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Abstract

This paper considers inference in a broad class of non-regular models. The models
considered are non-regular in the sense that standard test statistics have asymptotic
distributions that are discontinuous in some parameters. It is shown in Andrews and
Guggenberger (2009a) that standard fixed critical value, subsampling, and m out
of n bootstrap methods often have incorrect asymptotic size in such models. This
paper introduces general methods of constructing tests and confidence intervals that
have correct asymptotic size. In particular, we consider a hybrid subsampling/fixed-
critical-value method and size-correction methods. The paper discusses two examples
in detail. They are: (i) confidence intervals in an autoregressive model with a root
that may be close to unity and conditional heteroskedasticity of unknown form and (ii)
tests and confidence intervals based on a post-conservative model selection estimator.

Keywords: Asymptotic size, autoregressive model, m out of n bootstrap, exact size,
hybrid test, model selection, over-rejection, size correction, subsample, confidence in-
terval, subsampling test.

JEL Classification Numbers: C12, C15.



1 Introduction

Non-regular models are becoming increasingly important in econometrics and sta-
tistics as developments in computation make it feasible to employ more complex
models. In a variety of non-regular models, however, methods based on a standard
asymptotic fixed critical value (FCV) or the bootstrap do not yield tests or confi-
dence intervals with the correct size even asymptotically. In such cases, the usual
prescription in the literature is to use subsampling or m out n bootstrap methods
(where n denotes the sample size and m denotes the bootstrap sample size). For ref-
erences, see Andrews and Guggenberger (2009a), hereafter denoted AG1. However,
AG1 shows that in a fairly broad array of non-regular models these methods do not
deliver correct asymptotic size (defined to be the limit of exact size). The purpose of
this paper is to provide general methods of constructing tests and confidence intervals
(CIs) that do have correct asymptotic size in such models.
The results cover cases in which a test statistic has an asymptotic distribution

that is discontinuous in some parameters. Examples include inference for (i) post-
conservative model-selection procedures (such as those based on AIC), (ii) parameters
in scalar and vector autoregressive models with roots that may be close to unity, (iii)
models with a parameter near a boundary, (iv) models with lack of identification at
some point(s) in the parameter space, such as models with weak instruments, (v)
predictive regression models with nearly-integrated regressors, (vi) threshold autore-
gressive models, (vii) tests of stochastic dominance, (viii) non-differentiable functions
of parameters, and (ix) differentiable functions of parameters that have zero first-
order derivative.
The methods considered here are quite general. However, their usefulness is great-

est in models in which other methods, such as those based on a standard asymptotic
FCV or the bootstrap, are not applicable. In models in which other methods work
properly (in the sense that the limit of their exact size equals their nominal level),
such methods are often preferable to the methods considered here in terms of the
accuracy of the asymptotic approximations and/or the power of the test or length of
the CI they generate.
The first method considered in the paper is a hybrid method that takes the critical

value for a given test statistic to be the maximum of a subsampling critical value and
the FCV that applies when the true parameters are not near a point of discontinuity
of the asymptotic distribution. The latter is usually a normal or chi-square critical
value. By simply taking the maximum of these two critical values, one obtains a test
or CI that has correct asymptotic size in many cases where the FCV, subsampling,
or both methods have incorrect asymptotic size. Furthermore, the paper shows that
the hybrid method has the feature that relative to a subsampling method either
(i) the subsampling method has correct size asymptotically and the subsampling and
hybrid critical values are the same asymptotically or (ii) the subsampling method has
incorrect size asymptotically and the hybrid method reduces the magnitude of over-
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rejection for at least some parameter values, sometimes eliminating size distortion.
The second method considered in the paper is a size-correction (SC) method. This

method can be applied to FCV, subsampling, and hybrid procedures. The basic idea
is to use the formulae given in AG1 for the asymptotic sizes of these procedures and
to increase the magnitudes of the critical values (by adding a constant or reducing the
nominal level) to achieve a test whose asymptotic size equals the desired asymptotic
level. Closed form solutions are obtained for the SC values (based on adding a
constant). Numerical work in a number of different examples shows that computation
of the SC values is tractable.
The paper provides analytical comparisons of the asymptotic power of different

SC tests and finds that the SC hybrid test has advantages over FCV and subsampling
methods in most cases, but it does not dominate the SC subsampling method.
The SC methods that we consider are not asymptotically conservative, but typ-

ically are asymptotically non-similar. (That is, for tests, the limit of the supremum
of the finite-sample rejection probability over points in the null hypothesis equals the
nominal level, but the limit of the infimum over points in the null hypothesis is less
than the nominal level.) Usually power can be improved in such cases by reducing
the magnitude of asymptotic non-similarity. To do so, we introduce “plug-in” size-
correction (PSC) methods for FCV, subsampling, and hybrid tests. These methods
are applicable if there is a parameter sub-vector that affects the asymptotic distribu-
tion of the test statistic under consideration, is not related to the discontinuity in the
asymptotic distribution, and is consistently estimable. The PSC method makes the
critical values smaller for some parameter values by making the size-correction value
depend on a consistent estimator of the parameter sub-vector.
The asymptotic results for subsampling methods derived in AG1, and utilized here

for size correction, do not depend on the choice of subsample size b provided b→∞
and b/n→ 0 as n→∞. One would expect that this may lead to poor approximations
in some cases. To improve the approximations, the paper introduces finite-sample
adjustments to the asymptotic rejection probabilities of subsampling and hybrid tests.
The adjustments depend on the magnitude of δn = b/n. The adjusted formulae for
the asymptotic rejection probabilities are used to define adjusted SC (ASC) values
and adjusted PSC (APSC) values.
All of the methods discussed above are applicable when one uses an m out of n

bootstrap critical value in place of a subsampling critical value provided m2/n → 0
and the observations are i.i.d. The reason is that the m out of n bootstrap can be
viewed as subsampling with replacement and the difference between sampling with
and without replacement is asymptotically negligible under the stated conditions, see
Politis, Romano, and Wolf (1999, p. 48).
Literature that is related to the methods considered in this paper includes the work

of Politis and Romano (1994) and Politis, Romano, and Wolf (1999) on subsampling
and the literature on the m out of n bootstrap, see AG1 for references. We are
not aware of any methods in the literature that are analogous to the hybrid test
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or that consider size-correction of subsampling or m out of n bootstrap methods.
Nor are we aware of any general methods of size-correction for FCV tests for the
type of non-regular cases considered in this paper. For specific models in the class
considered here, however, some methods are available. For example, for CIs based
on post-conservative model selection estimators in regression models, Kabaila (1998)
suggests a method of size-correction. For models with weak instruments, Anderson
and Rubin (1949), Dufour (1997), Staiger and Stock (1997), Moreira (2003, 2009),
Kleibergen (2002, 2005), Guggenberger and Smith (2005, 2008), and Otsu (2006)
suggest methods with correct asymptotic size. A variant of Moreira’s method also is
applicable in predictive regressions with nearly integrated regressors, see Jansson and
Moreira (2006). In conditionally homoskedastic autoregressive models, CI methods of
Stock (1991), Andrews (1993), Nankervitz and Savin (1996), and Hansen (1999) can
be used in place of the least squares estimator combined with normal critical values
or subsampling critical values. Mikusheva (2007a) shows that the former methods
yield correct asymptotic size. (She does not consider the method in Nankervitz and
Savin (1996).)
This paper considers two examples in detail. First, we consider CIs for the au-

toregressive parameter ρ in a first-order conditionally heteroskedastic autoregressive
(AR(1)) model in which ρ may be close to, or equal to, one. Models of this sort
are applicable to exchange rate and commodity and stock prices, e.g., see Kim and
Schmidt (1993). We consider FCV, subsampling, and hybrid CIs. The CIs are based
on inverting a (studentized) t statistic constructed using a feasible quasi-generalized
least squares (FQGLS) estimator of ρ. This is a feasible GLS estimator based on a
specification of the form of the conditional heteroskedasticity that may or may not
be correct. We introduce procedures that are robust to this type of misspecifica-
tion. We are interested in robustness of this sort because the literature is replete
with different forms of ARCH, GARCH, and stochastic volatility models for condi-
tional heteroskedasticity–not all of which can be correct. We consider the FQGLS
estimator because it has been shown that GLS correction of unit root tests yields
improvements of power, see Seo (1999) and Guo and Phillips (2001).
None of the CIs in the literature, such as those in Stock (1991), Andrews (1993),

Andrews and Chen (1994), Nankervis and Savin (1996), Hansen (1999), Chen and
Deo (2007), and Mikusheva (2007a) have correct asymptotic size in the presence of
conditional heteroskedasticity under parameter values that are not 1/n-local-to-unity.
Table 2 of Mikusheva (2007b) shows that the nominal .95 CIs of Andrews (1993),
Stock (1991) (modified), and Hansen (1999) have finite-sample coverage probabilities
of .70, .72, and .73, respectively, for autoregressive parameter values of .3 and .5
under conditionally normal ARCH(1) innovations with ARCH parameter equal to
.85, with n = 120, in a model with a linear time trend. Furthermore, GLS versions
of the methods listed above cannot be adapted easily to account for conditional
heteroskedasticity of unknown form, which is what we consider here.1

1Stock’s (1991) method is not feasible because the asymptotic distribution of the GLS t statistic
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Given that the parameter space for ρ includes a unit root and near unit roots,
standard two-sided FCV methods for constructing CIs based on a standard normal
approximation to the t statistic are known to be problematic even under conditional
homoskedasticity. As an alternative, Romano and Wolf (2001) propose subsampling
CIs for ρ. Mikusheva (2007a, Theorem 4) shows that equal-tailed versions of such
subsampling CIs under-cover the true value asymptotically under conditional ho-
moskedasticity (i.e., their asymptotic confidence size is less than 1 − α), whereas
some versions of the methods listed in the previous paragraph provide correct as-
ymptotic coverage in a uniform sense. The results given here differ from those of
Mikusheva (2007a) in several dimensions. First, her results do not apply to LS or
FQGLS procedures in models with conditional heteroskedasticity. Second, even in
a model with conditional homoskedasticity, her results do not apply to symmetric
subsampling CIs and do not provide an expression for the asymptotic confidence size.
We consider two models: model 1 includes an intercept, and model 2 includes

an intercept and time trend. We show that equal-tailed two-sided subsampling and
two-sided FCV CIs have substantial asymptotic size distortions. On the other hand,
symmetric subsampling CIs are shown to have correct asymptotic size. An explana-
tion is given below. All types of hybrid CIs are shown to have correct asymptotic size.
Finite-sample results indicate that the hybrid CIs have good coverage probabilities
across all types of conditional heteroskedasticity that are considered.
The second example is a post-conservative model selection (CMS) example. We

consider an LS t test concerning a regression parameter after model selection is used
to determine whether another regressor should be included in the model. The model
selection procedure uses an LS t test with nominal level 5%. This procedure, which
is closely related to AIC, is conservative (i.e., it chooses a correct model, but not
necessarily the most parsimonious model, with probability that goes to one). The
asymptotic results for FCV tests in the CMS example are variations of those of
Leeb (2006) and Leeb and Pötscher (2005) (and other papers referenced in these two
papers).
In the CMS example, nominal 5% subsampling, FCV, and hybrid tests have as-

ymptotic and adjusted-asymptotic sizes between 90 and 96% for upper, symmetric,
and equal-tailed tests.2 The finite-sample maximum (over the cases considered) null
rejection probabilities of these tests for n = 120 and b = 12 are close to the as-

under local to unity asymptotics depends on a constant, h2,7 below, that is unknown and is quite
difficult to estimate because it depends on the unknown form of conditional heteroskedasticity which
in turn depends on an infinite number of lags. The methods of Andrews (1993), Andrews and Chen
(1994), and Hansen (1999) are not feasible because they depend on a parametric specification of
the model since they are parametric bootstrap-type methods. Mikusheva’s (2007a) procedures are
variants of those considered in the papers above and hence are not easily adapted to conditional
heteroskedasticity of unknown form. Chen and Deo’s (2007) approach relies on the i.i.d. nature of
the innovations.

2This is for a parameter space of [−.995, .995] for the (asymptotic) correlation between the LS
estimators of the two regressors.
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ymptotic sizes. They are especially close for the adjusted-asymptotic sizes for which
the largest deviations are 2.0%. Plug-in size-corrected tests perform very well in this
example. For example, the 5% PSC hybrid test has finite-sample maximum null
rejection probability of 4.8% for upper, symmetric, and equal-tailed tests.
Additional examples are given in Andrews and Guggenberger (2005, 2009b,c,d)

and Guggenberger (2009). These examples cover: (i) tests when a nuisance parameter
may be near a boundary of the parameter space, (ii) tests and CIs concerning the co-
efficient on an endogenous variable in an instrumental variables regression model with
instruments that may be weak, (iii) tests concerning a parameter that determines the
support of the observations, (iv) CIs constructed after the application of a consistent
model selection procedure, (v) CIs when the parameter of interest may be near a
boundary, (vi) tests and CIs for parameters defined by moment inequalities, and (vii)
tests after the application of a pretest. Table I summarizes the asymptotic sizes of
subsampling and hybrid procedures in these models for symmetric and equal-tailed
two-sided procedures. In many of these models, subsampling procedures have incor-
rect asymptotic size–often by a substantial amount. In all of these models except
those based on post-model selection, hybrid procedures have correct asymptotic size.
For post-conservative model selection inference, PSC tests have correct asymptotic
size.
The remainder of the paper is outlined as follows. Section 2 introduces the testing

set-up, the hybrid tests, and the CMS example, which is used as a running example in
the paper. Section 3 introduces the size-corrected tests, gives power comparisons of
the SC tests, and introduces the plug-in size-corrected tests. Section 4 introduces the
finite-sample adjustments to the asymptotic sizes of subsampling and hybrid tests.
Sections 5 and 6 consider equal-tailed tests and CIs respectively. Sections 7 and 8
provide the results for the autoregressive and post-conservative model selection ex-
amples. The Supplement to the paper, Andrews and Guggenberger (2009c), gives
(i) details concerning the construction of Tables II and III, (ii) proofs of the results
in the paper, (iii) size-correction methods based on quantile adjustment, (iv) results
concerning power comparisons of SC tests, (v) graphical illustrations of critical value
functions and power comparisons, (vi) size-correction results for equal-tailed tests,
(vii) results for combined size-corrected subsampling and hybrid tests, (viii) an addi-
tional example, and (ix) proofs for the examples in the paper.

2 Hybrid Tests

2.1 Intuition

We now provide some intuition regarding the potential problem with the asymp-
totic size of subsampling procedures and indicate why the hybrid procedure intro-
duced below solves the problem in many cases. Suppose we are carrying out a test
based on a test statistic Tn and a nuisance parameter γ ∈ Γ ⊂ R appears. Sup-
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pose the asymptotic null distribution of Tn is discontinuous at γ = 0. That is, we
obtain a different asymptotic distribution under the fixed parameter γ = 0 from
that under a fixed γ 9= 0. As is typical in such situations, suppose the asymptotic
distribution of Tn under any drifting sequence of parameters {γn = h/nr : n ≥ 1}
(or γn = (h + o(1))/nr) depends on the “localization parameter” h.3 Denote this
asymptotic distribution by Jh. If the asymptotic distribution of Tn under γn is Jh,
then the asymptotic distribution of Tb under γn = h/nr = (b/n)rh/br = o(1)/br is
J0 when b/n → 0 as n → ∞. Subsample statistics with subsample size b have the
same asymptotic distribution J0 as Tb. In consequence, subsampling critical values
converge in probability to the 1−α quantile, c0(1−α), of J0, whereas the full-sample
statistic Tn converges in distribution to Jh. The test statistic Tn needs a critical value
equal to the 1 − α quantile, ch(1 − α), of Jh in order to have an asymptotic null
rejection probability of α under {γn : n ≥ 1}. If c0(1 − α) < ch(1 − α), then the
subsampling test over-rejects asymptotically under {γn : n ≥ 1} and has asymptotic
size greater than α. If c0(1−α) > ch(1−α), then it under-rejects asymptotically and
is asymptotically non-similar.
Sequences of the form γn = h/n

r are not the only ones in which the subsampling
critical value may be too small. Suppose γn = g/br for fixed g ∈ R (or γn =
(g + o(1))/br). Then, Tb has asymptotic distribution Jg and the probability limit of
the subsampling critical value is cg(1− α). On the other hand, γn = (n/b)

rg/nr and
(n/b)r → ∞, so the full-sample statistic Tn converges to J∞ (when g 9= 0), which
is the asymptotic distribution of Tn when γn is more distant from the discontinuity
point than O(n−r). Let c∞(1 − α) denote the 1 − α quantile of J∞. If cg(1 − α) <
c∞(1−α), then the subsampling test over-rejects asymptotically under {γn : n ≥ 1}.
Any value of g ∈ R is possible, so one obtains asymptotic size greater than α if
cg(1− α) < ch(1− α) for any (g, h) such that g = 0 if h <∞ or g ∈ R if h =∞.4
The hybrid test uses a critical value given by the maximum of the subsampling

critical value and c∞(1− α). Its probability limit is c∗g = max{cg(1− α), c∞(1− α)}.
In consequence, if the critical value function ch(1 − α) viewed as a function of h is
maximized at h = 0, then when (g, h) = (0, h) for |h| <∞, we have c∗g = c0(1−α) ≥
ch(1−α) and when (g, h) is such that h =∞, we have c∗g ≥ c∞(1−α) = ch(1−α). On
the other hand, if ch(1−α) is maximized at h =∞, then c∗g = c∞(1−α) ≥ cg(1−α)
for all g ∈ R∪ {∞}. Hence, in this case too the hybrid critical value does not lead to
over-rejection. In many examples, ch(1− α) is maximized at either 0 or ∞ and the
hybrid test has correct asymptotic size.
In some models, the test statistic Tn depends on two nuisance parameters (γ1, γ2)

and its asymptotic distribution is discontinuous whenever γ1 = 0. In this case, the
asymptotic distribution of Tn depends on a localization parameter h1 analogous to

3Typically, the constant r > 0 is such that the distribution of Tn under γn is contiguous to
its distribution under γ = 0. In most cases, r = 1/2, but in the autoregressive example with a
discontinuity at a unit root, we have r = 1.

4For g = 0 a slightly different argument is needed.

6



h above and the fixed value of γ2. The asymptotic behaviors of subsampling and
hybrid tests in this case are as described above with h1 in place of h except that the
conditions for a rejection rate of ≤ α must hold for each value of γ2. It turns out that
in a number of models of interest the critical value function is monotone increasing
in h1 for some values of γ2 and monotone decreasing in other values. In consequence,
subsampling tests over-reject asymptotically, but hybrid tests do not.

2.2 Testing Set-up

Here we describe the general testing set-up. We are interested in tests concerning a
parameter θ ∈ Rd in the presence of a nuisance parameter γ ∈ Γ. The null hypothesis
is H0 : θ = θ0 for some θ0 ∈ Rd. The alternative hypothesis may be one-sided or
two-sided. Let Tn(θ0) denote a test statistic based on a sample of size n for testing
H0. It could be a t statistic or some other test statistic. We consider the case where
the asymptotic null distribution of Tn(θ0) depends on the nuisance parameter γ and
is discontinuous at some value(s) of γ.
The nuisance parameter γ has up to three components: γ = (γ1, γ2, γ3). The

points of discontinuity of the asymptotic distribution of Tn(θ0) are determined by
the first component, γ1 ∈ Rp. We assume that the discontinuities occur when one or
more elements of γ1 equal zero. The parameter space for γ1 is Γ1 ⊂ Rp. The second
component, γ2 (∈ Rq), of γ also affects the limit distribution of the test statistic,
but does not affect the distance of the parameter γ to the point of discontinuity.
The parameter space for γ2 is Γ2 ⊂ Rq. The third component, γ3, of γ does not
affect the limit distribution of the test statistic. It is assumed to be an element of
an arbitrary space T3. Infinite dimensional γ3 parameters, such as error distributions,
arise frequently in examples. Due to the central limit theorem (CLT), the asymptotic
distribution of a test statistic often does not depend on an error distribution. The
parameter space for γ3 is Γ3(γ1, γ2) (⊂ T3).
The parameter space for γ is

Γ = {(γ1, γ2, γ3) : γ1 ∈ Γ1, γ2 ∈ Γ2, γ3 ∈ Γ3(γ1, γ2)}. (2.1)

Let e denote the left endpoint of an interval that may be open or closed at the
left end. Define f analogously for the right endpoint.
Assumption A. (i) Γ satisfies (2.1) and (ii) Γ1 =

Tp
m=1 Γ1,m, where Γ1,m =

eγ�1,m, γu1,mf for some −∞ ≤ γ�1,m < γu1,m ≤ ∞ that satisfy γ�1,m ≤ 0 ≤ γu1,m for
m = 1, ..., p.

Next, we describe the asymptotic behavior of Tn(θ0) when the true value of θ
is the null value θ0. All limits are as n → ∞. For an arbitrary distribution G, let
G(·) denote the distribution function (df) of G, let G(x−) denote the limit from
the left of G(·) at x, and let C(G) denote the set of continuity points of G(·). Let
α ∈ (0, 1) be a given constant. Define the 1− α quantile, q(1− α), of a distribution
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G by q(1 − α) = inf{x ∈ R : G(x) ≥ 1 − α}. The distribution Jh considered below
is the distribution of a proper random variable that is finite with probability one.
Let R+ = {x ∈ R : x ≥ 0}, R− = {x ∈ R : x ≤ 0}, R+,∞ = R+ ∪ {+∞},
R−,∞ = R− ∪ {−∞}, R∞ = R ∪ {±∞}, Rp+ = R+ × ... × R+ (with p copies), and
Rp∞ = R∞ × ...×R∞ (with p copies).
Let r > 0 denote a rate of convergence index such that when the true parameter

γ1 satisfies n
rγ1 → h1, then the test statistic Tn(θ0) has an asymptotic distribution

that depends on the localization parameter h1. In most examples, r = 1/2, but in the
unit root example considered below r = 1.
The index set for the different asymptotic null distributions of the test statistic

Tn(θ0) is

H = H1 ×H2, H1 =
p\

m=1

⎧⎨⎩
R+,∞ if γ�1,m = 0
R−,∞ if γu1,m = 0
R∞ if γ�1,m < 0 and γu1,m > 0,

and H2 = cl(Γ2),

(2.2)
where cl(Γ2) is the closure of Γ2 with respect to Rq∞. For example, if p = 1, γ

�
1,1 = 0,

and Γ2 = Rq, then H1 = R+,∞, H2 = Rq∞, and H = R+,∞ × Rq∞. For notational
simplicity, we write h = (h1, h2), rather than (h�1, h

�
2)
�, even though h is a p + q

column vector.

Definition of {γn,h : n ≥ 1}: Given r > 0 and h = (h1, h2) ∈ H, let {γn,h =
(γn,h,1, γn,h,2, γn,h,3) : n ≥ 1} denote a sequence of parameters in Γ for which nrγn,h,1 →
h1 and γn,h,2 → h2.

For a given model, we assume there is a single fixed r > 0. The sequence {γn,h : n ≥ 1}
is defined such that under {γn,h : n ≥ 1}, the asymptotic distribution of Tn(θ0)
depends on h.

We assume that Tn(θ0) satisfies the following conditions concerning its asymptotic
null behavior.

Assumption B. For some r > 0, all h ∈ H, all sequences {γn,h : n ≥ 1}, and some
distributions Jh, Tn(θ0)→d Jh under {γn,h : n ≥ 1}.
Assumption K. The asymptotic distribution Jh in Assumption B is the same
(proper) distribution, call it J∞, for all h = (h1, h2) ∈ H for which h1,m = +∞
or −∞ for all m = 1, ..., p, where h1 = (h1,1, ..., h1,p)�.

Assumptions B and K hold in a wide variety of examples of interest, see below and
Andrews and Guggenberger (2005, 2009a,c,d). In examples, when Tn(θ0) is a stu-
dentized t statistic or a likelihood ratio (LR), Lagrange multiplier (LM), or Wald
statistic, J∞ typically is a standard normal, absolute standard normal, or chi-square
distribution. Let c∞(1− α) denote the 1− α quantile of J∞. As defined, c∞(1− α)
is an FCV that is suitable when γ is not at or close to a discontinuity point of the
asymptotic distribution of Tn(θ0).
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Post-Conservative Model Selection Example. In this example, we consider
inference concerning a parameter in a linear regression model after a “conservative”
model selection procedure has been applied to determine whether another regres-
sor should enter the model. A “conservative” model selection procedure is one that
chooses a correct model, but not the most parsimonious correct model, with prob-
ability that goes to one as the sample size n goes to infinity. Examples are model
selection based on a test whose critical value is independent of the sample size and
the Akaike information criterion (AIC).
The model we consider is

yi = x
∗
1iθ + x

∗
2iβ2 + x

∗�
3iβ3 + σεi for i = 1, ..., n, where

x∗i = (x
∗
1i, x

∗
2i, x

∗�
3i)
� ∈ Rk, β = (θ,β2, β�3)� ∈ Rk, (2.3)

x∗1i, x
∗
2i, θ,β2,σ, εi ∈ R, and x∗3i,β3 ∈ Rk−2. The observations {(yi, x∗i ) : i = 1, ..., n}

are i.i.d. The scaled error εi has mean 0 and variance 1 conditional on x∗i .
We are interested in testing H0 : θ = θ0 after carrying out a model selection

procedure to determine whether x∗2i should enter the model. The model selection
procedure is based on a t test of H∗

0 : β2 = 0 that employs a critical value c that
does not depend on n. Because the asymptotic distribution of the test statistic is
invariant to the value of θ0, the testing results immediately yield results for a CI
for θ obtained by inverting the test. Also, the inference problem described above
covers tests concerning a linear combination of regression coefficients by suitable
reparametrization (see the Supplement for details).
We consider upper and lower one-sided and symmetric and equal-tailed two-sided

nominal level α FCV, subsampling, and hybrid tests of H0 : θ = θ0. Each test is based
on a studentized test statistic Tn(θ0), where Tn(θ0) equals T ∗n(θ0), −T ∗n(θ0), |T ∗n(θ0)|,
and T ∗n(θ0), respectively, and T

∗
n(θ0) is defined below.

To define the test statistic T ∗n(θ0), we let eTn,1(θ0) denote the standard t statistic
for testing H0 in (2.3) (which is unrestricted in the sense that H∗

0 : β2 = 0 is not
imposed). As defined, this statistic has an exact t distribution underH0 and normality
of the errors (but the latter is not assumed). We let hTn,1(θ0) denote the “restricted”
t statistic for testing H0 which imposes the restriction of H∗

0 : β2 = 0, but uses the
unrestricted estimator eσ of σ instead of the restricted estimator.5 We let Tn,2 denote
the standard t statistic for testing H∗

0 : β2 = 0 (and does not impose H0).
6 The model

selection test rejects H∗
0 : β2 = 0 if |Tn,2| > c, where c > 0 is a given critical value

5One could define hTn,1(θ0) using the restricted (by β2 = 0) LS estimator of σ, but this is
not desirable because it leads to an inconsistent estimator of σ under sequences of parameters
{β2 = β2n : n ≥ 1} that satisfy β2n → 0 and n1/2β2n 0 as n → ∞. For subsampling tests, one
could define hTn,1(θ0) and eTn,1(θ0) with eσ deleted because the scale of the subsample statistics offsets
that of the original sample statistic. This does not work for hybrid tests because Assumption K fails
if eσ is deleted.

6See Section 11.1 of the Supplement for explicit expressions for eTn,1(θ0), hTn,1(θ0), and Tn,2.
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that does not depend on n. Typically, c = z1−α/2 for some α > 0. The post-model
selection test statistic, T ∗n(θ0), for testing H0 : θ = θ0 is

T ∗n(θ0) = hTn,1(θ0)1(|Tn,2| ≤ c) + eTn,1(θ0)1(|Tn,2| > c). (2.4)

We now show how the testing problem above fits into the general framework.
First, we define the regressor vector x⊥i = (x⊥1i, x

⊥
2i)
� that corresponds to (x∗1i, x

∗
2i)
�

with x∗3i projected out using the population projection. Let G denote the distribution
of (εi, x∗i ). Define

x⊥i =
�
x∗1i − x∗�3i(EGx∗3ix∗�3i)−1EGx∗3ix∗1i
x∗2i − x∗�3i(EGx∗3ix∗�3i)−1EGx∗3ix∗2i

�
∈ R2,

Q = EGx
⊥
i x

⊥�
i , and Q

−1 =
�
Q11 Q12

Q12 Q22

�
. (2.5)

The parameter vector γ = (γ1, γ2, γ3) is defined in this example by

γ1 =
β2

σ(Q22)1/2
, γ2 =

Q12

(Q11Q22)1/2
, and γ3 = (β2, β3,σ, G). (2.6)

Note that γ2 = ρ, where ρ = AsyCorr(eθ, eβ2). The parameter spaces for γ1, γ2, and
γ3 are Γ1 = R, Γ2 = [−1 + ζ, 1− ζ] for some ζ > 0, and

Γ3(γ1, γ2) =
�
(β2,β3,σ, G) : β2 ∈ R, β3 ∈ Rk−2, σ > 0, and for

Q = EGx
⊥
i x

⊥�
i and Q−1 =

�
Q11 Q12

Q12 Q22

�
, (i)

β2
σ(Q22)1/2

= γ1,

(ii)
Q12

(Q11Q22)1/2
= γ2, (iii) λmin(Q) ≥ κ, (iv) λmin(EGx∗3ix

∗�
3i) ≥ κ,

(v) EG||x∗i ||2+δ ≤M, (vi) EG||εix∗i ||2+δ ≤M,
(vii) EG(εi|x∗i ) = 0 a.s., and (viii) EG(ε2i |x∗i ) = 1 a.s.

�
(2.7)

for some κ, δ > 0 and M < ∞. The parameter γ2 is bounded away from one and
minus one because otherwise the LS estimators of θ and β2 could have a distribution
that is arbitrarily close to being singular (such as a normal distribution with singular
variance matrix). Assumption A holds immediately.
The rate of convergence parameter r equals 1/2. The localization parameter h

satisfies h = (h1, h2) ∈ H = H1 ×H2, where H1 = R∞ and H2 = [−1 + ζ, 1− ζ].
Let ∆(a, b) = Φ(a+ b)−Φ(a− b), where Φ(·) is the standard normal distribution

function. Note that ∆(a, b) = ∆(−a, b). Calculations in the Supplement to this
paper establish that the asymptotic distribution J∗h of T

∗
n(θ0) under a sequence of

parameters {γn = (γn,1, γn,2, γn,3) : n ≥ 1} (where n1/2γn,1 → h1, γn,2 → h2, and
γn,3 ∈ Γ3(γn,1, γn,2) for all n) is

J∗h(x) = Φ(x+ h1h2(1− h22)−1/2)∆(h1, c)

+

] x

−∞

�
1−∆

�
h1 + h2t

(1− h22)1/2
,

c

(1− h22)1/2
��

φ(t)dt (2.8)
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when |h1| <∞. When |h1| =∞, J∗h(x) = Φ(x) (which equals the limit as |h1|→∞
of J∗h(x) defined in (2.8)). For upper one-sided, lower one-sided, and symmetric two-
sided tests, the asymptotic distribution Jh of Tn(θ0) is given by J∗h, −J∗h, and |J∗h|,
respectively. (If Y ∼ J∗h, then by definition, −Y ∼ −J∗h and |Y | ∼ |J∗h|.) This verifies
Assumption B. Assumption K holds with J∗∞ being a N(0, 1) distribution.
The asymptotic results that are used to verify Assumption B are closely related to

results of Leeb (2006) and Leeb and Pötscher (2005) (and other papers referenced in
these two papers). However, no papers in the literature, that we are aware of, consider
subsampling-based methods for post-conservative model selection procedures, as is
done below. The results given below also are related to, but quite different from, those
in Andrews and Guggenberger (2009b) for post-consistent model selection estimators,
shrinkage estimators, and super-efficient estimators.

2.3 Subsampling Critical Value

The hybrid test introduced below makes use of a subsampling critical value, which
we define here. A subsampling critical value is determined by subsample statistics
that are denoted by {eTn,b,j : j = 1, ..., qn}, where j indexes the subsample, b is a
subsample size that depends on n, and qn is the number of different subsamples.
With i.i.d. observations, there are qn = n!/((n− b)!b!) different subsamples of size b.
With time series observations, there are qn = n− b+1 subsamples each consisting of
b consecutive observations.
Let {Tn,b,j(θ0) : j = 1, ..., qn} be subsample statistics that are defined exactly as

Tn(θ0) is defined, but are based on subsamples of size b rather than the full sam-
ple. The subsample statistics {eTn,b,j : j = 1, ..., qn} that are used to construct the
subsampling critical value are defined to satisfy one or the other of the following
assumptions.

Assumption Sub1. eTn,b,j = Tn,b,j(eθn) for all j ≤ qn, where eθn is an estimator of θ.
Assumption Sub2. eTn,b,j = Tn,b,j(θ0) for all j ≤ qn.
The estimator eθn in Assumption Sub1 usually is chosen to be an estimator that is
consistent under both the null and alternative hypotheses.
Let Ln,b(x) and cn,b(1 − α) denote the empirical distribution function and 1− α

sample quantile, respectively, of the subsample statistics {eTn,b,j : j = 1, ..., qn} :
Ln,b(x) = q

−1
n

qn[
j=1

1(eTn,b,j ≤ x) for x ∈ R and
cn,b(1− α) = inf{x ∈ R : Ln,b(x) ≥ 1− α}. (2.9)

The subsampling critical value is cn,b(1−α). The subsampling test rejects H0 : θ = θ0
if Tn(θ0) > cn,b(1− α).
For subsampling tests (and the hybrid tests introduced below), we assume:

11



Assumption C. (i) b→∞ and (ii) b/n→ 0.

Assumption D. (i) {Tn,b,j(θ0) : j = 1, ..., qn} are identically distributed under any
γ ∈ Γ for all n ≥ 1 and (ii) Tn,b,j(θ0) and Tb(θ0) have the same distribution under any
γ ∈ Γ for all n ≥ 1.
These assumptions allow for i.i.d., stationary strong-mixing, and even nonstationary
observations (as shown in the autoregressive example below). They have been verified
in a wide variety of examples in this paper and elsewhere.
In the post-conservative model selection example, the subsampling critical values

are defined using Assumption Sub1. Let hθ and eθ denote the restricted and unrestricted
least squares (LS) estimators of θ, respectively. The subsample statistics are defined
by {Tn,b,j(θ) : j = 1, ..., qn}, where θ is the “model-selection” estimator of θ defined
by

θ = hθ1(|Tn,2| ≤ c) + eθ1(|Tn,2| > c) (2.10)

and Tn,b,j(θ0) is defined just as Tn(θ0) is defined but using the jth subsample of size b
in place of the full sample of size n. (One could also use the unrestricted estimator eθ
in place of θ.) Assumption C holds by choice of b. Assumption D holds automatically.

2.4 Technical Assumptions

We now state several technical assumptions that are used below. Define the empir-
ical distribution of {Tn,b,j(θ0) : j = 1, ..., qn} by Un,b(x) = q−1n

Sqn
j=1 1(Tn,b,j(θ0) ≤ x).

Assumption E. For all sequences {γn ∈ Γ : n ≥ 1}, Un,b(x) − Eθ0,γnUn,b(x) →p 0
under {γn : n ≥ 1} for all x ∈ R.
Assumption F. For all ε > 0 and h ∈ H, Jh(ch(1−α)+ ε) > 1−α, where ch(1−α)
is the 1− α quantile of Jh.

Assumption G. For all h = (h1, h2) ∈ H and all sequences {γn,h : n ≥ 1} for which
brγn,h,1 → g1 for some g1 ∈ Rp∞, if Un,b(x) →p Jg(x) under {γn,h : n ≥ 1} for all
x ∈ C(Jg) for g = (g1, h2) ∈ Rp+q∞ , then Ln,b(x)− Un,b(x) →p 0 under {γn,h : n ≥ 1}
for all x ∈ C(Jg).
Assumption J. For all ε > 0 and h ∈ H, Jh(ch(τ) + ε) > τ for τ = α/2 and
τ = 1− α/2, where ch(τ) is the τ quantile of Jh.

Assumption E holds for i.i.d. observations and for stationary strong-mixing ob-
servations with supγ∈Γ αγ(m) → 0 as m → ∞, where {αγ(m) : m ≥ 1} are the
strong-mixing numbers of the observations when the true parameters are (θ0, γ), see
AG1. Assumptions F and J are not very restrictive. The former is used for one- and
two-sided tests, while the latter is used for equal-tailed tests. Assumption G holds
automatically when {eTn,b,j} satisfy Assumption Sub2. Section 7 of AG1 provides
sufficient conditions for Assumption G when Assumption Sub1 holds.
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In the post-conservative model selection example, Assumption E holds automati-
cally, Assumptions F and J hold because J∗h(x) is strictly increasing in x ∈ R for all
h ∈ H, and Assumption G is verified in the Supplement to this paper using the proof
of Lemma 4 of AG1.

2.5 Definition of Hybrid Tests

We now introduce a hybrid test that is useful when the test statistic Tn(θ0) has a
limit distribution that is discontinuous in some parameter and an FCV or subsampling
test over-rejects asymptotically under the null hypothesis. The critical value of the
hybrid test is the maximum of the subsampling critical value and a certain fixed
critical value. The hybrid test is quite simple to compute, in many situations has
asymptotic size equal to its nominal level α, see Lemma 2 below and the examples
in Table I, and otherwise over-rejects the null asymptotically less than the standard
subsampling test or the FCV test at some null parameter values. In addition, in many
scenarios, the power of the hybrid test is quite good relative to FCV and subsampling
tests (after all have been size-corrected), see Section 3.2 below.
The hybrid test with nominal level α rejects the null hypothesis H0 : θ = θ0 when

Tn(θ0) > c
∗
n,b(1− α), where

c∗n,b(1− α) = max{cn,b(1− α), c∞(1− α)}. (2.11)

The hybrid test simply takes the critical value to be the maximum of the usual
subsampling critical value and the critical value from the J∞ distribution, which
is usually known.7 For example, in the post-conservative model selection example,
c∞(1 − α) equals z1−α and z1−α/2 for one- and two-sided tests, respectively. Hence,
the hybrid test is straightforward to compute. Obviously, the rejection probability of
the hybrid test is less than or equal to those of the standard subsampling test and the
FCV test with critical value c∞(1 − α). Hence, the hybrid test does not over-reject
more often than both of these two tests.
Furthermore, it is shown in Lemma 2 below that the hybrid test of nominal level

α has asymptotic size α provided the 1−α quantile function c(h1,h2)(1−α) of J(h1,h2)
is maximized at a boundary point of h1 for each fixed h2, where h = (h1, h2). For
example, this occurs if ch(1− α) is monotone increasing or decreasing in h1 for each
fixed h2 ∈ H2.

7Hybrid tests can be defined even when Assumption K does not hold. For example, we can define
c∗n,b(1− α) = max{cn,b(1− α), suph∈H ch∞(1− α)}, where ch∞(1− α) is the 1− α quantile of Jh∞
and, given h = (h1, h2) ∈ H, h∞ = (h∞1,1, ..., h∞1,p, h∞2 ) ∈ H is defined by h∞1,j = +∞ if h1,j > 0,
h∞1,j = −∞ if h1,j < 0, h∞1,j = +∞ or −∞ (chosen so that h∞ ∈ H) if h1,j = 0 for j = 1, ..., p, and
h∞2 = h2. When Assumption K holds, this reduces to the hybrid critical value in (2.11). We utilize
Assumption K because it leads to a particularly simple form for the hybrid test.
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2.6 Asymptotic Size

The exact and asymptotic size of a hybrid test are:

ExSzn(θ0) = sup
γ∈Γ

Pθ0,γ(Tn(θ0) > c
∗
n,b(1− α)) and

AsySz(θ0) = lim sup
n→∞

ExSzn(θ0), (2.12)

where Pθ,γ(·) denotes probability when the true parameters are (θ, γ). We are inter-
ested in the “asymptotic size” of the test because it approximates the exact size.
Uniformity over γ ∈ Γ, which is built into the definition of asymptotic size, is neces-
sary for asymptotic results to give a good approximation to the exact size.
The proof of Theorem 1 below shows that the asymptotic size of a hybrid test

depends on the asymptotic distributions of the full-sample statistic Tn(θ0) and the
subsampling statistic Tn,b,j(θ0) under sequences {γn,h : n ≥ 1}. By Assumption B, the
asymptotic distribution of Tn(θ0) is Jh. The asymptotic distribution of Tn,b,j(θ0) under
{γn,h : n ≥ 1} is shown to be Jg for some g ∈ H. Given h ∈ H, under {γn,h : n ≥ 1}
not all g ∈ H are possible indices for the asymptotic distribution of Tn,b,j(θ0). The
set of all possible pairs of localization parameters (g, h) is denoted GH and is defined
by

GH = {(g, h) ∈ H ×H : g = (g1, g2), h = (h1, h2), g2 = h2 and for m = 1, ..., p,

(i) g1,m = 0 if |h1,m| <∞, (ii) g1,m ∈ R+,∞ if h1,m = +∞, and
(iii) g1,m ∈ R−,∞ if h1,m = −∞}, (2.13)

where g1 = (g1,1, ..., g1,p)� ∈ H1 and h1 = (h1,1, ..., h1,p)� ∈ H1. Note that for (g, h) ∈
GH, we have |g1,m| ≤ |h1,m| for all m = 1, ..., p. In the “continuous limit” case
(defined as the case where there is no γ1 component of γ), GH simplifies considerably:
GH = {(g2, h2) ∈ H2 ×H2 : g2 = h2}. See AG1 for further discussion of GH.
Define

MaxHyb(α) = sup
(g,h)∈GH

[1− Jh(max{cg(1− α), c∞(1− α)})]. (2.14)

If Jh(x) is continuous at suitable (h, x) values, then the following assumption holds.

Assumption T. MaxHyb(α) = Max−Hyb(α), where Max
−
Hyb(α) is defined as

MaxHyb(α) is defined in (2.14), but with Jh(x) replaced by Jh(x−), where x =
max{cg(1− α), c∞(1− α)}.
Assumption T holds in the post-conservative model selection example by the conti-
nuity of J∗h(x) in x for x ∈ R for all h ∈ H. It also holds in all of the examples we
have considered except the moment inequality example.8

The following result establishes the asymptotic size of the hybrid test.
8Assumption T is not needed in the moment inequality example because subsampling has correct

asymptotic size in that example, see Andrews and Guggenberger (2009d).
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Theorem 1 Suppose Assumptions A-G, K, and T hold. Then, the hybrid test based
on Tn(θ0) has AsySz(θ0) =MaxHyb(α).

Comment. Theorem 1 holds by the proof of Theorem 1(ii) of AG1 with cn,b(1− α)
replaced by max{cn,b(1−α), c∞(1−α)} throughout using a slight variation of Lemma
5(ii) of AG1.

2.7 Properties of Hybrid Tests

The following result shows that the hybrid test has better size properties than
the subsampling test. It is shown in AG1 that the subsampling test has asymp-
totic size that satisfies AsySz(θ0) =MaxSub(α), where MaxSub(α) is defined just as
MaxHyb(α) is, but with cg(1− α)) in place of max{cg(1− α), c∞(1− α)}.

Lemma 1 Suppose Assumptions A-G, K, and T hold. Then, either (i) the addition
of c∞(1−α) to the subsampling critical value is irrelevant asymptotically (i.e., ch(1−
α) ≥ c∞(1 − α) for all h ∈ H and MaxHyb(α) = MaxSub(α)), or (ii) the nominal
level α subsampling test over-rejects asymptotically (i.e., AsySz(θ0) > α) and the
hybrid test reduces the asymptotic over-rejection for at least one parameter value
(g, h) ∈ GH.

Next, we show that the hybrid test has correct size asymptotically if ch(1 − α)
is maximized at h∞ or is maximized at h0 = (0, h2) and p = 1, where p is the
dimension of h1 and h∞ is any h ∈ H for which Jh = J∞. For example, for p = 1, the
maximization condition is satisfied if ch(1− α) is monotone increasing or decreasing
in h1, is bowl-shaped in h1, or is wiggly in h1 with global maximum at 0 or ±∞. The
precise condition is the following. (Here, “Quant” abbreviates “quantile.”)

Assumption Quant. (i) (a) for all h ∈ H, ch(1−α) ≤ c∞(1−α) and (b) J∞(c∞(1−
α)) = 1 − α; or (ii) (a) p = 1, (b) for all h ∈ H, ch(1 − α) ≤ ch0(1 − α), and (c)
J∞(c∞(1− α)) = 1− α.

Assumption Quant (i)(b) and (ii)(c) are continuity conditions that are not restrictive.

Lemma 2 Suppose Assumptions A-G, K, T, and Quant hold. Then, the hybrid test
based on Tn(θ0) has AsySz(θ0) = α.

3 Size-Corrected Tests

3.1 Definition and Justification of Size-Corrected Tests

We now define size-corrected (SC) tests. The size-corrected fixed critical value
(SC-FCV), subsampling (SC-Sub), and hybrid (SC-Hyb) tests with nominal level α
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are defined to reject the null hypothesis H0 : θ = θ0 when

Tn(θ0) > cv(1− α),

Tn(θ0) > cn,b(1− α) + κ(α) and

Tn(θ0) > max{cn,b(1− α), c∞(1− α) + κ∗(α)}, (3.1)

respectively, where

cv(1− α) = sup
h∈H

ch(1− α),

κ(α) = sup
(g,h)∈GH

[ch(1− α)− cg(1− α)],

κ∗(α) = sup
h∈H∗

ch(1− α)− c∞(1− α), and (3.2)

H∗ = {h ∈ H : for some (g, h) ∈ GH, cg(1− α) < ch(1− α)}.

If H∗ is empty, then κ∗(α) = −∞ by definition.
Size correction as in (3.1) is possible under the following assumption.

Assumption L. (i) suph∈H ch(1− α) <∞ and (ii) infh∈H ch(1− α) > −∞.
Assumption L is satisfied in most, but not all, examples. Assumption L holds

in the post-conservative model selection example because ch(1− α) is continuous in
h ∈ H and has finite limits as |h1| → ∞ and/or |h2| → 1 − ζ. Assumption L(i) is
a necessary and sufficient condition for size correction of the FCV test. Necessary
and sufficient conditions for size correction of the subsampling and hybrid tests are
given in Andrews and Guggenberger (2005). These conditions are weaker than As-
sumption L, but more complicated. Even the weaker conditions are violated in some
examples, e.g., in the consistent model selection/super-efficient example in Andrews
and Guggenberger (2009b).
In some cases the FCV test cannot be size-corrected because cv(1 − α) = ∞,

but the SC-Sub and SC-Hyb tests still exist and have correct asymptotic size. Also,
in some cases, the SC-FCV and SC-Hyb tests exist while the SC-Sub test does not
(because κ(α) =∞). Surprisingly, both cases arise in the instrumental variables (IV)
example considered in Andrews and Guggenberger (2005) (depending upon whether
one considers symmetric two-sided or upper one-sided tests).
The following is a continuity condition that is not very restrictive.

Assumption M. (a) (i) For some h∗ ∈ H, ch ∗(1−α) = suph∈H ch(1−α) and (ii) for
all h∗ ∈ H that satisfy the condition in part (i), Jh∗(x) is continuous at x = ch ∗(1−α).
(b) (i) For some (g∗, h∗) ∈ GH, ch ∗(1 − α) − cg∗(1 − α) = sup(g,h)∈GH [ch(1 − α) −
cg(1− α)] and (ii) for all (g∗, h∗) ∈ GH that satisfy the condition in part (i), Jh∗(x)
is continuous at x = ch ∗(1− α).
(c) (i) When H∗ is non-empty, for some h∗ ∈ H∗, ch ∗(1−α) = suph∈H∗ ch(1−α) and
(ii) for all (g, h) ∈ GH with max{cg(1−α), c∞(1− α) + κ∗(α)} = ch(1− α), Jh(x) is
continuous at x = ch (1− α).
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Assumption M holds in the post-conservative model selection example by the conti-
nuity of ch(1− α) in h ∈ H plus the shape of ch(1− α) as a function of h1 for each
|h2| ≤ 1− ζ (which is determined by simulation), see Figure 2 below.
The following result shows that the SC tests haveAsySz(θ0) equal to their nominal

level under suitable assumptions.

Theorem 2 Suppose Assumptions A-G and K-M hold. Then, the SC-FCV, SC-Sub,
and SC-Hyb tests satisfy AsySz(θ0) = α.

Comments. 1. The proof of Theorem 2 can be altered slightly to prove that
limn→∞ supγ∈Γ Pθ0,γ(Tn(θ0) > cv(1 − α)) = α for the SC-FCV test under the given
assumptions (which is slightly stronger than the result in Theorem 2) and analogously
for the SC-Sub and SC-Hyb tests.
2. Assumptions C-G are only used for the SC-Sub and SC-Hyb tests. Assumption

K is only used for the SC-Hyb test. Part (a) of Assumption M is only used for the
SC-FCV test and analogously part (b) only for the SC-Sub test and part (c) only for
SC-Hyb test.

To compute cv(1−α),κ(α), and κ∗(α), one needs to be able to compute ch(1−α)
for h ∈ H and carry out maximization over h ∈ H or (g, h) ∈ GH. Computation
of ch(1 − α) can be done analytically in some cases, by numerical integration if the
density of Jh is available, or by simulation. The maximization step may range in
difficulty from being very easy to nearly impossible depending on the dimension p+q
of h, the shape and smoothness of ch(1−α) as a function of h, and the time needed to
compute ch(1− α) for any given h. For a given example, one can tabulate cv(1− α),
κ(α), and κ∗(α) for selected values of α. Once this is done, the SC-FCV, SC-Sub, and
SC-Hyb tests are as easy to apply as the corresponding non-corrected tests.
An alternative method of size-correcting subsampling and hybrid tests is to adjust

the quantile of the test rather than to increase the critical value by a fixed amount,
see the Supplement.

3.2 Power Comparisons of Size-Corrected Tests

Here we compare the asymptotic power of the SC-FCV, SC-Sub, and SC-Hyb
tests. Since all three tests employ the same test statistic Tn(θ0), the comparison is
based on the magnitudes of the critical values of the tests for n large. The SC-FCV
critical value is fixed. The other two critical values are random and their large sample
behavior depends on the sequence {γn ∈ Γ : n ≥ 1} of true parameters. We focus on
the case in which these critical values do not depend on whether the null hypothesis
is true, which typically holds when the subsample statistics are defined to satisfy
Assumption Sub1 (and fails when they satisfy Assumption Sub2).
The possible limits of the SC-Sub and SC-Hyb critical values under {γn,h} are

cg(1− α) + κ(α) & max{cg(1− α), c∞(1− α) + κ∗(α)} for g ∈ H (3.3)
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(see Lemma 6(v) of AG1). The relative magnitudes of the limits of the critical values
are determined by the shapes of the quantiles cg(1− α) as functions of g ∈ H.
The first result is that the SC-Hyb test is always at least as powerful as the

SC-FCV test. This holds because for all g ∈ H,
max{cg(1− α), c∞(1− α) + κ∗(α)} = max{cg(1− α), sup

h∈H∗
ch(1− α)}

≤ sup
h∈H

ch(1− α) = cv(1− α). (3.4)

The same is not true of the SC-Sub test vis-a-vis the SC-FCV test.
Next, Theorem S1 in the Supplement shows that (a) if cg(1 − α) ≥ ch(1 − α)

for all (g, h) ∈ GH, then the SC-Sub, SC-Hyb, Sub, and Hyb tests are equivalent
asymptotically and are more powerful than the SC-FCV test; (b) if cg(1 − α) ≤
ch(1 − α) for all (g, h) ∈ GH, then the SC-FCV, SC-Hyb, FCV, and Hyb tests are
equivalent asymptotically and are more powerful than the SC-Sub test; and (c) if
H = H1 = R+,∞ and ch(1 − α) is uniquely maximized at h∗ ∈ (0,∞), then the SC-
FCV and SC-Hyb tests are asymptotically equivalent and are either (i) more powerful
than the SC-Sub test for all (g, h) ∈ GH, or (ii) more powerful than the SC-Sub test
for some values of (g, h) ∈ GH but less powerful for other values of (g, h) ∈ GH.
Note that these power comparisons hold even if different subsample sizes are used for
the hybrid and subsampling procedures provided both satisfy b → ∞ and b/n → 0
(because the asymptotic results do not depend on the specific choice of b).
These results show that the SC-Hyb test has some nice power properties. When

the SC-Sub test dominates the SC-FCV test, the SC-Hyb test behaves like the SC-Sub
test. When the SC-FCV test dominates the SC-Sub test, the SC-Hyb test behaves
like the SC-FCV test. In none of the cases considered is the SC-Hyb test dominated
by the SC-FCV or SC-Sub tests.

3.3 Plug-in Size-Corrected Tests

Here, we introduce improved size-correction methods that employ a consistent
estimator eγn,2 of the nuisance parameter γ2.The idea is to size correct a test differently
for different values of eγn,2, rather than size correct by a value that is sufficiently large
to work uniformly for all γ2 ∈ Γ2. This yields a more powerful test. The estimatoreγn,2 is assumed to satisfy the following assumption.
Assumption N. eγn,2 − γn,2 →p 0 under all sequences {γn = (γn,1, γn,2, γn,3) ∈ Γ :
n ≥ 1}.
Assumption N holds in many cases. But it fails in models that are unidentified at
the discontinuity point of the asymptotic distribution of Tn(θ0), as occurs in an IV
regression model with IVs that may be weak.
Define

cvh2(1− α) = sup
h1∈H1

c(h1,h2)(1− α),
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κh2(α) = sup
g1,h1∈H1:((g1,h2),(h1,h2))∈GH

(c(h1,h2)(1− α)− c(g1,h2)(1− α)), and

κ∗h2(α) = sup
h1∈H∗h2

c(h1,h2)(1− α)− c∞(1− α), where

H∗
h2
= {h1 ∈ H1 : for some g1 ∈ H1, (g, h) = ((g1, h2), (h1, h2)) ∈ GH,
& cg(1− α) < ch(1− α)}. (3.5)

If H∗
h2
is empty, then κ∗h2(α) = −∞. The PSC-FCV, PSC-Sub, and PSC-Hyb tests

are defined as in (3.1) with cv(1 − α), κ(α), and κ∗(α) replaced by cveγn,2(1 − α),
κeγn,2(α), and κ∗eγn,2(α), respectively.
Clearly, cveγn,2(1 − α) ≤ cv(1 − α) (with strict inequality whenever eγn,2 takes a

value that does not maximize cvh2(1 − α) over h2 ∈ H2). In consequence, the PSC-
FCV test is asymptotically more powerful than the SC-FCV test. Analogous results
hold for the critical values and asymptotic power of the PSC-Sub and PSC-Hyb tests
relative to the SC-Sub and SC-Hyb tests.
The following continuity assumption is not very restrictive.

Assumption O. (a) (i) cvh2(1−α) is uniformly continuous in h2 on H2, (ii) for each
h2 ∈ H2, there exists some h∗1 ∈ H1 such that c(h∗1,h2)(1− α) = cvh2(1− α), and (iii)
for all h = (h1, h2) ∈ H for which ch(1 − α) = cvh2(1 − α), Jh(x) is continuous at
x = cvh2(1− α).
(b) (i) κh2(α) is uniformly continuous in h2 on H2, (ii) for each h2 ∈ H2, there exists
some g∗1, h

∗
1 ∈ H1 such that (g∗, h∗) = ((g∗1, h2), (h∗1, h2)) ∈ GH and c(h∗1,h2)(1 − α) −

c(g∗1 ,h2)(1−α) = κh2(1−α), and (iii) for all (g, h) ∈ GH for which ch(1−α)−cg(1−α) =
κh2(1− α), where h = (h1, h2), Jh(x) is continuous at x = cg(1− α) + κh2(1− α).
(c) (i) κ∗h2(α) is uniformly continuous in h2 on H2, (ii) for each h2 ∈ H2, when H∗

h2

is non-empty, we have: for some h∗1 ∈ H∗
h2
, c(h ∗1,h2)(1− α)− c∞(1− α) = κ∗h2(1− α),

and (iii) for all (g, h) ∈ GH for which ch(1 − α) − c∞(1 − α) = κ∗h2(1 − α), where
h = (h1, h2), Jh(x) is continuous at x = max{cg(1− α), c∞(1− α) + κ∗h2(1− α)}.
Assumption O holds in the post-conservative model selection example given the def-
inition of J∗h(x) in (2.8).

Theorem 3 Suppose Assumptions A-G, K, L, N, and O hold. Then, (a) cveγn,2(1−
α)− cvγn,2(1−α)→p 0, κeγn,2(α)−κγn,2(α)→p 0, and κ∗eγn,2(α)−κ∗γn,2(α)→p 0 under
all sequences {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1}, and (b) the PSC-FCV, PSC-Sub,
and PSC-Hyb tests satisfy AsySz(θ0) = α.

Comment. Assumption O(a) is only used for the PSC-FCV test and likewise part
(b) is only used for the PSC-Sub test and part (c) for the PSC-Hyb test.

4 Finite-Sample Adjustments

In this section, we introduce a finite-sample adjustment to the AsySz(θ0) of sub-
sampling and hybrid tests. It is designed to give a better approximation to the actual
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finite-sample sizes of these tests than does AsySz(θ0). The adjustments are used to
construct finite-sample adjusted size-corrected (ASC) subsampling and hybrid tests,
both with and without plug-in estimation of h2. The idea of the adjustment is to
retain the actual ratio δn = b/n of the subsample size to the full-sample size in the
approximation to the exact size of the tests, rather than to use its asymptotic limit,
which is zero.
The adjustment method is described roughly as follows. For simplicity, consider

the case in which γ does not contain subvectors γ2 or γ3, p = 1, and Γ = [0, d]
for some 0 < d < ∞. Under Assumption B, the distribution of Tn(θ0) under γ
can be approximated by Jhn, where hn = nrγ. Hence, the distribution of Tb(θ0)
under γ can be approximated by Jh∗n, where h

∗
n = b

rγ = (b/n)rhn = δrnhn. In turn,
the 1 − α subsampling quantile cn,b(1 − α) under γ can be approximated by the
1− α quantile of Jh∗n = Jδrnhn, viz., cδrnhn(1− α). This leads to the approximation of
Pθ0,γ(Tn(θ0) > cn,b(1− α)) by

1− Jhn(cδrnhn(1− α)). (4.1)

And it leads to the approximation of supγ∈Γ Pθ0,γ(Tn(θ0) > cn,b(1− α)) by

AsySzn(θ0) = sup
h∈H

�
1− Jh(cδrnh(1− α))

�
. (4.2)

Suppose Jh(cg(1− α)) is a continuous function of (g, h) at each (g, h) ∈ GH and
Assumption C(ii) holds, i.e., δn = b/n → 0. Then, as n → ∞ the quantity in (4.1)
approaches 1− Jh(c0(1− α)) if hn → h ∈ [0,∞). It approaches 1− J∞(cg(1− α)) if
hn →∞ and δrnhn → g ∈ [0,∞].Hence, for any (g, h) ∈ GH, limn→∞(1−Jhn(cδrnhn(1−
α))) = 1−Jh(cg(1−α)) for a suitable choice of {hn ∈ H : n ≥ 1}. This suggests that

lim
n→∞

sup
h∈H
(1− Jh(cδrnh(1− α))) = sup

(g,h)∈GH
(1− Jh(cg(1− α))) = AsySz(θ0). (4.3)

It is shown below that (4.3) does hold, which implies that AsySzn(θ0) is an asymp-
totically valid finite-sample adjustment to AsySz(θ0).
We now consider the general case in which γ may contain subvectors γ2 and γ3

and p ≥ 1. In this case, only the subvector γ1 affects whether γ is near a discontinuity
point of the limit distribution. In consequence, only h1, and not h2, is affected by the
δrn rescaling that occurs above. For a subsampling test, we define

AsySzn(θ0) = sup
h=(h1,h2)∈H

�
1− Jh(c(δrnh1,h2)(1− α))

�
. (4.4)

Next, we use the finite-sample adjustment to construct adjusted SC-Type and
PSC-Type tests for Type = Sub and Hyb, which are denoted ASC-Type and APSC-
Type tests. For δ ∈ (0, 1) and h2 ∈ H2, define

κ(δ,α) = sup
h=(h1,h2)∈H

[c(h1,h2)(1− α)− c(δrh1,h2)(1− α)],
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κh2(δ,α) = sup
h1∈H1

[c(h1,h2)(1− α)− c(δrh1,h2)(1− α)],

κ∗(δ,α) = sup
h∈H∗(δ)

ch(1− α)− c∞(1− α), and (4.5)

κ∗h2(δ,α) = sup
h1∈H∗h2 (δ)

c(h1,h2)(1− α)− c∞(1− α), where

H∗(δ) = {h ∈ H : c(δrh1,h2)(1− α) < c(h1,h2)(1− α) for h = (h1, h2)},
H∗
h2
(δ) = {h1 ∈ H1 : c(δrh1,h2)(1− α) < c(h1,h2)(1− α)}.

If H∗(δ) is empty, then κ∗(δ,α) = −∞. If H∗
h2
(δ) is empty, then κ∗h2(δ,α) = −∞. The

ASC-Sub and ASC-Hyb tests are defined as in (3.1) with κ(α) and κ∗(α) replaced
by κ(δn,α) and κ∗(δn,α), respectively, where δn = b/n. The APSC-Sub and APSC-
Hyb tests are defined as in (3.1) with κ(α) and κ∗(α) replaced by κeγ2,n(δn,α) and
κ∗eγ2,n(δn,α), respectively.
We use the following assumptions.

Assumption P. (i) The function (g, h) → Jh(cg(1 − α)) for (g, h) ∈ H × H is
continuous at all (g, h) ∈ GH and (ii) MaxSub(α) =Max−Sub(α), where the latter are
defined as MaxHyb(α) is defined in (2.14) but with cg(1−α)) in place of max{cg(1−
α), c∞(1− α)} and in addition Max−Sub(α) has Jh(x) replaced by Jh(x−).
Assumption Q. ch(1− α) is continuous in h on H.

Assumption R. Either H∗ is non-empty and suph∈H† ch(1−α) ≤ suph∈H∗ ch(1−α),
where H† = {h ∈ H : h = limk→∞ hvk for some subsequence {vk} and some hvk ∈
H∗(δvk) for all k ≥ 1}, or H∗ is empty and H∗(δ) is empty for all δ > 0 sufficiently
close to zero.

Assumption S. For all h2 ∈ H2, eitherH∗
h2
is non-empty and suph1∈H†

h2

c(h1,h2)(1−α)
≤ suph1∈H∗h2(δ) c(h1,h2)(1 − α), where H†

h2
= {h1 ∈ H1 : h1 = limk→∞ hvk,1 for some

subsequence {vk} and some hvk,1 ∈ H∗
γvk,2

(δvk) for all k ≥ 1, where limk→∞ γvk,2 = h2},
or H∗

h2
is empty and H∗

h2
(δ) is empty for all δ > 0 sufficiently close to zero.

Assumption P is a mild continuity assumption. Assumptions Q, R, and S are not
restrictive in most examples. Whether Assumptions R and S hold depends primarily
on the shape of ch(1−α) as a function of h. It is possible for Assumptions R and S to
be violated, but only for quite specific and unusual shapes for ch(1−α). For example,
Assumption R is violated in the case where p = 1 and no parameter h2 exists if
for some h∗ ∈ (0,∞) the graph of ch(1 − α) is (i) bowl-shaped for h ∈ [0, h∗] with
c0(1−α) = ch∗(1−α) and (ii) strictly decreasing for h > h∗ with c∞(1−α) < ch(1−α)
for all 0 ≤ h <∞. In this case, H∗ is empty (because ch(1−α) takes on its minimum
for h = ∞ and its maximum at h = 0), but h∗ ∈ H∗(δ) for all δ ∈ (0, 1), which
contradicts Assumption R.
The following result shows that AsySzn(θ0) provides an asymptotically valid

finite-sample adjustment to AsySz(θ0) that depends explicitly on the ratio δn = b/n
and that the ASC and APSC tests have AsySz(θ0) = α.
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Theorem 4 (a) Suppose Assumptions A-G and P hold. Then, a subsampling test
satisfies

lim
n→∞

AsySzn(θ0) = AsySz(θ0).

(b) Suppose Assumptions A-G, K-M, Q, and R hold. Then, (i) limn→∞ κ(δn,α) =
κ(α) and limn→∞ κ∗(δn,α) = κ∗(α) and (ii) the ASC-Sub and ASC-Hyb tests satisfy
AsySz(θ0) = α.
(c) Suppose Assumptions A-G, K, L, N, O, Q, and S hold. Then, (i) κeγn,2(δn,α) −
κγn,2(α) →p 0 and κ∗eγn,2(δn,α)− κ∗γn,2(α) →p 0 under all sequences {γn = (γn,1, γn,2,
γn,3) ∈ Γ : n ≥ 1} and (ii) the APSC-Sub and APSC-Hyb tests satisfy AsySz(θ0) =
α.

Comments. 1. An analogous result to Theorem 4(a) holds for the hybrid test with
c(δrh1,h2)(1− α) replaced by max{c(δrh1,h2)(1− α), c∞(1− α)} in (4.4).
2. In Theorem 4(b), the ASC-Hyb test satisfies lim infn→∞ κ∗(δn,α) ≥ κ∗(α) and

AsySz(θ0) ≤ α without imposing Assumption R. Assumption R is a necessary and
sufficient condition for limn→∞ κ∗(δn,α) = κ∗(α) given the other assumptions.

5 Equal-Tailed Tests

This section considers equal-tailed two-sided hybrid t tests. For brevity, equal-
tailed SC, ..., APSC t tests are discussed in the Supplement to this paper. We
suppose that Tn(θ0) = τn(eθn−θ0)/eσn, where eθn is an estimator of a scalar parameter
θ based on a sample of size n, eσn (∈ R) is an estimator of the scale of eθn, and τn
is a normalization constant, usually equal to n1/2. An equal-tailed hybrid t test of
H0 : θ = θ0 versus H1 : θ 9= θ0 of nominal level α (∈ (0, 1/2)) rejects H0 when

Tn(θ0) > c
∗
n,b(1− α/2) or Tn(θ0) < c∗∗n,b(α/2), where

c∗n,b(1− α/2) = max{cn,b(1− α/2), c∞(1− α/2)} and
c∗∗n,b(α/2) = min{cn,b(α/2), c∞(α/2)}. (5.1)

Define

MaxET,Hyb(α) = sup
(g,h)∈GH

[1− Jh(c∗g(1− α/2)) + Jh(c
∗∗
g (α/2))], (5.2)

where c∗g(1 − α/2) = max{cg(1 − α/2), c∞(1 − α/2)} and c∗∗g (α/2) = min{cg(α/2),
c∞(α/2)}.
If Jh(x) is continuous at suitable (h, x) values, then the following assumption

holds.

Assumption TET.Maxr−ET,Hyb(α) =Max
�−
ET,Hyb(α), whereMax

r−
ET,Hyb(α) is defined

as MaxET,Hyb(α) is defined in (5.2) but with Jh(c
∗∗
g (α/2)−) in place of
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Jh(c
∗∗
g (α/2)) (where Jh(c

∗∗
g (α/2)−) denotes the limit from the left of Jh(x) at x =

c∗∗g (α/2)) and Max
�−
ET,Hyb(α) is defined as in (5.2) with Jh(c

∗
g(1− α/2)−) in place of

Jh(c
∗
g(1− α/2)).

Assumption TET holds in the post-conservative model selection example by the con-
tinuity of J∗h(x) in x for x ∈ R for all h ∈ H.
The proof of Theorem 1 of AG1 can be adjusted straightforwardly to yield the

following result for equal-tailed hybrid t tests.

Corollary 1 Let α ∈ (0, 1/2) be given. Let Tn(θ0) = τn(eθn − θ0)/eσn. Suppose
Assumptions A-E, G, J, K, and TET hold. Then, an equal-tailed hybrid t test satisfies
AsySz(θ0) =MaxET,Hyb(α).

6 Confidence Intervals

This section introduces hybrid and size-corrected CIs for a parameter θ ∈ Rd when
nuisance parameters η ∈ Rs and γ3 ∈ T3 may appear. (See Andrews and Guggen-
berger (2009d) for results concerning FCV and subsampling CIs.) The confidence
level of a CI for θ requires uniformity over θ as well as over (η, γ3). We make θ and
η sub-vectors of γ so that the results from previous sections, which are uniform over
γ ∈ Γ, give the uniformity results that we need for CIs for θ.9

Specifically, we partition θ into (θ1, θ2), where θj ∈ Rdj for j = 1, 2, and we
partition η into (η1, η2), where ηj ∈ Rsj for j = 1, 2. Then, we consider the same set-
up as in Section 2.2 where γ = (γ1, γ2, γ3), but with γ1 = (θ1, η1) and γ2 = (θ2, η2),
where p = d1 + s1 and q = d2 + s2. In most examples, either no parameter θ1 or θ2
appears (i.e., d1 = 0 or d2 = 0) and either no parameter η1 or η2 appears (i.e., s1 = 0
or s2 = 0).
We consider a test statistic Tn(θ0) for testing the null hypothesis H0 : θ = θ0 as

above. We obtain CIs for θ by inverting tests based on Tn(θ0). Let Θ (⊂ Rd) denote
the parameter space for θ and let Γ denote the parameter space for γ. Hybrid CIs for
θ are defined by

CIn = {θ0 ∈ Θ : Tn(θ0) ≤ c1−α}, (6.1)

where c1−α = max{cn,b(1 − α), c∞(1 − α)}. The critical value c1−α does not depend
on θ0 when Assumption Sub1 holds, but does depend on θ0 when Assumption Sub2
holds through the dependence of the subsample statistic on θ0. For example, suppose
Tn(θ0) is a (i) upper one-sided, (ii) lower one-sided, or (iii) symmetric two-sided t
test of nominal level α and Assumption Sub1 holds. Then, the corresponding CI of

9Of course, with this change, the index parameter h, the asymptotic distributions {Jh : h ∈ H},
and the assumptions are different in any given model in this CI section from the earlier sections on
testing.
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nominal level α is defined by

CIn = [eθn − τ−1n eσnc1−α,∞), CIn = (−∞,eθn + τ−1n eσnc1−α], or
CIn = [eθn − τ−1n eσnc1−α,eθn + τ−1n eσnc1−α], (6.2)

respectively (provided Θ is R).
The exact and asymptotic confidence sizes of CIn are

ExCSn = inf
γ∈Γ
Pγ(Tn(θ) ≤ c1−α) and AsyCS = lim inf

n→∞
ExCSn, (6.3)

respectively, where θ = (θ1, θ2) and probabilities are indexed by γ = ((θ1, η1), (θ2, η2),
γ3) here, whereas they are indexed by (θ, γ) in earlier sections.
An equal-tailed hybrid CI for θ of nominal level α is defined by

CIn = [eθn − τ−1n eσnc∗n,b(1− α/2),eθn − τ−1n eσnc∗∗n,b(α/2)], (6.4)

where c∗n,b(1− α/2) and c∗∗n,b(α/2) are defined in (5.1).
An analogue of Theorem 4 holds regarding the finite-sample-adjusted asymptotic

sizes of subsampling and hybrid CIs. In this case, AsyCSn is defined as AsySzn is
defined in (4.4) but with suph∈H replaced by infh∈H and Jh replaced by 1− Jh.
Next, we consider size-corrected CIs. SC-FCV, SC-Sub, and SC-Hyb CIs are

defined by (6.1) with their critical values, c1−α, defined as in (3.1)-(3.2) for SC tests.
The following are changes in the assumptions for use with CIs.

Assumption Adjustments for CIs: (i) θ is a sub-vector of γ, rather than a
separate parameter from γ. In particular, γ = (γ1, γ2, γ3) = ((θ1, η1), (θ2, η2), γ3) for
θ = (θ1, θ2) and η = (η1, η2). (ii) Instead of the true probabilities under a sequence
{γn,h : n ≥ 1} being {Pθ0,γn,h(·) : n ≥ 1}, they are {Pγn,h(·) : n ≥ 1}. (iii) The test
statistic Tn(θ0) is replaced in the assumptions under a true sequence {γn,h : n ≥ 1} by
Tn(θn,h), where γn,h = ((θn,h,1, ηn,h,1), (θn,h,2, ηn,h,2), γn,h,3) and θn,h = (θn,h,1, θn,h,2).
(iv) In Assumption D, θ0 in Tn,bn,j(θ0) and Tbn(θ0) is replaced by θ, where θ = (θ1, θ2)
and γ = ((θ1, η1), (θ2, η2), γ3). (v) θ0 is replaced in the definition of Un,b(x) by θn
when the true parameter is γn = ((θn,1, ηn,1), (θn,2, ηn,2), γn,3) and θn = ((θn,1, θn,2).

Hybrid and size-corrected CIs satisfy the following results.

Corollary 2 Let the assumptions be adjusted for CIs as stated above.
(a) Suppose Assumptions A-G, K, and T hold. Then, the hybrid CI satisfies AsyCS =
1−MaxHyb(α).
(b) Let α ∈ (0, 1/2) be given. Suppose Assumptions A-E, G, J, K, and TET hold.
Then, the equal-tailed hybrid t CI satisfies AsyCS = 1−MaxET,Hyb(α).
(c) Suppose Assumptions A-G and K-M hold. Then, the SC-FCV, SC-Sub, and
SC-Hyb CIs satisfy AsyCS = 1− α.
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Comment. Corollary 2(a), (b), and (c) hold by the same arguments as for Theorem
1, Corollary 1, and Theorem 2, respectively, with some adjustments.

Definitions and results for CIs of the form PSC-Type for Type = FCV, Sub, and
Hyb, and ASC-Type and APSC-Type for Type = Sub and Hyb are analogous to
those just stated for SC CIs but with critical values as defined in Sections 3.3 and 4,
rather than as in Section 3.1. Size-corrected equal-tailed CIs are defined as in (6.4)
with critical values c1−α/2 and cα/2 given by the equal-tailed SC, PSC, ASC, and/or
APSC critical values for tests given in the Supplement in place of c∗n,b(1− α/2) and
c∗∗n,b(α/2).

7 CI for an Autoregressive Parameter

We now apply the general results above to an AR(1) model with conditional
heteroskedasticity. We use the unobserved components representations of the AR(1)
model. The observed time series {Yi : i = 0, ..., n} is based on a latent no-intercept
AR(1) time series {Y ∗i : i = 0, ..., n}:

Yi = α+ βi+ Y ∗i ,

Y ∗i = ρY ∗i−1 + Ui, for i = 1, ..., n, (7.1)

where ρ ∈ [−1 + ε, 1] for some 0 < ε < 2, {Ui : i = 0,±1,±2, ...} are stationary
and ergodic with conditional mean 0 given a σ-field Gi−1 defined below, conditional
variance σ2i = E(U

2
i |Gi−1), unconditional variance σ2U ∈ (0,∞), and distribution F.

The distribution of Y ∗0 is the distribution that yields strict stationarity for {Y ∗i : i ≤
n} when ρ < 1, i.e., Y ∗0 =

S∞
j=0 ρ

jU−j, and is arbitrary when ρ = 1.We consider two
versions of the AR(1) model–model 1, which has an intercept, and model 2, which
has an intercept and time trend. Model 1 is obtained by setting β = 0 in (7.1). In
the notation above, we have θ = 1− ρ ∈ Θ = [0, 2− ε].
Models (1) and (2) can be rewritten as

(1) Yi = hα+ ρYi−1 + Ui, where hα = α(1− ρ), and (7.2)

(2) Yi = α+ βi+ ρYi−1 + Ui, where α = α(1− ρ) + ρβ and β = β(1− ρ),

for i = 1, ..., n.10

We consider a feasible quasi-GLS (FQGLS) t statistic based on estimators {eφ2n,i :
i ≤ n} of the conditional variances {σ2i : i ≤ n}. The estimators {eφ2n,i : i ≤ n} may
be based on a parametric specification of the conditional heteroskedasticity, such as
a GARCH(1, 1) model, or a nonparametric procedure, such as one based on q lags of

10The advantage of writing the model as in (7.1) becomes clear here. For example, in model 1,
the case ρ = 1 and hα 9= 0 is automatically ruled out by model (7.1). This is a case where Yi is
dominated by a deterministic trend and the LS estimator of ρ converges at rate n3/2.
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the observations. In either case, we do not assume that the estimator of conditional
heteroskedasticity is consistent. For example, we allow for incorrect specification
of the parametric model in the former case and conditional heteroskedasticity that
depends on more than q lags in the latter case. The estimated conditional variances
{eφ2n,i : i ≤ n} are defined such that they approximate a stationary Gi−1-adapted
sequence {φ2i : i ≤ n} in the sense that certain normalized sums have the same
asymptotic distribution whether eφ2n,i or φ2i appears in the sum. This is a standard
property of feasible and infeasible GLS estimators.
For example, for the model without a time trend, the results cover the case where

(i) {eφ2n,i : i ≤ n} are based on a GARCH(1,1) parametric model estimated using LS
residuals with GARCH and LS parameter estimators hπn and (hαn,hρn), respectively, (ii)
(hαn,hρn) have probability limit given by the true values (hα0, ρ0), see (7.2), (iii) hπn has
a probability limit given by the “pseudo-true” value π0, (iv) eφ2n,i = φ2i,1(hαn,hρn, hπn),
where φ2i,1(hα, ρ,π) is the i-th GARCH conditional variance based on a start-up at time
1 and parameters (hα, ρ,π), and (v) φ2i,−∞(hα, ρ,π) is the GARCH conditional variance
based on a start-up at time −∞. In this case, φ2i = φ2i,−∞(hα0, ρ0,π0). Thus, φ2i is justeφ2n,i with the estimation error and start-up truncation removed.
Under the null hypothesis that ρ = ρn = 1− θn, the studentized t statistic is

T ∗n(θn) = τn(eρ− ρn)/eσ, (7.3)

where τn = n1/2, eρ is the LS estimator from the regression of Yi/eφi on Yi−1/eφi and
1/eφi in the case of model 1 and from the regression of Yi/eφi on Yi−1/eφi, 1/eφi, and i/eφi
in the case of model 2, and eσ2 is the (1, 1) element of the standard heteroskedasticity-
robust variance estimator for the LS estimator in the preceding regression.
To define T ∗n(θn) more explicitly, let Y, U, X1, and X2 be n-vectors with ith

elements given by Yi/eφi, Ui/eφi, Yi−1/eφi, and 1/eφi, respectively, in models 1 and 2,
except in model 2 let X2 be the n × 2 matrix with ith row (1/eφi, i/eφi). Let ∆ be
the diagonal n× n matrix with ith diagonal element given by the ith element of the
residual vector MXY, where X = [X1 : X2] and MX = In −X(X �X)−1X �. That is,
∆ = Diag(MXY ). Then, by definition,

eρ = (X �
1MX2X1)

−1
X �
1MX2Y, and (7.4)eσ2 = �n−1X �

1MX2X1
�−1 �

n−1X �
1MX2∆

2MX2X1
� �
n−1X �

1MX2X1
�−1

.

For upper one-sided, lower one-sided, and symmetric two-sided tests or CIs concerning
ρ, we take Tn(θn) = T ∗n(θn), −T ∗n(θn), and |T ∗n(θn)|, respectively.
In this section, we provide results for the (infeasible) QGLS estimator based on

{φ2i : i ≤ n}. Conditions under which feasible and infeasible QGLS estimators are
asymptotically equivalent are technical and, for brevity, sufficient conditions are given
in Andrews and Guggenberger (2008b). For technical reasons, these conditions take
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hπn to be a discretized estimator and require eφ2i to depend upon a finite number of
lagged squared residuals. Neither of these conditions is particularly restrictive because
the grid size for the discretized estimator can be defined such that there is little
difference between the discretized and non-discretized versions of the estimator of π
and any model with stationary conditional heteroskedasticity, such as a GARCH(1,1)
model, can be approximated arbitrarily well by taking the number of lags sufficiently
large.
By assumption, {(Ui,φ2i ) : i ≥ 1} are stationary and strong mixing. We define Gi

to be some non-decreasing sequence of σ-fields for i ≥ 1 for which (Uj,φ2j+1) ∈ Gi for
all j ≤ i.
The vector of parameters is γ = (γ1, γ2, γ3), where γ1 = θ (= 1 − ρ), γ2 =

(λ1,λ2,λ3,λ4,λ5,λ6,λ7)
� ∈ R7, where λ1 = V arF (Ui), λ2 = V arF (Ui/φ

2
i ) =

EF (σ
2
i /φ

4
i ), λ3 = CovF (Ui, Ui/φ

2
i ) = EF (σ

2
i /φ

2
i ), λ4 = EFφ

−1
i , λ5 = EFφ

−2
i , λ6 =

EFφ
−4
i , and λ7 = CorrF (Ui, Ui/φ

2
i )) = λ3/(λ1λ2)

1/2, γ3 = (α, F ) in model 1, and
γ3 = (α,β, F ) in model 2.11 In this example, γ2 = η2 and no parameters θ2 or η1
appear. The distribution of the initial condition Y ∗0 does not appear in γ3 because
under strict stationarity it equals the stationary marginal distribution of Ui and that
is completely determined by F and γ1 and in the unit root case it is irrelevant. In
the definition of γn,h, we take r = 1.
The parameter spaces are Γ1 = Θ = [0, 2 − ε] for some ε > 0, Γ2 ⊂ Γ∗2 =

{(λ1,λ2,λ3,λ4,λ5,λ6,λ7) ∈ [ε2,∞)2 × (0,∞) × [ε2,∞)3 × [0, 1] : λ7 = λ3/(λ1λ2)
1/2}

for some ε2 > 0, Γ3(γ2) = B1×F(γ2) in model 1, and Γ3(γ2) = B2×F(γ2) in model
2, where B1 and B2 are bounded subsets of R and R2, respectively, and F(γ2) is
the parameter space for the stationary and strong-mixing distribution F of {Ui : i =
..., 1, 2, ...} for a given value of γ2.12 In particular, we have

F(γ2) = {F : {(Ui,φ2i ) : i = 0,±1,±2, ...} are stationary and strong mixing
under F with EF (Ui|Gi−1) = 0 a.s., EF (U2i |Gi−1) = σ2i a.s., where Gi
is some non-decreasing sequence of σ-fields for i = ..., 1, 2, ... for

which (Uj,φ
2
j+1) ∈ Gi for all j ≤ i, the strong-mixing numbers

{αF (m) : m ≥ 1} satisfy αF (m) ≤ Cm−3ζ/(ζ−3) as m→∞ for some ζ > 3,

sup
i,s,t,u,v,A

EF |
T
a∈A a|ζ ≤M, where 0 ≤ i, s, t, u, v <∞, and A is any

11Note that Section 6 discusses CIs for θ, which is an element of γ, whereas here we consider CIs
for ρ = 1− θ, which is not an element of γ. However, a CI for θ immediately yields one for ρ.
12The parameter space Γ2 is a subset of Γ∗2 because the elements of γ2 are related (given that they

all depend on moments of (Ui,φi)) and Γ
∗
2 does not incorporate all of these restrictions. An example

of a restriction is λ24 = (EFφ
−1
i )

2 ≤ EFφ−2i ·EF 1 = λ5 by the Cauchy-Schwarz inequality. Although
the restrictions on Γ2 are not written explicitly, this is not a problem because the subsampling and
hybrid procedures do not depend on the specification of Γ2 and the size-correction procedures only
depend on λ7 or h2,7 whose parameter space is known.
The parameter space B1 is taken to be bounded, because otherwise there are sequences αn →∞,

ρn → 1 for which hαn 0. For analogous reasons, B2 is taken to be bounded.
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nonempty subset of {Ui−s, Ui−t, U2i+1, U−u, U−v, U21}, φ2i ≥ δ a.s.,

λmin(EFX
1X1�U21/φ

2
1) ≥ δ, where X1 = (Y ∗0 /φ1,φ

−1
1 )

�,
V arF (Ui) = λ1, V arF (Ui/φ

2
i ) = λ2, CovF (Ui, Ui/φ

2
i ) = λ3,

EFφ
−1
i = λ4, EFφ

−2
i = λ5, EFφ

−4
i = λ6, and CorrF (Ui, Ui/φ

2
i ))

�

= λ7, where γ2 = (λ1,λ2,λ3,λ4,λ5,λ6,λ7)
�} (7.5)

for some C,M <∞ and δ > 0, where λmin(A) denotes the minimum eigenvalue of a
matrix A.
In the Supplement, we verify the assumptions of Corollary 2 concerning hybrid

CIs, except Assumption B. The Supplement uses Lemma 4 of AG1 to verify Assump-
tion G. Assumption B holds by Theorem 1 in Andrews and Guggenberger (2008b).
The slightly weaker assumptions than those in Corollary 2 yield asymptotic size re-
sults for FCV and subsampling CIs, see Theorem 3 in Andrews and Guggenberger
(2009d). For brevity, we verify assumptions only for model 1. The moment condi-
tions in F(γ2) are used in the verification of Assumptions B and E for the case where
ρ→ 1 at a rate slower than n−1. The bounding of φ2i away from zero in F(γ2) is not
restrictive because it is a consequence of a suitable choice of eφ2i .
In this example, H = R+,∞ × Γ2. Therefore, to establish Assumption B, we have

to consider sequences {γn,h = (γn,h,1, γn,h,2, γn,h,3)� : n ≥ 1}, where h = (h1, h2), when
the true autoregressive parameter ρ = ρn equals 1 − γn,h,1 where (i) h1 = ∞ and
(ii) 0 ≤ h1 < ∞. For AR(1) models with conditional heteroskedasticity, the special
case of case (ii) in which ρ = 1 is fixed has been considered by Seo (1999) and Guo
and Phillips (2001). For models without conditional heteroskedasticity, case (i) is
studied by Park (2002), Giraitis and Phillips (2006), and Phillips and Magdalinos
(2007), and case (ii) is the “near integrated” case that has been studied without
conditional heteroskedasticity by Bobkowski (1983), Cavanagh (1985), Chan and Wei
(1987), Phillips (1987), Elliott (1999), Elliott and Stock (2001), andMüller and Elliott
(2003). The latter three papers consider the situation of interest here in which the
initial condition Y ∗0 yields a stationary process. Specifically, what is relevant here is
the triangular array case with row-wise strictly stationary observations {Y ∗i : i ≤ n}
and ρ that depends on n. Note that case (ii) contains as a special case the unit
root model ρ = 1. We do not consider an AR(1) model here without an intercept,
but such a model can be analyzed using the results of Andrews and Guggenberger
(2008a). Interestingly, the asymptotic distributions in this case are quite different
than in the models with an intercept or intercept and time trend.
For model 1, we have

T ∗n(θn)→d J
∗
h under γn,h, where

J∗h is the N(0, 1) distribution for h1 =∞,

J∗h is the distribution of

#
h2,7

U 1
0
I∗D,h(r)dW (r)

(
U 1
0
I∗D,h(r)2dr)1/2

+ (1− h22,7)1/2Z2

$
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for 0 ≤ h1 <∞,

I∗D,h(r) = I
∗
h(r) −

1U
0

I∗h(s)ds,

I∗h(r) = Ih(r) +
1√
2h1

exp(−h1r)Z1 for h1 > 0 and I∗h(r) =W (r) for h1 = 0,

Ih(r) =
rU
0

exp(−(r − s)h1)dW (s), (7.6)

W (·) is a standard Brownian motion, and Z1 and Z2 are independent standard normal
random variables that are independent of W (·). As defined, Ih(r) is an Ornstein-
Uhlenbeck process. The parameter h27 ∈ [0, 1] is the limit of CorrFn(Ui, Ui/φ2i ))
under the sequence {γn,h : n ≥ 1}.
For model 2, (7.6) holds except that for 0 ≤ h1 <∞ J∗h is the distribution of

h2,7

U 1
0

k
I∗D,h(r)− 12

U 1
0
I∗D,h(s)sds · (r − 1/2)

l
dW (r)�U 1

0

k
I∗D,h(r)− 12

U 1
0
I∗D,h(s)sds · (r − 1/2)

l2
dr

�1/2 + (1− h22,7)1/2Z2. (7.7)

The asymptotic results above apply to a first-order AR model. They should
extend without essential change to CIs for the “sum of the AR coefficients” in a p-th
order autoregressive model. In particular, the asymptotic distributions for statistics
concerning the “sum of the AR coefficients” should be the same as those for ρ given
in (7.6) and (7.7). Of course, the proofs will be more complex. For brevity, we do
not provide such proofs.
Figure 1 provides .95 quantile graphs of J∗h, −J∗h, and |J∗h| as functions of h1

for the cases of h27 = 0, .3, .6, and 1. The graphs for different values of h27 have
similar shapes, but are progressively less steep as h27 decreases from 1 to 0. All
of the graphs are monotone in h1.13 The .95 quantile graphs for J∗h are monotone
increasing in h1 for each value of h2 because the upper tail of J∗h gets thinner as h1 gets
smaller. In consequence, the upper one-sided and equal-tailed two-sided subsampling
CIs under-cover the true value asymptotically and the upper FCV CI has correct size
asymptotically. The .95 quantile graphs for −J∗h are decreasing in h1 for each value
of h2 because the lower tail of J∗h gets thicker as h1 gets smaller. The .95 quantile
graphs for |J∗h| are decreasing in h1 for each value of h2 because the lower tail of J∗h
gets thicker as h1 gets smaller at a faster rate than the upper tail of J∗h gets thinner.
Because the graphs of −J∗h and |J∗h| are decreasing in h1, the lower and symmetric
subsampling CIs have correct asymptotic size, while the lower FCV CI under-covers
the true value asymptotically. These results explain the seemingly puzzling result
(quantified in Table II below) that the equal-tailed subsampling CI has incorrect size
asymptotically while the symmetric subsampling CI has correct size asymptotically.
13The graphs in Figures 1 and 2 are computed by simulation. Monotonicity in Figure 1 is estab-

lished numerically, not analytically.
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Table II reports the asymptotic (Asy) and finite-sample-adjusted asymptotic (Adj-
Asy) sizes of nominal 95% CIs for model 1 for symmetric and equal-tailed two-sided
FCV, subsampling, and hybrid CIs, see the last two rows of the Table. (Symmetric
and equal-tailed FCV CIs are the same, so only the former are reported.) These
numbers are obtained by simulating the asymptotic formulae of Section 6. Further
details concerning the construction of Table II are given in the Supplement.
Table II also reports finite-sample coverage probabilities of these CIs based on

a FQGLS estimator eρn that uses a GARCH(1, 1) specification for the conditional
heteroskedasticity. The GARCH parameters are estimated by the closed-form esti-
mator of Kristensen and Linton (2006). This estimator is employed in the Monte
Carlo simulations because it is very quick to compute. Six different forms of the
true conditional heteroskedasticity of the innovations are considered: (i) GARCH(1,
1) with (intercept, MA, AR) parameters equal to (.20, .15, .80), (ii) IGARCH(1, 1)
with (intercept, MA, AR) parameters (.20, .20, .80), (iii) GARCH(1, 1) with (inter-
cept, MA, AR) parameters (.20, .70, .20), (iv) i.i.d., (v) ARCH(4) with (intercept,
AR1-AR4) parameters (.20, .30, .20, .20, .20), and (vi) IARCH(4) with (intercept,
AR1-AR4) parameters (.20, .30, .30, .20, .20). In all cases, Ui = σiεi, where εi is stan-
dard normal and σi is the multiplicative conditional heteroskedasticity. The ARCH
and IARCH processes provide evidence concerning the robustness of the procedures
to an incorrect specification of the form of the conditional heteroskedasticity used in
the definition of eρn. The integrated GARCH and ARCH processes are not covered
by the asymptotic results but are included to address questions of robustness. The
sample size, subsample size, and number of subsamples of consecutive observations
employed are n = 131, 12, and 119. (We did not experiment with other sample sizes
or subsample sizes.)
For case (i), we report the finite-sample coverage probability for eight values of

ρ between −.9 and 1.0, as well as the minimum over ρ ∈ [−.9, 1], which is denoted
FS-Min.14 For brevity, for cases (ii)-(vi), we only report FS-Min. The finite-sample
size of a CI depends on the minimum coverage probability over both ρ and different
true forms of conditional heteroskedasticity. We do not attempt to determine the
finite-sample size via simulations. For the four non-integrated cases, we report the
asymptotic and finite-sample-adjusted asymptotic sizes that correspond to the par-
ticular value of h27 for the given case (which are h27 = .86, .54, 1.0, and .54 for cases
(i), (iii), (iv), and (v), respectively). These are the correct asymptotic sizes if h27 is
known. Table B-II in the Supplement reports results analogous to those in Table II
for upper and lower one-sided CIs. We do not report results for any other CIs in the
literature because none have correct asymptotic size.
We now discuss the results in Table II. The two-sided FCVCI under-covers asymp-

totically by a substantial amount, see the rows labeled Asy of column 4. Its AsyCS
equals 69.5%. The asymptotic results for equal-tailed subsampling CIs are similar,

14The minimum is calculated over the set {−.9,−.8, ..., .9, .95, .97, .99, 1.0}. The reason for exclud-
ing ρ ∈ (−1.0,−.9) is discussed in the Supplement.
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but somewhat worse, see the rows labeled Asy of column 7. Its AsyCS equals 59.8%.
Hence, subsampling CIs can have very poor asymptotic performance. On the other
hand, symmetric subsampling CIs have correct AsyCS (up to simulation error) for
the reasons described above, see the second last row of column 5.
The discussion above of the quantile graphs in Figure 1 leads to the following

results, which are corroborated by the numerical results. The two-sided FCV CI
under-covers because its upper endpoint is farther away from 1 than it should be.
Hence, it misses the true value of ρ too often to the left. On the other hand, the
equal-tailed subsampling CI under-covers ρ because its lower endpoint is closer to 1
than it should be. Hence, it misses the true ρ to the right too often.
The finite-sample adjusted asymptotic results for δn = b/n = 12/131 show much

less severe under-rejection for the equal-tailed subsampling CIs than the unadjusted
asymptotic results, compare the rows denoted Asy and Adj-Asy in column 7 of Table
II. The finite-sample coverage probabilities of the subsampling CIs (for n = 131 and
b = 12) are closer in most cases to the adjusted asymptotic sizes than the unadjusted
asymptotic sizes. Hence, it is apparent that the asymptotic size of the equal-tailed
subsampling CIs is approached slowly as n → ∞ and is obtained only with large
sample sizes. In consequence, increases in the sample size from n = 131 makes the
equal-tailed subsampling CIs perform worse rather than better. The equal-tailed
subsampling CIs can be size-corrected. We do not report results here for such CIs.
None of the CIs considered here are similar asymptotically in a uniform sense or

in finite samples. For the latter, see the rows corresponding to different values of ρ
in case (i).
The symmetric and equal-tailed hybrid CIs both have correct AsyCS, see the

rows labeled Asy in columns 6 and 8 of Table II. This occurs because for every value
of h27 either the critical value of the FCV CI or the subsampling CI is suitable.
Hence, the maximum of the two is a critical value that delivers correct asymptotic
size. The finite-sample minimum (over ρ) coverage probabilities of the symmetric
hybrid CI over the six cases range from 94.6 to 96.2%, which is quite good given
the wide variety of conditional heteroskedasticity covered by these six cases. For the
equal-tailed hybrid CI, the range is 93.5 to 93.9%, which is also good, but slightly
lower than desirable. It is far superior to that of the FCV or equal-tailed subsampling
CIs.
We conclude by noting that the same sort of size issues that arise with subsampling

in the AR(1) model also arise in vector autoregressive models with roots that may
be near unity. For example, they arise with subsampling tests of Granger causality
in such models, see Choi (2005).

8 Post-Conservative Model Selection Inference

Figure 2 provides graphs of the quantiles, ch(1−α), of |J∗h| as a function of h1 ≥ 0
for several values of h2 ≥ 0 for this example. (The quantile graphs are invariant to the
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signs of h1 and h2.) The corresponding quantile graphs for J∗h are remarkably similar
to those for |J∗h| and, hence, are not given. In Figure 2, the graphs are hump shaped
with the size of the hump increasing in |h2|. Based on the shape of the graphs, one
expects the subsampling, FCV, and hybrid tests all to over-reject the null hypothesis
asymptotically and in finite samples and by a substantial amount when |h2| is large.
Table III provides null rejection probability results that are analogous to those in

Table II but for the present example. The parameter space H2 for the (asymptotic)
correlation h2 between the LS estimators of the two regressors is [−.995, .995]. The
finite-sample results in Table III are for n = 120, b = 12, and a model with standard
normal errors, and k = 3 regressors, where x∗1,i and x

∗
2,i are independent standard

normal random variables and x∗3,i = 1. To dramatically increase computational speed,
finite-sample results for tests that utilize subsampling critical values are based on
qn = 119 subsamples of consecutive observations. Hence, only a small fraction of
the “120 choose 12” available subsamples are used. In cases where such tests have
correct asymptotic size, their finite-sample performance is expected to be better when
all available subsamples are used than when only qn = 119 are used. Further details
concerning Table III are given in the Supplement.
The asymptotic results for the Sub, FCV, and Hyb tests show that all of these

tests perform very similarly and very poorly. They are found to over-reject the null
hypothesis very substantially for the upper and symmetric cases when the absolute
value of the correlation, |h2|, is large. (Results for equal-tailed tests, not reported,
are similar to those for symmetric tests.) The asymptotic sizes of these nominal
5% tests range from 93 to 96% (see columns 2, 4, and 7). Even for |h2| = .8, the
maximum (over h1) asymptotic rejection probabilities of these tests range from 36 to
44%. Adjusted asymptotic sizes of the nominal 5% Sub and Hyb tests, not reported,
are slightly lower than the unadjusted ones, but they are still in the range of 90 to
92%.
The finite-sample maximum (over h1 and h2) null rejection probabilities of the

nominal 5% Sub, FCV, and Hyb tests are very high and reflect the asymptotic results
(see columns 3, 5, and 8).15 They range from 91 to 95%.
Next, we consider PSC tests. We use the following consistent estimator of γn,2:

eγn,2 = −n−1
Sn

i=1 x1ix2i
(n−1

Sn
i=1 x1ix1in

−1Sn
i=1 x2ix2i)

1/2
, (8.1)

where {(x1i, x2i) : i = 1, ..., n} are the residuals from the regressions of x∗ji on x
∗
3i for

j = 1, 2.The choice of this estimator is based on the equality γn,2 = Q
12
n /(Q

11
n Q

22
n )

1/2 =

−Qn,12/(Qn,11Qn,22)1/2, where Qjmn and Qn,jm denote the (j,m) elements of Q−1n and
Qn = EGnx

⊥
i x

⊥�
i , respectively, for j,m = 1, 2 (see the second equality in (11.19)

15Strictly speaking, h2 denotes the asymptotic correlation between the LS estimators and H2
denotes its parameter space. For simplicity, when discussing the finite-sample results, we let h2
denote the finite-sample correlation between the LS estimators and we let H2 denote its parameter
space.
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of the Supplement) and Gn is the distribution of (εi, x∗i ). Consistency of eγn,2 (i.e.,eγn,2 − γn,2 →p 0 under {γn : n ≥ 1}) follows from a Lemma in the Supplement to
this paper. Thus, Assumption N holds. Note that the PSC tests do not depend
on the specification of the parameter space for h2. The PSC-FCV CI obtained by
inverting the PSC-FCV test considered here is closely related to, but different from,
the modified CI of Kabaila (1998).
Table III reports finite-sample maximum (over h1) null rejection probabilities of

the PSC-FCV and PSC-Hyb tests (see columns 6 and 9). These tests both perform
very well. The maximum (over h1 and |h2|) null rejection probabilities of these tests
are all in the range of 4.8 to 5.3% for upper and symmetric tests. For both tests,
the maximum rejection rates (over h1) do not vary too much with |h2|, which is the
objective of the “plug-in” approach. Hence, the “plug-in” approach works well in this
example.
ForH2 = [−.999, .999], the finite-sample maximum (over h1 and |h2|) null rejection

rates of the PSC tests lie between 6.9 and 7.4% For H2 = [−.9999, .9999], the PSC
tests have corresponding values between 71 and 83%. Hence, it is clear that bounding
|h2| away from 1.0 is not only sufficient for the asymptotic PSC results to hold, but it
is necessary for the PSC tests to have good finite-sample size. For practical purposes,
this is not much of a problem because (i) h2 can be consistently estimated, so one
has a good idea of whether |h2| is close to 1.0 and (ii) |h2| can be very close to 1.0
(i.e., .995 or less) and the PSC tests still perform very well in finite samples.
In conclusion, nominal 5% subsampling, FCV, and hybrid tests have asymptotic

and adjusted-asymptotic sizes that are very large–between 90 and 96%–for upper,
symmetric, and equal-tailed tests (for H2 = [−.995, .995]). The maximum (over the
cases considered) finite-sample null rejection probabilities of these tests for n = 120
and b = 12 are close to the asymptotic values. PSC methods work very well in this
example. The PSC-Hyb and PSC-FCV tests have finite-sample maximum (over the
cases considered) null rejection probabilities between 4.8 and 5.3% for upper, lower,
and symmetric tests (for H2 as above).
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TABLE I

ASYMPTOTIC SIZES OF SUBSAMPLING AND HYBRID TESTS AND CONFIDENCE
INTERVALS OF SYMMETRIC AND EQUAL-TAILED TWO-SIDED TYPES FOR A
VARIETY OF MODELS∗

(a) Nominal 5% Tests
Subsampling Hybrid

Model Sym Eq-Tail Sym Eq-Tail

Nuisance Parameter 10 52.5 5 5
Near Boundary

Post-Conservative 94 94 94 94
Model Selection

IV Regression—2SLS 5.5 82 5 5
w/ Possibly Weak IVs

Parameter-Dependent 5 5 5 5
Support

(b) Nominal 95% Confidence Intervals

AR w/ Intercept 95 60 95 95

AR w/Intercept & Trend 95 25 95 95

Post-Consistent Model 0 0 0 0
Selection

Parameter of Interest 90 47.5 95 95
Near Boundary

Parameters Defined by 95 95 95 95
Moment Inequalities

∗The details of the “Post-Conservative Model Selection” model are described
above in the text. The results for the “IV Regression—2SLS w/ Possibly Weak IVs”
model are for tests concerning the coefficient on an endogenous variable in a linear
IV model with a single endogenous variable and five IVs.



TABLE II
AR EXAMPLE: CI COVERAGE PROBABILITIES (×100) FOR NOMINAL 95% CIs∗

n=131 Symmetric CIs Equal-tailed CIs
Case DGP or Asy FCV Sub Hyb Sub Hyb

-.90 90.7 95.5 95.8 93.0 94.7
-.50 91.0 95.0 95.7 90.7 93.6
.00 91.1 96.0 96.4 90.2 94.1

(i) GARCH ρ =.70 90.4 97.9 97.9 88.7 96.6
MA=.15, .80 89.6 97.8 97.8 88.7 97.0
AR=.80 .90 87.9 97.9 97.9 89.5 97.5
h27 = .86 .97 82.1 97.5 97.5 92.7 98.0

1.0 65.1 95.1 95.1 94.5 96.7

FS-Min 65.1 95.0 95.1 88.4 93.6
Asy 76.8 95.0 95.0 69.6 95.0

Adj-Asy - 95.0 95.1 89.0 95.1

(ii) IGARCH
MA=.20, FS-Min 67.3 95.4 95.6 87.8 93.5
AR=.80

(iii) GARCH FS-Min 70.4 95.4 96.0 89.6 93.9
MA=.70, Asy 87.5 95.0 95.0 85.2 95.0
AR=.20 Adj-Asy - 94.7 95.1 92.6 95.2
h27 = .54

(iv) i.i.d. FS-Min 62.4 94.6 94.6 88.1 93.5
h27 = 1 Asy 69.4 95.0 95.0 59.7 95.0

Adj-Asy - 95.0 95.0 86.3 95.1

(v) ARCH4 FS-Min 69.3 95.8 96.1 88.7 93.8
(.3,.2,.2,.2) Asy 87.5 95.0 95.0 85.2 95.0
h27 = .54 Adj-Asy - 94.7 95.1 92.6 95.2

(vi) IARCH4 FS-Min 71.1 95.7 96.2 88.5 93.7
(.3,.3,.2,.2)

Min Over Asy 69.5 94.9 94.9 59.8 95.0
h27 ∈ [0, 1] Adj-Asy - 94.6 95.0 86.3 95.1

∗The asymptotic and adjusted asymptotic results of Table II are based on 30, 000 sim-
ulation repetitions. The search over h1 to determine the minimum is done on the interval
[−.90, 1] with stepsize 0.01 on [−.90, .90] and stepsize .001 on [.90, 1.0]. The search over h27
to determine the minimum is done on the interval [0, 1] with stepsize 0.05. The asymptotic
results are computed using a discrete approximation to the continuous stochastic process
on [0, 1] with 25, 000 grid points.



TABLE III

CONSERVATIVE MODEL SELECTION EXAMPLE: MAXIMUM (OVER h1) NULL
REJECTIONPROBABILITIES (×100) FORDIFFERENTVALUES OF THECORRELATION
h2 FORVARIOUS NOMINAL 5%TESTS, WHERE THEPROBABILITIES AREASYMPTOTIC,
FINITE-SAMPLE-ADJUSTED ASYMPTOTIC, AND FINITE SAMPLE FOR n = 120
AND b = 12 AND THE PARAMETER SPACE FOR h2 IS [−.995, .995]∗

(a) Upper 1-Sided Tests
Test: Sub Sub FCV FCV PSC-FCV Hyb Hyb PSC-Hyb

|h2| Prob: Asy n=120 Asy n=120 n=120 Asy n=120 n=120
.00 5.1 5.4 5.3 5.4 4.7 5.1 3.7 3.3
.20 6.9 7.2 7.1 7.5 5.1 6.9 5.3 4.0
.40 11.2 11.0 11.8 11.9 5.1 11.2 8.7 4.5
.60 20.2 19.8 21.8 22.0 4.9 20.2 17.3 4.8
.80 41.3 38.9 44.3 43.8 4.8 41.3 37.2 4.8
.90 61.3 57.5 63.9 62.8 4.6 61.3 56.8 4.6
.95 75.5 72.2 77.2 76.7 4.6 75.5 71.8 4.6
.995 92.9 91.9 93.2 93.1 4.1 92.9 91.9 4.1
Max 92.9 91.9 93.2 93.1 5.1 92.9 91.9 4.8

(b) Symmetric 2-Sided Tests
.00 5.1 5.0 5.4 5.5 5.0 5.1 3.3 3.1
.20 6.0 5.3 6.3 6.5 5.1 6.0 3.8 3.3
.40 8.7 7.3 9.6 10.1 5.2 8.7 5.9 4.0
.60 16.1 12.3 18.2 18.8 5.3 16.1 11.3 4.8
.80 36.2 28.2 40.6 40.3 4.9 36.2 27.8 4.8
.90 57.6 48.5 62.0 61.5 4.5 57.6 48.3 4.5
.95 73.4 66.1 77.1 76.4 4.2 73.4 66.0 4.2
.995 93.9 90.7 95.5 95.3 4.2 93.9 90.7 4.2
Max 93.9 90.7 95.5 95.3 5.3 93.9 90.7 4.8

∗The results in Table III are based on 20, 000 simulation repetitions. For the finite-
sample results, the search over |β2| is done on the interval [0, 10] with stepsizes 0.0025,
0.025, and .250, respectively, on the intervals [0.0, 0.8], [0.8, 3], and [3, 10] and also
includes the value |β2| = 999, 999. For the asymptotic results the search over |h1| is
done in the interval [−10, 10] with stepsize 0.01. For the finite-sample and asymptotic
results, the Max is taken over |h2| values in {0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99, 0.995}.
For the plug-in size-correction values, the grid of |γ2| values has stepsizes .01, .001,
.0001, and .00002, respectively, on the intervals [0.0, 0.7], [0.7, 0.99], [0.99, 0.996], and
[0.996, 1.0].
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Abstract

This Supplement to “Hybrid and Size-Corrected Subsampling Methods” contains
11 sections of results. Section 1 provides details concerning Tables II and III. Section
2 gives the proofs of the results in the paper. Section 3 introduces size-correction
methods based on quantile adjustment. Section 4 provides results concerning power
comparisons of size-corrected (SC) tests. Section 5 provides graphical illustrations
of the critical value functions of fixed critical value (FCV), subsampling, and hy-
brid tests. Section 6 gives graphical illustrations of power comparisons of SC-FCV,
SC-Sub, and SC-Hyb tests. Section 7 introduces and give results for equal-tailed
size-corrected tests. Section 8 defines a size-corrected combined (SC-Com) test that
combines the SC-Sub and SC-Hyb tests. Section 9 gives asymptotic and finite-sample
results for hybrid, SC, and PSC tests for the Nuisance Parameter Near a Boundary
Example of Andrews and Guggenberger (2009a), hereafter AG1. Section 10 provides
a table of asymptotic and finite-sample results for upper and lower one-sided con-
fidence intervals in the Autoregressive Parameter Example considered in the paper.
Section 10 also verifies the assumptions for that example. Section 11 verifies the
assumptions for the Conservative Model Selection Example considered in the paper.

1 Details Concerning Tables II and III

To implement the Kristensen and Linton (2006) estimator used in the results
of Table II, we use two Newton-Raphson iterations, see their equation (17), and to
initialize the iteration we use their closed form estimator, see p.326, in particular their
equation (10), implemented with w1 = w2 = w3 = 1/3 and with their eφWinsorized to
the interval [.001,.999]. In each iteration step, we initialize the eσ2k,t (p.329, line 5↑) by
setting it equal to the squared first data observation. For simplicity, this estimator has
not been discretized and the GARCH(1, 1) process has not been truncated to conform
to the theoretical results given in the Section 3.4 of Andrews and Guggenberger
(2008) for the asymptotic equivalence of feasible and infeasible QGLS statistics. The
subsample statistics use the full-sample estimator of the conditional heteroskedasticity
{eφn,i : i ≤ n}, which is justified because feasible and infeasible QGLS test statistics
are asymptotically equivalent in the full sample and in subsamples.
In Table II, the parameter space for ρ is taken to be [−0.9, 1.0] to minimize the

effect of the choice of the lower bound on the FS-Min values of the subsampling
and hybrid CIs because in most practical applications in economics, the parameter
interval (−1.0,−0.9] is not of interest. The effects are small. For the parameter
spaces [−0.999, 1.0] and [−.9, 1.0], the respective FS-Min values of the symmetric
subsampling CIs are 94.6 and 95.0 for case (i), 95.1 and 95.4 for case (ii), 92.8 and
94.6 for case (iv), and 95.6 and 95.8 for case (v). For the symmetric hybrid CIs, they
are 95.9 and 96.0 for case (iii), 93.7 and 94.6 for case (iv), and 96.0 and 96.1 for case
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(v). For the equal-tailed hybrid CI, they are 93.1 and 93.5 for case (iv). No other
results are affected by the choice of the lower bound of the parameter space.
The 119 subsamples used in Table III include 10 “wrap-around” subsamples that

contain observations at the end and beginning of the sample, for example, observa-
tions indexed by (110, ..., 120, 1). The choice of qn = 119 subsamples is made because
this reduces rounding errors when qn is small when computing the sample quantiles
of the subsample statistics. The values να that solve να/(qn + 1) = α for α = .025,
.95, and .975 are the integers 3, 114, and 117. In consequence, the .025, .95, and .975
sample quantiles are given by the 3rd, 114th, and 117th largest subsample statistics.
See Hall (1992, p. 307) for a discussion of this choice in the context of the bootstrap.

2 Proofs

For notational simplicity, throughout this section, we let cg, ch, c∞, cn,b, and cv
abbreviate cg(1− α), ch(1− α), c∞(1− α), cn,b(1− α), and cv(1− α), respectively.

2.1 Proof of Lemma 1

Lemma 1 (of the Paper). Suppose Assumptions A-G, K, and T hold. Then, either
(i) the addition of c∞(1−α) to the subsampling critical value is irrelevant asymptoti-
cally (i.e., ch(1−α) ≥ c∞(1−α) for all h ∈ H andMaxHyb(α) =MaxSub(α)), or (ii)
the nominal level α subsampling test over-rejects asymptotically (i.e., AsySz(θ0) > α)
and the hybrid test reduces the asymptotic over-rejection for at least one parameter
value (g, h) ∈ GH.

Proof of Lemma 1 (of the Paper). If ch ≥ c∞ for all h ∈ H, then MaxHyb(α) =
MaxSub(α) andMax−Hyb(α) =Max

−
Sub(α) follow immediately (where the latter three

quantities are defined in Assumptions P and T). In addition, Assumption T implies
that all of these quantities are equal. The latter, Theorem 1 of the paper, and
Theorem 1(ii) of AG1 imply that the quantities equal AsySz(θ0) for the hybrid and
subsampling tests.
On the other hand, suppose “ch ≥ c∞ for all h ∈ H” does not hold. Then, for

some g ∈ H, cg < c∞. Given g, define h1 = (h1,1, ..., h1,p)
� ∈ H1 by h1,m = +∞ if

g1,m > 0, h1,m = −∞ if g1,m < 0, h1,m = +∞ or −∞ (chosen so that (g, h) ∈ GH)
if g1,m = 0 for m = 1, ..., p, and define h2 = g2. Let h = (h1, h2). By construction,
(g, h) ∈ GH. By Assumption K, ch = c∞. Hence, we have

MaxSub(α) ≥ 1− Jh(cg) > α, (2.1)

where the second inequality holds because cg < c∞ = ch and ch is the infimum of
values x such that Jh(x) ≥ 1 − α or, equivalently, 1 − Jh(x) ≤ α. Equation (2.1)
and Theorem 1(ii) of AG1 imply that AsySz(θ0) > α for the subsampling test. The
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hybrid test reduces the asymptotic over-rejection of the subsampling test at (g, h)
from being at least 1 − Jh(cg) > α to being at most 1 − Jh(c∞) = 1 − Jh(ch) ≤ α
(with equality if Jh(·) is continuous at ch).

2.2 Proof of Lemma 2

Lemma 2 (of the Paper). Suppose Assumptions A-G, K, T, and Quant hold.
Then, the hybrid test based on Tn(θ0) has AsySz(θ0) = α.

Proof of Lemma 2 (of the Paper). Suppose Assumption Quant (i) holds. Then,

MaxHyb(α) = sup
(g,h)∈GH

[1− Jh(max{cg, c∞})] = sup
h∈H
[1− Jh(c∞)]

≤ sup
h∈H

[1− Jh(ch)] = α, (2.2)

where the second equality and the inequality hold by Assumption Quant (i)(a) and
the last equality holds because 1− Jh(ch) ≤ α by definition of ch for all h ∈ H and
1−J∞(c∞) = α by Assumption Quant (i)(b). By (2.2) and Assumption Quant (i)(b),
MaxHyb(α) = suph∈H [1− Jh(c∞)] ≥ 1− J∞(c∞) = α.
Next, suppose Assumption Quant (ii) holds. By Assumption Quant (ii)(a), p = 1.

Hence, given (g, h) ∈ GH either (I) |h1,1| = ∞ or (II) |h1,1| < ∞. When (I) holds,
Jh = J∞ by Assumption K and

1− Jh(max{cg, c∞}) ≤ 1− J∞(c∞) = α. (2.3)

When (II) holds, g must equal h0 by the definition of GH. Hence,

1− Jh(max{cg, c∞}) ≤ 1− Jh(ch0) ≤ sup
h∈H
[1− Jh(ch)] = α, (2.4)

where the second inequality holds because ch0 ≥ ch by Assumption Quant (ii)(b) and
the equality holds by Assumption Quant (ii)(c). Hence,MaxHyb(α) ≤ α. In addition,
MaxHyb(α) ≥ 1− J∞(c∞) = α by Assumption Quant (ii)(c).

2.3 Proof of Theorem 2

In this section, we prove Theorem 2 of the paper. For the reader’s convenience,
we repeat the definition of the size-corrected (SC) tests here. The size-corrected fixed
critical value (SC-FCV), subsampling (SC-Sub), and hybrid (SC-Hyb) tests with
nominal level α are defined to reject the null hypothesis H0 : θ = θ0 when

Tn(θ0) > cv(1− α),

Tn(θ0) > cn,b(1− α) + κ(α) and

Tn(θ0) > max{cn,b(1− α), c∞(1− α) + κ∗(α)}, (2.5)
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respectively, where

cv(1− α) = sup
h∈H

ch(1− α),

κ(α) = sup
(g,h)∈GH

[ch(1− α)− cg(1− α)],

κ∗(α) = sup
h∈H∗

ch(1− α)− c∞(1− α), and (2.6)

H∗ = {h ∈ H : for some (g, h) ∈ GH, cg(1− α) < ch(1− α)}.
If H∗ is empty, then κ∗(α) = −∞ by definition.

Theorem 2 (of the Paper). Suppose Assumptions A-G and K-M hold. Then, the
SC-FCV, SC-Sub, and SC-Hyb tests satisfy AsySz(θ0) = α.

Proof of Theorem 2 (of the Paper). First we note that Assumption L implies
that cv, κ(α), and κ∗(α) are finite. Below we show that cv, κ(α), and κ∗(α) satisfy

sup
h∈H

[1− Jh(cv−)] ≤ α,

sup
(g,h)∈GH

(1− Jh((cg + κ(α))−)) ≤ α, and

sup
(g,h)∈GH

(1− Jh (max{cg, c∞ + κ∗(α)}−)) ≤ α, (2.7)

respectively. Given (2.7), Theorem 1(i) of AG1 applied with cFix = cv implies that
the SC-FCV test satisfies AsySz(θ0) ≤ suph∈H [1− Jh(cv−)] ≤ α, where the second
inequality holds by (2.7). Theorem 1(ii) of AG1 with cn,b+κ(α) in place of cn,b implies
that the SC-Sub test satisfiesAsySz(θ0) ≤ sup(g,h)∈H [1−Jh((cg+κ(α))−)] ≤ α, where
the second inequality holds by (2.7). Theorem 1(ii) of AG1 withmax{cn,b, c∞+κ∗(α)}
in place of cn,b implies that the SC-Hyb test satisfies AsySz(θ0) ≤ sup(g,h)∈H [1 −
Jh(max{cg, c∞ + κ∗(α)}−)] ≤ α, where the second inequality holds by (2.7). Hence,
AsySz(θ0) ≤ α for SC-FCV, SC-Sub, and SC-Hyb tests. Below we show that the
reverse inequality also holds.
We now show that the first inequality in (2.7) holds. For h ∈ H, if ch <

suph†∈H ch†, then

Jh

�
sup
h†∈H

ch†−
�
≥ Jh(ch) ≥ 1− α, (2.8)

where the first inequality holds because Jh is nondecreasing and the second inequality
holds by the definition of ch. For h ∈ H, if ch = suph†∈H ch† , then

Jh

�
sup
h†∈H

ch†−
�
= Jh(ch−) = 1− α, (2.9)

where the last equality holds by Assumption M(a)(ii). For cv defined in (2.6), (2.8)
and (2.9) combine to give

sup
h∈H

[1− Jh(cv−)] = sup
h∈H

[1− Jh( sup
h†∈H

ch†−)] ≤ α. (2.10)
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Hence, cv satisfies (2.7).
Next, we prove that the second inequality in (2.7) holds. For (g, h) ∈ GH, if

ch < cg + sup(g†,h†)∈GH [ch† − cg† ], then we have

Jh ((cg + κ(α))−) = Jh

#
(cg + sup

(g†,h†)∈GH
[ch† − cg† ])−

$
≥ Jh (ch) ≥ 1− α, (2.11)

where the first inequality holds by the condition on (g, h) and the fact that Jh is
nondecreasing.
For (g, h) ∈ GH, if ch = cg + sup(g†,h†)∈GH [ch† − cg† ], then we have

Jh ((cg + κ(α))−) = Jh

#
(cg + sup

(g†,h†)∈GH
[ch† − cg† ])−

$
= Jh (ch−) = 1− α, (2.12)

where the second equality holds by the condition on (g, h) and the last equality holds
by Assumption M(b)(ii). Combining (2.11) and (2.12) gives sup(g,h)∈GH [1− Jh((cg +
κ(α))−)] ≤ α, as desired.
The third inequality in (2.7) holds by the following argument. Because c∞ +

κ∗(α) = suph∗∈H∗ ch∗,we need to show that sup(g,h)∈GH [1−Jh(max{cg, suph∗∈H∗ ch∗}−)]
≤ α. For all (g, h) ∈ GH, we have max{cg, suph∗∈H∗ ch∗} ≥ ch because max{cg,
suph∗∈H∗ ch∗} < ch implies that cg < ch, which implies that h ∈ H∗, which im-
plies that suph∗∈H∗ ch∗ ≥ ch, which is a contradiction. Now, for any (g, h) ∈ GH with
max{cg, suph∗∈H∗ ch∗} > ch, we have 1−Jh(max{cg, suph∗∈H∗ ch∗}−) ≤ 1−Jh(ch) ≤ α,
as desired. For any (g, h) ∈ GH with max{cg, suph∗∈H∗ ch∗} = ch, Assumption
M(c)(ii) implies that Jh(x) is continuous at x = ch. Hence, 1 − Jh(max{cg, c∞ +
κ∗(α)}−) = 1 − Jh(ch−) = 1 − Jh(ch) = α, which completes the proof of the third
inequality of (2.7). This concludes the proof that AsySz(θ0) ≤ α for the SC-FCV,
SC-Sub, and SC-Hyb tests.
We now prove that these tests satisfy AsySz(θ0) ≥ α. By Theorem 1(i) of AG1

applied with cFix = cv, the SC-FCV test satisfies AsySz(θ0) ≥ suph∈H [1 − Jh(cv)].
Using (2.6) and Assumption M(a)(i), cv = suph∈H ch = ch ∗ for some h

∗ ∈ H. Hence,

sup
h∈H

[1− Jh(cv)] = sup
h∈H

[1− Jh(ch∗)] ≥ 1− Jh∗(ch∗) = α, (2.13)

where the last equality holds by Assumption M(a)(ii). In consequence, for the SC-
FCV test, AsySz(θ0) ≥ α.
Next, by Theorem 1(ii) of AG1 with cn,b + κ(α) in place of cn,b, the SC-Sub test

satisfies AsySz(θ0) ≥ sup(g,h)∈GH [1 − Jh(cg + κ(α))]. Using (2.6) and Assumption
M(b)(i), κ(α) = ch ∗ − cg∗ for some (g∗, h∗) ∈ GH as in Assumption M(b)(i). Hence,

sup
(g,h)∈GH

[1−Jh(cg+κ(α))] = sup
(g,h)∈GH

[1−Jh(cg+ch ∗−cg∗)] ≥ 1−Jh∗(ch∗) = α, (2.14)
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where the last equality holds by Assumption M(b)(ii). In consequence, for the SC-Sub
test, AsySz(θ0) ≥ α.
Lastly, Theorem 1(ii) of AG1 with max{cn,b, c∞ + κ∗(α)} in place of cn,b implies

that the SC-Hyb test satisfies

AsySz(θ0) ≥ sup
(g,h)∈GH

[1− Jh(max{cg, c∞ + κ∗(α)})]. (2.15)

If H∗ is not empty, then using (2.6) and Assumption M(c)(i), κ∗(α) = ch∗ − c∞ for
some h∗ ∈ H∗ as in Assumption M(c)(i). By the definition of H∗, there exists g∗

such that (g∗, h∗) ∈ GH and cg∗ < ch∗. In consequence, the right-hand side of (2.15)
equals

sup
(g,h)∈GH

[1− Jh(max{cg, ch∗})] ≥ 1− Jh∗(max{cg∗, ch∗}) = 1− Jh∗(ch∗) = α, (2.16)

where the first equality uses cg∗ < ch∗ and the last equality holds by Assumption
M(c)(ii) because (g∗, h∗) ∈ GH satisfies ch∗ = suph∈H∗ ch = max{cg∗, suph∈H∗ ch}.
Combining (2.15) and (2.16) gives AsySz(θ0) ≥ α.
If H∗ is empty, then κ∗(α) = −∞, (h0, h0) ∈ GH, where h0 = (0, h2) for arbitrary

h2 ∈ H2, and we have
sup

(g,h)∈GH
[1− Jh(max{cg, c∞ + κ∗(α)})]

= sup
(g,h)∈GH

[1− Jh(cg)] ≥ 1− Jh0(ch0) = α, (2.17)

where the last equality holds by Assumption M(c)(ii) because ch0 = max{ch0, c∞ +
κ∗(α)}. Combining (2.15)—(2.17) gives AsySz(θ0) ≥ α for the SC-Hyb test.

2.4 Proof of Theorem 3

Theorem 3 (of the Paper). Suppose Assumptions A-G, K, L, N, and O hold.
Then, (a) cveγn,2(1−α)− cvγn,2(1−α)→p 0, κeγn,2(α)−κγn,2(α)→p 0, and κ∗eγn,2(α)−
κ∗γn,2(α) →p 0 under all sequences {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1}, and (b) the
PSC-FCV, PSC-Sub, and PSC-Hyb tests satisfy AsySz(θ0) = α.

Proof of Theorem 3 (of the Paper). The results of part (a) hold by an extension
of Slutsky’s Theorem (to allow γn,2 to depend on n) using Assumption N and the
uniform continuity of the functions in Assumptions O(a)(i), O(b)(i), and O(c)(i).
The proof of part (b) is split into two steps. In the first step, we consider the PSC
tests with eγn,2 replaced by the true value γn,2. In this case, using parts (ii) and (iii)
of Assumptions O(a), O(b), and O(c), the results of part (b) hold by a very similar
argument to that given in the proof of Theorem 2 of the paper. In the second step,
the results of parts (a) are combined with the results of the first step to obtain the
desired results. This step holds because the results of parts (a) lead to the same limit
distributions for the statistics in question whether they are based on eγn,2 or the true
value γn,2 by the argument used in the proof of Theorem 1(ii) of AG1.
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2.5 Proof of Theorem 4

Theorem 4(a) (of the Paper). Suppose Assumptions A-G and P hold. Then, a
subsampling test satisfies

lim
n→∞

AsySzn(θ0) = AsySz(θ0).

Proof of Theorem 4(a) (of the Paper). Under Assumptions A-G, Theorem
1 of AG1 combined with Assumption P(ii) shows that AsySz(θ0) = sup(g,h)∈GH(1−
Jh(cg)). First, we show that lim inf

n→∞
AsySzn(θ0) ≥ AsySz(θ0). Given (g, h) = ((g1, h2),

(h1, h2)) ∈ GH, we construct a sequence {hn = (hn,1, hn,2) ∈ H : n ≥ 1} such
that (gn, hn) → (g, h) as n → ∞, where gn = (gn,1, gn,2) = (δrnhn,1, hn,2). Define
hn,2 = h2 for all n ≥ 1.We write h1 = (h1,1, ..., h1,p)� and hn,1 = (hn,1,1, ..., hn,1,p)�. For
m = 1, ..., p, define

hn,1,m = h1,m if g1,m = 0 & |h1,m| <∞
hn,1,m = (n/bn)

r/2 if g1,m = 0 & h1,m =∞
hn,1,m = −(n/bn)r/2 if g1,m = 0 & h1,m = −∞
hn,1,m = (n/bn)

rg1,m if g1,m ∈ (0,∞) & h1,m =∞
hn,1,m = (n/bn)

rg1,m if g1,m ∈ (−∞, 0) & h1,m = −∞
hn,1,m = (n/bn)

2r if g1,m =∞ & h1,m =∞
hn,1,m = −(n/bn)2r if g1,m = −∞ & h1,m = −∞.

(2.18)

As defined, (gn,1, hn,1) = (δ
r
nhn,1, hn,1)→ (g1, h1) and (gn, hn)→ (g, h).

We now have

lim inf
n→∞

AsySzn(θ0) = lim inf
n→∞

sup
h=(h1,h2)∈H

(1− Jh(c(δrnh1,h2)))

≥ lim inf
n→∞

(1− Jhn(c(δrnhn,1,hn,2)))
= lim inf

n→∞
(1− Jhn(cgn))

= 1− Jh(cg), (2.19)

where the second equality holds by definition of gn and the last equality holds by
Assumption P because (gn, hn) → (g, h). Using the expression for AsySz(θ0) given
above, this establishes the desired result because (2.19) holds for all (g, h) ∈ GH.
Next, we show that lim sup

n→∞
AsySzn(θ0) ≤ AsySz(θ0). For h = (h1, h2) ∈ H, let

τn(h) = 1− Jh(c(δrnh1,h2)). By definition, AsySzn(θ0) = suph∈H τn(h). There exists a
sequence {hn ∈ H : n ≥ 1} such that lim sup

n→∞
suph∈H τn(h) = lim sup

n→∞
τn(hn). There

exists a subsequence {un} of {n} such that lim sup
n→∞

τn(hn) = limn→∞ τun(hun). There

exists a subsequence {vn} of {un} such that (hvn,1, hvn,2, δrvnhvn,1) → (h∗1, h
∗
2, g

∗
1) for

some h∗1 ∈ H1, h∗2 ∈ H2, g∗1 ∈ H1, where (g∗, h∗) = ((g∗1, h∗2), (h∗1, h∗2)) ∈ GH. Hence,

lim sup
n→∞

AsySzn(θ0) = lim
n→∞

τun(hun) = lim
n→∞

τ vn(hvn)
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= lim
n→∞

�
1− Jhvn (c(δrvnhvn,1,hvn,2))

�
= 1− Jh∗(cg∗)

≤ sup
(g,h)∈GH

(1− Jh(cg)) = AsySz(θ0), (2.20)

where the fourth equality holds by Assumption P and the results above.

Theorem 4(b) (of the Paper). Suppose Assumptions A-G, K-M, Q, and R hold.
Then,
(i) limn→∞ κ(δn,α) = κ(α) and limn→∞ κ∗(δn,α) = κ∗(α) and
(ii) the ASC-Sub and ASC-Hyb tests satisfy AsySz(θ0) = α.

Proof of Theorem 4(b) (of the Paper). The first result of part (i) holds by the
proof of Theorem 4(a) of the paper with 1− Jh(c(δrnh1,h2)) and 1− Jh(cg) replaced by
c(h1,h2)−c(δrnh1,h2) and ch−cg, respectively, using Assumption Q in place of Assumption
P. Next, we show the first result of part (ii). Using the first result of part (i), by the
same argument as used to prove Theorem 1(ii) of AG1, AsySz(θ0) for the ASC-Sub
test equals AsySz(θ0) for the SC-Sub test. By Theorem 2 of the paper, the latter
equals α.
Now, we prove that the second result of part (i) holds with limn→∞ and = replaced

by lim infn→∞ and ≥, respectively, even without imposing Assumption R. If H∗ is
empty, then lim infn→∞ suph∈H∗(δn) ch ≥ −∞ = suph∈H∗ ch. If H

∗ is non-empty, for
any (g, h) ∈ GH such that h ∈ H∗, define (gn, hn) ∈ GH as in (2.18). By (gn, hn)→
(g, h), Assumption Q, and cg − ch < 0, we obtain cgn − chn < 0 and hn ∈ H∗(δn) for
all n sufficiently large. Hence,

lim inf
n→∞

sup
h∈H∗(δn)

ch ≥ lim inf
n→∞

chn = ch, (2.21)

where the equality uses hn → h and Assumption Q. This inequality holds for all
h ∈ H∗. Hence, lim infn→∞ suph∈H∗(δn) ch ≥ suph∈H∗ ch and the proof is complete.
Next, we show the second result of part (ii) holds with = replaced by ≤ even

without imposing Assumption R. Using the second result of part (i) with limn→∞
and = replaced by lim infn→∞ and ≥, respectively, the lim supn→∞ of the rejection
probability of the ASC-Hyb test is less than or equal to that of the SC-Hyb test and
the latter equals α by Theorem 1 of the paper.
To show that the second result of part (i) holds, it remains to show that it holds

with = replaced by ≤ . First suppose that H∗ is empty. Then, κ∗(α) = −∞, H∗(δ)
is empty for δ > 0 close to zero by Assumption R, and κ∗(δn,α) = −∞ for n
sufficiently large. Next, suppose that H∗ is non-empty. Then, using Assumption
R, it suffices to show that lim supn→∞ suph∈H∗(δn) ch ≤ suph∈H† ch. As in the last
paragraph of the proof of Theorem 4(a) of the paper (given above), there exists a
sequence {hn ∈ H∗(δn) : n ≥ 1}, a subsequence {un} of {n}, and a subsequence {vn}
of {un} such that

lim sup
n→∞

sup
h∈H∗(δn)

ch = lim
n→∞

chvn , (2.22)
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(hvn,1, hvn,2)→ (h∗1, h
∗
2) = h

∗, and (δrvnhvn,1, hvn,2)→ (g∗1, h
∗
2) = g

∗

for some (g∗, h∗) ∈ GH. Since hvn = (hvn,1, hvn,2) ∈ H∗(δvn) for all n, we have h
∗ ∈ H†

by definition of H†. This, (2.22), and Assumption Q yield

lim sup
n→∞

sup
h∈H∗(δn)

ch = lim
n→∞

chvn = ch∗ ≤ sup
h∈H†

ch, (2.23)

which completes the proof of the second result of part (i). Given this, by the same
argument as used to prove Theorem 1(ii) of AG1 with cn,b replaced by max{cn,b, c∞+
κ∗(δn,α)}, AsySz(θ0) for the ASC-Hyb test is equal to AsySz(θ0) for the SC-Hyb
test. By Theorem 2, the latter equals α. Hence, the second result of part (ii) holds.

Theorem 4(c) (of the Paper). Suppose Assumptions A-G, K, L, N, O, Q, and S
hold. Then,
(i) κeγn,2(δn,α)−κγn,2(α)→p 0 and κ∗eγn,2(δn,α)−κ∗γn,2(α)→p 0 under all sequences

{γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1} and
(ii) the APSC-Sub and APSC-Hyb tests satisfy AsySz(θ0) = α.

Proof of Theorem 4(c) (of the Paper). By Theorem 3 of the paper, in part (a)
it suffices to show that κeγn,2(δn,α)− κeγn,2(α)→p 0 and κ∗eγn,2(δn,α)− κ∗eγn,2(α)→p 0.

To do so, we use the result that a sequence of random variables {Xn : n ≥ 1} satisfies
Xn →p 0 if and only if for every subsequence {un} of {n} there is a subsequence {vn}
of {un} such that Xvn → 0 a.s. We apply this result with Xn = κeγn,2(δn,α)−κeγn,2(α).
Hence, it suffices to show that given any {un} there exists a subsequence {vn} of {un}
such that Xvn → 0 a.s. Given {un}, we apply the above subsequence result a second
time with Xn = eγn,2 − γn,2 to guarantee that there is a subsequence {vn} of {un}
for which eγvn,2 − γvn,2 → 0 a.s. using Assumption N. The subsequence {vn} can be
chosen such that γvn,2 → h2 for some h2 ∈ H2 because every sequence in H2 has
a convergent subsequence given that H2 is closed with respect to Rq∞. Now, the
argument in the proof of Theorem 4(a) of the paper applied to the subsequence {vn}
with 1− Jh(c(δrvnh1,h2)), 1− Jh(cg), and hvn,2 = h2 replaced by c(h1,eγvn,2)− c(δrvnh1,eγvn,2),
ch−cg, and hvn,2 = eγvn,2, respectively, and using Assumption Q in place of Assumption
P, gives the desired result.
The second result of part (i) holds using similar subsequence arguments to those

above combined with variations of the proof of the second result of part (i) of Theorem
4(b) of the paper withH∗, H∗(δn), H†, and Assumption R replaced byH∗

h2
, H∗

γn,2
(δn),

H†
h2
, and Assumption S, respectively.
Given the results of part (i), part (ii) is proved using the same argument as used

to prove part (ii) of Theorem 4(b) of the paper.

9



3 Size Correction By Quantile Adjustment

We now briefly discuss SC methods based on quantile adjustment, as opposed to
the method in Section 3 of the paper. Quantile-adjusted SC-Sub and SC-Hyb tests
with nominal level α reject the null hypothesis H0 : θ = θ0 when

Tn(θ0) > cn,b(1− ξ(α)) and

Tn(θ0) > c
∗
n,b(1− ξ∗(α)), (3.1)

respectively, where ξ(α) (∈ (0,α]), and ξ∗(α) (∈ (0,α]) are the largest constants1 that
satisfy

sup
(g,h)∈GH

(1− Jh(cg(1− ξ(α))−)) ≤ α and

sup
(g,h)∈GH

(1− Jh (max{cg(1− ξ∗(α)), c∞(1− ξ∗(α))}−)) ≤ α. (3.2)

In many cases, the quantile adjustment and the size-correction method of Section 3
of the paper give similar results. For many examples, we prefer the method based on
(2.5)-(2.6) to that of (3.1)-(3.2) because the former are based on the explicit formulae
for the adjustment factors κ(α) and κ∗(α) given in (2.6).

4 Power Comparisons of Size-Corrected Tests

We now provide some results concerning power comparisons of SC tests that are
referred to in Section 3.2 of the paper. We consider three alternative assumptions
concerning the shape of ch(1− α). (“Quant” refers to “quantile.”)

Assumption Quant1. cg(1− α) ≥ ch(1− α) for all (g, h) ∈ GH.
Assumption Quant2. cg(1−α) ≤ ch(1−α) for all (g, h) ∈ GH with strict inequality
for some (g, h).

Assumption Quant3. (i) H = H1 = R+,∞, (ii) ch(1− α) is uniquely maximized at
h∗ ∈ (0,∞), and (iii) ch(1− α) is minimized at h = 0 or h =∞.

Theorem S1. Suppose Assumptions K and L hold.
(a) Suppose Assumption Quant1 holds. Then, (i) cv(1− α) = suph2∈H2 c(0,h2)(1−

α), (ii) κ(α) = 0, (iii) κ∗(α) = −∞, (iv) max{cg(1 − α), c∞(1 − α) + κ∗(α)} =
cg(1− α) + κ(α), and (v) cg(1− α) + κ(α) ≤ cv(1− α) for all g ∈ H.
(b) Suppose Assumption Quant2 holds. Then, (i) cv(1 − α) = c∞(1 − α), (ii)

κ∗(α) = 0, (iii) max{cg(1−α), c∞(1−α) + κ∗(α)} = cv(1−α), and (iv) cv(1−α) ≤
cg(1− α) + κ(α) for all g ∈ H.

1If no such largest value exists, we take some value that is arbitrarily close to the supremum of
the values that satisfy (3.2).
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(c) Suppose Assumption Quant3 holds. Then, (i) cv(1 − α) = ch∗(1 − α), (ii)
κ(α) = ch∗(1− α)− c0(1− α), (iii) κ∗(α) = ch∗(1− α)− c∞(1− α), (iv) max{cg(1−
α), c∞(1− α) + κ∗(α)} = cv(1− α) for all g ∈ H, (v) cv(1− α) ≤ cg(1− α) + κ(α)
for all g ∈ H such that cg(1 − α) ≥ c0(1 − α) (such as g = h∗), and likewise with
strict inequalities, and (vi) cv(1 − α) > cg(1 − α) + κ(α) for all g ∈ H such that
cg(1− α) < c0(1− α) (there is no such g ∈ H if ch(1− α) is minimized at h = 0).

Comments. 1. In this comment and the next, we assume Assumption M holds,
so that Theorem 2 (of the paper) holds. Theorem S1(a) shows that the subsampling
and hybrid tests have correct asymptotic size under Assumption Quant1 and they
have critical values less than or equal to that of the SC-FCV test. Theorem S1(b)
shows that the FCV and hybrid tests have correct asymptotic size under Assumption
Quant2 and they have critical values less than or equal to that of the SC-Sub test.
If Assumption Quant1 (Quant2) holds with a strict inequality for (g, h) = (h0, h) for
some h = (h1, h2) ∈ H, where h0 = (0, h2) ∈ H, then Theorem S1(a)(v) (respectively,
(b)(iv)) holds with a strict inequality with g equal to this value of h.
2. Theorem S1(c)(iv)-(v) shows that under Assumption Quant3 the SC-Hyb and

SC-FCV tests are asymptotically equivalent and are always more powerful than the
SC-Sub test at some (g, h) ∈ GH. On the other hand, Theorem S1(c)(vi) shows that
under Assumption Quant3 the SC-Sub test can be more powerful than the SC-Hyb
and SC-FCV tests at some (g, h) ∈ GH though not if ch(1−α) is minimized at h = 0.

The results above are relevant when the subsample statistics satisfy Assumption
Sub1 (because then their asymptotic distribution typically is the same under the
null and the alternative). On the other hand, if Assumption Sub2 holds, then the
subsampling critical values typically diverge to infinity under fixed alternatives (at
rate b1/2 << n1/2 when Tn(θ0) is a t statistic). For brevity, we do not investigate the
relative magnitudes of the critical values of the SC-FCV, SC-Sub, and SC-Hyb tests
for local alternatives when Assumption Sub2 holds.
In Section 8 below, we introduce a SC combined method that has power at least

as good as that of the SC subsampling and hybrid tests. But, it reduces to the SC
hybrid test in most examples and, hence, may be of more interest theoretically than
practically.

Proof of Theorem S1. Assumption L guarantees that cv, κ(α), and κ∗(α) are
well-defined. Part (a)(i) follows from the definition of cv in (2.6) and Assumption
Quant1. Part (a)(ii) holds by definition of κ(α) in (2.6) and the fact that ch− cg ≤ 0
for all (g, h) ∈ GH by Assumption Quant1 (with equality for some (g, h) ∈ GH).
Part (a)(iii) holds by the definition of κ∗(α) in (2.6) for the case where H∗ is empty,
because H∗ is empty by Assumption Quant1. Part (a)(iv) follows from parts (a)(ii)
and (a)(iii). Part (a)(v) follows from part (a)(ii) and the definition of cv in (2.6).
Next, we prove part (b)(i). Given any g = (g1, g2) = (g1,1, ..., g1,p, g2) ∈ H, let

g∞ = (g∞1 , g2) = (g
∞
1,1, ..., g

∞
1,p, g2) ∈ H be such that g∞1,m = +∞ if g1,m > 0, g∞1,m = −∞
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if g1,m < 0, g∞1,m = +∞ or−∞ (chosen so that g∞ ∈ H) if g1,m = 0 form = 1, ..., p. By
Assumption Quant2, cg ≤ cg∞ because (g, g∞) ∈ GH. By Assumption K, cg∞ = c∞
for all g ∈ H. Hence, cv = suph∈H ch = c∞, which proves part (b)(i).
We now prove part (b)(ii). By Assumptions Quant2 and K, H∗ is not empty and

suph∈H∗ ch = c∞. In consequence, κ∗(α) = 0 by definition of κ∗(α) in (2.6). Part
(b)(iii) follows from parts (b)(i) and (b)(ii) and cg ≤ c∞ by Assumptions Quant2 and
K. We now prove part (b)(iv). By part (b)(i), it suffices to show that cg +κ(α) ≥ c∞
for all g ∈ H. By the definition of κ(α) in (2.6) and Assumptions Quant2 and K,
κ(α) = c∞− infh2∈H2 c(0,h2). Hence, cg +κ(α) = cg + c∞− infh2∈H2 c(0,h2) ≥ c∞, where
the inequality uses Assumption Quant2. This establishes part (b)(iv).
Part (c)(i) holds by Assumption Quant3(ii). Part (c)(ii) holds by definition of

κ(α) in (2.6) and Assumptions Quant3(ii) and Quant3(iii). Part (c)(iii) holds by
definition of κ∗(α) in (2.6) and Assumption Quant3(ii). Part (c)(iv) holds because
max{cg, c∞ + κ∗(α)} = max{cg, ch∗} = ch∗ = cv using parts (c)(i) and (c)(iii). Parts
(c)(v) and (c)(vi) hold because cv = ch∗ by part (c)(i) and cg + κ(α) = ch∗ + cg − c0
by part (c)(ii).

5 Critical Value Functions

In this section, we use graphs given in Figure B-1 to illustrate the asymptotic
critical value (cv) functions of the hybrid, FCV, and subsampling tests for the case
where γ = γ1 ∈ R+, (i.e., no subvectors γ2 or γ3 appear, p = 1, and H = R+,∞). The
argument of the cv functions is g ∈ H. For example, the asymptotic subsampling cv
function is cg(1− α) for g ∈ H. In Figure B-1, the curved line is the subsampling cv
function, the horizontal line is the FCV cv function, i.e., the constant c∞(1−α), and
the hybrid cv function is the maximum of the two.
In Figure B-1(a), the subsampling and hybrid cv functions are the same and the

corresponding tests have the desired asymptotic size α. (The latter holds because
c∞(1 − α) is ≤ the cv function at g for all g ∈ R+, c0(1 − α) is ≥ the cv function
at g for all g ∈ R+, and these two conditions are necessary and sufficient for a test
to have asymptotic size α assuming continuity of Jh(·) by Theorem 1 of AG1). On
the other hand, in Figure B-1(a), the FCV test has asymptotic size > α. In Figures
B-1(b) and B-1(d), the hybrid cv function equals the FCV cv function, both of these
tests have asymptotic size α, whereas the subsampling test has asymptotic size > α.
Figures B-1(a) and B-1(b) illustrate the results of Lemma 1(i) and 1(ii) of the paper,
respectively.
Figure B-1(c) illustrates a case where the hybrid test has asymptotic size α, but

both the FCV and subsampling tests have asymptotic size > α. In Figures B-1(a)-(d),
Assumption Quant holds, so the hybrid test has correct asymptotic size, as established
in Lemma 1 of the paper.
Figures B-1(e) and B-1(f) illustrate cases in which the function cg(1− α) is max-

imized at an interior point g ∈ (0,∞). In these cases, the hybrid, FCV, and sub-
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sampling tests all have asymptotic size > α. Figures B-1(e) and B-1(f) illustrate the
results of Lemma 1(ii) and 1(i) of the paper, respectively. In particular, in Figure
B-1(e), the over-rejection of the subsampling test for g close to zero is reduced for
the hybrid test because its cv function is larger.

6 Graphical Power Comparisons

Next, we use graphs given in Figure B-2 to illustrate the power comparison be-
tween SC-FCV, SC-Sub, and SC-Hyb tests. Theorem S1 shows that (a) if cg(1−α) ≥
ch(1−α) for all (g, h) ∈ GH, then the SC-Sub, SC-Hyb, Sub, and Hyb tests are equiv-
alent asymptotically and are more powerful than the SC-FCV test, see Figure B-2(a);
(b) if cg(1−α) ≤ ch(1−α) for all (g, h) ∈ GH, then the SC-FCV, SC-Hyb, FCV, and
Hyb tests are equivalent asymptotically and are more powerful than the SC-Sub test,
see Figure B-2(b); and (c) if H = H1 = R+,∞ and ch(1 − α) is uniquely maximized
at h∗ ∈ (0,∞), then the SC-FCV and SC-Hyb tests are asymptotically equivalent
and are either (i) more powerful than the SC-Sub test, see Figure B-2(e), or (ii) more
powerful than the SC-Sub test for some values of (g, h) ∈ GH but less powerful for
other values of (g, h) ∈ GH, see Figure B-2(f).
Figure B-2(c) illustrates the case where cg(1−α) is not monotone but is maximized

at g = 0, the Hyb and SC-Hyb cv functions are the same, the Hyb cv function is
lower than both the SC-Sub and SC-FCV cv functions, and so the Hyb test is more
powerful than the SC-Sub and SC-FCV tests. Figure B-2(d) illustrates the case where
cg(1− α) is not monotone but is maximized at g =∞, the Hyb, SC-Hyb, FCV, and
SC-FCV cv functions are the same, the Hyb cv function is lower than the SC-Sub cv
function, and so the Hyb test is more powerful than the SC-Sub test.

7 Equal-Tailed Size-Corrected Tests

This section introduces equal-tailed size-corrected FCV, subsampling, and hybrid
t tests. It also introduces finite-sample-adjusted asymptotics for equal-tailed tests.
We suppose that Tn(θ0) = τn(eθn − θ0)/eσn.
Let cFix(1−α/2) and cFix(α/2) denote the critical values of the equal-tailed FCV

test before size-correction. Equal-tailed (i) SC-FCV, (ii) SC-Sub, and (iii) SC-Hyb
tests are defined by (5.1) of the paper with the critical values c∗n,b(1 − α/2) and
c∗∗n,b(α/2) replaced by (i) cFix(1− α/2) + κET,Fix(α) and cFix(α/2)− κET,Fix(α), (ii)
cn,b(1 − α/2) + κET (α) and cn,b(α/2) − κET (α), and (iii) max{cn,b(1 − α/2), c∞(1 −
α/2) + κ∗ET (α)} and min{cn,b(α/2), c∞(α/2)− κ∗ET (α)}, respectively.
By definition, the SC factors κET,Fix(α) (∈ [0,∞)), κET (α) (∈ [0,∞)), and κ∗ET (α)

(∈ {−∞} ∪ [0,∞)), respectively, are the smallest values that satisfy

sup
h∈H
[1− Jh((cFix(1− α/2) + κET,Fix(α))−) + Jh(cFix(α/2)− κET,Fix(α))] ≤ α,
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sup
(g,h)∈GH

[1− Jh((cg(1− α/2) + κET (α))−) + Jh(cg(α/2)− κET (α))] ≤ α, and

sup
(g,h)∈GH

[1− Jh(max{cg(1− α/2), c∞(1− α/2) + κ∗ET (α)}−) +

Jh(min{cg(α/2), c∞(α/2)− κ∗ET (α)})] ≤ α. (7.1)

(If no such smallest value exists, we take some value that is arbitrarily close to the
infimum. If no value that satisfies (7.1) exists, then size-correction is not possible.)
For each test, the condition in (7.1) guarantees that the “overall” asymptotic

size of the test is less than or equal to α. It does not guarantee that the maximum
(asymptotic) rejection probability in each tail is less than or equal to α/2. If the
latter is desired, then one should size correct the lower and upper critical values of
the equal-tailed test in the same way as one-sided t tests are size corrected in the
paper. (This can yield the overall size of the test to be strictly less than α if the (g, h)
vector that maximizes the rejection probability is different for the lower and upper
critical values.)
Given SC factors that satisfy (7.1), the equal-tailed SC-FCV, SC-Sub, and SC-

Hyb t tests have AsySz(θ0) ≤ α under Assumptions A-E, G, and J by the proofs of
Corollary 2 of AG1 and Corollary 1 of the paper. (Only Assumptions A and B are
needed for the SC-FCV tests.) Under continuity conditions on Jh(x) at suitable (h, x)
such that the inequalities in (7.1) hold as equalities, these tests have AsySz(θ0) = α.
An alternative way of size-correcting equal-tailed tests is the following method.

This method has the advantage that if it is possible to produce an equal-tailed size-
corrected test, then the procedure does so. Its disadvantage is that it is somewhat
more complicated to implement.
First, let κET,Fix,1(α) ∈ [0,∞), κET,1(α) ∈ [0,∞), and κ∗ET,1(α) ∈ {−∞} ∪ [0,∞)

denote the smallest values such that

sup
h∈H
[1− Jh((cFix(1− α/2) + κET,Fix,1(α))−)] ≤ α/2,

sup
(g,h)∈GH

(1− Jh((cg(1− α/2) + κET,1(α))−)) ≤ α/2, and

sup
(g,h)∈GH

�
1− Jh

�
max{cg(1− α/2), c∞(1− α/2) + κ∗ET,1(α)}−

��
≤ α/2. (7.2)

Next, let κET,Fix,2(α) ∈ R, κET,2(α) ∈ R, and κ∗ET,2(α) ∈ {−∞} ∪ R denote the
smallest values such that

sup
h∈H

[1− Jh((cFix(1− α/2) + κET,Fix,1(α))−) + Jh(cFix(α/2)− κET,Fix,2(α))] ≤ α,

sup
(g,h)∈GH

[1− Jh((cg(1− α/2) + κET,1(α))−) + Jh(cg(α/2)− κET,2(α))] ≤ α, and

sup
(g,h)∈GH

[1− Jh(max{cg(1− α/2), c∞(1− α/2) + κ∗ET,1(α)}−) +

Jh(min{cg(α/2), c∞(α/2)− κ∗ET,2(α)})] ≤ α. (7.3)
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The “alternative” SC equal-tailed FCV test rejects H0 if Tn(θ0) > cFix(1 − α/2) +
κET,Fix,1(α) or Tn(θ0) < cFix(α/2) − κET,Fix,2(α). The “alternative” SC equal-tailed
Sub and Hyb tests are defined analogously. We use “alternative” SC equal-tailed tests
in the Parameter of Interest Near a Boundary Example in Andrews and Guggenberger
(2005). For all of the other examples, we use the SC equal-tailed tests defined in (7.1).
If a parameter γ2 appears in γ and γ2 is consistently estimable, then PSC tests

are more powerful asymptotically than SC tests (because they lead to smaller critical
values under some distributions but still have correct asymptotic size). Equal-tailed
(i) PSC-FCV, (ii) PSC-Sub, and (iii) PSC-Hyb tests are defined as the SC versions are
defined above, but with κET,Fix(α), κET (α), and κ∗ET (α) replaced by κET,Fix,eγn,2(α),
κET,eγn,2(α), and κ∗ET,eγn,2(α), respectively. Here, the PSC factors κET,Fix,h2(α) (∈
[0,∞)), κET,h2(α) (∈ [0,∞)), and κ∗ET,h2(α) (∈ {−∞}∪ [0,∞)) are defined to be the
smallest values that satisfy:

sup
h1∈H1

[1− J(h1,h2)((cFix(1− α/2) + κET,Fix,h2(α))−) +

J(h1,h2)(cFix(α/2)− κET,Fix,h2(α))] ≤ α,

sup
g1,h1∈H1:((g1,h2),(h1,h2))∈GH

[1− J(h1,h2)((c(g1,h2)(1− α/2) + κET,h2(α))−) +

J(h1,h2)(c(g1,h2)(α/2)− κET,h2(α))] ≤ α, and

sup
g1,h1∈H1:((g1,h2),(h1,h2))∈GH

[1− J(h1,h2)(max{c(g1,h2)(1− α/2), c∞(1− α/2) +

κ∗ET,h2(α)}−) + J(h1,h2)(min{c(g1,h2)(α/2), c∞(α/2)− κ∗ET,h2(α)})] ≤ α. (7.4)

The (i) PSC-FCV, (ii) PSC-Sub, and (iii) PSC-Hyb equal-tailed tests all have
AsySz(θ0) ≤ α under Assumptions N plus (i) A and B, (ii) A-E, G, and J, and
(iii) A-E, G, J, and K, respectively. (The proof is analogous to the proof of Theorem
3 of the paper combined with the proof of Theorem 2 of the paper.) These tests have
AsySz(θ0) = α provided the inequalities in (7.4) hold as equalities.
The finite-sample adjustments introduced in Section 4 of the paper do not cover

equal-tailed tests. For equal-tailed subsampling tests, we define the following finite-
sample adjustment to AsySz(θ0):

AsySzn(θ0) = sup
h∈H

[1− Jh(c(δrnh1,h2)(1− α/2)−) + Jh(c(δrnh1,h2)(α/2))]. (7.5)

Define Maxr−ET,Sub(α) as MaxET,Hyb(α) is defined in (5.2) of the paper with c
∗
g(1 −

α/2) and c∗∗g (α/2) replaced by cg(1 − α/2) and cg(α/2)−, respectively, where “ − ”
indicates the limit from the left. Define Max�−ET,Sub(α) analogously with c

∗
g(1− α/2)

and c∗∗g (α/2) replaced by cg(1− α/2)− and cg(α/2). With the function that appears
in Assumption P(i) altered to (g, h) → Jh(cg(1 − α/2)−) − Jh(cg(α/2)) and with
Maxr−ET,Sub(α) = Max

�−
ET,Sub(α) in place of Assumption P(ii), the result of Theorem

4(a) of the paper, viz., AsySzn(θ0)→ AsySz(θ0), holds for equal-tailed subsampling
tests. An analogous result holds for equal-tailed hybrid tests.
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Based on (7.5), we introduce finite-sample adjustments that can improve the
asymptotic approximations upon which the equal-tailed SC and PSC subsampling
and hybrid tests rely. Equal-tailed ASC and APSC subsampling and hybrid tests
are defined just as SC and PSC subsampling and hybrid tests are defined, but us-
ing κET (δn,α), κ

∗
ET (δn,α), κET,eγn,2(δn,α), and κ∗ET,eγn,2(δn,α) in place of κET (α) and

κ∗ET (α). The ASC factors κET (δ,α) (∈ [0,∞)) and κ∗ET (δ,α) (∈ {−∞} ∪ [0,∞)) are
defined to be the smallest values that satisfy:

sup
(h1,h2)∈H

[1− J(h1,h2)((c(δrh1,h2)(1− α/2) + κET (δ,α))−) +

J(h1,h2)(c(δrh1,h2)(α/2)− κET (δ,α))] ≤ α and

sup
(h1,h2)∈H

[1− J(h1,h2)(max{c(δrh1,h2)(1− α/2), c∞(1− α/2) + κ∗ET (δ,α)}−) +

J(h1,h2)(min{c(δrh1,h2)(α/2), c∞(α/2)− κ∗ET (δ,α)})] ≤ α. (7.6)

The APSC factors κET,h2(δ,α) (∈ [0,∞)) and κ∗ET,h2(δ,α) (∈ {−∞}∪ [0,∞)) are
defined to be the smallest values that satisfy:

sup
h1∈H1

[1− J(h1,h2)((c(δrh1,h2)(1− α/2) + κET,h2(δ,α))−) +

J(h1,h2)(c(δrh1,h2)(α/2)− κET,h2(δ,α))] ≤ α and

sup
h1∈H1

[1− J(h1,h2)(max{c(δrh1,h2)(1− α/2), c∞(1− α/2) + κ∗ET,h2(δ,α)}−) +

J(h1,h2)(min{c(δrh1,h2)(α/2), c∞(α/2)− κ∗ET,h2(δ,α)})] ≤ α. (7.7)

The ASC and APSC tests have AsySz(θ0) = α under conditions that are similar
to those given in Section 4 of the paper. For brevity, we do not give details.

8 Size-Corrected Combined Test

Theorem S1(c)(iv)-(vi) and Figure B-2(f) show that in some contexts the SC-
Hyb test can be more powerful than the SC-Sub test for some (g, h) ∈ GH and vice
versa for other (g, h) ∈ GH. This implies that a test that combines the SC-Hyb and
SC-Sub tests can be more powerful than both. In this Section, we introduce such
a test. It is called the size-corrected combined (SC-Com) test. This test has power
advantages over the SC-Hyb and SC-Sub tests in some cases. This is illustrated in
Figure B-2(f) where the critical value function of the SC-Com test is the minimum
of the upper horizontal SC-Hyb critical value function and the upper curved SC-
Sub critical value function. On the other hand, the SC-Com test has computational
disadvantages because it requires computation of the critical values for both the SC-
Sub and SC-Hyb tests, which requires calculation of κ(α) and κ∗(α) in cases where
both the subsampling and hybrid tests need size correction. Furthermore, in most

16



contexts, the SC-Hyb test is more powerful than the SC-Sub for all (g, h) ∈ GH, so
the SC-Com test just reduces to the SC-Hyb test.
The size-corrected combined (SC-Com) test rejects H0 : θ = θ0 when

Tn(θ0) > cn,Com(1− α), where (8.1)

cn,Com(1− α) = min{cn,b(1− α) + κ(α),max{cn,b(1− α), c∞(1− α) + κ∗(α)}},
where the constants κ(α) and κ∗(α) are defined in (3.2) of the paper.
The following result shows that the SC-Com test has AsySz(θ0) = α.

Theorem S2. Suppose Assumptions A-G and K-M hold. Then, the SC-Com test
satisfies AsySz(θ0) = α.

Comments. 1. By definition, the critical value, cn,Com(1− α), of the SC-Com test
is less than or equal to those of the SC-Sub and SC-Hyb tests. By (3.2) of the paper,
it is less than or equal to that of the SC-FCV test as well. Hence, the SC-Com test
is at least as powerful as the SC-Sub, SC-Hyb, and SC-FCV tests.
2. A PSC-Com test can be defined as in (8.1) with κ(α) and κ∗(α) replaced by

κeγn,2(α), and κ∗eγn,2(α).
3. An ASC-Com test can be defined as in (8.1) with κ(α) and κ∗(α) replaced by

κ(δn,α) and κ∗(δn,α), respectively. Suppose Assumptions A-G, K-M, and Q hold.
Then, the ASC-Com test satisfies AsySz(θ0) = α. This holds by the argument in the
proof of Theorem 4(b) of the paper (see above) using the results of Theorem 4(b)(i)
of the paper.
4. An APSC-Com test can be defined as in (8.1) with κ(α) and κ∗(α) replaced

by κeγ2,n(δn,α) and κ∗eγ2,n(δn,α), respectively. Suppose Assumptions A-G, K, L, N, O,
R, and Q hold. Then, the APSC-Com test satisfies AsySz(θ0) = α. This holds by
the argument in the proof of Theorem 4(c) of the paper (see above) using the results
of Theorem 4(c)(i) of the paper.

Proof of Theorem S2. By the same argument as in the proof of Theorem 1(ii) of
AG1, the SC-Com test satisfies

AsySz(θ0) (8.2)

≤ sup
(g,h)∈GH

[1− Jh(min{cg(1− α) + κ(α),max{cg(1− α), c∞(1− α) + κ∗(α)}}−)].

By the proof of Theorem 2 of the paper, the constants κ(α) and κ∗(α) defined in
(3.2) of the paper are such that (2.7) above holds and hence for all (g, h) ∈ GH,

1− Jh(cg(1− α) + κ(α)−) ≤ α and

1− Jh(max{cg(1− α), c∞(1− α) + κ∗(α)}−) ≤ α. (8.3)

Equations (8.2) and (8.3) combine to give AsySz(θ0) ≤ α.
The SC-Com test has AsySz(θ0) ≥ α because its AsySz(θ0) is greater than or

equal to that of the SC-Sub test (because its critical value is no larger) and the latter
equals α by Theorem 2 of the paper.
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9 Testing When a Nuisance Parameter
May Be Near a Boundary

This example is a continuation of an example in AG1. It is a testing problem
where a nuisance parameter may be near the boundary of the parameter space under
the null hypothesis. The observations are {Xi ∈ R2 : i ≤ n}, which are i.i.d. with
distribution F, Xi = (Xi1,Xi2)

�, EFXi = (θ,μ)�, and (Xi1,Xi2) have correlation ρ.
The null hypothesis is H0 : θ = 0, i.e., θ0 = 0. The parameter space for the nuisance
parameter μ is [0,∞). The test statistic Tn(θ0) equals T ∗n(θ0), −T ∗n(θ0), or |T ∗n(θ0)|,
where T ∗n(θ0) is a t statistic based on the Gaussian quasi-ML estimator of θ that
imposes the restriction that μ ∈ [0,∞) and uses any consistent estimators of the
standard deviations and correlation of Xi1 and Xi2 in the quasi-likelihood, see AG1
for details. In AG1, Assumptions A-G are verified.
Table B-I reports maximum (over h1 = limn→∞ n1/2μn,h/σn,h,2) null rejection prob-

abilities (as percentages) for several fixed values of h2 (= limn→∞ ρn,h) for hybrid and
several other nominal 5% tests.2 Depending on the column, the probabilities are as-
ymptotic or finite-sample. The finite-sample results are for the case of n = 120 and
b = 12 with eσn1, eσn2, and eρn being the sample standard deviations and correlation
of Xi1 and Xi2. To dramatically increase computational speed, here and in all of the
tables below, finite-sample subsampling and hybrid results are based on qn = 119
subsamples of consecutive observations.3 Hence, only a small fraction of the “120
choose 12” available subsamples are used. In cases where subsampling and hybrid
tests have correct asymptotic size, their finite-sample performance is expected to be
better when all available subsamples are used than when only qn = 119 are used.
This should be taken into account when assessing the results of the tables. Panels
(a), (b), and (c) of Table B-I give results for upper one-sided, symmetric two-sided,
and equal-tailed two-sided tests, respectively. The results for lower one-sided tests
are the same as for the upper tests with the sign of h2 changed (by symmetry) and,
hence, are not given. The rows labelled Max give the size (asymptotic or n = 120)
of the test considered. For brevity, we refer below to the numbers given in the tables

2The finite sample results in Table B-I are based on 20, 000 simulation repetitions. The asymp-
totic results are based on 50, 000 simulation repetitions. For the asymptotic results, the search over
h1 is done with stepsize 0.05 on [0, 10] and also includes the value h1 = 9, 999, 999, 999. For the
finite-sample results, the search over h1 is done with stepsize .001 on [0, 0.5], with stepsize 0.05 on
[0.5, 1.0], and with stepsize 1.0 on [1.0, 10]. Calculations indicate that these stepsizes are sufficiently
small to yield accuracy to within ±.1.

3This includes 10 “wrap-around” subsamples that contain observations at the end and beginning
of the sample, for example, observations indexed by (110, ..., 120, 1). The choice of qn = 119 sub-
samples is made because this reduces rounding errors when qn is small when computing the sample
quantiles of the subsample statistics. The values να that solve να/(qn + 1) = α for α = .025, .95,
and .975 are the integers 3, 114, and 117. In consequence, the .025, .95, and .975 sample quantiles
are given by the 3rd, 114th, and 117th largest subsample statistics. See Hall (1992, p. 307) for a
discussion of this choice in the context of the bootstrap.
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as though they are precise, but of course they are subject to simulation error.

9.1 FCV, Subsampling, and Hybrid Tests

Column 2 of Table B-I shows that subsampling tests have very large asymptotic
size distortions for upper one-sided and equal-tailed two-sided tests (nominal 5% tests
have asymptotic levels 50.2 and 52.7%, respectively), and moderate size distortions
for symmetric two-sided tests (the nominal 5% test has asymptotic level 10.1%).
Also, column 7 of Table B-I shows that the FCV tests have very small asymptotic
size distortions for upper one-sided tests (the nominal 5% test has asymptotic level
5.8%), and no size distortions for symmetric and equal-tailed two-sided tests.
Column 10 of Table B-I shows that the nominal 5% hybrid test has asymptotic

size of 5% for upper, symmetric, and equal-tailed tests. So, the hybrid test has correct
asymptotic size for all three types of tests in this example.
Finite-sample results for the Sub, FCV, and Hyb tests are given in columns 4, 8,

and 12 of Table B-I, respectively. For Hyb tests, the asymptotic approximations are
fairly accurate, but tend to over-estimate the finite-sample rejection rates somewhat
for some values of h2 with finite-sample values varying between 3.4 and 5.2% compared
to the asymptotic values of 5.0%. For FCV tests, the asymptotic approximations are
found to be very accurate for upper tests and quite accurate for symmetric and equal-
tailed tests.
The asymptotic approximations for the Sub test are found to be quite good for

h2 values where the (maximum) asymptotic probabilities equal 5.0%. But, for h2
values where they exceed 5.0%, they tend to over-estimate the finite-sample values–
sometimes significantly so, e.g., 33.8 versus 25.6% for h2 = −.95 with upper Sub tests.
Nevertheless, in the worst case scenarios (i.e., for h2 values of 1.0 or −1.0, which yield
the greatest asymptotic rejection probabilities), the asymptotic approximations are
quite good. Hence, the asymptotic sizes and finite-sample sizes are close–50.2 versus
49.8%, 10.1 versus 8.4%, and 52.7 versus 52.7% for upper, symmetric, and equal-tailed
tests, respectively.
The results in Table B-I for the columns headed Adj-Asy, PSC-Sub, APSC-Sub,

... are discussed below.

9.2 Plug-in Tests

The upper, symmetric, and equal-tailed subsampling tests and the upper FCV
test need size-correction in this example. Plug-in size correction is possible because
estimation of the correlation parameter ρ is straightforward using the usual sam-
ple correlation estimator. Columns 5 and 9 of Table B-I provide the finite-sample
(maximum) rejection probabilities of the nominal 5% PSC-Sub and PSC-FCV tests.
Results for the symmetric and equal-tailed PSC-FCV tests are not given because the
PSC-FCV and FCV tests are the same in these cases since the FCV test has correct
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asymptotic size. Results for the PSC-Hyb test are not given because it is the same
as the Hyb test.
The results for the PSC-Sub tests are impressive. The finite-sample sizes of the

upper, symmetric, and equal-tailed tests are 5.3, 5.1, and 5.5%, respectively, whereas
the finite-sample sizes of the Sub tests are 49.8, 8.4, and 52.7%. The plug-in feature of
the size-correction method yields (maximum) rejection probabilities across different
h2 values that are all reasonably close to 5.0%–ranging from 3.1 to 5.5%, with most
being between 4.5 and 5.5%. Having these values all close to 5% is desirable from a
power perspective.
The upper FCV test only requires minor size-correction given that its asymptotic

and finite-sample size is 5.8%. The PSC-FCV test provides improvement. Its finite-
sample size is 5.2%.

9.3 Finite-Sample Adjusted Tests

Column 3 of Table B-I gives the finite-sample adjusted asymptotic rejection prob-
abilities (×100) of the subsampling test. These values are noticeably closer to the
finite-sample values given in column 4 than are the (unadjusted) asymptotic rejec-
tion probabilities given in column 2. For example, for the upper subsampling test
and h2 = −.95, the values for Adj-Asy, n = 120, and Asy are 22.9, 25.6, and 33.8%,
respectively. Hence, the adjustment works pretty well for the subsampling test here.
For the hybrid test, the adjusted asymptotic and unadjusted asymptotic rejection
rates are all 5.0%. So, the adjustment makes no difference for the hybrid test in this
example.
Column 6 of Table B-I reports the finite-sample rejection probabilities of the

APSC-Sub test. For upper and equal-tailed tests, the adjustment leads to over-
correction of the Sub test when the finite-sample correlation, denoted here by h2,
is close to −1 and 1, respectively, and appropriate size-correction for other values
of h2. In consequence, for these cases the PSC-Sub test (see column 5) has better
finite-sample size (viz., 5.3 and 5.5%) than the APSC-Sub test (13.5 and 13.5%). For
symmetric tests, both of these size-corrected tests perform well.
In conclusion, in this example, the hybrid and PSC-Sub tests perform quite well in

terms of finite-sample size for upper, symmetric, and equal-tailed tests. The APSC-
Sub test performs well for symmetric test, but not so well for upper and equal-tailed
tests.
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10 Autoregression Example

This section provides results for the conditionally heteroskedastic autoregression
example.

10.1 Upper and Lower One-sided CIs

First, we discuss Table B-II, which is analogous to Table II of the paper but
provides results for upper and lower one-sided CIs rather than symmetric and equal-
tailed two-sided CIs. (See the footnote to Table II of the paper and Section 1 above
for details concerning the construction of Table II, which also apply to Table B-II.)
Due to the asymmetry of the asymptotic distribution J∗h of the test statistic T

∗
n(θ0),

the results for upper and lower one-sided CIs are quite different. Table B-II shows
that upper one-sided FCV CIs have correct asymptotic size (up to simulation error).
The same is true of upper one-sided hybrid CIs. Upper one-sided subsampling CIs,
however, exhibit substantial asymptotic size distortion. The Adj-Asy size distortion
of the subsampling CIs is noticeably smaller than the asymptotic size distortion and
the former gives a better approximation to the finite-sample size distortion for sample
size n = 131. The reason for the results just described for the upper one-sided FCV,
hybrid, and subsampling CIs is that the upper tail of the asymptotic distribution J∗h
gets thinner as h1 goes to zero. In consequence, the 1−α quantile of J∗h is increasing
in h1, which leads to size distortion for the subsampling CI but not the FCV CI.
For lower one-sided CIs, the opposite is true. The lower tail of J∗h gets thicker

as h1 goes to zero. In consequence, the lower one-sided FCV exhibits substantial
asymptotic size distortion, whereas the subsampling and hybrid CIs have correct
asymptotic size.

10.2 Verification of Assumptions for CI
for an Autoregressive Parameter

In this section, we verify the assumptions of Corollary 2 of the paper, viz., As-
sumptions A-G, J, K-M, T, and TET, for the AR(1) Example. We use Lemma 4
of AG1 to verify Assumption G. Lemma 4 of AG1 requires verification of Assump-
tions t1, Sub1, A, BB, C, DD, EE, and HH. Note that the latter assumptions imply
Assumptions B and D. Corollary 2 of the paper establishes the desired results for
the hybrid test. For the FCV and subsampling tests, the desired results hold under
the same conditions by Corollary 1 in Appendix A2 of Andrews and Guggenberger
(2009b).
Assumptions BB(a) and (c) are verified by Proposition S1 stated below that is

proved in Andrews and Guggenberger (2008), hereafter AG-AR. Assumptions t1,
Sub1, A, C, DD, F, J, T, M, TET, K, L, and BB(b) are verified in the next sub-
section. Verifications of Assumptions E and EE are given in Sections 10.2.4 and
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10.2.5 below for model 1. For brevity, we do not verify these assumptions for model
2. Finally, Assumption HH is verified in Section 10.2.6.

10.2.1 Verification of Assumptions t1, Sub1, A, C, DD, F,
J, T, M, TET, K, L, and BB(b)

Assumption t1 holds with τn = n
1/2 by definition of T ∗n(θ0). Assumptions Sub1

and A clearly hold. Assumption C holds by the choice of bn. Assumption DD holds
when the AR parameter is less than one by the assumption of a strictly stationary
initial condition. In the unit root case, it holds by the i.i.d. assumption on the
innovations for i = 1, ..., n and the fact that the test statistic T ∗n(θ0) is invariant to
the initial condition. Assumption F holds because J∗h and −J∗h are strictly increasing
on R for all h ∈ H and |J∗h| is strictly increasing on R+ and has support R+ for all
h ∈ H. For the same reason, Assumption J holds for Jh = J∗h. Assumption T holds
for Jh = J∗h and Jh = −J∗h because J∗h is continuous on R and has support R for all
h ∈ H. Assumption T holds for Jh = |J∗h| because |J∗h| is continuous on R+ and has
support R+ for all h ∈ H. For the same reasons, Assumptions M(a)(ii), M(b)(ii), and
M(c)(ii) hold for Jh = J∗h,−J∗h, and |J∗h| and Assumption TET holds.
Assumption K holds because J∗h is N(0, 1) for all h = (h1, h2) ∈ H with h1 =∞.
Assumption L holds by properties of the Ornstein-Uhlenbeck process. Numerical

calculations indicate that the supremum and infimum in this assumption are attained
at h1 = 0 or h1 = ∞ (depending upon whether the supremum or infimum is being
considered and whether Jh = J∗h, −J∗h, or |J∗h|). This indicates that Assumption
M(a)(i) holds. Numerical calculations also indicate that the supremum in Assumption
M(b)(i) is attained at h1 = (0,∞) or (0, 0) for all h2 ∈ H2 depending upon whether
Jh = J

∗
h, −J∗h, or |J∗h| and hence this assumption holds. Assumption M(c)(i) holds

because ch(1 − α) is monotone in h1 for each h2 ∈ H2 = Γ2 (based on numerical
calculations), which implies that either H∗ is empty or H∗ = {h ∈ H : h1 > 0}
depending on whether Jh = J∗h,−J∗h, or |J∗h|.WhenH∗ is non-empty, suph∈H∗ ch(1−α)
is attained at h1 =∞.
Assumption BB(b) holds because Pγ(eσn,bn,j > 0) = 1 for all n, bn ≥ 4, j = 1, ..., qn,

and γ ∈ Γ.

10.2.2 Normalization Constants

In this sub-section, we specify the normalization constants an and dn for which
an(eρn − ρn) and dneσn have non-degenerate asymptotic distributions under {γn,h :
n ≥ 1}. These constants appear in Assumptions BB, EE, and HH. The constants are
rather complicated when the innovations exhibit conditional heteroskedasticity. So,
we show below how they simplify under conditional homoskedasticity, which should
make them easier to interpret.
The normalization constants an and dn depend on γn,h and are denoted an(γn,h)

and dn(γn,h). They are defined as follows. Let {wn : n ≥ 1} be any subsequence of
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{n}. Let {γn = (γn,1, γn,2, γn,3) ∈ Γ : n ≥ 1} be a sequence for which wnγn,1 →∞ or
wnγn,1 → h1 <∞. Let ρn = 1− γn,1. Define the 2-vectors

X1 = (Y ∗n,0/φn,1,φ
−1
n,1)

� and

Z = (1,−EFn(Y ∗n,0/φ2n,1)/EFn(φ−2n,1))�. (10.1)

Define

awn(γn) = w1/2n dwn(γn) and

dwn(γn) =

+
EFn(Y

∗2
n,0/φ

2
n,1)−(EFn(Y ∗n,0/φ2n,1))2/EFn(φ−2n,1)

(Z�EFn(X1X1�U2n,1/φ
2
n,1)Z)

1/2 if wnγn,1 →∞
w
1/2
n if wnγn,1 → h1 <∞.

(10.2)

To simplify notation in this paragraph, we delete the subscript n in most ex-
pressions below and we omit the subscript Fn on expectations. In the case where
wnγn,1 →∞ and ρ→ 1, the constants awn and dwn in (10.2) simplify to

awn = w
1/2
n

E(Y ∗20 /φ
2
1)

(E(Y ∗20 U
2
1/φ

4
1))

1/2
and dwn =

E(Y ∗20 /φ
2
1)

(E(Y ∗20 U
2
1/φ

4
1))

1/2
(10.3)

up to lower order terms. This holds because by Lemma S1 below

Z �E(X1X1�U21/φ
2
1)Z = E(Y

∗2
0 U

2
1/φ

4
1)− 2E(Y ∗0 U21/φ41)E(Y ∗0 /φ21)/E(φ−21 )

+(E(Y ∗0 /φ
2
1))

2E(U21/φ
4
1)/(E(φ

−2
1 ))

2

= E(Y ∗20 U
2
1/φ

4
1)(1 +O(1− ρ)) (10.4)

and

E(Y ∗20 /φ
2
1)− (E(Y ∗0 /φ21))2/E(φ−21 ) = E(Y ∗20 /φ21)(1 +O(1− ρ)). (10.5)

If, in addition, {Ui : i = ..., 0, 1, ...} are i.i.d. with mean 0, variance σ2U ∈ (0,∞), and
distribution F and φi = 1, then the constants awn and dwn simplify to

awn = w
1/2
n (1− ρ2n)

−1/2 and dwn = (1− ρ2n)
−1/2. (10.6)

This follows because in the present case φ2i = 1, EY ∗20 =
S∞

j=0 ρ
2jEU2−j = (1 −

ρ2)−1σ2U , and E(Y
∗2
0 U

2
1/φ

2
1) = (1− ρ2)−1σ4U .

Given the definitions of an(·) and dn(·), τn = an(γn,h)/dn(γn,h) = n1/2 does not
depend on γn,h, as is required.

10.2.3 Preliminary Results from AG-AR

In this sub-section, we state the result proved in AG-AR that verifies Assumption
B of the paper and Assumption BB(a) of AG1. We also state some other results
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proved in AG-AR because they are used below when verifying Assumptions E, EE,
and HH.
We start by stating an assumption, Assumption INNOV, that specifies certain

properties for the innovations Ui = Un,i and φ2i = φ2n,i. Assumption INNOV auto-
matically holds when one is considering any sequence {γn,h : n ≥ 1}. This follows
from the definition of the parameter space F(γ2) and the definition of a sequence
{γn,h : n ≥ 1}. Hence, when showing below that a property holds under a sequence
{γn,h : n ≥ 1}, it is sufficient to show that it holds under Assumption INNOV.

Assumption INNOV. (i) For each n ≥ 1, {(Un,i,φ2n,i) : i = ..., 0, 1, ...} are station-
ary and strong mixing with E(Un,i|Gn,i−1) = 0 a.s., E(U2n,i|Gn,i−1) = σ2n,i a.s. where
Gn,i is some non-decreasing sequence of σ-fields for i = ..., 1, 2, ... for n ≥ 1 for which
(Un,j,φ

2
n,j+1) ∈ Gn,i for all j ≤ i, (ii) the strong-mixing numbers {αn(m) : m ≥ 1}

satisfy α(m) = supn≥1 αn(m) = O(m−3ζ/(ζ−3)) as m → ∞ for some ζ > 3, (iv)
supn,i,s,t,u,v,AEFn|

T
a∈A a|ζ <∞, where 0 ≤ i, s, t, u, v <∞, n ≥ 1, and A is any non-

empty subset of {Un,i−s, Un,i−t, U2n,i+1, Un,−u, Un,−v, U2n,1}, (v) φ2i ≥ δ > 0 a.s., (vi)
λminE(X

1X1�U2n,1/φ
2
n,1) ≥ δ > 0, where X1 = (Y ∗n,0/φn,1,φ

−1
n,1)

�, and (vii) the follow-
ing limits exist and are positive: h2,1 = limn→∞EU2n,i, h2,2 = limn→∞E(U2n,i/φ

4
n,i),

h2,3 = limn→∞E(U2n,i/φ
2
n,i), h2,4 = limn→∞Eφ−1n,i, h2,5 = limn→∞Eφ−2n,i, and h2,6 =

limn→∞Eφ−4n,i.

Given that φn,i is bounded away from zero by Assumption INNOV(v), Assumption
INNOV(iv) implies that supn,i,s,t,u,v,A∗ EFn |

T
a∈A∗ a|ζ < ∞, where 0 ≤ i, s, t, u, v <

∞, n ≥ 1, and A∗ is a non-empty subset of {Un,i−s, Un,i−t, U2n,i+1/φ4n,i+1, Un,−u, Un,−v,
U2n,1/φ

4
n,1} or a subset of {Un,i−s, Un,i−t,φ−kn,i+1, Un,−u, Un,−v,φ−kn,1} for k = 2, 3, 4. The

uniform bound on these expectations is needed in the application of the mixing in-
equality in (10.15) used below in the verification of Assumption E.
Define hn,1 by γn,h,1 = hn,1/n. Then, hn,1 → h1 as n→∞ because nγn,h,1 → h1. In

this example, hn,1 = 0 corresponds to a unit root, i.e., ρn = 1−γn,h,1 = 1−hn,1/n = 1.
If hn,1 = 0, then the initial condition Y ∗n,0 is arbitrary. If hn,1 > 0, then under
the assumptions in the paper the initial condition satisfies the following stationarity
condition:

Assumption STAT. Y ∗n,0 =
S∞

j=0 ρ
j
nUn,−j, where ρn = 1− hn,1/n.

Let W (·) and W2(·) be independent standard Brownian motions on [0, 1] and let
Z1 be a standard normal random variable that is independent of W (·) and W2(·). By
definition,

Ih(r) =
rU
0

exp(−(r − s)h1)dW (s),

I∗h(r) = Ih(r) +
1√
2h1

exp(−h1r)Z1 for h1 > 0 and I∗h(r) =W (r) for h1 = 0,
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I∗D,h(r) = I
∗
h(r) −

1U
0

I∗h(s)ds, and

Z2 =

�
1U
0

I∗D,h(r)
2dr

�−1/2 1U
0

I∗D,h(r)dW2(r). (10.7)

Note that Z2 has a N(0, 1) distribution conditional on (Z1,W (·)). Hence, Z2 has an
unconditional N(0, 1) distribution and is independent of (Z1,W (·)).
AG-AR prove the following Proposition.

Proposition S1. Suppose (i) Assumption INNOV holds, (ii) Assumption STAT
holds when ρn < 1, (iii) ρn ∈ [−1+ ε, 1] for some 0 < ε < 2, and (iv) ρn = 1−hn,1/n
and hn,1 → h1 ∈ [0,∞]. Then,

an(eρn − ρn)→d Vh, dneσn →d Qh, and
an(eρn − ρn)

dneσn →d Jh,

where an, dn, Vh, Qh, and Jh are defined as follows.
(a) In model 1, for h1 ∈ [0,∞), an = n, dn = n1/2, Vh is the distribution of

h2,7

U 1
0
I∗D,h(r)dW (r)

h
1/2
2,2 h

1/2
2,1

U 1
0
I∗D,h(r)2dr

+ (1− h22,7)1/2
U 1
0
I∗D,h(r)dW2(r)

h
1/2
2,2 h

1/2
2,1

U 1
0
I∗D,h(r)2dr

, (10.8)

Qh is the distribution of

h
−1/2
2,2 h

−1/2
2,1

�
1U
0

I∗D,h(r)
2dr

�−1/2
, (10.9)

and Jh is the distribution of

h2,7

U 1
0
I∗D,h(r)dW (r)�U 1
0
I∗D,h(r)2dr

�1/2 + (1− h22,7)1/2Z2. (10.10)

(b) In model 1, for h1 = ∞, an and dn are defined as in (10.2) with n in place of
wn, Vh is a N(0, 1) distribution, Qh is the distribution of the constant one, and Jh is
a N(0, 1) distribution.

In the remainder of this sub-section, we state several other results that are proved
in AG-AR and are used below when verifying Assumptions E, EE, and HH. In the
proof of Proposition S1 for the case n(1−ρ)→∞, AG-AR show the following results.
If ρ→ 1,

n−1/2X �
1PX2U

(E(Y ∗20 U
2
1/φ

4
1))

1/2
→p 0 and

n[
i=1

ζ i →d N(0, 1), where

ζ i = n
−1/2 Y ∗i−1Ui/φ

2
i

(E(Y ∗20 U
2
1/φ

4
1))

1/2
. (10.11)
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Furthermore,

n−1X �
1X1

E(Y ∗20 /φ
2
1)
→p 1,

n−1X �
1PX2X1

E(Y ∗20 /φ
2
1)
→p 0,

n−1X �
1MX2∆

2MX2X1

E(Y ∗20 U
2
1/φ

4
1)

→p 1. (10.12)

If ρ→ ρ∗ < 1, we have

n−1X �
1MX2X1

E(Y ∗20 /φ
2
1)− (E(Y ∗0 /φ21))2/E(φ−21 )

→p 1. (10.13)

AG-AR prove the following Lemma which is helpful in determining the order of
the normalization sequences an(γn,h) and dn(γn,h) in the case where h =∞.

Lemma S1. Suppose n(1− ρ) → ∞, ρ → 1, and Assumptions INNOV and STAT
hold, then we have

E(Y ∗20 U
2
1/φ

4
1)− (1− ρ2)−1(EU21 )

2/φ41 = O(1),

E(Y ∗20 /φ
2
1)− (1− ρ2)−1EU21Eφ

−2
1 = O(1),

E(Y ∗0 /φ
2
1) = O(1), and

E(Y ∗0 U
2
1/φ

4
1) = O(1).

A more detailed version of the following Lemma is proven in AG-AR as well.

Lemma S2 Suppose Assumptions INNOV and STAT hold, ρn ∈ (−1, 1], ρn = 1 −
hn,1/n where hn,1 → h1 ∈ (0,∞). Then, the following results (a)-(c) hold jointly,
(a) n−1

Sn
i=1 φ

−j
n,i →p limn→∞EFnφ

−j
n,i = h2,(j+3) for j = 1, 2, 4,

(b) n−1
Sn

i=1 U
2
n,i/φ

4
n,i →p limn→∞EFn(U

2
n,i/φ

4
n,i) = h2,2, and

(c) n−3/2
Sn

i=1 Y
∗
n,i−1/φ

2
n,i = Op(1) and n

−3/2Sn
i=1 Y

∗
n,i−1U

2
n,i/φ

4
n,i = Op(1).

When ρn = 1− hn,1/n, where hn,1 → h1 <∞, it is shown in AG-AR that

n−2
n[
i=1

Y ∗2i−1 eU2i /φ4i = n−2 n[
i=1

Y ∗2i−1U
2
i /φ

4
i + op(1),

n−3/2
n[
i=1

Y ∗i−1 eU2i /φ4i = n−3/2 n[
i=1

Y ∗i−1U
2
i /φ

4
i + op(1), and

n−1
n[
i=1

eU2i /φ4i = n−1 n[
i=1

U2i /φ
4
i + op(1), (10.14)

where eUi/φi is the i-th residual from the LS regression of Yi/φi on Yi−1/φi and 1/φi.
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10.2.4 Verification of Assumption E

In this section, we verify Assumption E for model 1. We make repeated use of the
following well-known strong-mixing covariance inequality, see e.g. Doukhan (1994,
Thm. 3, p. 9). Let X and Y be strong-mixing random variables with respect to
sigma algebras F ji (for integers i ≤ j) such that X ∈ Fn−∞ and Y ∈ F∞n+k with
strong-mixing numbers {α(k) : k ≥ 1}. For p, q > 0 such that 1− p−1 − q−1 > 0, let
||X||p = (E|X|p)1/p and ||Y ||q = (E|Y |q)1/q. Then, the following inequality holds

Cov(X,Y ) ≤ 8||X||p||Y ||qα(k)1−p
−1−q−1 . (10.15)

Below we apply the mixing inequality (10.15) with p = q = ζ > 3, where ζ ap-
pears in Assumption INNOV. Assumption INNOV(iv) will imply that the expression
||X||p||Y ||q on the rhs of the inequality is O(1).
For verification of Assumption E, as argued in the next paragraph, it is enough

to show that for all x ∈ R, Un,bn(x) − EγnUn,bn(x) →p 0 under {γn : n ≥ 1} for
all sequences {γn = (1 − ρn, γ

�
n,2, γ

�
n,3)

� ∈ Γ : n ≥ 1} that satisfy n(1 − ρn) → h1,
b(1 − ρn) → g1, and γn,2 → h2 ∈ Γ2 for (g, h) ∈ GH, where g = (g1, h2) and
h = (h1, h2).
To show Un,bn(x)− EγnUn,bn(x)→p 0 under an arbitrary sequence {γn ∈ Γ : n ≥

1} it is enough to show that for any subsequence {tn} there is a sub-subsequence
{sn} such that Usn,bsn (x) − Eγsn

Usn,bsn (x) →p 0 under {γsn ∈ Γ : n ≥ 1}. Given
any subsequence {tn} we can always construct a sub-subsequence {sn} such that
sn(1− ρsn) → h1, bsn(1− ρsn) → g1, and γsn,2 → h2 for (g, h) ∈ GH. Proceeding as
in the proof of Lemma 6(iii) in AG1, we can define a sequence {γ∗n : n ≥ 1} such
that n(1 − ρ∗n) → h1, b(1 − ρ∗n) → g1, γ

∗
n,2 → h2, and γ∗sn = γsn . It follows that

Un,bn(x) − EγnUn,bn(x) →p 0 holds under {γ∗n : n ≥ 1} and therefore Usn,bsn (x) −
Eγsn

Usn,bsn (x)→p 0 holds under {γsn ∈ Γ : n ≥ 1}.
For notational simplicity, in the rest of this section we let ρ denote ρn.
It is sufficient to show that for any given x ∈ R, var(Un,bn(x)) → 0 under all

sequences {γn ∈ Γ : n ≥ 1} that satisfy the conditions in the second paragraph of this
subsection. Recall that Tn,b,k(ρ) denotes the studentized t statistic based on the k−th
subsample and the full-sample version is defined as T ∗n(θn) = n

1/2(eρ − ρn)/eσ, whereeρ = (X �
1MX2X1)

−1X �
1MX2Y, and eσ2 = (n−1X �

1MX2X1)
−2
(n−1X �

1MX2∆
2MX2X1).

4

We write Tn,k instead of Tn,b,k(ρ) to simplify notation. Define

Ib,k = 1{Tn,k ≤ x}. (10.16)

Stationarity of Ib,k in k implies that

var(Un,bn(x)) = q
−1
n var(Ib,0) + 2q

−2
n

qn−1S
k=1

(qn − k)Cov(Ib,0, Ib,k). (10.17)

4Here we deal with the upper one-sided case, so that Tn,b,k(ρ) = T ∗n,b,k(ρ). The lower one-sided
and symmetric two-sided cases can be dealt with using the same approach.

27



In this example, qn = n− b+1. Thus, it suffices to show n−1
Sn

k=0 |Cov(Ib,0, Ib,k)|
→ 0. This is implied by

sup
k≥kn

|Cov(Ib,0, Ib,k)|→ 0 (10.18)

as n→∞ for some sequence kn →∞ such that kn/n→ 0.
By definition Tn,k = b1/2(eρn,b,k − ρ)/eσn,b,k. Below we show that for all k ≥ kn we

can write
Tn,k = hTn,k + ηn,k, (10.19)

for some random variables hTn,k and ηn,k that are defined such that (i) hTn,k and Tn,0
are based on innovations, Ui, that are separated by at least b time periods and (ii)
ηn,k = op(1) uniformly in k ≥ kn (by which we mean that ∀ε > 0, supk≥kn Pr(|ηn,k| >
ε)→ 0). (Likewise, for an array an,k of real numbers, we say that an,k is o(1) uniformly
in k ≥ kn, if supk≥kn |an,k| → 0 as n → ∞.) Note that the largest index of any Ui
appearing in Tn,0 is i = b.
Using (10.19), we show below that

sup
k≥kn

|P (hTn,k ≤ x)− P (Tn,k ≤ x)| → 0 and

sup
k≥kn

|P (Tn,0 ≤ x & Tn,k ≤ x)− P (Tn,0 ≤ x & hTn,k ≤ x)| → 0. (10.20)

Using these results, we obtain

Cov(Ib,0, Ib,k) = EIb,0Ib,k −EIb,0EIb,k
= P (Tn,0 ≤ x & Tn,k ≤ x)− P (Tn,0 ≤ x)P (Tn,k ≤ x)
= P (Tn,0 ≤ x & hTn,k ≤ x)− P (Tn,0 ≤ x)P (hTn,k ≤ x) + o(1)
≤ α(b) + o(1)

= o(1), (10.21)

where the third equality holds by (10.20), the fourth equality holds by the definition
of the α-mixing numbers {αn(m) : m = 1, 2, ...} of {Un,i : i = ..., 0, 1, ...}, where
α(m) = supn≥1 αn(m), and the fact that hTn,k and Tn,0 are separated by at least b time
periods, the last equality holds by the strong-mixing assumption in the definition of
F(γ2), and the o(1) expression is uniform in k ≥ kn by (10.20). Therefore (10.18)
holds and the proof is complete except for the verifications of (10.19) and (10.20).
Equation (10.20) is established as follows. Equation (10.19) and P (Tn,k ≤ x) →

Jh(x) as n→∞ where Jh is continuous (see Proposition S1) imply that for all ε > 0
there exist δ > 0 and n0 ∈ N such that for n ≥ n0 we have

sup
k≥kn

P (|hTn,k − Tn,k| > δ) < ε/2,

P (Tn,k ≤ x+ δ) ≤ P (Tn,k ≤ x) + ε/2, and

P (Tn,k ≤ x) ≤ P (Tn,k ≤ x− δ) + ε/2. (10.22)
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The latter two inequalities hold for all k because Tn,k is identically distributed across
k. These results lead to

sup
k≥kn

|P (hTn,k ≤ x)− P (Tn,k ≤ x)|
= sup

k≥kn
max{P (hTn,k ≤ x)− P (Tn,k ≤ x),−P (hTn,k ≤ x) + P (Tn,k ≤ x)}

≤ sup
k≥kn

max{P (hTn,k ≤ x)− P (Tn,k ≤ x+ δ),

−P (hTn,k ≤ x) + P (Tn,k ≤ x− δ)}+ ε/2

≤ sup
k≥kn

P (|hTn,k − Tn,k| > δ) + ε/2

≤ ε, (10.23)

which proves the first result in (10.20). The second result in (10.20) can be proved
in the same way. For example, the analogue of the third equation in (10.22) holds
because

P (Tn,0 ≤ x & Tn,k ≤ x)− P (Tn,0 ≤ x & Tn,k ≤ x− δ)

≤ P (x− δ < Tn,k ≤ x) = P (x− δ < Tn,0 ≤ x) < ε/2 (10.24)

for all k, for δ > 0 small enough. This completes the proof of (10.20).
It remains to establish (10.19). We consider several cases. (i) b(1− ρ)→∞ with

two subcases ρ → 1 and ρ → ρ∗ < 1, (ii) b(1− ρ) → h1 ∈ (0,∞), (iii) b(1− ρ) → 0
& n(1− ρ)→∞, and (iv) n(1− ρ)→ h1 ∈ [0,∞).

Proof of (10.19) for case (i): b(1− ρ)→∞.
By Proposition S1, we know that for

db =
EFn(Y

∗2
0 /φ

2
1)− (EFn(Y ∗0 /φ21))2/EFn(φ−21 )

(Z �EFn(X1X1�U21/φ
2
1)Z)

1/2
=
db1

d
1/2
b2

and ab = b1/2db, (10.25)

we have dbeσn,b,k →p 1. Also, by (10.12) and (10.13) we have d−1b1 b
−1X �

1MX2X1 →p 1,
where here (with abuse of notation) X1 and X2 denote b-vectors containing data from
the k-th subsample. This implies that uniformly in k

Tn,k = b
−1/2d−1/2b2

b[
i=1

Y ∗k+i−1Uk+i/φ
2
k+i (10.26)

−
#
b−1d−1/2b2

b[
j=1

Y ∗k+j−1/φ
2
k+j

$#
b−1

b[
j=1

φ−2k+j

$−1
b−1/2

b[
i=1

Uk+i/φ
2
k+i + op(1).

Consider first the subcase where ρ→ 1. In that case, (10.11) implies further that
uniformly in k

Tn,k = b
−1/2d−1/2b2

b[
i=1

Y ∗k+i−1Uk+i/φ
2
k+i + op(1). (10.27)
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Note that
b[
i=1

Y ∗k+i−1Uk+i/φ
2
k+i =

b[
i=1

∞[
s=0

ρsUk+i−1−sUk+i/φ2k+i. (10.28)

Set hTn,k = b−1/2d−1/2b2

b[
i=1

k+i−2b−2[
s=0

ρsUk+i−1−sUk+i/φ2k+i (10.29)

and note that the smallest index of any Ui appearing in hTn,k is i = 2b − 1. We are
just left with showing that

Tn,k− hTn,k = b−1/2d−1/2b2

b[
i=1

∞[
s=k+i−2b−1

ρsUk+i−1−sUk+i/φ2k+i+op(1) = op(1). (10.30)

To show (10.30), note that by Markov’s inequality, we have

P (|b−1/2d−1/2b2

b[
i=1

∞[
s=k+i−2b−1

ρsUk+i−1−sUk+i/φ2k+i| > ε)

≤ ε−2b−1d−1b2

b[
i,j=1

∞[
s=k+i−2b−1
t=k+j−2b−1

ρs+tEUk+i−1−s(Uk+i/φ2k+i)Uk+j−1−tUk+j/φ
2
k+j

= O(b−1(1− ρ))
b[
i=1

∞[
s,t=k+i−2b−1

ρs+tEUk+i−1−sUk+i−1−tU2k+i/φ
4
k+i, (10.31)

where the equality holds by Lemma S1 and the fact that E(Uk+i−1−s (Uk+i/φ2k+i)
×Uk+j−1−tUk+j/φ2k+j) = 0 for i 9= j. The contribution of all terms with s = t is of
order o(1) because

∞[
s=k+i−2b−1

ρ2s =
∞[
s=0

ρ2(s+k+i−2b−1) ≤ ρi
∞[
s=0

ρs = ρi(1− ρ)−1 (10.32)

and b−1
Sb

i=1 ρ
i = op(1) since b(1− ρ)→∞. For the contributions with s > t, using

(10.15) and Assumption INNOV(iv), the rhs of (10.31) equals

O(b−1(1− ρ))
b[
i=1

∞[
s>t=k+i−2b−1

ρs+t(s− t)−3−ε

= O(b−1(1− ρ))
b[
i=1

ρi
∞[

s>t=0

ρs+t(s− t)−3−ε

= O(b−1)
b[
i=1

ρi

= o(1), (10.33)
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where the first equality holds by the change of variables s → s + k + i− 2b− 1 and
similarly for t and the last equality uses b(1− ρ)→∞.
Next consider the subcase where ρ→ ρ∗ < 1. In this case, define

hTn,k = b−1/2d−1/2b2

b[
i=1

k+i−2b−2[
s=0

ρsUk+i−1−sUk+i/φ2k+i

−
#
b−1d−1/2b2

b[
j=1

k+j−2b−2[
s=0

ρsUk+j−1−s/φ2k+j

$#
b−1

b[
j=1

φ−2k+j

$−1

×b−1/2
b[
i=1

Uk+i/φ
2
k+i. (10.34)

Note that (b−1
Sb

j=1 φ
−2
k+j)

−1, b−1/2
Sb

i=1 Uk+i/φ
2
k+i, and d

−1/2
b2 are all Op(1). (The

first quantity isOp(1) by Lemma S2(a) and h2,5 ≥ ε2 > 0, the second quantity isOp(1)
by a CLT, and the third quantity is Op(1) by Assumption INNOV(iv).) Therefore, it
is enough to show that

b−1/2
b[
i=1

∞[
s=k+i−2b−1

ρsUk+i−1−sUk+i/φ2k+i = op(1) and

b−1
b[
i=1

∞[
s=k+i−2b−1

ρsUk+i−1−s/φ2k+i = op(1). (10.35)

Using Markov’s inequality we have

P (|b−1/2
b[
i=1

∞[
s=k+i−2b−1

ρsUk+i−1−sUk+i/φ2k+i| > ε)

= O(b−1)
b[

i,j=1

∞[
s=k+i−2b−1
t=k+j−2b−1

ρs+tEUk+i−1−sUk+i/φ2k+iUk+j−1−tUk+j/φ
2
k+j

= O(b−1)
b[
i=1

∞[
s,t=k+i−2b−1

ρs+t

= O(b−1)
b[
i=1

∞[
s,t=0

ρs+t+2k+2i−4b−2

= O(b−1)
b[
i=1

ρ2i
∞[
s,t=0

ρs+t

= o(1), (10.36)
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where in the second equality we use Assumption INNOV(iv). The second term in
(10.35) can be handled analogously. This completes the proof for case (i).

For cases (ii)-(iv) we proceed as follows to establish (10.19). Define

ck = b
−1

b[
j=1

φ−2k+j and

fk,i = Y
∗
k+i−1 − c−1k b−1

b[
j=1

Y ∗k+j−1/φ
2
k+j. (10.37)

Note that

Tn,k = b
1/2(eρn,b,k − ρ)/eσn,b,k = S1,k/S1/22,k , where

S1,k = b
−1

b[
i=1

fk,iUk+i/φ
2
k+i,

S2,k = b
−2

b[
i=1

f2k,i eU2k+i/φ4k+i, (10.38)

and eU =MXU.
5 We show below that S1,k and S2,k can be written as

S1,k = hS1,k + ξ1,k and S2,k = hS2,k + ξ2,k, wherehS1,k and hS2,k are separated from S1,0 and S2,0 by b time periods ∀k ≥ kn,
ξ1,k = op(1), and ξ2,k = op(1). (10.39)

Note that

fk,i =
∞[
s=0

ρsUk+i−1−s − c−1k b−1
b[
j=1

∞[
s=0

ρsUk+j−1−s/φ2k+j

=
∞[

s=i−1
ρsUk+i−1−s − c−1k b−1

b[
j=1

∞[
s=j−1

ρsUk+j−1−s/φ2k+j

+
i−2[
s=0

ρsUk+i−1−s − c−1k b−1
b[
j=1

j−2[
s=0

ρsUk+j−1−s/φ2k+j

= ρi−1
∞[
s=0

ρsUk−s − c−1k b−1
b−1[
j=0

ρj
∞[
s=0

ρsUk−s/φ2k+j+1

+
i−1[
s=1

ρ−s+i−1Uk+s − c−1k b−1
b−2[
s=0

b−(s+1)[
j=1

ρsUk+j/φ
2
k+j+s+1, (10.40)

5Strictly speaking, all sums over i = 1, ..., b should be over i = 1, ..., b−1 because one observation
from a block of length b is used as an initial observation given that lagged Yi is a regressor. For
notational simplicity, here and below, we sum to b rather than b− 1.
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where we used the transformation s :→ −s + i − 1 for the first sum of the last row
and changed the sequence of summation over j and s and applied the transformation
j :→ j + s in the second sum of the last row. Therefore, changing back the sequence
of summation over j and s in the second sum, it follows that for ρ < 1

fk,i = ak,i

∞[
j=0

ρjUk−j +
b−1[
j=1

ck,i,jUk+j, where

ak,i = ρi−1 − c
−1
k

b

b−1[
l=0

ρl

φ2k+l+1
and

ck,i,j = 1(j ≤ i− 1)ρi−j−1 −
c−1k
b

b−(j+1)[
l=0

ρl

φ2k+j+l+1
. (10.41)

Note that ak,i is random. When ρ = 1, (10.41) simplifies to

fk,i =
b−1[
j=1

⎛⎝1(j ≤ i− 1)− c−1k
b

b−(j+1)[
l=0

φ−2k+j+l+1

⎞⎠Uk+j. (10.42)

By (10.38) and (10.45) below, (10.42) implies that Tn,k is separated from Tn,0 by at
least b time periods when k > 2b. Thus, if ρ = 1 for all n, (10.19) holds immediately.
This leads us to only consider cases where ρ < 1 for all n. (Sequences in which ρ = 1
for some n and ρ < 1 for some n can be handled by analyzing subsequences.)
We now truncate the infinite sum in fk,i and for k > 2b define

f tk,i = ak,i

k−2b−1[
j=0

ρjUk−j +
b−1[
j=1

ck,i,jUk+j

= Y ∗tk+i−1 − c−1k b−1
b[
j=1

Y ∗tk+j−1/φ
2
k+j, where

Y ∗tl−1 =
l−2b−2[
s=0

ρsUl−1−s. (10.43)

Note that f tk,i is obtained from fk,i by deleting all Up with subindices p < 2b + 1.
Define

hS1,k = b−1 b[
i=1

f tk,iUk+i/φ
2
k+i,

ξ1,k = b
−1

b[
i=1

(fk,i − f tk,i)Uk+i/φ2k+i

= b−1
b[
i=1

ak,i(Uk+i/φ
2
k+i)

∞[
j=k−2b

ρjUk−j. (10.44)
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For k > 2b, hS1,k depends only on innovations Up for p > 2b and S1,0 and S2,0 depend
only on innovations Up for p ≤ b. Thus, for k > 2b, hS1,k is separated from S1,0 and
S2,0 by at least b time periods.
Regarding S2,k, note that by (10.14) and the definition in (10.37) we have

S2,k = b
−2

b[
i=1

f2k,iU
2
k+i/φ

4
k+i + op(1). (10.45)

Set hS2,k = b−2 b[
i=1

(f tk,i)
2U2k+i/φ

4
k+i. (10.46)

For k > 2b, hS2,k depends only on innovations Up for p > 2b. By definition,
ξ2,k = b

−2
b[
i=1

(f2k,i − (f tk,i)2)U2k+i/φ4k+i + op(1). (10.47)

We now show that ξ1,k = op(1) and ξ2,k = op(1) uniformly for k ≥ kn for some
sequence kn →∞ such that kn/n→ 0.

Case (ii): b(1− ρ)→ h1 ∈ (0,∞).
We first show that ξ1,k = op(1). Clearly, it is enough to show that

b−1
b[
i=1

ρi−1Uk+i/φ2k+i

∞[
j=k−2b

ρjUk−j = op(1) and

((c−1k /b)
b−1[
l=0

ρlφ−2k+l+1)(b
−1

b[
i=1

Uk+i/φ
2
k+i)(

∞[
j=k−2b

ρjUk−j) = op(1). (10.48)

Note that by Lemma S2(a), c−1k and b−1
Sb−1

l=0 ρ
lφ−2k+l+1 are both Op(1). Applying

Markov’s inequality, it is therefore enough to show that the following quantity is
op(1):

b−2
b[

i,j=1

∞[
l,m=k−2b

ρl+mE(Uk+i/φ
2
k+i)(Uk+j/φ

2
k+j)Uk−lUk−m

= O(1)b−2
b[
i=1

∞[
l,m=k−2b

ρl+mEUk−lUk−mU2k+i/φ
4
k+i, (10.49)

where the equality uses E(Uk+i/φ
2
k+i)(Uk+j/φ

2
k+j)Uk−lUk−m = 0 for k > 2b unless

i = j, by the martingale difference property of Ui.
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Consider first the contribution of the summands in (10.49) when l = m:

b−2
b[
i=1

∞[
l=k−2b

ρ2lEU2k−lU
2
k+i/φ

4
k+i = O(b

−2)
b[
i=1

∞[
l=k−2b

ρ2l = O(ρk−2b(b(1− ρ))−1),

(10.50)
where in the first equality we use Assumption INNOV(iv). Define h∗n,1 by ρ =
exp(−h∗n,1/n). Because b(1 − ρ) → h1 ∈ (0,∞), we have h∗n,1 → ∞. In consequence,
there exists a sequence {kn : n ≥ 1} such that kn/b→∞, kn/n→ 0 and h∗n,1kn/n→
∞. For this sequence, h∗n,1(kn − 2b)/n → ∞, ρkn−2b = exp(−h∗n,1(kn − 2b)/n) → 0,

and supk≥kn ρ
2(k−2b) → 0. This shows that the expression in (10.50) is o(1).

Therefore, we only need to consider the contributions in (10.49) with l > m. We
have

b−2
b[
i=1

∞[
l>m=k−2b

ρl+mEUk−lUk−mU2k+i/φ
4
k+i

= O(1)b−2
b[
i=1

∞[
l>m=k−2b

ρl+m(l −m)−3−ε

= O(1)ρk−2bb−2
b[
i=1

∞[
l>m=0

ρm(l −m)−3−ε

= o(1), (10.51)

where in the first equality we use (10.15) and Assumption INNOV(iv).

Next we show ξ2,k = op(1). Note that up to a op(1) term ξ2,k = ξ21,k−2ξ22,k+ξ23,k,
where

ξ21,k = b
−2

b[
i=1

(Y ∗2k+i−1 − Y ∗t2k+i−1)U
2
k+i/φ

4
k+i,

ξ22,k = c
−1
k b

−3/2
b[
i=1

#
Y ∗k+i−1

#
b−3/2

b[
j=1

Y ∗k+j−1/φ
2
k+j

$
−

Y ∗tk+i−1

#
b−3/2

b[
j=1

Y ∗tk+j−1/φ
2
k+j

$$
U2k+i/φ

4
k+i, and

ξ23,k =

⎛⎝#b−3/2 b[
j=1

Y ∗k+j−1/φ
2
k+j

$2
−
#
b−3/2

b[
j=1

Y ∗tk+j−1/φ
2
k+j

$2⎞⎠
×c−2k b−1

b[
i=1

U2k+i/φ
4
k+i. (10.52)
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To show ξ21,k = op(1), note that

ξ21,k = b
−2

b[
i=1

∞[
s,t=0,

s or t≥k+i−2b−1

ρs+tUk+i−1−sUk+i−1−tU2k+i/φ
4
k+i (10.53)

(where the second sum is over all s, t = 0, ... for which s ≥ k + i − 2b − 1 or t ≥
k + i− 2b− 1). By Markov’s inequality, we have

P (|ξ21,k| > ε)

≤ ε−2b−4
b[

i,j=1

∞[
s,t=0,

s or t≥k+i−2b−1

∞[
u,v=0,

u or v≥k+i−2b−1

ρs+t+u+v

×E(U2k+i/φ4k+i)(U2k+j/φ4k+j)Uk+i−1−sUk+i−1−tUk+j−1−uUk+j−1−v. (10.54)

Using (10.15), Assumption INNOV(iv), and ρk−2b → 0, one can show that the contri-
bution of all summands for which at least two of the indices k+ i−1−s, k+ i−1− t,
k+ j− 1−u, k+ j− 1− v coincide is of order o(1). In what follows, we can therefore
assume that these indices are all different. We can then assume i ≥ j, s > t, and
u > v. One has to separately investigate several cases regarding the order of the six
indices k+i−1−s < k+i−1−t < k+i and k+j−1−u < k+j−1−v < k+j.We will
only deal with the case where in the ordering of the indices (k+ i−1−s, k+ i−1− t,
k+j−1−u, k+j−1−v, k+j, k+i) the subindex k+i−1−s is followed immediately
by k + i − 1 − t, the subindex k + j − 1 − u is directly followed by k + j − 1 − v,
k + i − 1 − s 9= k + j, and k + j − 1 − u 9= k + i. The other cases are dealt with
analogously. Equation (10.15) and Assumption INNOV(iv) yield

EUk+i−1−sUk+i−1−tUk+j−1−uUk+j−1−v(U2k+j/φ
4
k+j)U

2
k+i/φ

4
k+i

≤ O(max{s− t, u− v})−3−ε. (10.55)

Therefore, the summands in (10.54) equal

O(b−4)
b[

i≥j=1

∞[
s>t=0,

s≥k+i−2b−1

∞[
u>v=0,

u≥k+i−2b−1

ρs+t+u+v(max{s− t, u− v})−3−ε

= O(b−4ρk−2b)
b[

i≥j=1

∞[
s>t=0,

s≥k+i−2b−1

ρt(s− t)−3−ε2

∞[
u>v=0,

u≥k+i−2b−1

ρv(u− v)−3−ε2

= o(b−2)

# ∞[
t=0

ρt
∞[

s=t+1

(s− t)−3−ε2

$2
. (10.56)
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By a change of variable s→ s+ t+ 1, the rhs of (10.56) equals

o(b−2)

# ∞[
t=0

ρt
∞[
s=1

s
−3−ε
2

$2
= o(b−2)

# ∞[
t=0

ρ2t

$2
= o(b−2(1− ρ)−2) = o(1). (10.57)

Next we deal with ξ22,k. Note that by Lemma S2(a) and (c) we have c
−1
k = Op(1)

and b−3/2
Sb

j=1 Y
∗
k+j−1/φ

2
k+j = Op(1). We add and subtract Y

∗t
k+i−1b

−3/2Sb
j=1 Y

∗
k+j−1

/φ2k+j which implies that it is enough to show that

b−3/2
b[
i=1

(Y ∗k+i−1 − Y ∗tk+i−1)U2k+i/φ4k+i = op(1),

b−3/2
b[
j=1

(Y ∗k+j−1 − Y ∗tk+j−1)/φ2k+j = op(1), and

b−3/2
b[
i=1

Y ∗tk+i−1U
2
k+i/φ

4
k+i = Op(1). (10.58)

The third statement holds by the first one and by Lemma S2(c). To prove the first
two statements, note that

Y ∗k+i−1 − Y ∗tk+i−1 =
∞[

s=k+i−2b−1
ρsUk+i−1−s. (10.59)

To show (10.58), by Markov’s inequality it is sufficient to show that

b−3
b[

i,j=1

∞[
s=k+i−2b−1,
t=k+i−2b−1

ρs+tEUk+i−1−sUk+j−1−t(U2k+i/φ
4
k+i)U

2
k+j/φ

4
k+j = o(1) and

b−3
b[

i,j=1

∞[
s=k+i−2b−1,
t=k+i−2b−1

ρs+tEUk+i−1−sUk+j−1−tφ−2k+iφ
−2
k+j = o(1). (10.60)

These can be shown using the method employed above. Finally, ξ23,k = op(1) follows
by similar steps to the ones above and Lemma S2(b). This completes the proof of
case (ii).

Case (iii) b(1− ρ)→ 0 & n(1− ρ)→∞.
Define h∗n,1 and hn,1 by ρ = exp(−h∗n,1/n) and ρ = 1 − hn,1/n. Let tn = bh∗n,1/n.

For notational simplicity, we write h∗n,1 and hn,1 as h
∗
n and hn, respectively, in the

remainder of the verification of Assumption E. Then, we have

ρb = exp(−bh∗n/n) = exp(−tn), 1 + ρ = 2− hn/n, and
b(1− ρ) = bhn/n = tn(hn/h

∗
n). (10.61)
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We have: b(1 − ρ) → 0 ⇒ ρ → 1 ⇒ h∗n/n → 0 ⇒ h∗n/hn → 1, where the last
implication follows from a mean-value expansion of exp(−h∗n/n) about 0. In addition,
b(1− ρ)→ 0⇒ bhn/n→ 0. Combining these results gives tn = (bhn/n)(h∗n/hn)→ 0.
Also, n(1− ρ)→∞ implies that hn →∞ and h∗n →∞.
Because bhn/n = b(1− ρ) → 0 it follows that hn = o(n/b). This and h∗n /hn → 1

yield h∗n = o(n/b). By an expansion of exp(−h∗n/n) about 0, we obtain

0 = ρ− ρ = exp(−h∗n/n)− (1− hn/n)
= −h∗n/n+ 2−1(h∗n/n)2 − 6−1 exp(−h∗∗n /n)(h∗n/n)3 + hn/n, (10.62)

where h∗∗n /n = o(1/b) because h
∗
n = o(n/b). Hence,

1− hn/h∗n = 2−1h∗n/n− 6−1(h∗n/n)2 exp(−h∗∗n /n). (10.63)

We first verify (10.39) for ξ1,k = b
−1Sb

i=1 ak,i(Uk+i/φ
2
k+i)

S∞
j=k−2b ρ

jUk−j defined
in (10.44). Note that by Markov’s inequality we have

P (|
∞[

s=k−2b
ρsUk−s| > M(1−ρ)−1/2) ≤M−2(1−ρ)

∞[
s=k−2b

ρ2sEU2k−s = O(M
−2) (10.64)

by Assumption INNOV(iv) and because Ui is a martingale difference sequence. There-
fore

(1− ρ)1/2
∞[

s=k−2b
ρsUk−s = Op(1). (10.65)

To show ξ1,k = op(1), it is thus sufficient to show that

ζ1 = (1− ρ)−1/2b−1
b[
i=1

ak,i(Uk+i/φ
2
k+i) = op(1). (10.66)

By adding and subtracting 1, we can write

ak,i = (ρ
i−1 − 1)− c−1k b−1

b−1[
l=0

(ρl − 1)φ−2k+l+1. (10.67)

Therefore

ζ1 = (1− ρ)−1/2b−1
b[
i=1

#
(ρi−1 − 1)− c−1k b−1

b−1[
l=0

(ρl − 1)φ−2k+l+1

$
(Uk+i/φ

2
k+i)

(10.68)
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and it is enough to show that

ζ11 = (1− ρ)−1/2b−1
b[
i=1

(ρi−1 − 1)(Uk+i/φ2k+i) = op(1) and

ζ12 = (1− ρ)−1/2b−1/2
#
c−1k b

−1
b−1[
l=0

(ρl − 1)φ−2k+l+1

$
b−1/2

b[
i=1

(Uk+i/φ
2
k+i) = op(1).

(10.69)

To show ζ11 = op(1), by Markov’s inequality, it is enough to show that

(1− ρ)−1b−2
b[
i=1

(ρi−1 − 1)2 = o(1), (10.70)

where we use the fact that Uk+i/φ2k+i is a martingale difference sequence and
E(U2k+i/φ

4
k+i) is uniformly bounded by Assumption INNOV(iv). Writing the sum

in (10.70) in closed form, it follows that it is enough to show that

1− ρ2b − 2(1− ρb)(1 + ρ) + b(1− ρ)(1 + ρ)

b2(1− ρ)2
= o(1). (10.71)

Using (10.61) and (10.63) the lhs of (10.71) equals

1− exp(−2tn)− 2(1− exp(−tn))(1 + ρ) + tn(hn/h
∗
n)(1 + ρ)

(tn(hn/h∗n))2
. (10.72)

We first show that replacing (1 + ρ) by 2 and (hn/h∗n) by 1 in (10.72) is negligible in
the sense that

t−2n [−2(1− exp(−tn))(1 + ρ− 2) + tn((hn/h∗n)(1 + ρ)− 2)] = o(1). (10.73)

To show (10.73), note that by (10.63) hn/h∗n = 1−2−1h∗n/n+ 6−1(h∗n/n)2 exp(−h∗∗n /n),
where h∗∗n /n → 0. By a Taylor expansion for ρ = exp(−h∗n/n) we have ρ − 1 =
−h∗n/n+ 2−1(h∗n/n)2 exp(−h++n /n) for some h++n such that h++n /n→ 0. By a Taylor
expansion for exp(−tn) we have 1−exp(−tn) = tn−2−1t2n exp(t∗n) for some t∗n such that
t∗n → 0. Multiplying out, shows that the lhs in (10.73) is of order t−2n (O(tn(h

∗
n/n)

2)+
O(t2nh

∗
n/n)) which is o(1).

By applying l’Hopital’s rule twice, the limit of the expression in (10.72) with
(1 + ρ) replaced by 2 and (hn/h∗n) replaced by 1 equals 0 which completes the proof
of ζ11 = op(1).
To show ζ12 = op(1), a CLT for martingale difference sequences shows that

b−1/2
Sb

i=1 (Uk+i/φ
2
k+i) = Op(1). Furthermore, by Assumption INNOV(v) and (vii)
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we have c−1k b
−1Sb−1

l=0 (ρ
l−1)φ−2k+l+1 = Op(1)b−1

Sb−1
l=0 (ρ

l−1) and it is therefore enough
to show that

(1− ρ)−1/2b−1/2b−1
b−1[
l=0

(ρl − 1) = o(1) or

b−3/2(1− ρ)−3/2(1− ρb − b(1− ρ)) = o(1). (10.74)

Using analogous steps as in the proof for ζ11 = op(1) above then shows ζ12 = op(1).
This completes the verification of (10.39) for ξ1,k.

We are left with showing that the component b−2
Sb

i=1(f
2
k,i − (f tk,i)2)U2k+i/φ4k+i of

ξ2,k in (10.47) is of order op(1). Using the definitions of fk,i and f
t
k,i in (10.41) and

(10.43), it follows that

f2k,i − (f tk,i)2

= a2k,i

# ∞[
j=0

ρjUk−j

$2
− a2k,i

#
k−2b−1[
j=0

ρjUk−j

$2

+2
b−1[
j=1

ck,i,jUk+j

#
ak,i

∞[
s=k−2b

ρsUk−s

$

= a2k,i

∞[
j,�=0,

j or �=≥k−2b

ρj+lUk−jUk−l + 2
∞[

s=k−2b
ρsUk−s

b−1[
j=1

ak,ick,i,jUk+j

= f1,k,i + f2,k,i. (10.75)

We first show that the contributions of f1,k,i to ξ2,k are of order op(1). Note that

b−2
b[
i=1

f1,k,iU
2
k+i/φ

4
k+i

=
∞[

j,�=0,
j or �=≥k−2b

ρj+lUk−jUk−lb−2
b[
i=1

a2k,iU
2
k+i/φ

4
k+i

= Op((1− ρ)−1)b−2
b[
i=1

a2k,iU
2
k+i/φ

4
k+i. (10.76)

Using (10.67), it is therefore enough to show that

(1− ρ)−1b−2
b[
i=1

(ρi−1 − 1)2U2k+i/φ4k+i = op(1),
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(1− ρ)−1b−2
#
c−1k b

−1
b−1[
l=0

(ρl − 1)φ−2k+l+1

$
b[
i=1

(ρi−1 − 1)U2k+i/φ4k+i = op(1),

(1− ρ)−1b−2
#
c−1k b

−1
b−1[
l=0

(ρl − 1)φ−2k+l+1

$2 b[
i=1

U2k+i/φ
4
k+i = op(1).

(10.77)

To deal with the first term, it is enough to show that the LLN b−1
Sb

i=1 Zbi = Op(1)
applies with Zbi = (b(1−ρ))−2 (ρi−1−1)2U2k+i/φ4k+i. The LLN holds by White (1984,
Theorem 3.47 with r = δ = 3/2) because Zbi is α-mixing of size 3, has finite mean
by Assumption INNOV(iv) and because (ρb − 1)(b(1 − ρ))−1 = O(1), and becauseS∞

i=1(i
−3E|Zbi −EZbi|3)2/3 <∞. The latter holds because by (ρb − 1)(b(1− ρ))−1 =

O(1) and Assumption INNOV(iv), E|Zbi −EZbi|3 is uniformly bounded.
The proofs for the second and third terms in (10.77) are analogous. Just note

that c−1k = Op(1) by Lemma S2(a) and that

b−1
b−1[
l=0

Z∗bl = Op(1) (10.78)

applies also with Z∗bl = (b(1−ρ))−1 (ρl−1)φ−2k+l+1, Z∗bl = (b(1−ρ))−1 (ρl−1)U2k+i/φ4k+i,
and Z∗bl = U

2
k+i/φ

4
k+i by White (1984, Theorem 3.47 with r = δ = 3/2).

We next show that the contributions of f2,k,i to ξ2,k are of order op(1). By (10.65)
and (10.75) it is sufficient to show that

(1− ρ)−1/2b−2
b−1[
j=1

b[
i=1

ak,ick,i,j(U
2
k+i/φ

4
k+i)Uk+j = op(1). (10.79)

By replacing ak,i and ck,i,j by their definitions we have

b−1[
j=1

b[
i=1

ak,ick,i,j(U
2
k+i/φ

4
k+i)Uk+j =

b−1[
j=1

b[
i=1

#
(ρi−1 − 1)− c−1k b−1

b−1[
l=0

(ρl − 1)φ−2k+l+1

$

×

⎛⎝1(j ≤ i− 1)ρi−j−1 − c−1k
b

b−(j+1)[
l=0

ρl

φ2k+j+l+1

⎞⎠ (U2k+i/φ4k+i)Uk+j. (10.80)

Multiplying out in (10.80), it is clear that in order to show (10.79), it is sufficient to
show that the following expressions multiplied by (1− ρ)−1/2b−2 are all op(1) :

b−1[
j=1

b[
i=1

(ρi−1 − 1)1(j ≤ i− 1)ρi−j−1(U2k+i/φ4k+i)Uk+j,
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b−1[
j=1

b[
i=1

c−1k b
−1

b−1[
l=0

(ρl − 1)φ−2k+l+11(j ≤ i− 1)ρi−j−1(U2k+i/φ4k+i)Uk+j,#
b[
i=1

(ρi−1 − 1)(U2k+i/φ4k+i)
$

b−1[
j=1

⎛⎝c−1k
b

b−(j+1)[
l=0

ρl

φ2k+j+l+1

⎞⎠Uk+j,
#
c−1k b

−1
b−1[
l=0

(ρl − 1)φ−2k+l+1

$⎛⎝ b−1[
j=1

c−1k
b

b−(j+1)[
l=0

ρl

φ2k+j+l+1
Uk+j

⎞⎠ b[
i=1

(U2k+i/φ
4
k+i).

(10.81)

From the LLN in (10.78) and from c−1k = Op(1) it follows that in order to show that
the expressions in (10.81) multiplied by (1−ρ)−1/2b−2 are op(1) it is sufficient to show
that

(1− ρ)1/2b−1
b−1[
j=1

b[
i=j+1

ρi−1 − 1
b(1− ρ)

ρi−j−1(U2k+i/φ
4
k+i)Uk+j = op(1),

(1− ρ)1/2b−1
b−1[
j=1

b[
i=j+1

ρi−j−1(U2k+i/φ
4
k+i)Uk+j = op(1),

(1− ρ)1/2b−1
b−1[
j=1

b−(j+1)[
l=0

ρlφ−2k+j+l+1Uk+j = op(1). (10.82)

To see this, note that the first row in (10.81) is clearly implied by the first row in
(10.82). The second row in (10.81) is implied by the second row in (10.82) because in
(10.81) we apply the LLN in (10.78) to b−1

Sb−1
l=0 (ρ

l− 1)φ−2k+l+1 which is thus of order
Op(b(1−ρ)). The same LLN argument applied to b−1

Sb
i=1(ρ

i−1−1)(U2k+i/φ4k+i) shows
that the third row in (10.81) is implied by the third row in (10.82). The fourth row
in (10.81) is implied by the previous arguments and b−1

Sb
i=1(U

2
k+i/φ

4
k+i) = Op(1).

For the third term in (10.82), by Markov’s inequality, it is enough to show that

(1− ρ)b−2
b−1[
j=1

b−(j+1)[
l=0

b−1[
i=1

b−(i+1)[
m=0

ρl+mEφ−2k+j+l+1Uk+jφ
−2
k+i+m+1Uk+i = o(1). (10.83)

We can assume that i 9= j because the contributions of all summands with i = j
can be bounded by (1 − ρ)b−2

Sb−1
i=1

Sb−(i+1)
l,m=0 Eφ−2k+j+l+1φ

−2
k+i+m+1U

2
k+i which is o(1)

because Eφ−2k+j+l+1φ
−2
k+i+m+1U

2
k+i is uniformly bounded by Assumption INNOV(iv)

and (1− ρ)b−2b3 = o(1). Using the same argument we can assume that all subindices
k+ j+ l+1, k+ i+m+1, k+ j, and k+ i are different and also that i > j. We have
to distinguish two subcases, namely k + j + l + 1 > k + i and k + j + l + 1 < k + i.
The contributions of all summands in the lhs of (10.83) satisfying k+ j+ l+1 > k+ i
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can be bounded by

O(1)(1− ρ)b−2
b−1[
i>j=1

b−(j+1)[
l=0

b−(i+1)[
m=0,m�=l

(i− j)−3−ε = O(1− ρ)
b−1[
i>j=1

(i− j)−3−ε = o(1),

(10.84)
where the first expression uses the strong mixing inequality (10.15) and Assumption
INNOV(iv) and the last equality uses b(1−ρ)→ 0. The contributions of all summands
in the lhs of (10.83) satisfying k + j + l + 1 ≤ k + i can be bounded by

O(1)(1− ρ)b−2
b−1[
i>j=1

b−(j+1)[
l=0

b−(i+1)[
m=0,m�=l

(m+ 1)−3−ε = O(1− ρ)b
b[

m=0

(m+ 1)−3−ε = o(1).

(10.85)
The first and second term in (10.82) are handled in exactly the same way. For the
first term, recall that (b(1− ρ))−1(ρi−1 − 1) is O(1) uniformly in i.

Case (iv) n(1− ρ)→ h1 ∈ [0,∞).
Because n(1− ρ) = hn → h1 <∞, it follows that hn = O(1) and ρn → 1. Hence,

exp(−h∗n/n) = ρn → 1 and h∗n = o(n). By a mean-value expansion of exp(−h∗n/n)
about 0,

0 = ρn − ρn = exp(−h∗n/n)− (1− hn/n) = hn/n− exp(−h∗∗n /n)h∗n/n, (10.86)

where h∗∗n = o(n) given that h∗n = o(n). Hence, hn − (1 + o(1))h∗n = 0, and thus
h∗n/hn → 1. Hence, h∗n = O(1) and tn = bh

∗
n/n → 0. The proof for ξ1,k = op(1) and

ξ2,k = op(1) used in Case (iii) then goes through.

10.2.5 Verification of Assumption EE

In this section, we verify Assumption EE for model 1. We verify Assumption
EE using the same argument as for Assumption E given above, but with Tn,k =
S1,kS

−1/2
2,k replaced by dbn(γn,h)eσn,bn,k, where dbn(γn,h) is the normalization constant

that appears in Assumption BB and is defined in (10.2). In Case (i) of the verification
of Assumption E above, where b(1 − ρ) → ∞, we have dbn(γn,h)eσn,bn,k →p 1 by
Proposition S1(b). Thus, (10.19) trivially holds in this case. In Cases (ii)-(iv), we
have dbn(γn,h)eσn,bn,k = S1/22,k S

−1
3,k for S3,k = b

−2X �
1MX2X1, where as above (with abuse

of notation) X1 and X2 denote b-vectors containing data from the k-th subsample.
It is sufficient to show the equivalent of (10.39) for S3,k :

S3,k = hS3,k + ξ3,k for some hS3,k that is separated from
S3,0 by b time periods ∀k ≥ knand ξ3,k = op(1). (10.87)

Easy calculations show that S3,k = b−2
Sb

i=1 f
2
k,i/φ

2
k+i. Set hS3,k = b−2Sb

i=1(f
t
k,i)

2/φ2k+i
and ξ3,k = b

−2Sb
i=1 (f

2
k,i−(f tk,i)2)/φ2k+i. Then, proceeding exactly as in the verification

of S2,k = hS2,k + ξ2,k in (10.39) in the proof of Assumption E, (10.87) follows.
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10.2.6 Verification of Assumption HH

Given the definitions in (10.2), Assumption HH holds by the following calculations.
For all sequences {γn,h = (γn,h,1, γn,h,2, γn,h,3) ∈ Γ : n ≥ 1} for which bnγn,h,1 → g1
for some g1 ∈ R+,∞, if bnγn,h,1 → g1 =∞, then nγn,h,1 →∞ and

abn(γn,h)

an(γn,h)
=
b
1/2
n dbn(γn,h)

n1/2dn(γn,h)
=

�
bn
n

�1/2
→ 0 (10.88)

using Assumption C(ii). If nγn,h,1 → h1 = ∞ and bnγn,h,1 → g1 < ∞, let hn,1 =
n(1 − ρ) and let h∗n,1 be defined by ρ = exp(−h∗n,1/n). By Lemma S1 and (10.3),
bn/(n

1/2dn(γn,h)) = O((1 − ρ)1/2bn/n
1/2) = O((hn,1/n)

1/2bn/n
1/2) = O(h

1/2
n,1bn/n).

Given that nγn,h,1 → h1 =∞ and bnγn,h,1 → g1 <∞ we are either in Case (ii) or Case
(iii) of the proof of Assumption E. In Case (iii), we showed above that tn = bnh∗n,1/n→
0 and hn,1/h∗n,1 → 1, and hn,1 →∞. Therefore, O(h1/2n,1bn/n) = O(tnh

−1/2
n,1 ) = o(1). In

Case (ii), tn = (bnhn,1/n)(h∗n,1/hn,1)→ g1 and thus O(h
1/2
n,1bn/n) = O(tnh

−1/2
n,1 ) = o(1)

because hn,1 →∞. Therefore,

abn(γn,h)

an(γn,h)
=

bn
n1/2dn(γn,h)

→ 0. (10.89)

If nγn,h,1 → h1 <∞, then
abn(γn,h)

an(γn,h)
=
bn
n
→ 0 (10.90)

using Assumption C(ii).

11 Conservative Model Selection Example

11.1 The Model

Here we establish the asymptotic distribution of the test statistic T ∗n(θ0) and verify
Assumption G for this example.
The model is

yi = x
∗
1iθ + x

∗
2iβ2 + x

∗�
3iβ3 + σεi for i = 1, ..., n, where

x∗i = (x
∗
1i, x

∗
2i, x

∗�
3i)
� ∈ Rk, β = (θ,β2, β�3)� ∈ Rk, (11.1)

x∗1i, x
∗
2i, θ,β2,σ, εi ∈ R, and x∗3i,β3 ∈ Rk−2. The observations {(yi, x∗i ) : i = 1, ..., n}

are i.i.d. The scaled error εi has mean 0 and variance 1 conditional on x∗i .We consider
testing H0 : θ = θ0 after carrying out a model selection procedure to determine
whether x∗2i should enter the model. The model selection procedure is based on a t
test of H∗

0 : β2 = 0.
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The inference problem described above covers the following (seemingly more gen-
eral) inference problem. Consider the model

yi = z
�
iτ + σεi for i = 1, ..., n, where

zi = (z
�
1i, z2i)

� ∈ Rk, τ = (τ �1, τ 2)� ∈ Rk, (11.2)

z1i, τ 1 ∈ Rk−1, and z2i, τ 2 ∈ R. We are interested in testing H0 : a
�τ = θ0 for a given

vector a ∈ Rk with a 9= ek, where ek = (0, ..., 0, 1)�, after using a (fixed critical value)
t test to determine whether z2i should enter the model. This testing problem can be
transformed into the former one by writing

θ = a�τ ,β2 = τ 2, β3 = B
�τ , (11.3)

for some matrix B ∈ Rk×(k−2) such that D = [a : ek : B] ∈ Rk×k is nonsingular. As
defined, β = D�τ . Define x∗i = D

−1zi. Then, x∗�i β = z
�
iτ and H0 : θ = θ0 is equivalent

to H0 : a
�τ = θ0.

We now return to the model in (11.1). To define the test statistic T ∗n(θ0), we
write the variables in matrix notation and define the first and second regressors after
projecting out the remaining regressors using finite-sample projections:

Y = (y1, ..., yn)
�,

X∗
j = (x

∗
j1, ..., x

∗
jn)

� ∈ Rn for j = 1, 2,
X∗
3 = [x

∗
31 : ... : x

∗
3n]
� ∈ Rn×(k−2),

Xj = MX∗3X
∗
j ∈ Rn for j = 1, 2, and

X = [X1 : X2] ∈ Rn×2, (11.4)

where MX∗3 = In − PX∗3 and PX∗3 = X∗
3(X

∗�
3 X

∗
3)
−1X∗�

3 . The n-vectors X1 and X2
correspond to the n-vectors X∗

1 and X
∗
2 , respectively, with X

∗
3 projected out.

The restricted and unrestricted least squares (LS) estimators of θ and the unre-
stricted LS estimator of β2 arehθ = (X �

1X1)
−1X �

1Y,eθ = (X �
1MX2X1)

−1X �
1MX2Y, andeβ2 = (X �

2MX1X2)
−1X �

2MX1Y. (11.5)

The model selection test rejects H∗
0 : β2 = 0 if

|Tn,2| =
����� n1/2eβ2eσ(n−1X �

2MX1X2)
−1/2

����� > c, whereeσ2 = (n− k)−1Y �M[X∗1 :X
∗
2 :X

∗
3 ]
Y (11.6)

and c > 0 is a given critical value that does not depend on n. Typically, c = z1−α/2 for
some α > 0. The estimator eσ2 of σ2 is the standard (unrestricted) unbiased estimator.
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The test statistic, T ∗n(θ0), for testing H0 : θ = θ0 is a t statistic based on the
restricted LS estimator of θ when the null hypothesis H∗

0 : β2 = 0 is not rejected and
the unrestricted LS estimator when it is rejected:

T ∗n(θ0) = hTn,1(θ0)1(|Tn,2| ≤ c) + eTn,1(θ0)1(|Tn,2| > c), wherehTn,1(θ0) = n1/2(hθ − θ0)eσ(n−1X �
1X1)

−1/2 and

eTn,1(θ0) = n1/2(eθ − θ0)eσ(n−1X �
1MX2X1)

−1/2 . (11.7)

Note that both hTn,1(θ0) and eTn,1(θ0) are defined using the unrestricted estimator eσ
of σ. One could define hTn,1(θ0) using the restricted LS estimator of σ, but this is
not desirable because it leads to an inconsistent estimator of σ under sequences of
parameters {β2 = β2n : n ≥ 1} that satisfy β2n → 0 and n1/2β2n 0 as n → ∞.
For subsampling tests, one could define hTn,1(θ0) and eTn,1(θ0) with eσ deleted because
the scale of the subsample statistics offsets that of the original sample statistic. This
does not work for hybrid tests because Assumption K fails if eσ is deleted.
The “model-selection” estimator, θ, of θ is

θ = hθ1(|Tn,2| ≤ c) + eθ1(|Tn,2| > c). (11.8)

This estimator is used to recenter the subsample statistics. (One could also use the
unrestricted estimator eθ to recenter the subsample statistics.)
11.2 Proof of the Asymptotic Distributions

of the Test Statistics

In this section, we establish the asymptotic distribution J∗h of T
∗
n(θ0) under a se-

quence of parameters {γn = (γn,1, γn,2, γn,3) : n ≥ 1} (where n1/2γn,1 → h1, γn,2 → h2,
and γn,3 ∈ Γ3(γn,1, γn,2) for all n). Parts of the proof are closely related to calculations
in Leeb (2006) and Leeb and Pötscher (2005). No papers in the literature, that we
are aware of, consider subsampling methods for post-model selection inference. For
FCV tests, the main differences from Leeb (2006) are that here we consider (i) model
selection among two models, (ii) errors that may be non-normal, (iii) i.i.d. regres-
sors, (iv) t statistics, and (v) we prove the asymptotic results directly. In contrast,
Leeb (2006) considers (i) multiple models, (ii) normal errors, (iii) fixed regressors,
(iv) normalized estimators, and (v) he proves the asymptotic results by establishing
finite-sample results for the normal error case and taking their limits. The results in
Leeb and Pötscher (2005) are a two-model special case of those given in Leeb (2006).
Using the definition of T ∗n(θ0) in this example, we have

Pθ0,γn(T
∗
n(θ0) ≤ x) = Pθ0,γn(hTn,1(θ0) ≤ x & |Tn,2| ≤ c)

+Pθ0,γn(
eTn,1(θ0) ≤ x & |Tn,2| > c). (11.9)
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Hence, it suffices to determine the limits of the two summands on the right-hand side.
With this in mind, we show below that under {γn : n ≥ 1}, when |h1| <∞,� hTn,1(θ0)

Tn,2

�
→d

� hZh,1
Zh,2

�
∼ N

��
−h1h2(1− h22)−1/2

h1

�
,

�
1 0
0 1

��
and� eTn,1(θ0)

Tn,2

�
→d

� eZh,1
Zh,2

�
∼ N

��
0
h1

�
,

�
1 h2
h2 1

��
. (11.10)

Given this, we have

Pθ0,γn(
hTn,1(θ0) ≤ x & |Tn,2| ≤ c)

→ P ( hZh,1 ≤ x & |Zh,2| ≤ c)
= Φ(x+ h1h2(1− h22)−1/2)∆(h1, c), where

∆(a, b) = Φ(a+ b)− Φ(a− b), (11.11)

the equality uses the independence of hZh,1 and Zh,2 and the normality of their distri-
butions, and ∆(a, b) = ∆(−a, b). In addition, we have

Pθ0,γn(
eTn,1(θ0) ≤ x & |Tn,2| > c)→ P ( eZh,1 ≤ x & |Zh,2| > c). (11.12)

Next, we calculate the limiting probability in (11.12). Let f(z2|z1) denote the
conditional density of Zh,2 given eZh,1. Let φ(z1) denote the standard normal density.
Given that � eZh,1

Zh,2

�
∼ N

��
0
h1

�
,

�
1 h2
h2 1

��
, (11.13)

the conditional distribution of Zh,2 given eZh,1 = z1 is N(h1 + h2z1, 1− h22). We have
P ( eZh,1 ≤ x & |Zh,2| > c)

=

] x

−∞

]
|z2|>c

f(z2|z1)φ(z1)dz2dz1

=

] x

−∞

�
1−

]
|z2|≤c

(1− h22)−1/2φ
�
z2 − (h1 + h2z1)
(1− h22)1/2

�
dz2

�
φ(z1)dz1

=

] x

−∞

#
1−

]
|z2|≤c(1−h22)−1/2

φ

�
z2 −

h1 + h2z1
(1− h22)1/2

�
dz2

$
φ(z1)dz1

=

] x

−∞

�
1−∆

�
h1 + h2z

(1− h22)1/2
,

c

(1− h22)1/2
��

φ(z)dz, (11.14)

where the second equality holds by (11.13), the third equality holds by change of
variables with z2 = z2(1 − h22)−1/2, and the last equality holds by the definition of
∆(a, b).
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Combining (11.11), (11.12), and (11.14) gives the desired result:

J∗h(x) = Φ(x+ h1h2(1− h22)−1/2)∆(h1, c)

+

] x

−∞

�
1−∆

�
h1 + h2t

(1− h22)1/2
,

c

(1− h22)1/2
��

φ(t)dt (11.15)

when |h1| <∞. When |h1| =∞, J∗h(x) = Φ(x) (which equals the limit as |h1|→∞
of J∗h(x) defined in (11.15)). The proof of the latter result is given below in the
paragraph containing (11.29).

We now show that under {γn : n ≥ 1}, when |h1| < ∞, (11.10) holds. Let
X⊥
j = (x⊥j1, ..., x

⊥
jn)

� ∈ Rn for j = 1, 2 and X⊥ = (X⊥
1 ,X

⊥
2 )
� ∈ Rn×2. We use the

following Lemma.

Lemma S3. Given the assumptions stated in Section 2.2 of the paper, under a se-
quence of parameters {γn = (γn,1, γn,2, γn,3) : n ≥ 1} (where n1/2γn,1 → h1, γn,2 → h2,
and γn,3 ∈ Γ3(γ1, γ2) for all n), and for Q = Qn as defined in (2.7) of the paper with
the (j,m) element denoted Qn,jm, we have
(a) n−1X �X−Qn →p 0, (b) n−1X �

2MX1X2−(Qn,22−Q2n,12Q−1n,11)→p 0, (c) n−1X �
1MX2X1

−(Qn,11−Q2n,12Q−1n,22)→p 0, (d) eσ/σn →p 1, (e) n−1/2X �
jε = n

−1/2X⊥�
j ε+op(1) = Op(1)

for j = 1, 2.

Proof of Lemma S3. The proofs of parts (a)-(d) are standard using a weak law
of large numbers (WLLN) for L1+δ-bounded independent random variables for some
δ > 0 and taking into account the fact that Xj =MX∗3X

∗
j for j = 1, 2.

Next, we prove part (e). By definition of Xj, we have

n−1/2X �
jε = n

−1/2X∗�
j ε− n−1X∗�

j X
∗
3(n

−1X∗�
3 X

∗
3)
−1n−1/2X∗�

3 ε

= n−1/2X∗�
j ε− EGnx∗jix∗�3i(EGnx∗3ix∗�3i)−1n−1/2X∗�

3 ε+ op(1)

= n−1/2X⊥
j
�ε+ op(1), (11.16)

where Gn denotes the distribution of (εi, x∗i ) under γn, the second equality holds by
the same WLLN as above combined with the Lindeberg triangular array central limit
theorem (CLT) applied to n−1/2X∗�

3 ε, which yields n
−1/2X∗�

3 ε = Op(1), and the third
equality uses the definition that x⊥ji = x∗ji − EGnx∗jix∗�3i(EGnx∗3ix∗�3i)−1x∗3i. The second
equality of part (e) holds by the Lindeberg CLT. The Lindeberg condition is implied
by a Liapounov condition, which holds by the moment bound in Γ3(γ1, γ2).

We now prove the first result of (11.10) (which assumes |h1| <∞). Using (11.5)
and (11.6), we have

Tn,2 =
n1/2β2/σn + (n

−1X �
2MX1X2)

−1n−1/2X �
2MX1ε

(eσ/σn)(n−1X �
2MX1X2)

−1/2
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= n1/2
β2

σn(Q22n )
1/2
(1 + op(1)) + (Q

22
n )

1/2n−1/2X �
2(In − PX1)ε(1 + op(1))

= n1/2γn,1(1 + op(1)) + (Q
22
n )

1/2(e2 −Qn,12Q−1n,11e1)�n−1/2X �ε(1 + op(1)),

= h1 + (Q
22
n )

1/2(e2 −Qn,12Q−1n,11e1)�n−1/2X⊥�ε+ op(1), (11.17)

where ε = (ε1, ..., εn)
�, e1 = (1, 0)�, e2 = (0, 1)�, Qn = EGnx

⊥
i x

⊥�
i , Q

22
n is the (2, 2)

element of Q−1n , the second equality uses Lemma S3(b) and (d), the fact that Q
22
n =

(Qn,22−Q2n,12Q−1n,11)−1, and the fact that λmin(Qn) ≥ κ > 0 by definition of Γ3(γ1, γ2),
the third equality uses the definition of γn,1 and Lemma S3(a), and the fourth equality
holds by the assumption that n1/2γn,1 → h1 and Lemma S3(e).
Using (11.5) and (11.7), we have

hTn,1(θ0) = n1/2(n−1X �
1X1)

−1n−1X �
1X2β2/σn + (n

−1X �
1X1)

−1n−1/2X �
1ε

(eσ/σn)(n−1X �
1X1)

−1/2

= n1/2
Qn,12β2

σnQ
1/2
n,11

(1 + op(1)) +Q
−1/2
n,11 n

−1/2e�1X
�ε(1 + op(1))

= h1
Qn,12(Q

22
n )

1/2

Q
1/2
n,11

+Q
−1/2
n,11 n

−1/2e�1X
⊥�ε+ op(1), (11.18)

where the second equality uses Lemma S3(a) and (d), and the third equality uses the
assumption that n1/2γn,1 = n

1/2β2/(σ
2
nQ

22
n )

1/2 → h1 and Lemma S3(e).
We have

Q−1n =
1

Qn,11Qn,22 −Q2n,12

�
Qn,22 −Qn,12
−Qn,12 Qn,11

�
and so

γn,2 =
Q12n

(Q11n Q
22
n )

1/2
=

−Qn,12
(Qn,11Qn,22)1/2

and

Q22n =
Qn,11

Qn,11Qn,22 −Q2n,12
= (Qn,22)

−1(1− γ2n,2)
−1, (11.19)

where the first equality in the second line holds by the definition of γn,2 in (2.6) of
the paper. This yields

Qn,12(Q
22
n )

1/2

Q
1/2
n,11

=
Qn,12(1− γ2n,2)

−1/2

Q
1/2
n,11Q

1/2
n,22

= −γn,2(1− γ2n,2)
−1/2 = −h2(1− h22)−1/2 + o(1).

(11.20)
Combining (11.17), (11.18), and (11.20) gives� hTn,1(θ0)

Tn,2

�
=

�
−h1h2(1− h22)−1/2 +Q

−1/2
n,11 n

−1/2e�1X
⊥�ε

h1 + (Q
22
n )

1/2(e2 −Qn,12Q−1n,11e1)�n−1/2X⊥�ε

�
+ op(1). (11.21)

The first result of (11.10) holds by (11.21), the Lindeberg CLT, and the Cramér-Wold
device. The Lindeberg condition is implied by a Liapounov condition, which holds
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by the moment bound in Γ3(γ1, γ2). The asymptotic covariance matrix is I2 by the
following calculations. The (1, 2) element of the asymptotic covariance matrix equals

EGnQ
−1/2
n,11 e

�
1n
−1X⊥�X⊥(e2 −Qn,12Q−1n,11e1)(Q22n )1/2

= Q
−1/2
n,11 e

�
1Qn(e2 −Qn,12Q−1n,11e1)(Q22n )1/2 = 0, (11.22)

where the first equality holds because EGnx
⊥
i x

⊥�
i = Qn and the second equality holds

by algebra. The (1, 1) element equals

EGnQ
−1/2
n,11 e

�
1n
−1X⊥�X⊥e1Q

−1/2
n,11 = Q

−1/2
n,11 e

�
1Qne1Q

−1/2
n,11 = 1. (11.23)

The (2, 2) element equals

EGn(Q
22
n )

1/2(e2 −Qn,12Q−1n,11e1)�n−1X⊥�X⊥(e2 −Qn,12Q−1n,11e1)(Q22n )1/2

= (Q22n )
1/2(e2 −Qn,12Q−1n,11e1)�Qn(e2 −Qn,12Q−1n,11e1)(Q22n )1/2

= (Q22n )
1/2(Qn,22(1− γ2n,2))(Q

22
n )

1/2 = 1, (11.24)

where the second equality holds by algebra and the definition of γn,2 and the third
equality holds by the third result in (11.19). This completes the proof of the first
result in (11.10).

Next, we prove the second result in (11.10). Using (11.7), we have

eTn,1(θ0) = (n−1X �
1MX2X1)

−1n−1/2X �
1MX2ε

(eσ/σn)(n−1X �
1MX2X1)

−1/2

= (Q11n )
1/2(e1 −Qn,12Q−1n,22e2)�n−1/2X⊥�ε+ op(1), (11.25)

where the second equality holds analogously to (11.17). Combining (11.17) and
(11.25) gives� eTn,1(θ0)

Tn,2

�
=

�
(Q11n )

1/2(e1 −Qn,12Q−1n,22e2)�n−1/2X⊥�ε
h1 + (Q

22
n )

1/2(e2 −Qn,12Q−1n,11e1)�n−1/2X⊥�ε

�
+ op(1). (11.26)

The second result of (11.10) holds by (11.26), the Lindeberg CLT, and the Cramér-
Wold device. The Lindeberg condition holds as above. The 2× 2 asymptotic covari-
ance matrix has off-diagonal element h2 and diagonal elements equal to one by the
following calculations. The (1, 2) element equals

EGn(Q
11
n )

1/2(e1 −Qn,12Q−1n,22e2)�n−1X⊥�X⊥(e2 −Qn,12Q−1n,11e1)(Q22n )1/2

= (Q11n )
1/2(e1 −Qn,12Q−1n,22e2)�Qn(e2 −Qn,12Q−1n,11e1)(Q22n )1/2

= (Q11n )
1/2(−Qn,12(1−Q2n,12Q−1n,11Q−1n,22))(Q22n )1/2

= (Qn,11(1− γ2n,2))
−1/2(−Qn,12(1− γ2n,2))(Qn,22(1− γ2n,2))

−1/2

=
−Qn,12

(Qn,11Qn,22)1/2
=

Q12n
(Q11n Q

22
n )

1/2
= γn,2 = h2 + o(1), (11.27)
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where the second equality holds by algebra, the third equality holds by the second and
third results of (11.19) and the third result of (11.19) with 22 and 11 interchanged,
and the fifth and sixth equalities hold by the second result of (11.19).
The (1, 1) element equals

EGn(Q
11
n )

1/2(e1 −Qn,12Q−1n,22e2)�n−1X⊥�X⊥(e1 −Qn,12Q−1n,22e2)(Q11n )1/2

= (Q11n )
1/2(e1 −Qn,12Q−1n,22e2)�Qn(e1 −Qn,12Q−1n,22e2)(Q11n )1/2 = 1, (11.28)

where the second equality holds by an analogous argument to that in (11.24). The
(2, 2) element equals one by (11.24). This completes the proof of the second result in
(11.10).

Finally, we show that J∗h(x) = Φ(x) when |h1| =∞. Equations (11.25) and (11.28)
hold in this case, so eTn,1(θ0)→d N(0, 1) under {γn : n ≥ 1}. The first three equalities
of (11.17) hold when |h1| =∞ and show that |Tn,2|→p ∞. These results combine to
yield

Pθ0,γn(
hTn,1(θ0) ≤ x & |Tn,2| ≤ c) = o(1) and (11.29)

Pθ0,γn(
eTn,1(θ0) ≤ x & |Tn,2| > c) = Pθ0,γn(eTn,1(θ0) ≤ x) + o(1)→ Φ(x)

for all x ∈ R. This and (11.9) combine to give Pθ0,γn(T ∗n(θ0) ≤ x) → Φ(x) and
J∗h(x) = Φ(x) when |h1| =∞.

11.3 Verification of Assumption G

Assumption G is verified in the conservative model selection example by using a
variant of the argument in the proof of Lemma 4 in AG1 with τn = an = n

1/2 and
dn = 1. In the present case, (8.16) of AG1 holds with

Rn(t) = q
−1
n

qn[
j=1

1(|b1/2n (θ − θ0)/eσ(1)n,b,j| ≥ t)
+q−1n

qn[
j=1

1(|b1/2n (θ − θ0)/eσ(2)n,b,j| ≥ t), where
eσ(1)n,b,j = eσn,b,j(b−1n X �

1,n,b,jX1,n,b,j)
−1/2,eσ(2)n,b,j = eσn,b,j(b−1n X �

1,n,b,jMX2,n,b,jX1,n,b,j)
−1/2, (11.30)

and (X1,n,b,j, X2,n,b,j, eσn,b,j) denotes (X1,X2, eσ) based on the jth subsample rather
than the full sample. (Equation (8.16) of AG1 holds with Rn(t) defined as in (11.30)
for all three versions of the tests: Tn(θ0) = T ∗n(θ0), −T ∗n(θ0), and |T ∗n(θ0)|.) As in the
proof of Lemma 4 of AG1, it suffices to show that Rn(t) converges in probability to
zero under all sequences {γn,h : n ≥ 1} for all t > 0. The assumption that bn/n→ 0
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and the result established below that n1/2(θ − θ0)/σn = Op(1) under all sequences
{γn,h : n ≥ 1} imply that for all δ > 0, wp→ 1,

Rn(t) ≤ R(1)n (δ, t) +R(2)n (δ, t), where R(m)n (δ, t) = q−1n

qn[
j=1

1(δσn/eσ(m)n,b,j ≥ t) (11.31)

for m = 1, 2. The variance of R(m)n (δ, t) goes to zero under {γn,h : n ≥ 1} by the
same U-statistic argument for i.i.d. observations as used to establish Assumption E
of AG1 in the i.i.d. case, see Section 3.3 of AG1. The expectation of R(m)n (δ, t) equals
Pθ0,γn,h(eσ(m)n,b,j/σn ≤ δ/t). We have

eσ(1)n,b,j/σn = (eσn,b,j/σn)[(b−1n X �
1,n,b,jX1,n,b,j)

−1/2 −Q−1/2n,11 +Q
−1/2
n,11 ] = Q

−1/2
n,11 + op(1),

(11.32)
where the second equality holds by Lemma S3 (or, more precisely, by the same argu-
ment as used to prove Lemma S3). In addition, Q−1/2n,11 is bounded away from zero as

n → ∞ by the definition of Γ3(γ1, γ2). In consequence, the expectation of R
(1)
n (δ, t)

goes to zero for all δ sufficiently small. Since the mean and variance of R(1)n (δ, t) go
to zero, R(1)n (δ, t)→p 0 for δ > 0 sufficient small. An analogous argument shows that
R
(2)
n (δ, t)→p 0 for δ > 0 sufficient small. These results and (11.31) yield Rn(t)→p 0
under all sequences {γn,h : n ≥ 1}, as desired.
It remains to show that n1/2(θ−θ0)/σn = Op(1) under all sequences {γn,h : n ≥ 1}.

We consider two cases: |h1| = ∞ and |h1| < ∞. First, suppose |h1| = ∞. Then,
the first three equalities of (11.17) hold and show that |Tn,2| →p ∞. In addition,
n1/2(eθ − θ0)/σn = (eσ/σn)(n−1X �

1MX2X1)
−1/2 eTn,1(θ0) = Op(1) by (11.10), Lemma

S3(c), and the definition of Γ3(γ1, γ2). Combining these results gives: when |h1| =∞,

n1/2(θ − θ0)/σn = [n
1/2(hθ − θ0)/σn]1(|Tn,2| ≤ c) + [n1/2(eθ − θ0)/σn]1(|Tn,2| > c))

= op(1) +Op(1). (11.33)

Next, suppose |h1| < ∞, then eTn,1(θ0) = Op(1) and hTn,1(θ0) = Op(1) by (11.10).
In addition, eσ/σn →p 1, (n

−1X �
1X1)

−1/2 = Op(1), and (n−1X �
1MX2X1)

−1/2 = Op(1)
by Lemma S3 and the definition of Γ3(γ1, γ2). Combining these results gives: when
|h1| <∞,

n1/2(θ − θ0)/σn = [n
1/2(hθ − θ0)/σn]1(|Tn,2| ≤ c) + [n1/2(eθ − θ0)/σn]1(|Tn,2| > c))

= (eσ/σn)(n−1X �
1X1)

−1/2 hTn,1(θ0)1(|Tn,2| ≤ c)
+(eσ/σn)(n−1X �

1MX2X1)
−1/2 eTn,1(θ0)1(|Tn,2| > c))

= Op(1), (11.34)

which completes the verification of Assumption G.
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TABLE B-II
AR EXAMPLE: CI COVERAGE PROBABILITIES (×100) FOR NOMINAL 95% CIs

n=131 Upper CIs Lower CIs
Case DGP or Asy FCV Sub Hyb FCV Sub Hyb

-.90 90.0 93.9 94.4 95.0 94.1 96.1
-.50 92.8 92.7 94.7 92.6 92.6 94.4
.00 93.8 89.9 94.5 91.8 95.1 95.6

(i) GARCH ρ =.70 95.9 83.6 95.9 88.4 97.7 97.7
MA=.15, .80 96.7 83.2 96.7 86.7 97.8 97.8
AR=.80 .90 97.7 83.9 97.7 84.0 97.9 97.9
h27 = .86 .97 98.9 89.2 98.9 74.7 97.5 97.5

1.0 99.6 95.5 99.6 53.6 95.1 95.1

FS-Min 90.0 83.2 93.9 53.6 92.4 94.4
Asy 95.0 57.3 95.0 63.9 95.0 95.0

Adj-Asy - 82.6 95.3 - 95.0 95.2

(ii) IGARCH
MA=.20, FS-Min 90.7 82.2 93.9 56.2 92.4 94.6
AR=.80

(iii) GARCH FS-Min 90.4 86.2 94.1 60.6 92.9 95.0
MA=.70, Asy 95.0 77.2 95.0 79.2 95.0 95.0
AR=.20 Adj-Asy - 88.7 95.3 - 94.8 95.1
h27 = .54

(iv) i.i.d. FS-Min 90.5 82.8 94.0 50.4 92.7 94.3
h27 = 1 Asy 95.2 47.4 95.0 53.4 95.0 95.0

Adj-Asy - 78.8 95.0 - 95.1 95.0

(v) ARCH4 FS-Min 90.5 84.4 93.9 58.8 92.8 94.8
(.3,.2,.2,.2) Asy 95.0 77.2 95.0 79.2 95.0 95.0
h27 = .54 Adj-Asy - 88.7 95.3 - 94.8 95.1

(vi) IARCH4 FS-Min 90.5 84.0 93.9 60.8 92.4 94.7
(.3,.3,.2,.2)

Min Over Asy 94.8 47.5 94.8 54.5 94.9 94.9
h27 ∈ [0, 1] Adj-Asy - 78.8 95.1 - 94.8 95.0
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FIGURE B-1.–Hybrid, FCV, and Subsample Critical Values as a Function of g ∈
H: Hybrid = max{curved line, horizontal line}, FCV = horizontal line, Subsample
= curved line
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FIGURE B-1. (cont.).
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FIGURE B-2.–Critical Values as a Function of g ∈ H for SC-Sub, SC-FCV, and
SC-Hyb Tests: In Each Panel the Lower Curve Is cg(1− α) & the Lower Horizontal
Is the FCV Critical Value



x 1.61.41.210.80.60.40.20

3.5

3

2.5

2

1.5

1 x 1.61.41.210.80.60.40.20

3.5

3

2.5

2

1.5

1

Upper Horizontal: SC-Hyb & SC-FCV Upper Horizontal: SC-Hyb & SC-FCV
Upper Curve: SC-Sub Upper Curve: SC-Sub

(e) (f)

FIGURE B-2. (cont.).
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