2 [a; �v] such that

Z ~v

v
tdF2(t)�

Z ~v

v
[1� F2(t)]dt � 0; for all ~v 2 [v; b]

�
:

For F2 =
R v
a (1�r(s))dF (s)R �v
a (1�r(s))dF (s)

where
R �v
a (1 � r(s))dF (s) > 0; the expression

R ~v
v tdF2(t) �

R ~v
v [1 � F2(t)]dt can be

2 If a = �v then the seller�s problem at t = 2 is trivial: she will post a price equal to �v:
3We assume a countable number of actions for simplicity. Nothing depends on this simpli�cation.
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rewritten as:

1R �v
a (1� r(s))dF (s)

�Z ~v

v
t(1� r(t))dF (t)�

Z ~v

v

�Z �v

a
(1� r(s))dF (s)�

Z t

a
(1� r(s))dF (s)

�
dt

�
=

1R �v
a (1� r(s))dF (s)

�Z ~v

v
t(1� r(t))dF (t)�

Z ~v

v

�Z �v

t
(1� r(s))dF (s)

�
dt

�
and z2 can be equivalently be de�ned as

z2 � inf
(
v 2 [a; �v] such that

R ~v
v t(1� r(t))dF (t)�

R ~v
v

�R �v
t (1� r(s))dF (s)

�
dt � 0;

for all ~v 2 [v; b]

)
:

Our objective is to establish that ẑ � z2(�v): We will argue by contradiction. Suppose that ẑ > z2(�v);
then by the de�nition of ẑ it follows that there exists ~v 2 [z2(�v); b] such that

0 >

Z ~v

z2(�v)
t(1� r(t))dF (t)�

Z ~v

z2(�v)

�Z �v

t
(1� r(s))dF (s)

�
dt;

because r is increasing in s we have that

0 >

Z ~v

z2(�v)
t(1� r(t))dF (t)�

Z ~v

z2(�v)

�Z �v

t
(1� r(s))dF (s)

�
dt (11)

�
Z ~v

z2(�v)
t(1� r(t))dF (t)�

Z ~v

z2(�v)

�Z �v

t
(1� r(t))dF (s)

�
dt:

Now we will show that we can break the interval [z2(�v); ~v] into subintervals of types that choose actions

that lead to the same contracts at t = 1: We do this by establishing that the set of types that choose

actions that lead to the same contract is convex. In particular we show that if (v; �v) is the convex hull

of the set of types that choose the same action at t = 1; than types in (v; �v) can be only randomizing at

t = 1 among actions that lead to the same contract. If a type in (v; �v) is randomizing between di¤erent

sequences of actions it must be the case that p = p̂ and x = x̂: Recall that after the history of no trade

the seller posts a price ẑ at t = 2. Then best response constraints at t = 2 imply that types above ẑ are

accepting the price that the seller posts at t = 2: This in turn implies that if a type above ẑ is randomizing

among actions that lead to di¤erent contracts, then it must be the case that p = ~p; which implies that

(1��)ri+� = (1��)~ri+� and x = ~x which implies that zi+(1�ri)�ẑ = ~zi+(1� ~ri)�ẑ: But then from the
last two observations we have that ri = ~ri and zi = ~zi; which is clearly the same contract. Now for types

below ẑ if there are randomizing between di¤erent actions at t = 1 it immediately follows that ri = ~ri and

zi = ~zi: Hence the buyer can be only randomizing among actions that lead to the same contract.
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Suppose that types in subinterval [z2(�v); v̂1] choose actions that lead to some contract (r1; z1), types

in subinterval [v̂1; v̂2] choose actions that lead to contract (r2; z2) and so forth. Given this observation the

right hand side of (11) can be rewritten asZ v̂1

z2(�v)
t(1� r1)dF (t)�

Z v̂1

z2(�v)

�Z �v

t
(1� r1)dF (s)

�
dt

+

Z v̂2

v̂1

t(1� r2)dF (t)�
Z v̂2

v̂1

�Z �v

t
(1� r2)dF (s)

�
dt+

+::::+

+

Z v̂k

v̂k�1

t(1� rk)dF (t)�
Z v̂k

v̂k�1

�Z �v

t
(1� rk)dF (s)

�
dt:

Now by the de�nition of z2(�v) we have thatZ v̂1

z2(�v)
t(1� r1)dF (t)�

Z v̂1

z2(�v)

�Z �v

t
(1� r1)dF (s)

�
dt

= (1� r1)
"Z v̂1

z2(�v)
tdF (t)�

Z v̂1

z2(�v)

�Z �v

t
dF (s)

�
dt

#
� 0:

If Z v̂2

v̂1

t(1� r2)dF (t)�
Z v̂2

v̂1

�Z �v

t
(1� r2)dF (s)

�
dt � 0

then we have that Z v̂1

z2(�v)
t(1� r1)dF (t)�

Z v̂1

z2(�v)

�Z �v

t
(1� r1)dF (s)

�
dt

+

Z v̂2

v̂1

t(1� r2)dF (t)�
Z v̂2

v̂1

�Z �v

t
(1� r2)dF (s)

�
dt � 0;

otherwise, that is if Z v̂2

v̂1

t(1� r2)dF (t)�
Z v̂2

v̂1

�Z �v

t
(1� r2)dF (s)

�
dt < 0
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then we have that Z v̂1

z2(�v)
t(1� r1)dF (t)�

Z v̂1

z2(�v)

�Z �v

t
(1� r1)dF (s)

�
dt

+

Z v̂2

v̂1

t(1� r2)dF (t)�
Z v̂2

v̂1

�Z �v

t
(1� r2)dF (s)

�
dt

�
Z v̂1

z2(�v)
t(1� r2)dF (t)�

Z v̂1

z2(�v)

�Z �v

t
(1� r2)dF (s)

�
dt

+

Z v̂2

v̂1

t(1� r2)dF (t)�
Z v̂2

v̂1

�Z �v

t
(1� r2)dF (s)

�
dt;

this inequality is due to (1 � r2) � (1 � r1); which follows by the monotonicity of r; (see main text), and
the fact that

R v̂1
z2(�v)

t(1 � r1)dF (t) �
R v̂1
z2(�v)

�R �v
t (1� r1)dF (s)

�
dt � 0; but then again by the de�nition of

z2(�v) it follows that Z v̂1

z2(�v)
t(1� r2)dF (t)�

Z v̂1

z2(�v)

�Z �v

t
(1� r2)dF (s)

�
dt

+

Z v̂2

v̂1

t(1� r2)dF (t)�
Z v̂2

v̂1

�Z �v

t
(1� r2)dF (s)

�
dt � 0:

Continuing in a similar fashion we can show that the right hand side of (11) is greater than zero. Contra-

diction. We have therefore established that ẑ � z2(�v):
Now, given Lemma A.1 , we now argue, somewhat informally, that allocation rules implemented by an

assessment where the seller obtains minimal amount of information, can be written as a linear combination

of allocation rules in (12) in the main text. Let rL; zL and rH ; zH denote respectively the smaller and the

larger probability contracts that are chosen with strictly positive probability at t = 1 by types in [a; �v]:

Since the seller in the scenario under consideration merely observes whether trade took place or not, then

the price at t = 2 is independent of the buyer�s choice at t = 1: From Lemma A.1 we have that ẑ � z2(�v).
Then an allocation rule implemented by a PBE where the seller observes only whether trade took place

at t = 1 or not, can be written as a linear combination of the following two allocation rules:

p(v) = rL for v 2 [a; ẑ)
p(v) = rL + (1� rL) for v 2 [ẑ; �v)
p(v) = 1 for v 2 [�v; b]
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and

p(v) = rH for v 2 [a; ẑ)
p(v) = rH + (1� rH) for v 2 [ẑ; �v)
p(v) = 1 for v 2 [�v; b]:

We call the set of allocation rules implemented by PBE0s where the seller no information �P2: Take an
element of �P2; call it �p: Since �p is a linear combination of elements4 of P2; call them pi; i = 1; :::; n and

because expected revenue R is linear in p; (see (8), main text); it can be written as

R(�p) = R(�Li=1�ipi) = �
L
i=1�iR(pi):

Now we know by the proof of Theorem 1, main text that each element of P2 is dominated in terms of
expected revenue by an element of P�2 : Let us call p�i the element of P�2 that dominates pi; then we have
that

R(�p) = �Li=1�iR(pi) � �Li=1�iR(p�i ) � R(p�):

where p� 2 argmaxi2f1;:::;ngR(p�i ): It follows that each element of �P2 is dominated in terms of expected
revenue by an element of P�2 :

Theorem A.2 Suppose that the seller observes only whether trade takes place or not. Then under
non-commitment the seller maximizes expected revenue by posting a price in each period.

1.4 Intermediate Amount of Information: Seller observes only "cheap" messages and trade/no
trade

Here we look at an intermediate case where the seller observes the messages that the buyer submits to

the mediator and whether trade took place or, but does not observe the action chosen by the buyer. In

this environment where the interests of the buyer and the seller are directly opposite, allowing the seller

to observe apart from whether trade took place or not, the cheap messages submitted by the buyer is

redundant. Let�s see why. Suppose that the seller observes the reports the buyer sends to the mediator as

well as whether trade took place or not. Based on the information that the seller observes at t = 1 she

will post a price at t = 2: Given that the "cheap" message of the buyer at t = 1 in�uences only the seller�s

beliefs at t = 2 and nothing at t = 1; all types of the buyer prefer the message that will lead to the lowest

price at t = 2: Hence all types will then choose the same "cheap" message, which implies that the possibility

that the seller observes the cheap messages, on top of whether trade takes place or not, does not add any
4We assume that they are �nitely many for simplicity.
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information. What about now if the seller observes the recommendation that the buyer receives from the

mediator? Again as before n0s may play the role of coordination to particular continuation equilibria.

Each � induces a probability distribution over n0s and each of these n0s coordinates to a particular t = 2

price. It follows that all types prefer to choose the message � that leads to the lowest expected t = 2 price.

Hence still all types of the buyer choose the same �:

1.5 Sequentially Optimal Mechanisms with Maximal Amount of Information

What is a revenue maximizing PBE if we allow the seller to observe also the recommendation that the

buyer receives from the mediator, n? The �rst step in �nding an optimal allocation is to derive the set of

PBE�implementable allocation rules. In order to do so, we investigate the role of the recommendations
that the buyer receives from the mediator. We argue that n0s play a role of a coordination device to

a particular "continuation" equilibrium. A continuation equilibrium in this setup is an assessment, that

conditional on a given message submitted by the buyer to the mediator, and on the recommendation that

the buyer receives from the mediator, satis�es the requirements of PBE:We illustrate this role of n0s with

an example.

Example 1 Consider a PBE where the mechanism that the seller employs at t = 1 consists of a game

form that contains two actions s and ŝ such that when s is chosen the contract is (r; z) and when ŝ is

chosen the contract is (r̂; ẑ): These two contracts are such that the following inequalities are true

r < r̂ < r + (1� r)� < r̂ + (1� r̂)�:

In order to complete the description of a mechanism let us describe the mediator: it allows the report of

a single message �: Given � it sends recommendation n1 with probability a half and recommendation n2
with probability a half. There are many possible allocation rules implemented by "continuation equilibria"

where the seller employs this game form at t = 1: Two possibilities are as follows: 1) all types below

�v = ẑ+(1�r̂)�ẑ2�z�(1�r)�z2(�v)
r̂+(1�r̂)��(r+(1�r)�) choose (r; z) and all types above �v choose (r̂; ẑ) at t = 1 and 2) all types below

~v = ẑ+(1�r̂)�ẑ2�z�(1�r)�z2(~v)
r̂+(1�r̂)��(r+(1�r)�) choose (r; z) and all types above ~v choose (r̂; ẑ) at t = 1; where we take �v < ~v:

Then consider an assessment where when the recommendation is n1 the buyer�s strategy is such that types

above �v choose (r̂; ẑ) at t = 1 and types below �v choose (r; z) at t = 1; whereas when the recommendation

is n2 the buyer�s strategy is such that types above ~v choose (r̂; ẑ) at t = 1 and types below ~v choose (r; z)

at t = 1: Then, from the ex-ante point of view the allocation rule will be of the form p(�;n1) times the
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probability that the buyer will receive recommendation n1; where

p(�;n1)(v) = r for v 2 [a; z2(�v))
p(�;n1)(v) = r + (1� r)� for v 2 [z2(�v); �v)
p(�;n1)(v) = r̂ + (1� r̂)� for v 2 [�v; b];

and it will be of the form p(�;n2) times the probability that the buyer will receive recommendation n2

p(�;n2)(v) = r for v 2 [a; z2(~v))
p(�;n2)(v) = r + (1� r)� for v 2 [z2(~v); ~v)
p(�;n2)(v) = r̂ + (1� r̂)� for v 2 [~v; b]:

This example, though admittedly simplistic, demonstrates the role of n0s as a coordination device on

a particular continuation equilibrium. It also illustrates, that it is possible that given a message that the

buyer submits to the mediator, �; a given action chosen by the buyer s is followed by di¤erent prices at

t = 2 depending on the recommendation that buyer received by the mediator. That is, it is possible that

z2(~v) > z2(�v): This is contrary to Lemma 4, in the main text, which says that if the seller does not observe

n, it cannot be the case that depending on the message that the buyer submitted to the mediator, a given

action of the buyer at t = 1 is followed by di¤erent prices at t = 2.

In general, matters are quite more complicated since the message that the buyer submits to the mediator

� in�uences the probability distribution over the recommendations that he receives, and consequently the

continuation allocations. Before we proceed to describe necessary conditions that allocation rules satisfy

if they are implemented by assessments where the seller observes the recommendations by the mediator,

we would like to note that allowing for the possibility that the seller observes the recommendations of the

mediator has the same e¤ect as allowing the seller to submit messages to the mediator, if these messages

can be observed by the buyer; they both function as a way to coordinate on a speci�c "continuation

equilibrium."

Proposition A.1 Suppose that T = 2 and that the seller observes the message that the buyer sends
to the mediator, the recommendation that the buyer receives from n the mediator, the action he chooses,
and whether trade took place or not. Then, if an allocation rule is implemented by an assessment that is

a PBE, it can be written as a linear combination of allocation rules described in (12) in the main text.

Proof. A given report by the buyer to the mediator � induces a probability distribution over recommen-
dations n0s: The recommendations n0s play a role as a belief�s coordination device: each pair of cheap

signals (�i; nj) determines a continuation assessment and an allocation rule that has the shape of the ones
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in (12), main text. When the valuation of the buyer is v then, the probability that p(�i;nj)(v) is the

relevant allocation rule is given by the probability that type v will report message � times the probability

that the mediator will send recommendation n given message �; and p(v) is then the expectation with

respect to all pairs (�; n): It follows that in the case that the seller observes the recommendations that the

buyer receives by the mediator, the allocation rule is a linear combination of allocation rules in (12) in the

main text.

But again from Proposition 4 we have that a revenue maximizing element of P�2 is implemented by a
PBE of the game where the seller posts a price in each period. We have therefore demonstrated that:

Theorem A.1 Suppose that T = 2 and that the seller observes the message that the buyer sends to
the mediator, the recommendation that the buyer receives from the mediator, the action he chooses, and

whether trade took place or not. Then under non-commitment the seller maximizes expected revenue by

posting a price in each period.

Let us conclude our exploration of the various environments where our result is robust with a �nal

remark. Given that the seller employs deterministic game forms all the earlier analysis goes through

assuming that the seller instead of actions, the s0s; observes contracts (r; z):
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