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Abstract
Most theoretical or applied research on repeated games with imper-

fect monitoring has restricted attention to public strategies ; strategies that
only depend on history of publicly observable signals, and perfect public
equilibria (PPE); sequential equilibria in public strategies. The present
paper sheds light on the role of private strategies ; strategies that depend
on players’ own actions in the past as well as observed public signals. Our
main finding is that players can sometimes make better use of information
by using private strategies and efficiency in repeated games can often be
drastically improved. We illustrate this for games with a small signal
space, where the Folk Theorem fails, as well as for games with a large
signal space, for which the Folk Theorem holds. Our private strategy
consists of two states and has the property that the opponent’s incentives
are independnt of the state the player is in. We provide two different char-
acterizations of our two-state equilibrium for general two-person repeated
games with imperfect public monitoring.

Keywords: Efficiency, Imperfect Public Monitoring, Mixed Strat-
egy, Partnership Game, Private Equilibrium, Private Strategy, Repeated
Games, Two-State Machine.

JEL classification codes: C72, C73, D82

1 Introduction
The theory of repeated games under imperfect monitoring provides a formal
framework to explore the possibility of cooperation in long term relationships,
∗This paper stems from the two independent papers: “Check Your Partner’s Behavior by

Randomization: New Efficiency Results on Repeated Games with Imperfect Monitoring” [6]
by Michihiro Kandori and “Private Strategy and Efficiency: Repeated Partnership Games
Revisited” [14] by Ichiro Obara. An old version of this paper was included in Chapter 1 of
the doctoral thesis of the second author, who is very grateful to George Mailath and Andrew
Postlewaite for their advice and support. We also thank many participants in numerous
conferences and workshops. All the remaining errors are ours.
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where each agent’s action is not directly observable. It has been successfully
applied to a number of economic problems: cartel enforcement, internal labor
market, and international policy coordination, to name a few. However, almost
all existing works (including Abreu, Pearce and Stacchetti [2] and Fudenberg,
Levine and Maskin [4]) focus on a simple class of strategies, known as public
strategies. In the present paper, we illustrate that players can make better use
of information by using non-public strategies, which we call private strategies,
and show that efficiency in repeated games can often be drastically improved.
A public strategy is a strategy which only depends on past realizations of

the public signal. In contrast, a private strategy can also depend on private
history; one’s own actions in the past. Our private strategy is a mixed1 strategy
which has the following feature: a player’s continuation strategy depends on the
realization of his or her mixed actions in the past. For example, take a model of
dynamic Cournot competition with stochastic demand (Green and Porter [5]).
In this context, our private strategy has the property that each firm randomly
chooses its present output level and the realized output affects the future output
level.
A rough intuition for the improved efficiency by private strategies may be

obtained by the following observation. It is often the case that a player has
a socially inefficient action that helps to monitor other players’ actions more
accurately. For example, in a team production (or partnership) problem with
decreasing returns to scale, observable output can be more sensitive to the oppo-
nent’s effort, when a player’s effort is low. Hence, if such “monitoring” action
is played with a small probability and the opponents are rewarded/punished
only after such an action is taken, the opponents’ moral hazard problem can
be resolved in a more efficient way. Note that in this story it is vital that
the players’ future behavior (reward/punishment) depends on their past actions
(hence the use of private strategies).
Let us explain our point in more detail with an explicit example. Con-

sider a simple repeated partnership game with two actions {C,D}, two pub-
lic signals {“good”, “bad”} , where the stage game (expected) payoff matrix
has the structure of the standard prisoners’ dilemma. Assume that one’s ef-
fort (to play C) reduces the likelihood of “bad” by a larger margin when the
opponent is making no effort (i.e., when he is taking D). This can be re-
garded as the decreasing returns to scale we discussed, and it is formulated as
Pr (“bad”|C,C) + ε = Pr (“bad”|C,D) = Pr (“bad”|D,C) << Pr (“bad”|D,D),
where ε > 0 is a small number. First note that cooperation cannot be sustained
with the standard trigger strategy when ε is very small because the public signal
is insensitive to a deviation when (C,C) is played. One way to get around this
problem within the class of public strategies is to use a mixed trigger strategy;
mix D with some probability in the cooperative phase. Although playing D
with positive probability causes inefficiency in the stage game payoffs, the public
signal becomes more sensitive to deviations. This may allow players to use a

1 It is well known that public strategies achieve the same equilibrium outcomes as private
strategies, if we consider pure strategies. See footnote 7 for the precise statement.
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mutual punishment after the public signal “bad” to sustain a certain level of co-
operation.2 ,3 Now note that we can improve efficiency further by using private
strategies. When a player is randomizing between C and D, the most informa-
tive action-signal pair with respect to a deviation is (D, “bad”) . Therefore it
is more efficient to start a punishment only after (D, “bad”) . In contrast, the
trigger strategies based only on public information are less efficient, because the
punishment can occur even when C is played, that is, when the public signal
is not informative at all. Our first contribution is to point out that such an
advantage exists in private strategies.
Our second contribution is to find a method to construct a private equilib-

rium which manifests the above intuition. Note that, with private strategies,
each player may not know the other player’s continuation strategy because it
depends on the realizations of past private actions. Hence, players have to com-
pute their beliefs (by Bayes’ rule) about what the opponents are going to do,
and the computation generally becomes fairly complex over time.4 Thus it is
not an easy task to construct an equilibrium which manifests the above idea.
To see this, note that the punishment by the private strategy in the above ex-
ample cannot be a coordinated action. When you are supposed to punish the
other player, you are not sure whether the other player is also going to punish
you. Hence your incentive to punish generally depends on your belief about the
opponent’s future actions, which changes over time in a complex way. It is thus
not obvious how we can provide the right incentive to implement punishment
at the right moment.
Our private strategy can be regarded as a machine which consists of two

states; rewarding state and punishment state. A player may play a mixed
action at each state, and the transition probability between the states depend
on a realization of action-signal pair. Note that there is always uncertainty
regarding the other player’s strategy as we pointed out above. At each point
of time, each player may not know which state the other player is in, or which
continuation strategy is used by the other player. The trick is to choose the right
mixed actions and the right transition probabilities to make one’s incentives
identical (and adequate to support equilibrium actions), no matter which state
the other player is in. Such construction makes one’s belief about what the
other player is going to do irrelevant, in the sense that one’s action is optimal
independent of her belief.
This idea is very powerful in dealing with private information. Indeed it

can deal with not only private information about past actions but also private
signals, if any. A similar idea was first applied by Piccione [16] in the framework
of repeated games with private monitoring. Two-state machine strategies were

2The level of punishment can be adjusted so that players are actually indifferent between
C and D.

3Note that the efficiency can be improved even within the class of public strategies by
using a mixed strategy. To the best of our knowledge, this has not been pointed out in the
existing literature.

4This is the same difficulty as the diffficuly in repeated games with private monitoring.
See Kandori [7].
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first independently found by Ely and Välimäki [3] in repeated games with private
monitoring, and by Obara [14] on which this paper is based.
The paper is organized as follows. We describe our model and provide a

brief review of previous results in Section 2. In Section 3, we show that private
equilibria are more efficient than PPE under a certain conditions for games with
a small signal space. We use a version of partnership games for which the Folk
Theorem fails as shown by Radner, Myerson, and Maskin[17]. In Section 4, we
illustrate that our result holds even for games with a large signal space. Again
we use a partnership game, but with a rich signal space this time. Our model
satisfies the sufficient condition of the Fudenberg-Levine-Maskin Folk theorem,
thus the efficiency is approximately achieved by PPE as δ → 1. However, we
show that our equilibrium approximates efficiency faster, and is always more
efficient than any PPE as long as there exists any nontrivial PPE. Section 5
provides two different characterizations of our two-state machine equilibrium for
general two-person repeated games with imperfect public monitoring. Section
6 discusses related literature and concludes.

2 The Model and Review of Previous Results
In this section we present a general model of repeated games with imperfect
public monitoring and review some of the existing results. Throughout the
paper we consider two-player games. In the stage game, each player i = 1, 2
chooses an action ai ∈ Ai, and they publicly observe a signal ω ∈ Ω. We
assume that Ai and Ω are finite sets and let p(ω|a) denote the probability of
signal ω given action profile a ∈ A = A1 ×A2. The realized payoff to player i
is ui(ai,ω) (so that it conveys no more information than ai and ω do), and the
expected payoff is given by gi(a) =

P
ω∈Ω ui(ai,ω)p(ω|a). Denote i’s mixed

action by αi ∈∆i, and with an abuse of notation, let gi(α) be player i’s expected
payoff associated with mixed action profile α ∈ ∆1 ×∆2. We also let p (·|α) be
probability distribution on public signals given α ∈ ∆1 ×∆2. The stage game
is played over an infinite time horizon t = 0, 1, 2, ..., and player i’s (average)
payoff in the repeated game is given by (1− δ)

P∞
t=0 δ

tgi(a(t)), where a(t) is
the action profile at time t and δ ∈ (0, 1) is the discount factor.
The existing literature restricts attention to public strategies, where action at

time t depends only on the history of publicly observable signal (ω(0), ...,ω(t−1)).
A sequential equilibria in public strategies5 is called a perfect public equilibrium
(PPE), and the structure of this class of equilibria is now well understood.
Roughly speaking, efficiency can be achieved in this class as δ → 1, if the signal
space is large enough (the Fudenberg-Levine-Maskin folk theorem [4]). More
precisely, when |Ω| ≥ |A1|+ |A2|− 1, for a generic choice of payoffs and signal
distributions6, any feasible and individually rational payoff profile can be as-
ymptotically achieved by a PPE as δ → 1 (the Fudenberg-Levine-Maskin folk

5Deviations to non-public strategies are allowed.
6This is because Fudenberg-Levine-Maskin’s full rank conditions and full dimensionality

condition are satisfied generically.
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theorem). When the signal space is small, in contrast, there are well-known
examples where the public perfect equilibria do not achieve efficiency (Radner,
Myerson, and Maskin [17]).
In the present paper, we consider a more general class of strategies, where

action at time t depends on the history of publicly observable signal and his
own action (ω(0), ...,ω(t − 1), ai(0), ..., ai(t − 1)). Such a strategy is called
private, and a sequential equilibrium in private strategies is called a private
equilibrium(PE).7 We demonstrate that private equilibria can outperform PPE
in either case discussed above.8 Namely, for the case where the folk theorem
fails, we show that private equilibria can be fully or almost efficient when PPE
are far away from the Pareto frontier for all δ ∈ (0, 1). Even when the folk
theorem holds, we show that private equilibria can be strictly more efficient
than PPE for each sufficiently large δ < 1, although in the limit δ → 1 they
both achieve efficiency.

3 The Advantage of Private Strategies in Games
with a Small Signal Space

We first examine the case where the signal space is small, so that efficiency
cannot be achieved by PPE (the folk theorem fails). We present a series of
examples where private equilibria outperform PPE, each of which is a special
case of the following model.
The stage game is a symmetric game with Ω = {X,Y } and A1 = A2 =

{C,D}. (Note that the folk theorem condition |Ω| ≥ |A1|+ |A2|− 1 fails.) We
assume the stage game payoffs have the prisoners’ dilemma structure

C D
C 1, 1 −h, 1 + d
D 1 + d,−h 0, 0

where d, h > 0 (D is dominant) and d − h < 1 ((C,C) is efficient, that is, it
Pareto-dominates the equal (public) randomization between (C,D) and (D,C)).
We also assume that the signalling structure is symmetric (p(ω|C,D) = p(ω|D,C)) .
This is a simplified version of the model examined by Radner, Myerson and
Maskin [17] (RMM from now on).9

We derive an upper bound of the PPE payoffs as a benchmark. Our analysis
is a generalization of RMM [17] and Abreu, Milgrom, and Pearce [1] (AMP from
now on). The main difference is that we consider mixed strategies, while those

7These terms “private strategy” and “private equilibrium” are first coined in Obara [14].
8Note that it would be without loss of generality to restrict attention to public strategies if

we were to consider only pure strategies (Abreu, Pearce, and Stacchetti [2]). More precicely,
for any pure strategy, there exists a payoff equivalent public pure strategy. Since a pure
strategy Nash equilibrium is a PPE when the signal distribution has a full support, we need to
use a mixed strategy (whose behavior strategy representation is private) in order to outperform
PPE.

9The action set is continuum in Radner, Myerson, and Maskin [17].
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papers only consider pure strategies. Besides finding an upper bound, this
analysis serve two other purposes. First, we demonstrate a reason why the best
PPE is sometimes in mixed strategies, which has not been pointed out before.
Second, this fact helps to understand a general reason why private strategies
can outperform public strategies (see Remark in Sections 3.2).
We first consider the best trigger strategy equilibrium payoff to sustain a

symmetric profile (αq,αq) where αq is the mixed action playing D with (small)
probability q ∈ [0, 1). Let ω(q) ∈ Ω = {X,Y }, be the signal satisfying
p(ω(q)|D,αq) > p(ω(q)|C,αq). It is the signal to detect player i’s profitable
deviation (D) from the profile (αq,αq).
Consider the following trigger strategy:10

(#)


(1): Play (αq,αq) in the stage game.
(2): If ω 6= ω(q) is observed, go back to (1)

If ω(q) is observed, start playing (D,D) forever with
probability ρ and go back to (1) with probability 1− ρ.

The average symmetric payoff vq satisfies the dynamic programming equations11

vq = (1− δ)g(C,αq) + δ(1− ρp(ω(q)|C,αq))vq (1)

and
vq ≥ (1− δ)g(D,αq) + δ(1− ρp(ω(q)|D,αq))vq. (2)

If αq mixes C and D, they must provide an equal payoff so that (2) is satisfied
with equality. If αq plays C with probability one (q = 0), (2) may not be
binding. However, to obtain the best equilibrium, we need to choose the small-
est probability of punishment ρ so that (2) is binding. From the two dynamic
programming equalities, we obtain a closed form expression of the equilibrium
payoff

vq = g(C,αq)− dq

Lq − 1 , (3)

where
dq = g(D,αq)− g(C,αq) (4)

is the gain from deviation and

Lq =
p(ω(q)|D,αq)
p(ω(q)|C,αq) =

p(ω(q)|D,C)(1− q) + p(ω(q)|D,D)q
p(ω(q)|C,C)(1− q) + p(ω(q)|C,D)q (5)

is the likelihood ratio which measures the degree of observability of deviation.
Plugging into (3) the values in the payoff table, we obtain

vq = 1− q − hq − (1− q)d+ qh
Lq − 1 . (6)

10We allow the use of public randomization device for PPE, but not for PE, and still show
that PE can Pareto-domate PPE.
11Note that we used player 1’s payoff without loss of generality, as the payoff is symmetric.
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Let q∗ ∈ argmaxq∈[0,1] vq. Then vq
∗
is the best trigger strategy equilibrium

payoff (indeed the best strongly symmetric equilibrium payoff) if and only if it
is positive (otherwise, (0, 0) is the best strongly symmetric equilibrium payoff).12

Note that this formula is independent of δ, thus implies that any trigger strategy
equilibrium payoff is inefficient (< 1) how patient players are.
Note that this formula reduces to APM [1]’s formula for the best (pure)

trigger strategy equilibrium payoff when q = 0. We can interpret 1 − q − hq
as the stage game payoff in the cooperative phase and the last term (1−q)d+qh

Lq−1
as the efficiency loss which stems from imperfect monitoring and unnecessary
punishments. This formula clarifies why mixed (public) strategies may help to
improve efficiency. While taking the inefficient action D with a larger proba-
bility q reduces the stage game payoff (g(C,αq)) , it may improve the quality of
monitoring (increase Lq) and reduce the inefficiency associated with unneces-
sary punishments (it may also reduce the deviation gain dq). So q∗ may not be
0 in general, that is, the mixed trigger strategy may achieve a better outcome.
Indeed it is very easy to construct a such example.
In order to get the bound of all the PPE payoffs, we also need to take

into account cases where the optimal strategy pair is asymmetric. Let us
define ωi(α) ∈ {X,Y } by p(ωi(α)|D,α−i) > p(ωi(α)|C,α−i). This is the sig-
nal outcome to detect Player i’s defection at mixed action profile α. When
ω1(α) 6= ω2(α), different players’ deviations can be statistically distinguished,
and asymmetric punishment can enforce the given action α without welfare
loss. Namely, when ω1(α) is realized, we transfer future payoffs from player 1
to player 2 (symmetric argument applies to ω2(α)). Such a movement of future
payoffs can be made in a close vicinity of the Pareto frontier when δ is large,
so that the associated welfare loss is negligible. This is the key observation to
derive the folk theorem (Fudenberg, Levine and Maskin [?]). Now let Q be the
set of α such that ω1(α) 6= ω2(α) ∈ {X,Y }. The actions in Q can be sustained
by the efficient asymmetric punishment, so that the sum of equilibrium payoffs
could potentially be equal to

g∗ ≡ sup
α∈Q

{g1 (α) + g2 (α)} .

It turns out that the sum of all PPE payoffs are bounded by one of the
following four numbers; 2vq∗, the sum of asymmetric efficient points 1 + d− h,
g∗, or the Nash payoff 0, whichever is the largest in the following sense:

Proposition 1 Any PPE payoff profile (v1, v2) satisfies V ∗ = v1 + v2, where
V ∗ = max

©
2vq

∗
, 1 + d− l, g∗, 0ª.13

12A public strategy is strongly symmetric if players play the same action after every public
history.
13We can drop the symmetry assumption for signalling structure. This proposition is still

valid if 2vq
∗
is replaced by v

q∗2
1 + v

q∗1
2 , where v

q∗j
i = gi(C,α

q∗j
j ) −

d
q∗j
i

L
q∗
j
i −1

(d
q∗j
i and L

q∗j
i are

defined in a similar way to (4) and (5))
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Proof. See Appendix.

It is easy to construct examples for which each of these becomes the effective
upper bound of v1+v2. Note that when 2vq

∗
= V ∗, it can be exactly achieved by

a mixed trigger strategy (#) using the symmetric profile
¡
αq
∗
,αq

∗¢
and ω(q∗).

Kandori and Obara [10] shows a couple of examples for which V ∗ = g∗, and g∗

is not exactly achieved (Section 2) or exactly achieved (Section 4).

3.1 An Example of Efficient Private Equilibria

We first present a special case of the above model, where private equilibria
asymptotically achieves full efficiency, while PPE payoffs are bounded away
from the efficiency frontier.
Let us assume 0 < p(X|C,C) < 1, 0 < p(X|D,D) < 1, and p(X|C,D) =

p(X|D,C) = 0. Under this information structure, no PPE can approximate
the efficient point (1, 1). This is formally shown as follows. By Proposition 1,
for (1, 1) to be achieved by a PPE, the best trigger payoff vq should be equal
to 1. Expression (6) shows that this requires q = 0 (C is played for sure in
the first period) and L0 =∞ (deviation to D is perfectly detected), but this is
impossible: As deviation to D makes ω = Y more likely when q = 0, we have
ω(0) = Y and L0 = P (Y |D,C)

p(Y |C,C) =
1

p(Y |C,C) <∞.
In contrast, the efficient payoff profile can be approximated by the following

private strategy, which starts at (1) below.

(##)


(1): Mix between C and D. Choose action D

with a (small) probability q ∈ (0, 1).
(2): If the signal is X and one’s own action was D,

then play D forever. Otherwise, go back to (1).

Note well that (i) the players’ future actions partly depend on their current
actions (so that it is a private strategy) and (ii) thanks to the assumption
p(X|C,D) = p(X|D,C) = 0, when a player chose D and observes X, it is
common knowledge that the other player also chose D (and of course observes
X). The equilibrium conditions are

v = (1− δ)(1− q − qh) + δv (7)

v = (1− δ) (1− q) (1 + d) + δ {1− qp(X|D,D)} v (8)

Equation (7) represents the average payoff when a player plays C today
(while the opponent is employing the above strategy). Note that punishment is
surely avoided in this case, as defection is triggered if and only if both players
play D and the signal is X. Equation (8) shows the average payoff when the
player choosesD today. Punishment is triggered when the opponent also chooses
D and the signal is X, which happens with probability qp(X|D,D). Equation
(7) and (8), taken together, imply that the player is just indifferent between
choosing C and D (the condition for a mixed strategy equilibrium).
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From (7), we have
v = 1− q − qh (9)

Also, by (7) and (8) we get

(1− δ) {(1− q)d+ qh} = δqp(X|D,D)v. (10)

This and (9) result in a quadratic equation in q;

(1− δ) {(h− d)q + d} = δqp(X|D,D)(1− q − qh) (11)

It is easy to show that there is a root of this equation in (0, 1) which tends to
0 as δ → 1. Equation (9) then implies that, as q tends to 0, the average payoff
tends to 1, the payoff from full cooperation. This leads us to the following result.

Proposition 2 In the game defined above, there is a private equilibrium that
approximately attains the fully efficient average payoff (= 1) as the discount fac-
tor tends to unity, while any perfect public equilibrium average payoff is bounded
away from 1 independent of the discount factor.

Proof. See Appendix

Remark (The Essential Idea of Our Paper): Since it is much easier to
detect the other player’s defection when one defects herself, it is more efficient
to trigger a punishment only after such a (private) history. More precisely,
private strategies allow players to start a punishment only after a realization
of action-signal pair for which the likelihood ratio with respect to a defection
is maximized. This high likelihood ratio helps to reduce the inefficiency term
in the formula we obtained before. For this particular example, indeed the
inefficiency term vanished completely because the likelihood ratio is infinity. It
is based on a simple familiar principle: the efficient statistical inference, which
is one of the main underlying theme in any moral hazard model. Note that
public strategies can also use this high likelihood ratio to some extent, but D
needs to be played with a very high probability to do so at the cost of reducing
efficiency in stage games. We can avoid this kind of trade-off between efficiency
and detectability by utilizing private strategies. This is the essential idea why
private strategies can outperform public strategies.

The reader may wonder why the kind of private strategies presented above,
based on a simple intuition, have rarely appeared in the existing literature.
The answer hinges on the assumption of the moving support in this particular
example. It allows players to coordinate their punishments after playing D and
observing X. In another word, a realization of the action-signal pair which
triggers punishment is common knowledge. Suppose that X is observed with
probability ε when (C,D) or (D,C) is played. If ε is very small, this information
structure is very close to the information structure of our example. However,
our simple private trigger strategy is not an equilibrium any more. The problem
is that cooperation/punishment is not common knowledge once X is observed.

9



Each player cannot be sure whether the opponent is in the punishment mode
or in the cooperation mode. Such an inference problem becomes increasingly
more complex as time passes by, even though the opponent is using a fairly
simple strategy as above. As a result, specifying the best action in each period
is usually a formidable task (and the action specified by our trigger strategy is
suboptimal after certain histories).14 The complexity of inference is the most
difficult problem associated with private strategies, and this is why this class of
strategies has not been fully explored. We present a way to address this issue
in the next sub-section.

3.2 Two-State Machine Private Equilibria

In this section, we demonstrate how to construct a private equilibrium when
the signal has full support. We assume that

0 < p (X|CC) < p (X|DC) = p (X|CD) < p (X|DD) < 1
The idea is that “bad” signal X is more likely to realize as more players defect.
This is similar to the information structure in RMM [?] or any other standard
partnership game. We also assume that defection is easier to detect when one
is playing D.

p (X|D,C)
p (X|C,C) <

p (X|D,D)
p (X|C,D) (12)

Note that this implies a form of decreasing returns to scale.15 . Let us denote
p (X|CC) = p0, p (X|CD) = p (X|DC) = p1, and p (X|DD) = p2 in this
section. With this notation, the likelihood ratio defined by (5) is expressed as
Lq = (1−q)p1+qp2

(1−q)p0+qp1
Now consider the following private strategy, which we call a “two-state ma-

chine”. The strategy has two states, R and P , and it begins with state R.
Furthermore, it has the following structure:

• State R (State to Reward the opponent):
Choose D with probability qR (a small number). Go to state P with
probability ρR ∈ (0, 1) if D was taken and X was observed (otherwise,
stay in State R).

• State P (State to punish the opponent):
Choose D with probability qP (a large number). Go to state R with
probability ρP ∈ (0, 1) if D was taken and Y was observed (otherwise,
stay in State P ).

Figure 2 describes this machine graphically.
14For example, since a player is indifferent between playing C and playing D only if she

believes that her opponent is cooperating with probability 1, she cannot stay in the cooperative
phase even after she chose C and observed X.
15The probability of “success” Y is increasing more for the first imput of effort, that is,

p (Y |CD)− p (Y |DD) > p (Y |CC)− p (Y |DC) .
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Figure 1:

First note that this private strategy has the same feature as the one in the
previous section. Each player moves to state P only after (D,X); the most
informative action-signal pair of defection, as (12) shows. Similarly, players
move to state R only after (D,Y ) , which turns out to be the most informative
action-signal pair of cooperation. Second, note that there is a strategic uncer-
tainty we described before. A player is not sure whether the other player is
in state R or state P from the second period (and never will). How can we
check if this machine is a best response strategy at every history given such a
ever-changing belief? To resolve this problem, we choose (qR, qP , ρR, ρP ) in
such a way that no matter which state player 2 is in, player 1 is always indiffer-
ent between choosing C and choosing D. This means that any repeated game
strategy is a best response to the machine, hence so is the machine itself.
Since the game and the strategy is symmetric, subscript i is omitted from

here on as long as it does not cause any confusion. A set of parameters
(qR, qP , ρR, ρP ) is chosen to satisfy the following four equations. When player
2 is in state R , the equilibrium conditions for player 1 are

• (player 1 plays C today)

VR = (1− δ) (1− qR − qRh) + δ {(1− qRp1ρR)VR + qRp1ρRVP} (13)

and
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• (player 1 plays D today).

VR = (1− δ) (1− qR) (1 + d) + δ {(1− qRp2ρR)VR + qRp2ρRVP } (14)

When player 2 is in state P , the equilibrium conditions for player 1 are

• (player 1 plays C today)

VP = (1− δ) (1− qP − qPh) + δ

·
qP (1− p1) ρPVR

+ {1− qP (1− p1) ρP}VP
¸

(15)

and

• (player 1 plays D today)

VP = (1− δ) (1− qP ) (1 + d) + δ

·
qP (1− p2) ρPVR

+ {1− qp (1− p2) ρP}VP
¸

(16)

where VZ can be interpreted as the discounted average payoff for player 1
when player 2 is in state z = R,P .

Equations (13) and (14) imply that player 1 is indifferent between C and
D when player 2 is in state R and if her continuation payoff is completely
determined by her opponent’s state. Similarly, (15) and (16) imply that player
1 is indifferent between C and D when player 2 is in state P . A system of
these equations implies that player 1 is completely indifferent among all the
repeated game strategies, thus player 2’s state indeed determines player 1’s
continuation payoff completely as we assumed. Any payoff difference one can
make in the current period is exactly offset by the difference of the continuation
payoffs caused by the change of the other player’s transition probability. Let us
emphasize again that a player never knows what is the opponent’s continuation
strategy or which state the opponent is in during the game. However, players
do not have to know them because their expected payoffs cannot be affected by
their own strategies. Note that this logic is somewhat similar to the one for
a totally mixed strategy equilibrium in a finite normal form game. What is
interesting here is that the same thing is done for an infinite game with only a
finite number of equations and value functions.
The above system of equilibrium conditions consists of four equations (13)-

(16) and six unknowns (VZ , q∗Z , ρ
∗
Z , Z = R,P ). We can show that, when δ is

close to 1, this system has a solution such that (i) the probabilities (q∗Z , ρ
∗
Z , Z = R,P )

are in [0, 1], and (ii) q∗R → 0 as δ → 1.16 By a manipulation similar to the
one to derive the formula for the trigger equilibrium payoff (3), we can obtain
V ∗R = 1 − q∗R − q∗Rh − (1−q∗R)d+q∗Rh

L1−1 . Hence the property (ii) means that the
payoff arbitrary close to 1− d

L1−1 is achieved as a PE as δ → 1.

16 It turns out that q∗p can be set to 1.
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Proposition 3 Suppose that p2−p1 > p1d+(1− p2)h.17 Then for any η > 0,
there exists a δ such that for all δ ∈ (δ, 1) , there exists a two-state machine
private equilibrium whose payoff V (δ) is larger than 1− d

L1−1 − η.

The direct proof is found in the Appendix. Later we show how to construct
a two-state machine equilibrium for general two players stage game, and the
above Proposition will be derived as a special case (see Section 5.2.1.).
Note that this formula uses the likelihood ratio L1

¡
> L0

¢
instead of L0

or Lq for any q ∈ (0, 1) , but otherwise it looks exactly like the best trigger
strategy payoff. The advantage of private equilibrium comes from this larger
likelihood ratio. As a corollary to Propositions 1 and 3, we can show that the
PE Pareto-dominates the best symmetric PPE payoff.

Corollary 4 Suppose that p2 − p1 > p1d + (1− p2)h, h > d, and 1 − d
L1−1 >

1+d−h
2 , then there exists a δ such that for all δ ∈ (δ, 1) , there exists a two-state

machine equilibrium which Parero-dominates the best symmetric PPE payoff.18

Proof. See Appendix.

Although certain restrictions are imposed on the structure of the stage game
for this corollary, there still exists an open set of parameters which satisfies all
these restrictions. As an example of Corollary 4, we construct an example where
private equilibria are nearly efficient, while the only PPE is the repetition of the
stage game Nash equilibrium.

Example : Assumed that d = κ > 0, h = 1 + κ > 0, and p (X|CC) = 1
2

p (X|CD) = p (X|DC) = 1
2 + ²

p (X|DD) = 1− ²

where ² is a small positive number.19

It is easy to show that the assumptions for Proposition 4 is satisfied for small
² if κ < 1. As ² becomes small, it becomes more difficult to detect the opponent’s
deviation when (C,C) is played. The formula (6) 1−q−qh− (1−q)d+qh

Lq−1 becomes

approximately 1− q (2 + κ)− (1−q)κ+q(1+κ)
q = −q (2 + κ)− κ

q for small ², which
is a negative number. This means that the trigger strategy cannot sustain
17This assumption turns out to be equivalent to VR (δ) > VP (δ) , where VR (δ) and VP (δ)

are derived from the equations (13) - (16). Proposition 12 in Section 5.2.1 derives expressions
for VR (δ) and VP (δ) in a general setting, and the detailed explanation of the present example
can be found there.
18Note that the best symmetric PPE is the most efficient PPE as we allow public random-

ization devices for PPE. Thus our PE (which does not use a device) is more efficient than
any PPE.
19When a player is playing C, the distribution of the public signal is not so sensitive to the

other player’s action. This implies that the realized payoffs have to vary large to generate
the fixed expected payoff matrix as ² becomes small. In particular, u (C,X) → −∞ and
u (C,Y )→∞ as ²→ 0.
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anything other than the repetition of (D,D). Another candidate of the upper
bound for symmetric PPE payoffs is simply 1+d−h

2 = 0 by Proposition 1. Hence
there exists a ² such that for ² ∈ (0, ²) the only PPE is the repetition of the
one shot Nash equilibrium independent of discount factor. On the other hand,
the private equilibrium achieves 1 − d

L1−1 as δ → 1, which is approximately
1− κ with small ². Since κ can be an arbitrary small positive number, we can
construct an example where the PE is approximately efficient and the only PPE
is the repetition of the one-shot Nash equilibrium.

4 The Advantage of Private Equilibria with a
Large Signal Space

The preceding analysis focuses on the case with signal space, where the folk
theorem in public strategies fails. In this section we present an example to
show that even when the folk theorem holds, so that efficiency is asymptotically
achieved by PPE, PE may do better than any PPE for each sufficiently high20

discount factor δ < 1. It is a version of the prisoners’ dilemma, whose expected
stage game payoffs are given by the following table.

C D
C 1, 1 −6, 2
D 2,−6 0, 0

The public signal ω takes on three values, X, Y1, and Y2, and the probability
distributions are given below.

X Y1 Y2
(C,C) 1/3 1/3 1/3
(D,C) 0 1/2 + ² 1/2− ²
(C,D) 0 1/2− ² 1/2 + ²
(D,D) 1/3 1/3 1/3

Note that, as long as ² > 0, the pairwise full rank condition (PFR) is sat-
isfied at (C,C), that is, the first three rows are linearly independent.21 This
means that each player’s defection at (C,C) is statistically discriminated (player
i’s deviation makes signal Yi more likely, i = 1, 2). So the Fudenberg-Levine-
Maskin Folk Theorem applies, and the efficient payoff (1, 1) can be approxi-
mately achieved by a PPE as δ → 1. Also note that this model is similar to the
model in Section 2, where signal X arises only when both players take the same
action. Therefore, it is easy to check that the efficient payoff (1, 1) can also be
approximately achieved by a PE as δ → 1 by the same strategy (##) used in
20 If δ is small, the only equilibrium is a trivial one (the repetition of the stage game equi-

librium), which is by definition a PPE. In our example, a PE does strictly better than any
PPE whenever a non-trivial equilibrium exists.
21When ² = 0, PFR fails at any (possibly mixed) action profile, because at most two rows

in the above table are linearly independent.
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Section 3.1. In summary, both PPE and PE asymptotically achieves efficiency
as δ → 1 in this example. We can show, however, that the PE in Section 2 does
better than any PPE for all sufficiently large δ < 1, if ² is small enough.
Formally, we derive the following upper bound of the best symmetric PPE

payoffs.

Proposition 5 For any (large) H > 0, there is a (small enough) value of the
signal distribution parameter ² > 0 such that

max

½
1− (1− δ

δ
)H, 0

¾
is an upper bound of the best symmetric PPE payoffs under δ.

Note that, when H is large, the upper bound is a steep (almost linear) curve
for δ sufficiently close to 1 (and otherwise it is 0). The proof is given in Appendix
B. Intuitively, this bound is derived by the following observation. It turns
out that in our example positive payoffs cannot be sustained if we punish the
players simultaneously. However, as long as ² > 0, we can utilize an asymmetric
punishment where we “transfer” player i’s future payoff to player j, when player
i’s defection is suspected (i.e., when Yi arises). Hence to support a payoff profile
by a PPE, we must require the future payoffs to vary in the northwest/southeast
directions around the payoff profile to be supported. As the players’ defections
become indistinguishable (² → 0), however, we need huge payoff transfers to
support cooperation, and for such transfers to be in the feasible payoff set, the
discount factor should be sufficiently large. This observation provides a lower
bound of δ to support the given payoff profile, which in turn provides the upper
bound of the PPE payoffs for each δ in Proposition 5.
On the other hand, the private equilibrium in Section 3.1 relies only on the

assumption p(X|D,D) > 0 = p(X|D,C) = p(X|C,D), so that it also works
in the present example, irrespective of the level of ². As in Section 2, we can
derive the equilibrium probability qi of defection for each player i by solving the
following quadratic equation in q;

(1− δ) {(h− d)q + d} = δqp(X|D,D)(1− q − qh) (17)

Note that, in the current example, we have h = 6, d = 1 and p(X|DD) = 1/3.
Hence (17) becomes

f(q) ≡ 7δq2 + (15− 16δ)q + 3(1− δ) = 0

. As we are interested in the most efficient equilibrium (hence the one with the
smallest q), we choose the smaller root, denoted q(δ). Computation shows that
this solution is real and lies in [0, 1] when δ ≥ 0.992. The associated symmetric
private equilibrium payoff for each player is v (δ) = 1 − 7q(δ). Figure 2 plots
this along with the upper bound of symmetric PPE payoffs in Proposition 5:
1 − ( 1−δδ )H, where H is set to be 500 by choosing a suitable small ². The
horizontal axis represents the discount factor δ. The solid curve represents the
private equilibrium payoff, while the thin dotted straight line is an upper bound
of all PPE payoffs.
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Hence, for each δ < 1, a PE does better than any PPE (whenever something
other than the repetition of the stage game equilibrium can be sustained).

5 Generalization
In this section, we demonstrate how to construct a two-state machine equilib-
rium in general two-person repeated games. As we generalize our construction
of private strategy equilibria, it may help to generalize two state machine as
well. An obvious way to generalize it is to incorporate more than two states.
We first show that restricting attention to two-state machine entails no loss of
generality. In the next subsection, we introduce general machines with many
states, which share the same property with the simple two state machine in the
previous sections, and show that they can be reduced to a two state machine.

5.1 Two State Is Enough

We formally define generalized machine with many states as follows. A machine

Mi for player i = 1, 2 is
n
{θni }lin=0 ,αi, µi

o
(li can be ∞), where {θni }lin=0 is the

set of player i0s states with θ0i being the initial state. Player i0s behavior
strategy at the state θni is α

n
i ∈ ∆i, and µnmi (ai,ω) is the probability to transit

from θni to θ
m
i when ai is played and ω is observed.

Let supp(αni ) be the support of α
n
i . Suppose that (M1,M2) satisfies the

following conditions for i = 1, 2 for some bounded sequence of real numbers

V =
³
{V n1 }l2n=0 , {V n2 }l1n=0

´
.

For n = 0, 1, ...., lj (18)

∀ai ∈ A∗i , V
n
i = (1− δ) gi(ai,α

n
j ) +

δ
X
a2∈A2

X
ω∈Ω

ljX
m=1

αnj (aj) p (ω|ai, aj)µnmj (aj ,ω)V
m
i
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∀ai /∈ A∗i , V
n
i ≥ (1− δ) gi(ai,α

n
j ) +

δ
X
a2∈A2

X
ω∈Ω

ljX
m=1

αnj (aj) p (ω|ai, aj)µnmj (aj ,ω)V
m
i

A∗i = ∪lin=1supp (αni )

This is clearly a straightforward generalization of the equations (13)-(16). This
machine is basically a many-state analogue of the two state machine in previous
sections.
Consider any sequential equilibrium which consists of a pair of machines

with many states, which satisfies the above equations. We can show that there
exists a sequential equilibrium with a two state machine which achieves the
same equilibrium payoff.22

Proposition 6 If a pair of machines (M1,M2) with many states (2 ≤ l1, l2 ≤ ∞)
satisfies (18), there exists a pair of two state machines which constitute a se-
quential equilibrium with the payoff profile

¡
V 001 , V

00
2

¢
=

Ã
sup

n=0,...,l2

{V n1 } , sup
n=0,...,l1

{V n2 }
!
.

Proof. See Appendix.

The intuition of the proof is very simple. Player i0s state θni determines
player j0s continuation payoff completely. If the number of player i0s states is
finite, then there exists player i0s state θi which maximizes player j0s continua-
tion payoff and θi which minimizes player j

0s continuation payoff. Then player i
can always generate player j’s payoff at any other state θni by randomly moving
to θi and θi when she is supposed to move to θ

n
i . Hence she needs only two states

to generate any payoff of player j associated with all states. When the number
of the states is not finite, we may not be able to find such θi and θi. However, we
can still find a sequence of the states (and mixed actions associated with them)
to approximate V 00j = supn=0,...,li

©
V nj
ª
and V 01j = infn=0,...,li

©
V nj
ª
, and we

can construct a two state machine whose states correspond to supn=0,...,li
©
V nj
ª

and infn=0,...,li
©
V nj
ª
i, j = 1, 2, by choosing a convergent subsequence.

Remark 7 It turns out that any payoff profile (V1, V2) ∈
£
V 011 , V

00
1

¤×£V 012 , V 002 ¤
can be supported by using the two state machine we constructed. For example,
if player i chooses V 00j and V 01j with probability (1− λi,λi) in the first period,
this is still a sequential equilibrium and player j’s expected average payoff is
(1− λi)V

00
j + λiV

01
j , j 6= i.

22Recall that Piccione [16] used such a machine with countable states in the context of
repeated games with private monitoring, and Ely and Valimaki [3] succeeded to simplify it
to a two state machine. The following result provides an algorithm to reduce the number of
states to two in more general settings.
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5.2 General Two State Machine

Now we can focus on two state machines. We use R and P to denote “reward”
and “punishment” states as in Section 3.2. Let AZi denote the support of the
equilibrium mixed action αZi for state Z = R,P . We are going to show that
the equilibrium condition ((18) for the two-state case) can be simplified in two
ways. The first characterization result shows that the equilibrium condition is
equivalent to the following simpler system of linear inequalities:

(LI) For i, j = 1, 2 and j 6= i, there exist xRi : Ω × ARj → [0,∞) and
xPi : Ω×APj → [0,∞) such that

∀ai ∈ A∗i V Ri = gi(ai,α
R
j )−E[xRi (ω, aj)|ai,αRj ] (19)

∀ai /∈ A∗i V Ri = gi(ai,αRj )−E[xRi (ω, aj)|ai,αRj ] (20)

∀ai ∈ A∗i V Pi = gi(ai,α
P
j ) +E[x

P
i (ω, aj)|ai,αPj ], (21)

∀ai /∈ A∗i V Pi = gi(ai,αpj ) +E[xPi (ω, aj)|ai,αPj ], and (22)

V Ri > V Pi . (23)

A∗i = A
R
i ∪APi (24)

Proposition 8 (Linear Inequalities Characterization) If there is a two-
state machine equilibrium which satisfies the equilibrium condition (18), then
(LI) is satisfied. Conversely, if (LI) holds, then there is a two-state machine
equilibrium which satisfies the equilibrium condition (18) for

¡
αZ , V Z , Z = R,P

¢
,

provided that discount factor δ is close enough to unity.

The proof is given in the Appendix. Intuitively, xRi and x
P
i in (LI) represent

the future payoff variations in each state of a two-state machine. Condition
(LI) reveals that there is a certain restriction on the actions that can be used
in a two-state machine:

Proposition 9 The (potentially mixed) actions used in a two-state machine
equilibrium αRi and α

P
i , and their support A

∗
i =supp(α

R
i )∪supp(αRi ) must satisfy

the separation condition

min
ai∈A∗i

gi(ai,α
R
j ) > max

ai∈Ai
gi(ai,α

P
j ) (25)

Proof. Condition (19) and the non-negativity of xRi implies gi(ai,α
R
j ) ≥ V R

for all ai ∈ A∗i . In contrast, (21), (22), and the non-negativity of xPi shows
V P ≥ gi(ai,αPj ) for all ai ∈ Ai. The corollary follows from V Ri > V Pi .

The separation condition is necessary for a two-state machine equilibrium,
but it is also sufficient under good observability. To state formally what “good
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observability” means, let us introduce some more notations first. Let gi(a,αRj )
be the vector of player’s i0s expected payoffs given αRj . Let P (aj) be a pos-
itive |Ai| × |Ω| matrix whose k, l element is p

¡
ωl|aki , aj

¢
and define, for any

A0j ⊂ Aj , P
¡
A0j
¢
by P

¡
A0j
¢
=

µ
P
¡
a1j
¢
, ..., P

µ
a
|A0j|
j

¶¶
(a |Ai| × |Ω|

¯̄
A0j
¯̄
ma-

trix). Finally, let xZi (aj) = αZj (aj) ·
¡
xZi (ω

1, aj), ..., x
Z
i (ω

|Ω|, aj)
¢
and xZi

¡
A0j
¢
=µ

xi(a
1
j ), ...,xi(a

|A0j|
j )

¶0
for Z = R,P. Then, (19)-(22) can be compactly ex-

pressed as

gi(a,α
R
j )− V Ri · I+ hRi = P

¡
A∗j
¢ · xRi (A∗j ) (26)

gi(a,α
P
j )− V Pi · I+ hPi = −P ¡A∗j¢ · xPi (A∗j )

where I =(1, ..., 1)0 ∈ <|Ai| and hZi ≥ 0 denotes non-negative slack variables,
which correspond to the difference between the left and right hand sides of
incentive constraints in (LI) (hence hki is 0 if the corresponding action profile a

k
i

is in A∗i ). Geometrically, this means that the left hand side is contained in the
convex cone generated by the column vectors of P

¡
A∗j
¢ ¡
or − P ¡A∗j¢¢ , which

we denote by cone
¡
P
¡
A∗j
¢¢ ¡−cone ¡P ¡A∗j¢¢¢.

These equations (26) imply that a more informative signalling structure (in
the sense of Blackwell) leads to a better two state machine. Let ew0 and ew be a
random public signal and assume that ew0 is a garbling of ew. Then the following
result is immediately obtained.

Proposition 10 If ew0 is a (strict) garbling of ew in the sense of Blackwell,
then for any two state machine equilibrium with ew0 with the equilibrium pay-
off

¡
V 0R1 , V 0R2

¢
, there exists a two state machine equilibrium with ew with the

equilibrium payoff
¡
V R1 , V

R
2

¢ ≥ (>) ¡V 0R1 , V 0R2
¢
.

Proof. Let p0 and p be density functions for ew0 and ew respectively. Then
there exist density functions q (·|ω0) on Ω for each ω0 ∈ Ω and p0 (ω|a) =P

ω0 q (ω|ω0) p (ω0|a) . This implies that cone (P 0 (A∗i )) ∈ cone (P (A∗i )). There-
fore, for any two state machine

¡
α0Zj , V

0Z
i ,h0Zi ,x

0Z
i (A

∗
j ), z = R,P

¢
which sat-

isfies (26) with p0, there exists xZi (A
∗
j ) to satisfy (26) with p for the same¡

α0Zj , V
0Z
i ,h0Zi

¢
.

Next suppose that ew0 is a strict garbling of ew, that is, q (·|ω0) > 0 for all
ω0 ∈ Ω. Then, cone (P 0 (A∗i )) / {0} is in the relative interior of cone (P (A∗i )) .
Note that I is also in the relative interior of cone (P (A∗i )) .

23 Thus, for any
two state machine

¡
α0Zj , V

0Z
i ,h0Zi ,x

0Z
i (A

∗
j ), z = R,P

¢
which satisfies (26) with

p0, there exists ηi ∈ <++ and xZi (A∗j ) which satisfies
gi(a,α

0R
j )−

¡
V 0Ri + ηi

¢ · I+ h0Ri = P
¡
A∗j
¢ · xRi (A∗j )

23 I is in the relative interior of cone
³
P
³
A∗j
´´

if and only if there exists some aj ∈ A∗j and
ω ∈ Ω for which p (ω|a) is not constant for all ai ∈ Ai. Note that this cannot happen when
there exists a two state machine equilibrium for p0 because then the separation condition is
violated.
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gi(a,α
0P
j )− V 0Pi · I+ h0Pi = −P ¡A∗j¢ · xPi (A∗j )

Thus we can obtain a two state machine equilibrium with an even higher equi-
librium payoff

¡
V 0R1 , V 0R2

¢
=
¡
V R1 + η1, V

R
2 + η1

¢
>
¡
V R1 , V

R
2

¢
.

The proof of this proposition suggests that a two state machine can be
constructed more easily if a cone associated with the signalling structure is
larger.24 Clearly, the upper bound of all such cones is R|Ai|+ . We can show

that if P (Aj) is close enough to R
|Ai|
+ (this is what “under good observability”

means), then the separation condition (25) is sufficient for the construction of
a two state machine with (αRi ,α

P
i ), i = 1, 2.

Proposition 11 Suppose that (αRi ,α
P
i ), i = 1, 2 satisfy the separation condi-

tion (25). Then a profile of the two-state machine equilibrium with those actions
can be constructed if cone (P (Ai)) is close enough to R

|Ai|
+ for Z = R,P and

i = 1, 2.

Proof. See Appendix.

One example of monitoring structure to satisfy the above assumption is as
follows. Suppose that, when player j mixes actions over A0j ⊂ Aj , the opponent
i’s action is perfectly detected with a positive probability, that is,

∀a0i ∈ Ai ∃(ω0, a0j) ∈ (Ω×A0j) such that p(ω0|ai, a0j )
½
> 0 if ai = a0i
= 0 otherwise

.

This is equivalent to
cone(P (A0j)) = R

|Ai|
+ .

Note that this means that there is a combination of ω0 and a0j to detect given
action a0i . The advantage of private equilibrium is its ability to mix such
detecting action (a0j) and to punish the opponent only when the detecting action
is taken. Also note that, for each action of the opponent we may have a different
detecting action.

We now present a second characterization of the two-state machine equilib-
ria, which is a generalization of the closed form formula of an equilibrium payoff
with relevant likelihood ratio (equation (3) in Section 3). To this end, let us
first define a benchmark action and payoff for each state Z = R,P as

aZi ∈ A∗i , and (27)

gZi = gi(a
Z
i ,α

Z
j ), (28)

24 Indeed what we need for Proposition 10 is simply that the cone associated with ew (strictly)
contains the cone associated with ew0 . That ew0 is a garbling of ew is just a simple sufficient
condition for this more general condition.
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and define the deviation gain from this benchmark by

dZi (ai) = gi(ai,α
Z
j )− gi(aZi ,αZj ). (29)

The choice of benchmark is somewhat arbitrary, and for any choice satisfying
(27) we have the following equivalence (Theorem 12). The theorem holds under
the following ”full support” assumption:

The full support assumption: ∀(ω, a) p(ω|a) > 0.

Proposition 12 (Likelihood Ratio Representation) Under the full support
assumption, (LI) is satisfied with xRi and x

P
i which are not identically equal to

zero, if and only if the following set of conditions holds:

(LR) For each player i = 1, 2 and each state for Z = R,P , there exist a weight
function βZi : Ω × AZj → [0, 1] (such that

P
ω,aj

βZi (ω, aj) = 1) and slack vari-
ables hZi : Ai → [0,∞) which satisfy

LZi (ai) ≡
X
ω,aj

βZi (ω, aj)
p(ω|ai, aj)
p(ω|aZi , aj)

,

LZi (ai) = 1 if and only if dZi (ai) + h
Z
i (ai) = 0, (30)

V Zi = gZi −
dZi (ai) + h

Z
i (ai)

LZi (ai)− 1
if dZi (ai) + h

Z
i (ai) 6= 0, (31)

∀ai ∈ A∗i hZi (ai) = 0, (32)

and also
gRi > V

R
i > V Pi > gPi ,

is satisfied.

Remark 13 In the above statement, the slack variable hZi (ai) is equal to zero
if and only if the corresponding incentive constraint in (LI) is binding, and we
have

LZi (ai) =
E[xZi (ω, aj)|ai,αZj ]
E[xZi (ω, aj)|aZi ,αZj ]

.
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The proof is found in the Appendix, and here we offer interpretations of those
conditions. First, we consider state S = R. The remark shows that deviation
to ai increases the expected penalty by the factor of LRi (ai), and Proposition 12
shows that LRi (ai) is expressed as a convex combination of likelihood ratios

25 .

The number dRi (ai)+h
R
i (ai)

LRi (ai)−1
represents the welfare loss associated with the

penalty scheme xRi (ω, aj). Note that condition gRi > V Ri ensures that this
welfare loss is positive. The merit of (LR) is to provide an explicit expression
for the welfare loss in a simple form: It is proportional to the gain from devia-
tion (plus the slack variable) and decreasing in the degree of observability (the
likelihood ratio LRi (ai) in the denominator).
The conditions for state P admit similar interpretations. In this case,

condition V Pi > gPi implies −d
P
i (ai)+h

P
i (ai)

LPi (ai)−1
> 0, so that the condition (31) may

be easier to interpret if we rewrite it as

V Pi = gPi +
dPi (ai) + h

P
i (ai)

1− LPi (ai)
if dPi (ai) + h

P
i (ai) 6= 0.

The positive number dPi (ai)+h
P
i (ai)

1−LPi (ai)
represents the expected bonus to satisfy in-

centive constraints. Note that we have bonus instead of fine, as incentives in
state P are controlled by changing the probability of going to the better state
R. Note also that LPi (ai) can be interpreted as the likelihood ratio associated
with the bonus scheme xPi (ω, aj).
We can state the analysis of example in Section 3.2 as a special case of this

general theorem. In the example, we have, for i = 1, 2,

A∗i = A
R
j = {C,D}, and APj = {D}.26

When we choose
aRi = C, and a

P
i = D,

25To obtain more concrete interpretation, let us define

xRi ≡ max
(ω,aj)

xRi (ω, aj).

We could interpret that the penalty scheme xRi (ω, aj) effectively imposes a fixed fine x
R
i > 0

with probability
xRi (ω,aj)

xRi
when (ω, aj) is observed. As E[xRi (ω, aj)|ai,αRj ] = xRi ×Prob(xRi

is imposed |ai,αRj ), we have

LRi (ai) =
Prob(xRi is imposed |ai,αRj )
Prob(xRi is imposed|aRi ,αRj )

Hence, LRi (ai) is the likelihood ratio of getting the fixed penalty x
R
i . In other words, the

probability of getting the fixed fine xRi is increased by this factor if player i deviates from the
benchmark action aRi to any other action ai.
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we have

LRi (D) =
p(X|D,D)
p(X|C,D) =

p2
p1
, and

LPi (C) =
p(Y |C,D)
p(Y |D,D) =

1− p1
1− p2 .

Hence, the two-state machine can be constructed if and only if

V Ri = gRi −
dRi (D)

LRi (D)− 1
> V Pi = gPi +

dRi (C)

1− LPi (C)
(33)

Note that we have (i) (gRi , d
R
i (D))→ (1, d) as αRj (C)→ 1 and (ii) (gPi , d

R
i (C)) =

(0,−h) when αPj (D) = 1. Therefore, the above condition (33) is satisfied for
αRj (C) ' 1 and αPj (D) = 1 if

1− d
p2
p1
− 1 >

−h
1− 1−p1

1−p2

which is equivalent to our condition p2 − p1 > p1d+ (1− p2)h in Proposition 3.

6 Related Literature and Comments

Private Monitoring

The private monitoring model is obtained by replacing the public signal ω
with privately observed signals ωi, i = 1, 2, whose joint distribution is given by
p(ω1,ω2|a). We claim that the private strategies we constructed also work under
private monitoring. Consider the general many-state machine equilibrium in
Section 5.1. If we replace ω in the dynamic programming condition (18) with
ωi, it provides an equilibrium in the private monitoring case. This condition
(18) shows that each player has an incentive to follow equilibrium actions, no
matter which state the opponent is in. Call thismany-state machine equilibrium
in the private monitoring case. Then, the following results are obtained in the
private monitoring case, just by replacing ω with ωi in our proofs.

1. The equilibrium payoffs achieved by a many-state machine equilibrium
can also be achieved with a two-state machine (Proposition 6, where ω is
replaced with ωi).

2. Any two-state machine can be characterized by a system of linear inequal-
ities (Proposition 8, where ω is replaced with ωi).

3. Any two-state machine equilibrium payoff admits the likelihood represen-
tation (Proposition 12, where ω is replaced with ωi).
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One interesting point to note is that our equilibrium has certain continuity
properties on the boundary between the private and public monitoring struc-
tures30. Suppose, for example, that players observe a public signal perturbed
by independent private noise. This game falls in the class of repeated games
with private monitoring. Since each player does not need to know the other
player’s state, it is not important whether a player can observe her opponent’s
signals. Thus our private equilibrium can also be an equilibrium for repeated
games with private monitoring.
Ely and Välimäki [3] independently31 found a similar two-state machine

strategy in the framework of repeated games with private monitoring. As in this
paper, a player is indifferent among all the repeated game strategies regardless
of the state the opponent is in. The idea behind these strategies goes back
to Piccione [16], where the equilibrium strategy is basically a machine with a
countably infinite number of states.
However, there is a critical difference between our paper and Ely and Välimäki

[3]. In Ely and Välimäki, a player plays a pure action at each state. In con-
trast, we consider mixed actions because it is crucial for our result that a player
does not know which action the opponent is choosing. If a player knows the
opponent’s action, she is more tempted to defect when C is being played and
more likely to cooperate when the “monitoring” action D is being played. Since
players need to use the action-signal pair without being noticed for the efficient
punishment, they need to play a mixed action at the reward state in our pa-
per. Indeed, Ely and Välimäki’s two-state machine, which uses a pure action
in each state, can sometimes be strictly improved by using a mixed action at
each state. The efficient use of the signaling structure is the key to our efficient
private equilibria. This idea of efficient monitoring is not new. It is an old and
simple idea which lies at the heart of any moral hazard model. One contribution
of this paper is to find a way to use this idea to its full extent in the context of
repeated games/dynamic moral hazard models.

Private Strategy

Recently, Mailath, Matthews, and Sekiguchi [12] found examples of finitely
repeated games with public monitoring for which there exists a PE which is
better than any PPE. Lehrer [11] used a private strategy as an endogenous
correlation device in repeated games without discounting. Kandori [8] shows
that FLM’s sufficient condition for the folk theorem can be relaxed when play-
ers can communicate. It is based on a certain type of private strategies where
players randomize over their actions and announce their realizations. Obara
30Mailath and Morris [13] provided some conditions under which a particular PPE remains

a sequential equilibrium with almost public monitoring when a public signal structure is
perturbed slightly with private noise. Their conditions require players to have almost common
knowledge about the other players’ continuation strategies at all times. Note that our PE does
not satisfy this sufficient condition. On the contrary, its property is rather orthogonal to this
requirement; players do not have to have any knowledge about the opponent’s continuation
strategy at any point.
31 Simultaneously with the original version of this paper (Obara [14]) .
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[15] applies a similar idea in the context of mechanism design. Kandori and
Obara [9] considers repeated games where players may choose to pay some costs
to obtain additional (private) information about the other players’ actions. We
examine the scope and limitations of the equilibria where (i) each player ran-
domizes between monitoring and nonmonitoring, and (ii) each player’s continu-
ation strategy depends on whether she monitored or not. This is similar to the
private strategy in this paper in the sense that players’ continuation strategies
depend on realizations of their mixed actions, although the signals are private,
not public.

Robustness

There are a couple of comments on the robustness of the private equilib-
ria. First, when the parameters such as (d, h, p (X|CC) , p (X|CD) , p (X|DD))
change slightly, there exists a PE close to the original PE. This is due to
the regularity of equations characterizing the parameters of two-state machines.
Secondly, suppose that each player can observe additional signals which are
informative about the other player’s state. Our PE still continues to be a se-
quential equilibrium in this setting because a player does not have to know the
other player’s state.

Open Issue

Finally, there is one important open question left unanswered. Although
we were able to show that a PE can be far more efficient than any PPE, we
have not characterized the best private equilibrium payoff yet. This is due to
the lack of recursive structure of private monitoring equilibria, which makes the
characterization of all private equilibria quite difficult (see Kandori [7]). In
general, when PPE payoffs are inefficient, is there also an efficiency bound for
private equilibria? Or, do private equilibria achieve full efficiency? This is left
as an important topic for future research.
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Appendix A: proofs

Proof of Proposition 1.

Proof. Let us first prove a useful lemma which generally holds for the best
symmetric PPE payoff (which may be based on asymmetric strategies and public
correlation device).

Lemma 14 Let (v∗, v∗) be the best symmetric PPE payoff for a repeated game
with symmetric stage game payoffs. Then there exists a PPE which achieves
the same total payoff 2v∗ and do not use any public correlation device in the
initial period. Furthermore, the sum of the expected stage payoffs in the initial
period is no less than 2v∗.32

Proof. When the best symmetric PPE payoff is achieved by public ran-
domization over some PPE, each of them must obtain the same total payoff 2v∗

(otherwise, we can just pick up (v1, v2) with the highest total payoff and achieve
a higher symmetric payoff by equally randomizing over (v1, v2) and (v2, v1), a
contradiction). Pick up any one of those PPE. By definition, it does not use any
public randomization in the first period, and therefore it is achieved by a current
(possibly mixed) action profile α and continuation payoffs (V1(ω), V2(ω)) such
that

2v∗ = (1− δ)(g1(α) + g2(α)) + δE [V1(ω) + V2(ω)|α] ,
where gi is player i’s payoff function and E [ · |α ] is the expectation under α.
For the second part, note that, if g1(α) + g2(α) < 2v∗, the sum of the

expected continuation payoffs would be

E [V1(ω) + V2(ω)|α] > 2v∗

This contradicts our assumption that (v∗, v∗) is the best symmetric PPE payoff
profile. Hence g1(α) + g2(α) ≥ 2v∗.¥
We continue the proof of Proposition 1. Let vs (> 0) be the best symmetric

PPE payoff in the repeated partnership game. Lemma 14 implies that (i) there
exists a PPE payoff profile (v1, v2) such that 2vs = v1 + v2, (ii) players do not
use a public correlation device in the initial period. Let αq = (αq1,α

q
2) be the

mixed action profile in the first period of such PPE.
First, note that Lemma 14 provides an obvious upper bound on 2vs (i) if

αq = (D,D) , then g1(D,D) + g2(D,D) = 0 is an upper bound, (ii) if q ∈ Q,
then g∗ ≥ g1(αq) + g2(αq) is an upper bound, and (iii) if one of αq1 or αq2 is D,
then 1 + g − l ≥ g1(αq) + g2(αq) is an upper bound.
Suppose otherwise, that is, both players are playing C with positive proba-

bility and q /∈ Q. Then the following two inequalities hold for i = 1, 2.:
vi = (1− δ) gi(C,α

q
j) + δ

©¡
1− p(ω(q)|C,αqj)

¢
Vi (ω

0(q))) + p(ω(q)|C,αqj)Vi (ω(q))
ª

vi ≥ (1− δ) gi(D,α
q
j) + δ

©¡
1− p(ω(q)|D,αqj)

¢
Vi (ω

0(q))) + p(ω(q)|D,αqj)Vi (ω(q))
ª

32Note that the space of public signal can be arbitrary. We use this lemma later when we
analyze a partenrship game with three public signals.
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where ω0(q) = Ω/ {ω(q)} . Note that Vi (ω0(q)) ≥ Vi (ω(q)) . Replace Vi (ω0(q))−
Vi (ω(q)) by ρiVi (ω

0(q)) (ρi ∈ [0, 1]) so that the second inequality holds as an
equality. Then we obtain

vi ≤ (1− δ) gi(C,α
q
j) + δ(Vi (ω

0(q))− p(ω(q)|C,αq)ρiVi (ω0(q))) (34)

vi = (1− δ) gi(D,α
q
j) + δ(Vi (ω

0(q))− p(ω(q)|D,αq)ρiVi (ω0(q)))
which implies

(1− δ) dqi ≤ δ (p(ω(q)|D,αq)− p(ω(q)|C,αq)) ρiVi (ω0(q))
where dqi = gi(D,α

q
j)− gi(C,αqj). Combining this with (34), we obtain
vi − δVi (ω

0(q)))
1− δ

≤ gi(C,αqj)−
dqi

Lqi − 1
where Lqi is L

q with (ω(q),αq, q) being replaced by
¡
ωj(q),α

q
j , qj

¢
.

Since V 01 (ω(q)) + V 02 (ω(q)) 5 2vs, the following inequality is obtained by
adding the above two inequalities;

2vs ≤
X
i=1,2

gi(C,α
q
j)−

dqi
Lqi − 1

≤ 2vq
∗

Proof of Proposition 2.

Proof. To show the efficiency of the private equilibrium given above, we
need to prove that a root of equation (11) lies in (0, 1) and tends to unity as δ
tends to 1. At q = 0, the left hand side of (11) is strictly positive but the right
hand side is equal to zero. Now let q be any number q0 ∈ (0, 1

1+h ) and let δ
tends to 1. The left hand side of (11) tends to zero, while the right hand side
tends to

q0p(X|D,D) {1− q0 (1 + h)} > 0
Thus equation (11) has a solution in (0, q0) as δ tends to 1, where q0 is any
number close to 0.

Proof of Proposition 3.

Proof. From (13) and (14), we can obtain

(1− δ) {(1− qR) d+ qRh} = δqRρR (p2 − p1) (VR − VP ) (35)

As before, we can use this equation to derive the following equation from (13)

VR = 1− qR − qRh− (1− qR) d+ qRh
L1 − 1 (36)
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Similarly, we can derive the following two equations from (15) - (16).

VP = 1− qP − qPh+ (1− qP ) d+ qPh
L1 − 1

1− p1
p1

(37)

(1− δ) {(1− qP ) d+ qPh} = δqPρP (p2 − p1) (VR − VP ) (38)

This system of equations is equivalent to (13)-(16).
First note that ρR should be set equal to 1. If there exists a solution of

these equations with ρR < 1, then you can reduce qR and raise ρR to increase
VR via (36) while (35) is maintained, and reduce ρP so that (38) is still satisfied.
In this way, we can obtain another solution with higher equilibrium payoff VR.
Second, qP can be also set equal to 1. If not, you can increase qP to reduce
VP via (37), while lowering ρR and ρP so that (35) and (38) is satisfied. This
leads to VP =

(1−p2)h
p2−p1 from (37) .

Now we are left with three equations (35) , (36) , (38) and three unknowns
(qR, ρP , VR) . Once qR is obtained, VR is also obtained from (36) and ρP =

qRh
(1−qR)d+qRh ∈ [0, 1] is obtained from (35) and (38) . Thus we only need to find
qR in [0, 1].
These three equations reduce to a quadratic equation for qR;

c2 (δ) q
2
R + c1 (δ) qR + c0 (δ) = 0

where

c2 (δ) = δ {p2 (1 + h)− p1 (1 + d)}
c1 (δ) = (1− δ) (h− d) + δ {p1d+ (1− p2)h− (p2 − p1)}
c0 (δ) = (1− δ) d

One root of this quadratic equation is clearly qR = 0 when δ = 1. Since
∂F
∂qR

|(qR,δ)=(0,1) 6= 0 by the assumption p2 − p1 > p1d + (1− p2)h, the implicit
function theorem can be applied to obtain a C1 function qR (δ) around δ = 1

such that dqR(1)dδ = −
∂F
∂δ |(qR,δ)=(0,1)
∂F
∂qR

|(qR,δ)=(0,1)
= d

p1d+(1−p2)h−(p2−p1) , which is negative by

assumption. Thus there exists a qR (δ) ∈ (0, 1) for large enough δ such that
qR (δ)→ 0 as δ → 1. Hence we get a solution for (35) - (38) parameterized by
δ around δ = 1.
Clearly this two state machine generates a sequential equilibrium combined

with the belief obtained via Bayes’ rule.33 Since the equilibrium payoff VR (δ)
converges to 1 − d

L1−1 as δ → 1, for any η > 0 we can find δ such that the
equilibrium payoff exceeds 1− α

L1−1 − η for any δ ∈ (δ, 1) .

Proof of Proposition 4
33Belief can be simply derived by Bayes rule at any history. Since any deviation is not

observable to the opponent, a player always updates her belief assuming that the opponent
has never deviated.
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Proof. SinceQ = ∅, we just need to show that 1− d
L1−1 > max

©
maxq vq,

1+d−h
2 , 0

ª
by Proposition 1. First, 1− d

L1−1 > 0 follows from p2 − p1 > p1d+ (1− p2)h
because

1− d

L1 − 1 >
(1− p2)h
p2 − p1 > 0

Secondly, 1 − d
L1−1 >

1+d−h
2 is just assumed. Finally, it is easy to see that

vq = 1 − q − qh − (1−q)d+qh
Lq−1 is decreasing in q ∈ [0, 1] by L1 > L0 and h > d.

Thus

1− d

L1 − 1 > 1− d

L0 − 1
= 1− q − qh− (1− q) d+ qh

Lq − 1

Proof of Proposition 6

Proof. Suppose first that both M1 and M2 has only a finite number of
states. Then there exists player 2’s state which corresponds to the largest V n1 .
Suppose without loss of generality that n = 0. Similarly, let n = 1 be the
state which minimizes the value function of player 1. We modify player 20s
machine in the following way. When player 2 is supposed to move to θn2 from
θ02 after some action and signal is observed, he instead move to θ

0
2 and θ12 with

probability 1 − λn2and λn2 where λn2 is defined by V
n
1 = (1− λn2 )V

0
1 + λn2V

1
1 .

Then, we obtain the following system of (in)equalities;

For n = 0, 1,

∀a1 ∈ A∗1, V
n
1 = (1− δ) g1(a1,α

n
2 ) +

δ
X
a2∈A2

X
ω∈Ω

1X
k=0

αn2 (a2) p (ω|a1, a2)µ
0nk
2 (a2,ω)V

k
1

∀a1 /∈ A∗1, V
n
1 ≥ (1− δ) g1(a1,α

n
2 ) +

δ
X
a2∈A2

X
ω∈Ω

1X
k=0

αn2 (a2) p (ω|a1, a2)µ
0nk
2 (a2,ω)V

k
1

where for n = 0, 1

µ
0n0
2 (a2,ω) =

l2X
m=0

µnm2 (a2,ω) (1− λm2 )

µ
0n1
2 (a2,ω) =

l2X
m=0

µnm2 (a2,ω)λ
m
2
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This defines a two state machine for player 2. We can repeat the same procedure
to obtain a two state machine for player 1. This new pair of machines M 0

i =n
{θni }1n=0 , αi, µ0i

o
, i = 1, 2 clearly satisfies (18), hence constitute a sequential

equilibrium which supports the payoff profile
¡
V 01 , V

0
2

¢
with the initial state¡

θ01, θ
0
2

¢
.

If the number of the states is countable, we might not able to find the
best state and the worst state. In such a case, we construct them in the fol-
lowing way. Suppose that M2 has a countable number of the states. Since
{V n1 }l2n=0 is bounded by assumption, there exists V 001 = supn=0,...,l2 {V n1 } and
V 011 = infn=0,...,l2 {V n1 } such that −∞ < V 011 ≤ V 001 < ∞. Since V n1 (hence,Pl2

m=0 µ
nm
2 (a2,ω)V

m
1 ) and αn2 are in the compact sets (

£
V 011 , V 001

¤
and 42 re-

spectively), for n = 0, 1, we can find a subsequence θ
n(k)
2, , k = 1, 2, .... such

that V n(k)1 → V 0n1 , α
n(k)
2 → α0n2 , and

Pl2
m=0 µ

n(k)m
2 (a2,ω)V

m
1 → eV n1 (a2,ω) as

k →∞. Then, V 0n1 ,α0n2 and eV n1 (a2,ω) satisfy
For n = 0, 1,

∀a1 ∈ A∗1, V
0n
1 = (1− δ) g1(a1,α

0n
2 ) +

δ
X
a2∈A2

X
ω∈Ω

α0n2 (a2) p (ω|a1, a2) eV n1 (a2,ω)
∀a1 /∈ A∗1, V

0n
1 ≥ (1− δ) g1(a1,α

0n
2 ) +

δ
X
a2∈A2

X
ω∈Ω

α0n2 (a2) p (ω|a1, a2) eV n1 (a2,ω)
Now we can define the new transition probability byeV n1 (a2,ω) = µ0n02 (a2,ω)V

00
1 + µ012 (a2,ω)V

01
1

Then we obtain a two state machine M2 =
n
{θn2}1n=0 ,α02, µ02

o
to satisfy (18)

for V 001 and V 011 .We can construct a two state machine M1 in a similar way and
(M1,M2) constitutes a sequential equilibrium with the payoff profile

¡
V 001 , V

00
2

¢
.

Proof of Proposition 8

Proof. Consider the following transition rule for player j in the two-state
machine (or Markov) strategy: go to state P with probability ρzj (ω, aj) when
the current state (for j) is z = R,P and the current signal and j’s action are ω
and aj (otherwise, go to state R). Consider the dynamic programming equation
for the average payoff for player i when j is in state z = R.P ,

V zi ≥ (1− δ)gi(ai,α
z
j ) + δE[(1− ρzj (ω, aj))V

R
i + ρzj (ω, aj)V

P
i |ai,αzj ], (39)

where the equality should be satisfied for ai ∈ suppαRi ∪suppαPi . Consider first
the case z = R. Subtracting δV Ri from both sides and dividing through by
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(1− δ), we obtain

V Ri ≥ gi(ai,αRj )−E[
δ

1− δ
ρRj (ω, aj)(V

R
i − V Pi )|ai,αRj ],

where equality holds for ai ∈suppαRi ∪suppαPi . A similar manipulation for state
z = P shows

V Pi ≥ gi(ai,αPj ) +E[
δ

1− δ
(1− ρPj (ω, aj))(V

R
i − V Pi )|ai,αPj ],

where equality holds for ai ∈ suppαRi ∪suppαPi . Hence, if we have an equilibrium
in the two-state machine strategy, conditions (19)−(23) are satisfied with

xRi (ω, aj) =
δ

1− δ
ρRj (ω, aj)(V

R
i − V Pi ) and (40)

xPi (ω, aj) =
δ

1− δ
(1− ρPj (ω, aj))(V

R
i − V Pi ). (41)

Conversely, suppose that conditions (19)−(23) are satisfied. Then, (40) and (41)
can be satisfied for ρzj (ω, aj) ∈ [0, 1], z = R,P , for sufficiently high δ. Hence
we obtain the equilibrium condition (39) and the two-state machine equilibrium
to support payoffs (V Ri , V

P
i ) for i = 1, 2.

Proof of Proposition 11

Proof. First we show that xZi
¡
A∗j
¢
which satisfies (19)−(22) can be easily

found. Take (19) and (20). If information is almost perfect, P
¡
A∗j
¢
is clearly

full row rank. Thus there exists xRi
¡
A∗j
¢
to satisfy (26) for any V Ri and hRi .

To make sure that xRi
¡
A∗j
¢
is positive, we can choose a large enough numbers

Ki ≥ 0 so that

bxRi ¡A∗j¢ ≡ xRi ¡A∗j¢+
 Ki

...
Ki

 ≥ 0 and
for i = 1, 2, and define bV Ri ≡ V Ri −Ki

for i = 1, 2. Then we have bxRi ¡A∗j¢ ≥ 0 and bV Ri for i = 1, 2 to satisfy (26). The
same argument applies to conditions (21) and (22).
Next we need to show that V Ri and V Pi can be constructed so that the

feasible condition (23) is satisfied . If information is almost perfect with A∗

(cone
¡
P
¡
A∗j
¢¢
is almost<|Ai|+ for i 6= j)34, V Ri is roughly given by argmaxε∈<,hRi gi

¡·,αRj ¢+
34Although what we mean by “close” is obvious, formally we need a metric to define closeness

of two cones, say. One example of such distances between two cones E and F ∈ <n+ would
be

kE ∩B1 (0)− F ∩B1 (0)k
where k·k is Hausdorff distance and B1 (0) is an open ball around 0 with radius 1.
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hRi −εI subject to gi
¡·,αRj ¢+hRi −εI ⊂<|Ai|+ as it should be maximized to satisfy

(26)(see Figure 3 below). Since we can make the slack positive variables hRi
as large as possible for any ai /∈ A∗i , this is equal to minai∈A∗i gi

¡
ai,α

R
j

¢
(which

can be negative). On the other hand, we need to make V Pi as small as possible
so that (23) is satisfied. Hence V Pi is roughly given by argminε∈< gi

¡·,αPj ¢+
hPi − εI subject to gi

¡·,αPj ¢ + hPi − εI ⊂ −<|Ai|+ . Since hPi can be set to 0
without loss of generality to minimize V Pi , this is equal to maxai∈Ai gi

¡
ai,α

P
j

¢
.

So, the feasibility condition (25) can be satisfied for some V Ri and V Pi if

min
ai∈A∗i

gi
¡
ai,α

R
j

¢
> max
ai∈Ai

gi
¡
ai,α

P
j

¢
when information is almost perfect. This is exactly the condition (25).

( g i (a’i,     ), g i (a’’i,      ) )q j
R

q j
R

( g i (a’i,     ), g i (a’’i,     ) )q j
P

q j
P

0

V i
R

V i
P

Figure 3

Proof of Proposition 12

Proof. The proof is given in two steps. First, we show that (LI) is equivalent
to the following condition:

(LR’) Conditions in (LR) are satisfied, except that LZi (ai) is given by

LZi (ai) ≡
P

ω,aj
λZi (ω, aj)p(ω|ai, aj)αZj (aj)P

ω0,a0j
λZi (ω

0, a0j)p(ω0|aZi , a0j)αZj (a0j)
. (42)
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for some λZi : Ω×AZj → [0, 1] that is not identically equal to zero.

Theorem 12 is then obtained by this equivalence and the following lemma:

Lemma 15 Condition (42) is satisfied for some λZi : Ω × AZj → [0, 1] that is
not identically equal to zero if and only if

LZi (ai) =
X
ω,aj

βZi (ω, aj)
p(ω|ai, aj)
p(ω|aZi , aj)

, (43)

for some βZi : Ω×AZj → [0, 1], such that
P

ω,aj
βZi (ω, aj) = 1.

Proof of (LI)⇐⇒(LR’):
(Part I) We show that (LI) implies (LR’). Let us assume that (LI) is satisfied,

and define the transfer to player i by

tZ(ω, aj) =

½ −xRi (ω, aj) for Z = R
xPi (ω, aj) for Z = P

and let

TZi ≡
½ −max(ω,aj) xRi (ω, aj) for Z = R

max(ω,aj) x
P
i (ω, aj) for Z = P

.

and also define λZi : Ω×AZj → [0, 1] that is not identically equal to zero by

λZi (ω, aj) ≡
tZi (ω, aj)

TZi
. (44)

We can interpret that xZi (ω, aj) effectively imposes fixed fine T
R
i < 0 (for Z = R)

or bonus TPi > 0 (for Z = P ) with probability λZi (ω, aj), when (ω, aj) is realized.
The probability of getting the fixed fine or bonus TZi given action ai is given by

pZi (ai) ≡
X
ω,aj

λZi (ω, aj)p(ω|ai, aj)αZj (aj). (45)

This is always strictly positive, because of the full support assumption and the
fact that λZi (ω, aj) is not identically equal to zero. Note, by definition, we have

−E[xRi (ω, aj)|ai,αRj ] = pRi (ai)TRi , and

E[xPi (ω, aj)|ai,αPj ] = pPi (ai)TPi .
Let hZi (ai) ≥ 0 be the slack variables to make the incentive constraints in (LI)
binding:

∀ai V Zi = gi(ai,α
Z
j ) + h

Z
i (ai) + p

Z
i (ai)T

Z
i . (46)
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Note that (LI) requires
∀ai ∈ A∗i hZi (ai) = 0.

Let us recall that the following four crucial conditions are satisfied

∀ai pZi (ai) > 0, (47)

V Zi = gZi + p
Z
i (a

Z
i )T

Z
i , (48)

TRi < 0, and (49)

TPi > 0. (50)

Those conditions directly shows V Ri < gRi and V Pi > gPi . Since we have
gi(ai,α

Z
j ) = g

Z
i + d

Z
i (ai) by definition, we have the following equivalence when-

ever the above four conditions are satisfied:

(46)⇐⇒ dZi (ai) + h
Z
i (ai) = (p

Z
i (a

Z
i )− pZi (ai))TZi .

⇐⇒ 35


pZi (a

Z
i ) = p

R
i (ai) if and only if dZi (ai) + h

Z
i (ai) = 0

TZi =
dZi (ai)+h

Z
i (ai)

pZi (a
Z
i )−pZi (ai)

if dZi (ai) + h
Z
i (ai) 6= 0

⇐⇒ 36


LZi (ai) = 1 if and only if dZi (ai) + h

Z
i (ai) = 0

V Zi = gZi − dZi (ai)+h
Z
i (ai)

LRi (ai)−1
if dZi (ai) + h

Z
i (ai) 6= 0

,

where

LZi (ai) ≡
pZi (ai)

pZi (a
Z
i )
,

so that (42) is satisfied. As (LI) requires V Ri > V Pi , all conditions in (LR’) are
satisfied.

(Part II) We now show (LR’)⇒(LI). Suppose (LR’) holds. First define
pZi (ai) by (45). As λZi is not identically equal to zero, pZi (ai) > 0 for all
ai (condition (47)) holds. Let us now choose a number TZi to satisfy V Zi =

35Because TZi 6= 0 by (49) and (50).
36By (47), LZi (ai) is well-defined. The formula for V Zi is obtained by (48) as

V Zi = gZi + p
Z(aZi )T

Z
i

= gZi − pZ(aZi )
dZi (ai) + h

Z
i (ai)

pZi (ai)− pZi (aZi )

= gZi −
dZi (ai) + h

Z
i (ai)

pZi (ai)

pZ(aZi )
− 1

.

34



gZi + p
Z
i (a

Z
i )T

Z
i (condition (48)). As we have V Ri < gRi and V

P
i > gPi , we have

TRi < 0 and TPi > 0. Hence, conditions (49) and (50) are satisfied. Since (i)
the four conditions in Part I, (47), (48), (49), and (50), are satisfied and (ii)

LZi (ai) ≡ pZi (ai)

pZi (a
Z
i )
by (42), we can follow the equivalence relations in Part I to

reach equality (46). Now define xZi (ω, aj) by x
R
i (ω, aj) = −TRi ×λPi (ω, aj) and

xPi (ω, aj) = T
P
i × λPi (ω, aj) so that we have −E[xRi (ω, aj)|ai,αRj ] = pRi (ai)TRi ,

and E[xPi (ω, aj)|ai,αPj ] = pPi (ai)TPi . Plugging this into the obtained equality
(46), we can show that the incentive constraints in (LI) are satisfied. ¥.

Note that, the slack variables hZi satisfy the requirement in the ”Further-
more” part of Theorem 12 by construction and we have

LZi (ai) ≡
TZi × pZi (ai)
TZi × pZi (aZi )

=
E[xZi (ω, aj)|ai,αZj ]
E[xZi (ω, aj)|aZi ,αZj ]

.

Now we turn to Lemma 15.

Proof of Lemma 15:
Note that

LZi (ai) =

P
ω,aj

λZi (ω, aj)p(ω|ai, aj)αZj (aj)P
ω0,a0j

λZi (ω
0, a0j)p(ω0|aZi , a0j)αZj (a0j)

can be rearranged as

=
X
ω,aj

 λZi (ω, aj)p(ω|aZi , aj)αZj (aj)P
ω0,a0j

λZi (ω
0, a0j)p(ω0|aZi , a0j)αZj (a0j)

 p(ω|ai, aj)
p(ω|aZi , aj)

,

and let βZi (ω, aj) be the number in the parenthesis. Note that
P

ω,aj
βZi (ω, aj) =

1 by definition and we obtain (43).
We now examine if the converse is true. Now suppose

LZi (ai) =
X
ω,aj

βZi (ω, aj)
p(ω|ai, aj)
p(ω|aZi , aj)

,

for some βZi : Ω×AZj → [0, 1], such that
P

ω,aj
βZi (ω, aj) = 1. Define λ

Z
i (ω, aj)

by
KβZi (ω, aj) = λZi (ω, aj)p(ω|aZi , aj)αZj (aj),

where K > 0 is a sufficiently small number to ensure λZi (ω, aj) ∈ [0, 1]. Then,
we have

LZi (ai) =
X
ω,aj

1

K
λZi (ω, aj)p(ω|ai, aj)αZj (aj)
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=

P
ω,aj

λZi (ω, aj)p(ω|ai, aj)αZj (aj)
K
P

ω0,a0j
βZi (ω

0, a0j)
=

P
ω,aj

λZi (ω, aj)p(ω|ai, aj)αZj (aj)P
ω0,a0j

λZi (ω
0, a0j)p(ω0|aZi , a0j)αZj (a0j)

.

Appendix B: Example 2

Let qi be the probability that player i chooses action D. Given qj , the
probability of X when player i chooses C and D are respectively 1

3(1− qj) and
1
3qj , as X arises only when both players take the same action. Hence we have
the following simple but useful observation.

Lemma 16 When player i deviates from C to D while the opponent chooses D
with probability qj, outcome X becomes less likely iff qj < 1/2.

Let F be the sum of the expected stage payoffs under (q1, q2),

F = (1 + 1)(1− q1)(1− q2) + (2− 6)q1(1− q2) + (2− 6)(1− q1)q2
= 2− 6q2 − 6q1 + 10q1q2.

We note that this is positive only if both players choose D with sufficiently low
probability.

Lemma 17 The sum of the stage payoffs is positive only if q1, q2 < 1/3.

Proof. Note that F (q1, q2) is linear in q1 and that both F (0, q2) = 2− 6q2
and F (1, q2) = 4(q2 − 1) are non-positive if q2 ≥ 1/3. Hence F (q1, q2), which
is a convex combination of those values, is non-positive if q2 ≥ 1/3. Symmetric
argument shows that F is non-positive if q1 ≥ 1/3. Hence F is positive only if
q1, q2 < 1/3.

The following is a immediate corollary from the above two lemmata.

Corollary 18 When the sum of the stage game payoffs is positive, outcome X
becomes less likely if player i defects given player j’s mixed action.

Combining Lemma 17 and Corollary 18 with Lemma 14, we have:

Proposition 19 For any parameter of information structure ² ∈ [0, 1/2), if the
best symmetric PPE payoff v∗ is not 0, then there is a (possibly asymmetric)
PPE with the same total payoff 2v∗, where in the first period (i) no public
correlation device is used,(ii) each player chooses D with probability less than
1/3, and (iii) unilateral defection of each player makes outcome X less likely.

Now we use this fact to show the following.

Proposition 20 The best symmetric PPE payoff is 0 for all δ ∈ [0, 1) when the
parameter of the information structure ² is equal to 0.

36



Proof. Suppose v∗ > 0 and choose the equilibrium stated in the above
Proposition. When ² = 0, we can regard Y1 and Y2 as a single outcome Y .
Note that as D is dominant in the stage game, a player always has a short-
term incentive to defect, irrespective of the opponent’s mixing probability qj .
Then the above Proposition shows that both payers must be punished when
Y realizes. The associated likelihood ratio for player i given player j0s mixed
action is

L
qj
i ≡

(1− qj) Pr(Y |D,C) + qj Pr(Y |D,D)
(1− qj) Pr(Y |C,C) + qj Pr(Y |C,D) =

(1− qj) + 2
3qj

2
3(1− qj) + qj

=
3− qj
2 + qj

, and by a similar argument to the proof of Proposition 3, we have

2v∗ ≤
µ
1− 7q2 − 1 + 5q2

Lq21 − 1
¶
+

µ
1− 7q1 − 1 + 5q1

Lq12 − 1
¶
. (51)

Note that 1 − 7qj is the stage payoff when player i plays C and player j is
choosing D with probability qj , and (1− qj)× 1 + qj × 6 = 1+ 5qj is player i’s
current gain from defection in the same situation. As Lqji ≤ 2/3 for qj ≤ 1/2,
we have

1− 7qj − 1 + 5qj
L
qj
i − 1

< 1− 1
3
2 − 1

= 1− 2 < 0 for i, j = 1, 2 and j 6= i.

which, together with (51), contradicts our presumption v∗ > 0. Hence we
conclude that best symmetric equilibrium payoff is 0 when ² = 0.

Next we derive an upper bound the symmetric PPE payoffs. Let v∗(δ) be the
best symmetric PPE payoff under δ. We suppress δ when no confusion ensues.
If v∗ is positive, the Proposition 19 shows that there is a PPE achieving the
same total payoff 2v∗, where a possibly mixed action is chosen (but no public
correlation device is used) in the first period. Let qi be the probability that
player i chooses actionD in the first period (i = 1, 2). The average payoff profile
of such an equilibrium, denoted (v01, v

0
2), must satisfy the following ”dynamic

programming” conditions.
v01 + v

0
2 = 2v

∗ (52)

v0i = (1− δ)(1− 7qj) + δ
X
ω

vi(ω)p(ω|C, qj), for i, j = 1, 2 and j 6= i (53)

v0i = (1− δ)(2− 2qj) + δ
X
ω

vi(ω)p(ω|D, qj), for i, j = 1, 2 and j 6= i (54)

In the above expression p(ω|a, q) denotes the probability of ω when a player
chooses action a (a = C,D) and the opponent chooses D with probability q
(note the symmetry of p(ω|·, ·)). The continuation payoff profile is represented
by (v1(ω), v2(ω)). Equations (53) and (54) respectively represent player i’s
payoff when she plays C or D in the first period. Together they imply that
player i is indifferent between C and D.
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By summing up (1− qi)×(53)+qi×(54) for i = 1, 2 and using (52), we can
calculate the total payoff associated with the mixed strategy profile as

2v∗ = (1− δ)(2− 6q2 − 6q1 + 10q1q2) + δ
X
ω

(v1(ω) + v2(ω))p(ω|q1, q2).

Note that the first term is (1−δ) times the sum of expected stage payoffs, which
we formerly defined as F . Also note that p(ω|q1, q2) is the probability of ω when
players mix D with probabilities q1 and q2. Subtract 2δv∗ = 2δ(v01 + v02) from
both sides and divide by (1− δ) to obtain

2v∗ = (2− 6q2 − 6q1 + 10q1q2) +
X
ω

(∆1(ω) +∆2(ω))p(ω|q1, q2), (55)

where (∆1(ω),∆2(ω)) represents total (as opposed to average) future payoff
variations (around the ”best” PPE payoff profile (v01, v

0
2)):

∆i(ω) =
δ

1− δ
(vi(ω)− v0i ), for i = 1, 2. (56)

Note that the future payoff variations (∆1(ω),∆2(ω)) have to satisfy some
conditions. First, it must provide right incentive for each player. Subtracting
(53) from (54) and dividing through by (1 − δ), we have (binding) incentive
constraints

1 + 5qj =
X
ω

∆i(ω)[p(ω|C, qj)− p(ω|D, qj)], for i, j = 1, 2 and j 6= i. (57)

Note that the left hand side is the short term gain from defection, while the
right hand side shows the reduction of the future payoffs. Secondly, the future
payoffs (v1(ω), v2(ω)) should be chosen from the set of PPE payoffs V PPE(δ).
By the definition (56), this condition is represented as

∀ω 1− δ

δ
(∆1(ω),∆2(ω)) + (v

0
1, v

0
2) ∈ V PPE(δ) (58)

Let us now summarize what we have found.

Lemma 21 Let v∗ be the best symmetric PPE payoff under discount factor δ.
Then, there exist q1, q2 ∈ [0, 1/2) and (∆1(ω),∆2(ω)) that satisfy the dynamic
programming value equation (55), the incentive constraint (57) and the PPE
condition (58) for some feasible payoff profile (v01, v

0
2) such that v

0
1 + v

0
2 = 2v

∗.

To get an upper bound for v∗, we will relax condition (58). First, let V F be
the feasible payoff set, that is, the convex hull of stage payoffs

V F = Co{(1, 1), (2,−6), (−6, 2), (0, 0)}.
Note that V PPE(δ) ⊂ V F . As 2v∗ is the maximized sum of the two players’
payoffs over V PPE(δ), we also have V PPE(δ) ⊂ {v | v1 + v2 ≤ 2v∗}. Hence
(58) implies

1− δ

δ
(∆1(ω),∆2(ω)) + (v

0
1 , v

0
2) ⊂ V F ∩ {v | v1 + v2 ≤ 2v∗}. (59)
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The part of the efficient frontier connecting two payoff profiles (1, 1) and (2,−6)
is given by

7v1 + v2 = 8,

and by symmetry
v1 + 7v2 = 8

is the other part of the efficient frontier connecting (1, 1) and (−6,−2). Hence
any feasible payoff profile v in V F must satisfy 7v1 + v2 ≤ 8 and v1 + 7v2 ≤ 8.
Therefore, (59) implies

∀ω 1− δ

δ
(∆1(ω),∆2(ω))+(v

0
1, v

0
2) ⊂ {v | v1+v2 ≤ 2v∗, 7v1+v2 ≤ 8, v1+7v2 ≤ 8}.

(60)
Let us now derive an upper bound of symmetric PPE payoffs. To this end,

we first find a lower bound of discount factor to support a symmetric payoff
v∗ ∈ (0, 1). Fix any v∗ ∈ (0, 1). Lemma 21 shows that there is a feasible payoff
profile (v01, v

0
2) such that v

0
1 + v

0
2 = 2v∗. Then, condition (60) implies (by the

first inequality on the right hand side) 1−δ
δ (∆1(ω) + ∆2(ω)) + v

0
1 + v

0
2 ≤ 2v∗,

which is equivalent to
∀ω ∆1(ω) +∆2(ω) ≤ 0. (61)

Also the value equation (55) and Lemma 21 show

2v∗ − (2− 6q2 − 6q1 + 10q1q2) =
X
ω

(∆1(ω) +∆2(ω))p(ω|q1, q2).

As (2− 6q2 − 6q1 + 10q1q2) is the sum of stage payoffs, it is less than or equal
to 2. This and 0 ≤ v∗ imply

−2 ≤
X
ω

(∆1(ω) +∆2(ω))p(ω|q1, q2). (62)

Let r be the minimum probability of outcome X when players choose D with
probabilities q1, q2 ∈ [0, 1/2]: r = minq1,q2 p(X|q1, q2) subject to q1, q2 ∈ [0, 1/2].
Note that p(X|q1, q2) < p(Yi|q1, q2), i = 1, 2 independent of ² > 0. Clearly,
r > 0, and (61) and the definition of r implies

P
ω(∆1(ω)+∆2(ω))p(ω|q1, q2) ≤

rminω (∆1(ω) +∆2(ω)). Hence the condition (62) implies
−2 ≤ rminω (∆1(ω) +∆2(ω)). Thus we have another condition for (∆1(ω),∆2(ω));

∀ω − 2/r ≤ ∆1(ω) +∆2(ω). (63)

Now we present a crucial observation that we need large payoff variations of
(∆1(ω),∆2(ω)) in the northwest/southeast directions as ² → 0. That is, as we
approach the information structure where the pairwise full rank condition fails,
we need large payoff transfers between the players to support a positive payoff
v∗.

Lemma 22 For any (large) K > 0, there is (small) ² > 0 such that for each
q1, q2 ∈ [0, 1/2], if (∆1(·),∆2(·)) satisfies conditions (57), (61) and (62), then
∀ω ∆1(ω),∆2(ω) ≤ K cannot hold..
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Proof. Suppose that the assertion is not true. Then, there is a sequence
{²n,∆n1 ,∆n2 , qn1 , qn2 } such that ²n → 0, as n → ∞, which satisfies (57), (61),
(62), and ∀ω ∆1(ω),∆2(ω) ≤ K. The condition (61), (63) implied by (62)
and ∀ω ∆1(ω),∆2(ω) ≤ K imply that the sequence lies in a compact set, and
we can choose a converging subsequence. Let (∆01,∆

0
2q
0
1 , q

0
2) be its limit, where

(∆01,∆
0
2) supports C with probability more than 1/2 for each player when ² = 0.

However, since we can regard Y1 and Y2 as a single outcome Y when ² = 0, the
following inequality holds as in Proposition 20.

2− 6q2 − 6q1 + 10q1q2 +
X
ω

(∆01(ω) +∆
0
2(ω))p(ω|q1, q2)

≤
µ
1− 7q2 − 1 + 5q2

Lq21 − 1
¶
+

µ
1− 7q1 − 1 + 5q1

Lq12 − 1
¶

which implies X
ω

(∆01(ω) +∆
0
2(ω))p(ω|q1, q2)

≤ −6q1 − 6q2 − 10q1q2 − 1 + 5q2
L1 − 1 −

1 + 5q1
L2 − 1

< −4,
This contradicts the fact that the limit (∆01,∆

0
2) also satisfies (62).

Note that given K > 0, the choice of ² is independent of the initial choice of
(v01, v

0
2) and v

∗ in the above proof. If ² chosen is small enough, then ∀ω ∆1(ω),∆2(ω) ≤
K cannot hold for any (v01 , v

0
2) and v

∗.
Now define

A = {(∆1,∆2) |∆1 +∆2 ≤ 0 and − 2/r ≤ ∆1 +∆2} , and
B(K) = A ∩ {(∆1,∆2) |∆1,∆2 ≤ K} .

Conditions (61), (63) and Lemma 22 implies that we can always choose (small
enough) ² in such a way that for some ω, (∆1(ω),∆2(ω)) lies in the region A\B.
Let us now summarize what we have found as follows.

Proposition 23 For any (large) K > 0, we can find a value of the signal
distribution parameter ² > 0 for which the following holds: Let v∗ ∈ (0, 1) be
the best symmetric PPE payoff under discount factor δ. Then, there exists a
feasible payoff profile (v01 , v

0
2) such that v

0
1 + v

0
2 = 2v

∗, where we have

∀ω
½
1− δ

δ
(A \B(K)) + (v01 , v02)

¾
∩{v | v1+v2 ≤ 2v∗, 7v1+v2 ≤ 8, v1+7v2 ≤ 8} 6= ∅.

(64)

As this condition (64) becomes more stringent as K → ∞, if we choose
(small) ² that corresponds to a large K, we need a fairly large discount factor δ
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to support v∗. Note that condition (64) is satisfied if δ is sufficiently large, as in
Figure A. Hence, when we have the situation depicted in Figure B with small δ,
condition (64) fails for any feasible payoff profile (v01 , v

0
2) such that v

0
1+v

0
2 = 2v

∗.
Therefore, the value of δ given by Figure B is a lower bound of the discount
factor that supports the symmetric PPE payoff v∗.

7v1+v2 = 8

v1+7v2 = 8

v1

v2

v1+v2 = 2v*

v1+v2 = 2v*-(1-δ)2/δr

(v1,v2)00

((1-δ)/δ)B(K)+v0

Figure A

7v1+v2 = 8

v1+7v2 = 8

v1

v2

v1+v2 = 2v*

v1+v2 = 2v*- (1-δ)2/δr

v`

((1-δ)/δ)B(K)+ v`

v``

Figure B

41



By the definition of B(K), points v0 and v00 in Figure B must satisfy

v001 − v01 =
1− δ

δ
K. (65)

The value of v01 is obtained by solving v1 + v2 = 2v∗ and v1 + 7v2 = 8, and we
find v01 =

7v∗−4
3 . Similarly, v001 is determined by v1 + v2 = 2v∗ − ( 1−δδ ) 2r and

7v1 + v2 = 8, and we find v001 =
8−2v∗+( 1−δδ ) 2r

6 . By plugging those in equation
(65), we obtain a lower bound of the discount factor to support v∗;

δ(v∗) =
3K − 1

r

3K − 1
r + 8(1− v∗)

. (66)

Note that this is an increasing function with δ(1) = 1 and δ(0)→ 1 as K →∞.
This means that to support any positive value, we need a fairly large discount
factor when the signal distribution parameter ² is small (hence K is large). The
inverse function of δ(·),

v(δ) = 1− (1− δ

δ
)
3K − 1

r

8
(67)

is concave and depicted in Figure C.

1

1

v(δ)

(3K-1/r)/ (3K-1/r+8)
δ

v

Figure C

By the definition of this function, the maximum symmetric PPE payoff under
δ must be located to the right of the graph of v(δ), and hence v(δ) is an upper
bound of the maximum symmetric PPE payoff under δ, whenever it is positive.
Proposition 5 is then given by defining H by H =

3K− 1
r

8 .
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