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Abstract

This paper proves a new folk theorem for repeated games with private monitoring
and communication, extending the idea of delayed communication in Compte [6] to
the case where private signals are correlated.

The sufficient condition for the folk theorem is generically satisfied with more
than two players, even when other well-known conditions are not. The folk theorem
also applies to some two-players repeated games.
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1 Introduction

We have observed a significant progress in repeated games with private monitoring
in the last few years. It started with a series of papers which proved a folk theo-
rem with communication, such as Ben-Porath and Kahneman [4], Compte [6], and
Kandori and Matsushima [11]. They are very important contributions to the theory
of long term relationships, especially because repeated games with private moni-
toring are very difficult to analyze without communication. These folk theorems,
however, do not cover all the interesting cases because of the specific assumptions
they require on private monitoring structure. This note proves a new folk theorem
with communication to expand the range of environments to which the folk theorem
applies.

The main contribution of this note is to extend the idea of delayed communi-
cation in Compte [6] to the case where private signals are correlated. Compte [6]
focuses on T−public equilibria in which players play the same action for T periods
and announce their accumulated private signals truthfully only every T periods.
These private signals in each T-period block are used to “test” whether each player
has deviated or not within the same block. A player is punished at the end of the
block with a lower continuation payoff when the private signals reported by the
other players look “bad”. In conducting this statistical test, it is important that a
player does not learn the likelihood of her punishment from her own private signals.
If she is confident that she will not be punished in the end of a T-period block, she
may start deviating toward the end of the block. Compte [6] avoids this problem
by assuming conditional independence between players’ private signals. However,
conditional independence is a nongeneric assumption.1 Furthermore, it is difficult
to introduce even a slight correlation of private signals. This is because T must go
to infinity to obtain the exact folk theorem, hence players may be able to obtain
a large amount of information from their accumulated private signals even if each
signal has a limited information.2

This note proposes a new condition which serves the same purpose as conditional
independence, thus making it possible to apply the idea of delayed communication
even when private signals are correlated. The condition is generically satisfied for
most of stage games when the number of players is more than two. When the number
of actions and signals is the same across players, this condition is generically satisfied
even more easily than the sufficient condition proposed by Kandori and Matsushima
[11].

There are a few recent contributions proving folk theorems for repeated games
with private monitoring and communication. They pay extra attention to the case
with two players: the case that was not extensively analyzed in the initial contribu-

1Compte [6] does allow for some correlation of private signals off the equilibrium path.
2As observed by Abreu, Milgrom and Pearce [1], this type of statistical test becomes more

effective as T becomes large. In fact, the cost of expected punishment converges to 0 as T goes to
infinity and players become infinitely patient.
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tions.3 Fudenberg and Levine [9] proves a Nash-threat folk theorem when players’
private signals are highly correlated. Ashkenazi-Golan [2] assumes that deviations
are perfectly observable by at least one player with positive probability and proves a
Nash-threat folk theorem. These results, as well as the result of this note, apply to
repeated games with two or more players. Finally, McLean, Obara and Postlewaite
[15] proves a folk theorem when private signals are correlated and can be treated
like a public signal once aggregated. But this result requires at least three players.

I also should mention that many folk theorem results without communication
have been obtained recently. However, most of them assume almost perfect moni-
toring (Bhaskar and Obara [5], Ely and Välimäki [7], Hörner and Olszewski [10], and
Mailath and Morris [12]).4 One exception is Matsushima [14] that allows for noisy
private monitoring. However he assumes a certain type of conditional independence
of private signals as in Compte [6]. The result of this note may be useful to deal
with noisy correlated private signals even without communication, but that is left
for future research.

The next section presents the model briefly. Section 3 introduces the assumptions
on monitoring structure. Section 4 presents the main result and Section 5 discusses
some extension.

2 Model

Stage gameG = (I,A, g) is defined as follows. The set of players is I = {1, 2, ..., n} , n ≥
2. In each period, player i ∈ I chooses an action from a finite action set Ai (simul-
taneously with the other players) and observes a private signal si from a finite
set Si. Both ai and si are private information, observable only to player i. Let
p (s|a) be the probability of s ∈ S =

Qn
i=1 Si given a ∈ A =

Qn
i=1Ai. It is as-

sumed that p (s|a) has full support on S for every a ∈ A. The signal distribution
on S−i = Πj 6=iSj for player i given a ∈ A (and si ∈ Si) is denoted by p−i (s−i|a)
(p−i (s−i|a, si)). Player i’s (expected) stage game payoff gi : A → < is given by
gi (a) =

P
ui (ai, si) p (s|a) where ui : Ai × Si → < is a realized payoff of player

i. Let g (a) = (g1 (a) , ..., gn (a)) be the expected payoff profile given a ∈ A and
V = co {g (a) |a ∈ A} ⊂ <n be the feasible payoff set.5 Abusing notations slightly,
let gi (α) be player i’s expected stage game payoff given a mixed action profile
α ∈

Qn
i=14Ai and g (α) = (g1 (α) , ..., gn (α)) . The set of Nash equilibrium profiles

is denoted by NE ⊂
Qn
i=14Ai. Let V NE = co {v ∈ V | ∃α ∈ NE s.t.v >> g (α)} .

This stage game G is played repeatedly over time. In the end of each period,
players send messages m = (m1, ...,mn) ∈ M =

Qn
i=1Mi simultaneously, which

3However, Theorem 2 in Compte [6] applies to two-player games. Kandori and Matsushima [11]
spends one section to prove a folk theorm for the repeated prisoners’ dilemma game with conditional
independence and private monitoring.

4Also see Mailath and Morris [13]
5For any X ⊂ <n, coX is the convex-hull of X.
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are publicly observed. Private history and public history at period t = 1, 2.. are
hti = (ai,1, si,1, ..., ai,t−1, si,t−1) ∈ (Ai × Si)t−1 , i ∈ I and ht = (m1, ...,mt−1) ∈
M t−1 respectively.6 Player i’s strategy σi consists of an action strategy σai and a
report strategy σmi . Player i’s action strategy σ

a
i is a collection of period t behavior

strategies (σai,t, t = 1, 2, ..., ), which map
¡
hti, h

t
¢
into Ai. Player i’s report strategy

σmi is a collection of period t behavior strategies (σmi,t, t = 1, 2, ..., ), which map¡
ht+1i , ht

¢
into Mi. They also depend on a realization of a randomization device.

But I avoid introducing additional notations here to simplify the exposition. It will
be mentioned when the public randomization device is introduced.7

The players discount their future payoffs by common discount factor δ ∈ (0, 1).
Their discounted average payoffs are E

£
(1− δ)

P∞
t=1 δ

t−1gi (at) |σ
¤
, i ∈ I.

3 Assumptions on Monitoring Structure

I introduce and discuss a few important conditions in this section. First, it is
assumed that player i0s deviation is statistically detectable from private signals of
the other players. For given a ∈ A, letQi (a) be the convex-hull of probability vectorsn
p−i (·|a0i, a−i) ∈ <

|S−i|
+ |a0i 6= ai

o
. Then this assumption can be formally stated as

follows.

Assumption 1

p−i (·|a) /∈ Qi (a) for every a ∈ A and i ∈ I.

This assumption is standard. In Kandori and Matsushima [11], it is implied
by assumption (A2). In Compte [6], this is satisfied when there exists an unbiased
monitor for each player.

As is well known, this guarantees that ai ∈ Ai is strictly enforceable through
transfers contingent on s−i.

Lemma 1 Assumption 1 is satisfied at a ∈ A for i ∈ I if and only if there exists
xi : S−i → < such that, for all a0i 6= ai,X

s−i∈S−i

p−i (s−i|a) · xi (s−i) >
X

s−i∈S−i

p−i
¡
s−i|a0i, a−i

¢
· xi (s−i)

The next condition is the key for the folk theorem. Fix a ∈ A and si ∈ Si and
consider all the conditional beliefs on S−i when player i observes a different signal or

6I follow the convention and set hti = h
t = ∅ in t = 1.

7It is possible to generate any public randomization device endogenously through (direct) com-
munication by redefining i’s message space asMi×[0, 1] for each i ∈ I and using a jointly-controlled
lottery (Aumann, Maschler and Stearns [3]).
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deviates from ai. Let Ri (a, si) be the convex-hull of all such conditional probability

vectors, i.e. co
n
p−i (·|a0i, a−i, s0i) ∈ <

|S−i|
+ | (a0i, s0i) 6= (ai, si)

o
.

Definition 1 Player i is an informed player at a ∈ A if

p−i (·|a, si) /∈ Ri (a, si) for any si ∈ Si (IP)

When player i is informed at a, her conditional belief given any private signal is
not a linear combination of her conditional beliefs given different signals or unilateral
deviations. See the following example.

Example

Let Si =
n
yi, yi

o
, Ai = {C,D} , and I = {1, 2} . Player 1 is an informed player

at (C,C) if and only if (after relabeling y2 and y2 if necessary)

p2 (y2|CC, y1) > max
n
p2

³
y2|CC, y1

´
, p2 (y2|DC, y1) , p2

³
y2|DC, y1

´o
p2

³
y
2
|CC, y

1

´
> max

n
p2

³
y
2
|CC, y1

´
, p2

³
y
2
|DC, y1

´
, p2

³
y
2
|DC, y

1

´o
Note that player 1 cannot be an informed player at (D,C) when she is informed at
(C,C) .8

This condition is satisfied in the following example. Suppose that there is a hid-
den signal y ∈

©
y, y
ª
. Each player’s private signal si, i = 1, 2 is a noisy conditionally

independent observation of y. Player i’s private signal si is correct (yi for y and
y
i
for y) with probability 1 − ε0 when ai = C and correct with probability 1 − ε00

when ai = D. Assume also that ε0 < ε00 < 1/2. That is, player i0s private signal
is more informative when C is chosen. When ε0

ε00 is small enough, the conditional

probability of yj

³
y
j

´
, j 6= i is largest when ai = C is played and yi

³
y
i

´
is observed.

Thus player 1 (and player 2, too) is an informed player at (C,C). Note that player
1 is also informed at (C,D).

A few remarks are in order. First, player i’s private signal given a ∈ A must be
correlated with the other players’ private signals when she is informed at a. If pri-
vate signals are conditionally independent, then p−i (·|a, si) does not depend on si.
Hence this condition is complementary to the independence assumption in Compte
[6]. Second, (IP) is very easily satisfied with three players or more. Indeed it is gener-
ically satisfied for every player at every action profile when |Ai| × |Si| ≤

Q
j 6=i |Sj | ,

i ∈ I (with |Sj | ≥ 2 for every j ∈ I) because {p−i (·|a, si) : ai ∈ Ai, si ∈ Si} are
generically linearly independent in that case. Kandori and Matsushima [11]’s con-
dition also holds generically with three players or more. To compare my result to

8If there are at least three signals for player 2, then there are monitoring structures for which
player 1 is informed at all action profiles.
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theirs, consider a stage game with m = |Ai| and K = |Si| for all i ∈ I. Kandori and
Matsushima [11] requires |Ai| + |Aj | − 1 ≤ |S−i,j | for every i, j for their condition
to be satisfied generically, which reduces to 2m− 1 ≤ Kn−2, whereas the above in-
equality reduces to a weaker condition: m ≤ Kn−2. Third, (IP) is less easily satisfied
with two players. Indeed |A1|× |S1| ≤ |S2| and |A2|× |S2| ≤ |S1| cannot be satisfied
at the same time, thus there must exist some action profile where some player is not
informed. However, my folk theorem may still hold even in such cases because (1)
some action profiles are not relevant for the proof of the folk theorem and (2) not all
players have to be informed. I just need one player to be informed at relevant action
profiles. The last section discusses the possibility to relax the sufficient condition
regarding informed players even further. Finally, this condition does not presume
any type of almost public monitoring or almost common knowledge (Fudenberg and
Levine [9], Mailath and Morris [12], and McLean, Obara and Postlewaite [?]).

The crucial step of the proof is to construct a binary signal for player i from
reported signal profiles, which is used to punish her when she deviates in action
and/or in announcements. The binary signal has the following two properties: (1)
it is informative about player i’s action and message and (2) player i does not
update her belief about the signal based on her private signal si in equilibrium, i.e.
her private signal is not informative about whether she will be punished or not. To
be more precise, let me introduce the following condition.

Definition 2. Player i can be secretly screened at a ∈ A if there exists qi : S →
[0, 1] such that

E [qi (s) |a] < E
£
qi (ρ (si) , s−i) |a0i, a−i

¤
(1)

when either a0i 6= ai or ρ : Si → Siis not the identity function, and

E [qi (s) |a] = E [qi (s) |a, si] for all si ∈ Si (2)

This qi can be interpreted as the probability of the “bad” outcome of the binary
signal. The first condition means that the probability of a bad outcome goes up when
player i either deviates from ai or sends a false message. The second condition means
that the expected value of qi is unaffected by player i’s private information when
she plays ai and announces her signal truthfully. The following key lemma proves
that (IP) holds at a ∈ A if and only if player i can be secretly screened at a ∈ A.

Lemma 2 Player i is an informed player at a ∈ A if and only if player i can be
secretly screened at a ∈ A.

Proof. Suppose that player i is an informed player at a ∈ A. By the hyperplane
theorem, there exists qi : S → < to satisfyX

s−i

qi (s) pi (s−i|a, si) <
X
s−i

qi (s) pi
¡
s−i|

¡
a0i, a−i

¢
, s0i
¢

for all
¡
a0i, s

0
i

¢
6= (ai, si) and for all si ∈ Si.
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Without loss of generality, I can choose qi (s) so that E [qi (s) |a, si] = π for all si for
some π ∈ (0, 1) (add some appropriate constant to qi (s) for each si). Furthermore,
qi (s) can be chosen from (0, 1) for all s ∈ S. If not, then redefine qi (s) as eqi (s) =
(qi (s) + zπ)

1
z+1 for some large z > 0. Then this eqi (s) still satisfies all the strict

inequalities and lies in (0, 1) if z is large enough.
For this qi (s) , (2) is satisfied because

E [qi (s) |a] =
X
si

E [qi (s) |a, si] Pr (si|a)

=
X
si

πPr (si|a)

= π.

The above strict inequalities imply that
P
s−i
qi (ρ (si) , s−i) pi (s−i| (a0i, a−i) , si) is

strictly larger than π when either a0i 6= ai or si 6= ρ (si). This implies that (1) holds
when either a0i 6= ai or ρ : Si → Si is not an identity function, because

E
£
qi (ρ (si) , s−i) |a0i, a−i

¤
=

X
si

X
s−i

qi (ρ (si) , s−i) pi
¡
s−i|

¡
a0i, a−i

¢
, si
¢
Pr(si|a0i, a−i)

> π

= E [qi (s) |a] .

Conversely, suppose that player i can be secretly screened at a ∈ A. Then, for
each si, (ai, si) is the unique solution of

max
(a0i,s

0
i)∈Ai×Si

X
s−i

qi (s) pi
¡
s−i|

¡
a0i, a−i

¢
, s0i
¢
.

Then pi (s−i|a, si) is an extreme point of co
n
p−i (·|a0i, a−i, s0i) ∈ <

|S−i|
+ | (a0i, s0i) ∈ Ai × Si

o
,

which implies that p−i (·|a, si) /∈ Ri (a, si) .

The key condition for the main result is (2). Compte [6] uses a similar binary
signal for which qi does not depend on si. In this case, no learning ((2)) follows
automatically from conditional independence, (IP) can be regarded as an alternative,
possibly generic, condition, which guarantees that (2) is satisfied for some qi even
when private signals are correlated.

The Role of Informed Players

Since (1) and (2) are central to the proof of the folk theorem, it may be useful
to explain their roles in the formal proof of the folk theorem.
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As is often the case, for each utility weight λ ∈ <n, I try to support a ∈ A that
maximizes λ · g (a) while minimizing “efficiency losses” of continuation payoffs (in
the direction of λ).

Suppose that player i is informed at a ∈ A and λi > 0. The incentive of player
j 6= i is provided through transfers xj (s−j) (by Lemma 1) period by period. Note
that player j’s revelation constraints are satisfied by definition because xj does not

depend on sj . To avoid efficiency losses, −λj
λi
xj (s−j) is added to player i’s transfer.

This is as if player i’s stage game payoff is transformed into gi (a)−
P
j 6=i

λj
λi
xj (s−j) .

Note that this creates an incentive problem for player i because she may have in-
centive to misrepresent her signal to control the transfers from j. This problem can
be taken care of by using qi as explained below. This is another reason (in addition
to “no learning”) why it is useful to make qi dependent on si in addition to s−i.
Compte [6] avoids this problem by making xj(s−i,j) independent of si, but this does
not allow the case with two players.

Player i’s incentive is provided through punishments. This is where (1) is used.
The probability of a bad signal, hence the probability of punishment, increases when
the distribution of s−i suggested by player i’s message does not match with the
true distribution of s−i.9 This punishment is costly because it occurs with positive
probability (and λi > 0). To reduce the expected cost of punishments, private
signals are stored and revealed only in every T periods. The efficiency of monitoring
is improved by using such accumulated private signals. Indeed the expected cost of
punishment goes to 0 as T → ∞ (and δ → 1). For this type of “review strategies”
to work, player i must be kept from learning the likelihood of punishment within
each T period review phase. Condition (2) guarantees that such learning is not
happening.

It is also possible to use player i with λi < 0 who can be secretly screened at a.
In this case, player i’s incentive needs to be provided through rewards rather than
punishments. This extension is discussed in the last section.

4 Folk Theorem with Delayed Communication

To prove a folk theorem, T-public equilibrium is employed as in Compte [6] and
Kandori and Matsushima [11]. In T-public equilibrium, players reveal their private
signals publicly only every T periods.10 Player i’s action strategy σai depends on

9Player i’s incentive for truthful announcements is not an issue in Compte [6] because he uses
a slightly stroger version of Assumption 1 (for Theorem 1): player j’s deviation can be detected
from s−i,j for any i 6= j rather than s−j (note that this requires three players). Then xj can be
just a function of s−i,j , thus player i does not have an incentive to manipulate player j

0s transfer.
In this case, qi does not need to depend on si, hence (1) can be replaced by E [qi (s−i) |a] <
E [qi (s−i) |a0i, a−i] for all a0i 6= ai. Therefore there is no incentive problem regarding announcements
in Compte [6] because neither xj nor qi does not depend on si.
10This can be interpreted as players announcing meaningless random messages until the end of

each T-period block. Note also that player i’s message space needs to be at least as large as STi .
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only such publicly announced private signals. Player i’s report strategy σmi depends
on public signals as well as her private history within the most recent T-period
block. Let E (δ, T ) be the set of all T -public equilibrium payoffs given δ. A T -public
equilibrium in which players play the same action every period within each T -period
block is called a stationary T -public equilibrium.

A few more notations need to be introduced to state the theorem. Let Λ =
{λ ∈<n| kλk = 1} be the space of utility weights. Let Aτ (λ) ⊂ A be the subset of
pure action profiles where there exists at least one informed player with a positive
weight larger than τ . This τ can be an arbitrarily small positive number. Define
the following value for each λ ∈Λ,

kτ (λ) ≡ max
½
max

a∈Aτ (λ)
λ · g (a) , max

α∈NE
λ · g (a)

¾
.

Let Dτ (λ) ≡ {v ∈<n|λ · v ≤kτ (λ)}. I say a convex set in <n is full dimensional if
it has an interior point in <n.

Theorem 1 Fix any τ > 0. Suppose that Assumption 1 is satisfied and ∩λ∈ΛDτ (λ)
is full dimensional. Then, for any smooth setW in the interior of ∩λ∈ΛDτ (λ) , there
exists δ ∈ (0, 1) and an integer T such that W ⊂ E (δ, T ) for all δ ∈ (δ, 1).

Proof. See Appendix.

An immediate corollary of this theorem is the following Nash-threat folk theorem.

Corollary 1 Suppose that Assumption 1 is satisfied and V NE is full dimensional.
Also suppose that every player is informed at every action profile that achieves an
extreme point of V . Then, for any v ∈ intV NE, there exists δ ∈ (0, 1) and an integer
T such that v ∈ E (δ, T ) for all δ ∈ (δ, 1).

Proof. First note that V NE ⊂ limτ→0 ∩λ∈ΛDτ (λ) . For each v ∈ intV NE . Pick
a smooth set W s.t. v ∈ W ⊂ intV NE. Then pick small enough τ > 0 such that
W ⊂ intDτ (λ) and apply the above theorem.

The proof of the theorem consists of two steps. The first step is to transform
an infinitely repeated game into a T -period game with side transfers. Consider
the best stationary T -period equilibrium in the direction of λ for this T -period
game. The equilibrium payoff provides an upper bound of the best stationary T -
public equilibrium of the original infinitely repeated game. It is well known that
this bound is indeed tight, i.e. the area surrounded by a collection of such bounds
indexed by λ is approximately the set of stationary T−public equilibrium payoffs of
the original infinitely repeated game as δ → 1. In the second step, it is shown that
this area contains ∩λ∈ΛDτ (λ) for any τ > 0 as T →∞.
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There is nothing new in the first step. Here I briefly copy the results from Compte
[6]. Consider the following T -period game with side transfers: stage gameG is played
T times and players announce their private signals mi = (si,1, ..., si,T ) , i = 1, ..., n at
the end of the T periods, on which their side transfers xi (m) , i ∈ I are based. Let
σa,Ti be player i0s T-period action strategy and σm,Ti be player i’s report strategy,
which are essentially a T -period truncated version of σai and σmi respectively. Let

σTi =
³
σa,Ti ,σm,Ti

´
be player i’s T -period strategy. Player i’s payoff from this

T−period game given δ0 ∈ (0, 1) is defined by

gT,δ0i

¡
σT
¢
+E

£
xi (m) |σT

¤
where

gT,δ0i

¡
σT
¢
= sup

δ∈[δ0,1]

(1− δ)
PT
t=1 δ

t−1E
£
gi (at) |σT

¤
1− δT

(3)

One can regard gT,δ0i

¡
σT
¢
as player i’s average payoff within the first T periods

of the original infinitely repeated game and xi (m) as the variation of continuation
payoffs.11

A T−period strategy profile σT is called stationary if it specifies the same
(mixed) action profile every period and all private signals are announced truth-
fully at the end of the T periods. Player i’s stationary strategy with αi ∈ 4Ai
is denoted σTi (αi) . Let σT (a) be a profile of stationary strategies. Note that

gT,δ0i

¡
σT (α)

¢
= gi (α) for any α. I say v ∈ <n is generated by

¡
σT (α) , x

¢
if

vi = gi (α) +E
£
xi (m) |σT (α)

¤
and σT (α) is a Nash equilibrium (called stationary T-period equilibrium), that is

vi = gi (α) +E
£
xi (m) |σT (α)

¤
≥ gT,δ0i

¡
σT 0i ,σ

T
−i (α)

¢
+E

£
xi (m) |σT 0i ,σT−i (α)

¤
for any T-period strategy σT 0i and i ∈ I.

Note that σT (α) is just a Nash equilibrium, not necessarily a sequential equilibrium.
However, since full support is assumed, there exists an outcome equivalent sequential
equilibrium for any Nash equilibrium.

Now consider the following programming problem for each λ ∈Λ,

k (λ,δ0, T ) = max
v,α,x,σT (α)

λ · v (4)

s.t. v is generated by
¡
σT (α) , x

¢
0 ≥

nX
i=1

λi · xi (m) ,∀m ∈ ST ,

11This can be more easily seen from the following transformation: xi (m) =
δT (vi(m)−vi)

1−δT , where

vi is player i’s discounted average payoff and vi(m) is player i
0s discounted average continuation

payoff given m.
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This problem characterizes the best stationary T -period equilibrium payoffs of the
T -period game in the direction of λ. Let k (λ,T ) = limδ0→1 k (λ,δ0, T ) andD (λ,T ) =
{v|λ · v ≤k (λ,T )} .12 Then it turns out that almost all payoffs in ∩λ∈ΛD (λ,T ) can
be supported by stationary T -public equilibria as δ → 1 in the original infinitely
repeated game. The following proposition follows from Fudenberg and Levine [8]
and Lemma 2 in Compte [6].

Proposition 1 Suppose that ∩λ∈ΛD (λ,T ) is full dimensional. For any smooth
set W in the interior of ∩λ∈ΛD (λ,T ) , there exists δ such that W ⊂ E (δ, T ) for
all δ ∈ (δ, 1)

Given this result, all I need is to show that ∩λ∈ΛD (λ,T ) contains ∩λ∈ΛDτ (λ)
as T →∞. Thus the second step is to prove the following lemma.

Lemma 3 Suppose that Assumption 1 is satisfied. For any ε > 0 and τ > 0, there
exists δ0 and T 0 such that k

¡
λ,δ0, T 0

¢
> kτ (λ)− ε for all λ ∈Λ and δ ∈

¡
δ0, 1

¢
Proof. See the appendix.

Here I just provide a rough sketch of this second step. Fix λ ∈Λ. It is easy to
show that Dτ (λ) ⊂ D (λ,T ) when kτ (λ) is achieved by α ∈ NE. There exists a T-
period equilibrium with zero transfer where α is played in every period. So suppose
that kτ (λ) is achieved by a non-Nash pure strategy profile a ∈ Aτ (λ) . Below I
construct transfers xi, i ∈ I, for which σT (a) is a stationary T−period equilibrium
and the efficiency loss is small (E

hP
j∈I λjxj (m) |σT (a)

i
≥ −ε).

Let player i be an informed player at a with λi > τ . For j 6= i, since Assumption
1 is satisfied, there exists transfer xj that provides the incentive for player j to play

aj (by Lemma 1). Define xj (m) =
1
T

PT
t=1 xj (s−j,t) . These transfers take care of

the incentive of player j 6= i.
To keep “the budget balanced”, exi,j (m) = −λj

λi
xj (m) is added to player i’s

transfer.13 Then player i may have incentive to deviate or send a false message to
manipulate xj (m) , j 6= i. To address this problem, I follow Compte [6] to use the
following scheme. Private signal profiles (s1, ..., sT ) reported in the end of the T
periods are translated into T binary signals c = (c1, ..., cT ) ∈ {g, b}T . The proba-
bility of ct = b at period t is given by some function qi (st) . This is where a public
randomization device is used. Then player i is punished if and only if ct = b for
t = 1, 2, ..., T . The sum of this punishment and

P
j 6=i exi,j (m) is the total side

transfer for player i.

12Note that k (λ,δ0, T ) is monotonically increasing in δ0.
13The role of τ > 0 is to obtain a lower bound for λi, which provides an upper bound for these

transfers.
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Since player i can be secretly screened, this qi can satisfy (1) and (2). The first
condition (1) guarantees that any deviation by player i increases the probability of
b in that period.

I like to make the expected probability of punishment as small as possible to
avoid efficiency losses. To meet this goal, first I single out the binding incentive
constraint out of many incentive constraints. If player i can learn the likelihood of
her punishment from her private information, then the binding incentive constraint
can be with respect to a very complicated contingent deviation. The second con-
dition (2) is useful here to exclude this possibility: such learning does not occur in
equilibrium. Then it turns out that the binding constraint is with respect to the
one-period deviation in the first period as in Abreu, Milgrom and Pearce [1]. Note
that the deviation gain from such one-period deviation is in the order of 1T compared
to the total payoff of the T-period game. Since the expected cost of punishment
(E [xi (m)] < 0) is in the same order, it becomes negligible as T →∞. This is why
E
hP

j∈I λjxj (m) |σT (a)
i
can be made arbitrarily small and kτ (λ) is approximately

achieved for the problem (4) by a stationary T -period equilibrium as T →∞.

5 Discussion

The above theorem may not apply to the two-player example in Section 3. Suppose
that the stage game payoff is given by the following Prisoner’s dilemma.

C D

C 1,1 -1,2

D 2,-1 0,0

Since player 1 is not an informed player at (D,C) , Aτ (λ) does not contain (D,C)
when λ1 > 0 and λ2 < τ . Hence Dτ (λ) needs to be defined with respect to the Nash
equilibrium (D,D) (i.e. Dτ (λ) ≡ {(v1, v2) |λ · v ≤0}) for such λ. Then clearly
∩λ∈ΛDτ (λ) does not cover the individually rational and feasible payoff set (in fact
it coincides with (0, 0)!).

However, the folk theorem can be still proved for this game by extending The-
orem 1. It is possible to support (D,C) in the following way. Since D is the best
response at (D,C), player 1’s incentive is satisfied without any transfer. Player 2’s
incentive to cooperate can be provided through rewards when λ2 < 0.

14 Remember
that transfers must satisfy 0 ≥

P2
i=1 λi ·xi (m) , hence x2 (m) must be positive given

x1 (m) = 0 and λ2 < 0.
How large can k (λ,δ0, T ) be when λ1 > 0 and λ2 < 0? Since x2 (m) ≥ 0 for

any m, player 2’s payoff is at least as large as maxa2 g2 (D, a2) = 0. Thus k (λ,δ0, T )
14For λ2 ∈ [0, τ), player 2’s incentive is still provided through punishments. The lower bound of

positive λ2 was used to limit the size of transfers (from player 1 to player 2, in this case) in the
proof of Theorem 1. This bound is not relevant in this case because no transfer from playe 1 is
needed.
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can be at most λ1g1 (D,C) + λ2g2 (D,D) = 2λ1. The lemma below proves that it is
possible to approximate this level of k by making the expected reward given (D,D)
almost negligible as T → ∞. Then D (λ) = {v|λ · v ≤2λ1} for such λ, which still
covers all the individually rational and feasible payoffs, can be approximated when
λ1 ≥ 0, λ2 < 0.

More generally, let A0 ⊂ A be the subset of action profiles where every player
is either informed or playing a best response action. For each a ∈ A0 and λ ∈Λ,
let I (a,λ) be the set of informed players with a negative weight. Define k0 (a,λ) ≡P
i∈I/I(a,λ) λigi (a)+

P
i∈I(a,λ) λimaxai gi (ai, a−i). Then k

0 (a,λ) can approximated

by k (λ,δ0, T ) as T →∞ and δ0 → 1.15

Lemma 4 For any ε > 0, there exists δ0 and T 0 such that k (λ,δ, T 0) > k0 (a,λ)− ε
for every a ∈ A0 and every λ ∈Λ and δ ∈

¡
δ0, 1

¢
Proof. See the appendix.

This means that Theorem 1 holds even if Dτ (λ) ≡ {v ∈<n|λ · v ≤kτ (λ)} is
modified by redefining kτ (λ) as follows:

kτ (λ) ≡ max
½
max

a∈Aτ (λ)
λ · g (a) , max

α∈NE
λ · g (a) , max

α∈A0
k0 (a,λ)

¾
.

This folk theorem applies to the above prisoners’ dilemma example.
The proof of this lemma is slightly more complicated than the proof of Lemma

3 at one point. For Lemma 3, the binding constraint was with respect to the one
shot deviation in the first period. This was because the marginal increase of the
probability of punishment increases as players deviate more from the equilibrium
action. When rewards are being used, the marginal decrease of the probability of
reward goes down as players deviate more. Therefore the most tempting deviation is
not the one shot deviation. In fact, it may be a very complicated deviation because
of learning.16 The proof of Lemma 4 involves finding an upper bound of expected
rewards without identifying the binding incentive constraint.

6 Appendix

Proof of Theorem 1

Given Proposition 1, I just need to show that ∩λ∈ΛD (λ,T ) contains ∩λ∈ΛDτ (λ)
as T →∞ uniformly in λ ∈Λ when Assumption 1 is satisfied. The following lemma
proves this step.

15See Compte [6] for a more detailed discussion for this expression.
16When no learning occurs, the binding constraint is with respect to deviations in every period

(Compte [6]).
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Proof of Lemma 3

Proof. Pick any λ ∈Λ. If kτ (λ) = λ · g (α) for some α ∈ NE (which is nec-
essarily the case when every element of λ is nonpositive), then kτ (λ) is trivially
achieved by a stationary T -period equilibrium with constant action α and 0 side
transfer. Let Λτ be the set of λ for which kτ (λ) is achieved by a non-Nash pure
strategy profile aλ ∈ Aτ (λ) . Let i ∈ I be the informed player with λi > τ at aλ. I
am going to find side transfers and a stationary T-period equilibrium where players
always play aλ and announce their private signals truthfully.

To verify if a stationary T-period strategy is a stationary T-period equilibrium, I
just need to check all one-period deviation constraints (in action and/or announce-
ments) on and off the equilibrium path.17 Let’s start with j 6= i. For given aλ, let
xj : S−j → < be the function described in Lemma 1. Define player j’s transfer by
xj (m) =

1
T

PT
t=1 xj (s−j,t). To avoid efficiency losses,

1
T

PT
t=1

λj
λi
xj (s−j,t) is sub-

tracted from player i’s transfer. For any T 0, there exists δ0 such that the following
condition is satisfied for every aj 6= aλj and δ ∈

¡
δ0, 1

¢
:

(1− δ)

1− δT

³
gj

³
aj , a

λ
−j

´
− gj

³
aλ
´´
<
1

T

n
E
h
xj (s−j) |aλ

i
−E

h
xj (s−j) |aj , aλ−j

io
.

because (1−δ)
1−δT →

1
T as δ → 1. This condition implies that player j’s incentive

constraint is satisfied period by period on and off the equilibrium path when xj (m)
is used as side transfers for player j in the end of T periods. Furthermore, this δ0 (T )
can be chosen uniformly with respect to λ ∈Λτ because there are only finite number
of action profiles and finite number of players.

Next I focus on the incentive of player i. First, the following expression charac-
terizes the maximum deviation gain of player i in each period, taking into account
the effect of the transfer from j to i defined above:

max
ai,ρ

⎧⎨⎩(1− δ)

1− δT
gi

³
ai, a

λ
−i

´
− 1

T

X
j 6=i

λj
λi
E
h
xj (ρ(si), s−i) |ai, aλ−i

i⎫⎬⎭ (5)

−

⎧⎨⎩(1− δ)

1− δT
gi

³
aλ
´
− 1

T

X
j 6=i

λj
λi
E
h
xj (s) |aλ

i⎫⎬⎭ .
Let g (T ) be an upper bound of (5) across all λ ∈ Λτ and δ ∈

¡
δ0 (T ) , 1

¢
. Such

bound can be found because λi is bounded below by τ > 0. Note also that, g (T )

17This does not guarantee that the strategy is a sequential equilibrium because it may not be
sequentially rational for a player to announce her signal truthfully immediately after deviating from
the equilibrium action. However, there always exists an outcome equivalent sequential equilibrium
for any Nash equilibrium because of the full support assumption.
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decreases roughly in the order of 1T by taking δ
0 (T ) large enough for each T so that

(1−δ0(T ))
1−δ0(T )T ≈

1
T .

Player i can be secretly screened by Lemma 2. Let qi : S → (0, 1) be the function
to satisfy (1) and (2). Define a random variable c as explained in Section 4. Then
define exi (m) as follows

exi (m) = −4 when c (m) = (1, ..., 1)

= 0 otherwise

where 4 > 0 is to be chosen later. Player i’s total transfer is defined by the sum ofexi (m) and −Pj 6=i
λj
λi
xj (m−j) .

By Lemma 2, when player i deviates in action or in announcement in period t,
the probability of her punishment increases by at least

min
(ai,ρ)6=(aλi ,ρ∗)

³
E
h
qi (ρ (si) , s−i) |

³
ai, a

λ
−i

´i
− π

´
×Pr(ct0 is b at t0 6= t|ht, hi,t)

≥ min
(ai,ρi)6=(aλi ,ρ∗i )

³
E
h
qi (ρi (si) , s−i) |

³
ai, a

λ
−i

´i
− π

´
× πT−1

≥ 4π × πT−1

where ρ∗ is the truth-telling strategy and 4π is a lower bound of

min
(ai,ρi)6=(aλi ,ρ∗i )

³
E
h
qi (ρi (si) , s−i) |

³
ai, a

λ
−i

´i
− π

´
with respect to all λ ∈ Λτ . This is strictly positive by Lemma 2. Note that (1) and
(2) guarantee that Pr(ct0 is b at t

0 6= t|ht, hi,t) is at least πT−1 in the beginning of
any period t on and off the equilibrium path.

Since the gain from any one-period deviation (in action and/or announcement)
is at most g (T ) , all the one-period deviation constraints on and off the equilibrium
path are satisfied if

g (T ) ≤ 4π × πT−1 ×4

is satisfied. Set 4 so that this inequality holds with equality. Since xj (m) , j 6= i

are cancelled out by −
P
j 6=i

λj
λi
xj (m) ,

Pn
j=1 λjE

£
xj (m) |σT

¡
aλ
¢¤
- the expected

efficiency loss on the equilibrium path - is λiπ
T4, which is at most g (T ) π

4π from
the definition of 4 (note that ∀i, |λi| ≤ 1). This efficiency loss can be made smaller
than ε because g (T ) can be made arbitrarily small by choosing large enough T 0

(and large enough δ0). Notice that the same T 0 and δ0 is being used for all λ ∈Λτ .
Hence, given ε > 0 and τ > 0, there exist T 0 and δ0 such that, for every λ ∈Λτ ,
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there exists a T-period stationary equilibrium that satisfies

nX
j=1

λj

n
gj

³
aλ
´
+E

h
xj (m) |σT

0 ³
aλ
´io

≥ kτ (λ)− g
¡
T 0
¢ π

4π

> kτ (λ)− ε.

Therefore k (λ,δ, T 0) ≥ k
¡
λ,δ0, T 0

¢
> kτ (λ)− ε for all δ ∈

¡
δ0, 1

¢
.

This Lemma proves that ∩λ∈ΛD (λ,T ) contains ∩λ∈ΛDτ (λ) as T →∞ uniformly
in λ ∈Λ, thusW is contained in the interior of ∩λ∈ΛD (λ,T ) for large enough T. Fix
such T. Then Proposition 1 implies that there exists δ such that W is contained in
E (δ, T ) for any δ ∈ (δ, 1) .¥

Proof of Lemma 4

Proof. Fix ε > 0. Note that (1) best response actions can be supported without
any transfer and (2) the proof of Lemma 3 can be applied to informed players with
nonnegative weight. For (2), notice that no lower bound of the positive weight is
needed here because no transfer across different players is involved. Hence I focus
on the incentive of informed players with negative weight in the following.

Pick any a ∈ A0, λ ∈Λ and pick any i ∈ I (a,λ) . Consider a T-period game
with side transfers and a stationary T-period strategy where a is played for T -
periods. Since player i can be secretly screened by Lemma 2, there exists a function
qi : S → (0, 1) that satisfies (1) and (2). As before, define a random variable c as
explained in Section 4. This time player i’s transfer is defined by

xi (m) = 4 when c (m) = (g, ..., g)

= 0 otherwise

If 4 > 0 is large enough, it is optimal to play ai every period. 4 is chosen so
that one incentive constraint is binding. Let σT 0 be the strategy with the binding
incentive constraint. Let p

¡
hTi |σT 0

¢
be the distribution on ATi ×STi that is generated

when player i deviates to σT 0i unilaterally and d
¡
hTi
¢
be the number of times player

i deviated from ai along T-period history h
T
i . Then player i’s binding incentive

constraint implies

X
hTi

sup
δ∈[δ0,1]

(1− δ)
Pd(hTi )
k=1 δk−1gi (a)

1− δT
p
¡
hTi |σT 0

¢
(6)

≥
£
Pr (c (m) = (g, ..., g)|σ (a))− Pr

¡
c (m) = (g, ..., g)|σT 0i ,σ−i (a)

¢¤
4
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where gi (a) = maxa0i gi (a
0
i, a−i) − gi (a) . The left hand side is larger because it is

computed as if d
¡
hTi
¢
deviations happened in the first d

¡
hTi
¢
periods.

Since

Pr (c (m) = (g, ..., g)|σ (a))− Pr
¡
c (m) = (g, ..., g)|σT 0i ,σ−i (a)

¢
(7)

=
TY
t=1

Pr (ct (m) = g|σ (a))−
X
hTi

TY
t=1

Pr
¡
ct (m) = g|σT 0i ,σ−i (a) , hTi

¢
p
¡
hTi |σT 0i

¢
≥ (1− π)T −

X
hTi

(1− π)T−d(h
T
i )
¡
1− π0

¢d(hTi ) p ¡hTi |σT 0i ¢

= Pr (c (m) = (g, ..., g)|σ (a))

⎛⎝1−X
hTi

µ
1− π0

1− π

¶d(hTi )
p
¡
hTi |σT 0i

¢⎞⎠
where π = E [qi (s) |a] and π0 satisfies π0 > π and π0 ≤ E [qi(s0i, s−i)|a0i, a−i, si] for
any (s0i, a

0
i) 6= (si, ai) .

By (6) and (7), player i0s average payoff gi (a) + Pr (c (m) = (g, ..., g)|σ (a))4 is
bounded above by

gi (a) +

P
hTi
supδ∈[δ0,1]

(1−δ)
Pd(hTi )
k=1 δk−1gi(a)

1−δT p
¡
hTi |σT 0

¢
1−

P
hTi

³
1−π0
1−π

´d(hTi )
p
¡
hTi |σT 0i

¢
≤ gi (a) + max

d∈{1,...,T}

(1−δ0)
Pd
k=1 δ

k−1
0 gi(a)

1−δT0

1−
³
1−π0
1−π

´d .18

For each T, the second term converges to

max
d∈{1,...,T}

d
T gi (a)

1−
³
1−π0
1−π

´d
as δ0 → 1 by the theorem of Maximum. It is easy to show that this is maximized
at d = T. Therefore I can find large enough

¡
T 0, δ0

¢
such that this bound is approx-

imately gi (a) + gi (a) = maxa0i gi (a
0
i, a−i). Clearly this approximation can be done

uniformly across every i ∈ I (a,λ), a ∈ A0, and λ ∈Λ.
Hence there exists δ0 and T 0 such that

k0 (a,λ) =
X

i∈I/I0(a,λ)
λigi (a) +

X
i∈I0(a,λ)

λimax
ai
gi (ai, a−i)

is approximated within ε by a T-stationary equilibrium for every a ∈ A0 and
λ ∈Λ in the T 0-period repeated game with side transfers. Therefore k (λ,δ, T 0) ≥
k
¡
λ,δ0, T 0

¢
> k0 (a,λ)− ε for every a ∈ A0, λ ∈Λ, and

R
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