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Abstract

Global games of regime change–coordination games of incomplete information in which a

status quo is abandoned once a sufficiently large fraction of agents attacks it–have been used to

study crises phenomena such as currency attacks, bank runs, debt crises, and political change.

We extend the static benchmark examined in the literature by allowing agents to take actions

in many periods and to learn about the underlying fundamentals over time. We first provide

a simple recursive algorithm for the characterization of monotone equilibria. We then show

how the interaction of the knowledge that the regime survived past attacks with the arrival

of information over time, or with changes in fundamentals, leads to interesting equilibrium

properties. First, multiplicity may obtain under the same conditions on exogenous information

that guarantee uniqueness in the static benchmark. Second, fundamentals may predict the

eventual regime outcome but not the timing or the number of attacks. Finally, equilibrium

dynamics can alternate between phases of tranquillity–where no attack is possible–and phases

of distress–where a large attack can occur–even without changes in fundamentals.

JEL Codes: C7, D7, D8, F3.

Keywords: Global games, coordination, multiple equilibria, information dynamics, crises.

∗Earlier versions of this paper were entitled “Information Dynamics and Equilibrium Multiplicity in Global Games

of Regime Change.” We are grateful to the editor, Andrew Postlewaite, and three anonymous referees for suggestions

that greatly helped us improve the paper. For useful comments, we also thank Andy Atkeson, Daron Acemoglu, Pier-

paolo Battigalli, Alberto Bisin, V.V. Chari, Lars Hansen, Patrick Kehoe, Alessandro Lizzeri, Kiminori Matsuyama,

Stephen Morris, Hyun Song Shin, Iván Werning, and seminar participants at Berkeley, Bocconi, Bologna, British

Columbia, Chicago, MIT, Northwestern, NYU, Pompeu Fabra, Princeton, UCL, UCLA, UPenn, Yale, the Minneapo-

lis FRB, the 2003 and 2004 SED meetings, the 2005 CEPR-ESSET, the 2005 IDEI conference in tribute to J.J. Laffont,

the 2005 NBER Summer Institute, the 2005 Cowles workshop on coordination games, and the 2005 World Congress

of the Econometric Society. Emails: angelet@mit.edu, chris@econ.ucla.edu, alepavan@northwestern.edu

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7282568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Games of regime change are coordination games in which a status quo is abandoned, causing a

discrete change in payoffs, once a sufficiently large number of agents takes an action against it.

These games have been used to model a variety of crises phenomena: an attack against the status

quo is interpreted as speculation against a currency peg, as a run against a bank, or as a revolution

against a dictator.

Most applications of these games to crises have been confined to static frameworks: they

abstract from the possibility that agents take multiple shots against the status quo and that their

beliefs about their ability to induce regime change vary over time.1 Yet, these two possibilities

are important from both an applied and a theoretical perspective. First, crises are intrinsically

dynamic phenomena. In the context of currency crises, for example, speculators can attack a

currency again and again until they induce devaluation; and their expectations about the ability

of the central bank to defend the currency in the present may naturally depend on whether the

bank has successfully defended it in the past. Second, learning in a dynamic setting may critically

affect the level of strategic uncertainty (i.e., uncertainty about one another’s actions) and thereby

the dynamics of coordination and the determinacy of equilibria.

In this paper, we consider a dynamic global game that extends the static benchmark used in

the literature so as to incorporate precisely the two possibilities highlighted above.2 There is a

large number of agents and two possible regimes, the status quo and an alternative. The game

continues as long as the status quo is in place. In each period, each agent can either attack the

status quo (i.e., take an action that favors regime change), or not attack. The net payoff from

attacking is positive if the status quo is abandoned in that period and negative otherwise. Regime

change, in turn, occurs if and only if the fraction of agents attacking exceeds a threshold θ ∈ R that

parameterizes the strength of the status quo. θ captures the component of the payoff structure (the

“fundamentals”) that is never common knowledge; as time passes, agents receive more and more

private information about θ.

We first provide an algorithm for the characterization of monotone equilibria, based on a simple

recursive structure. A difficulty with extending global games to dynamic settings is the need to

keep track of the evolution of the cross-sectional distribution of beliefs. Our framework overcomes

this difficulty by summarizing the private information of an agent about θ at any given period in a

one-dimensional sufficient statistic, and capturing the dynamics of the cross-sectional distribution

1This is particularly true for recent applications that introduce incomplete information. See Morris and Shin

(1998) for currency crises; Goldstein and Pauzner (2005) and Rochet and Vives (2004) for bank runs; Morris and

Shin (2004) and Corsetti, Guimaraes and Roubini (2005) for debt crises; Atkeson (2000) and Edmond (2005) for riots

and political change.
2Global games are incomplete-information games that often admit a unique, iteratively-dominant equilibrium; see

Carlsson and Van Damme (1993) and Morris and Shin (2003). The applications cited in footnote 1 are all based on

one-shot global games.
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of this statistic in a parsimonious way. We then apply this algorithm to examine the effects of

learning on the determinacy of equilibria and the dynamics of coordination.

Multiplicity. We find that multiple equilibria can exist in our dynamic game under the

same conditions on the precision of exogenous private and public information that would guarantee

uniqueness in the static benchmark that is the backbone of most recent applications of global

games (Morris and Shin, 1998, 2001, 2003). Multiplicity originates in the interaction between

the endogenous learning induced by the knowledge that the regime survived past attacks and the

exogenous learning induced by the arrival of new private information over time.

Iterated deletion of dominated strategies ensures that equilibrium play is uniquely determined

in the first period: an attack necessarily takes place for every θ, but succeeds in triggering regime

change if and only if θ is sufficiently low. In any subsequent period, the knowledge that the status

quo is still in place makes it common certainty that it is not too weak, and ensures that no agent

ever again finds it dominant to attack. As a result, there always exists an equilibrium in which no

attack occurs after the first period. This would actually be the unique equilibrium of the game if

agents did not receive any information after the first period.

When instead new private information about θ arrives over time, this has two effects on pos-

terior beliefs about the strength of the status quo and hence on the agents’ incentives to attack.

On the one hand, it dilutes the upward shift in posterior beliefs induced by the knowledge that

the regime survived the first-period attack, which contributes to making further attacks possible.

On the other hand, it reduces the dependence of posterior beliefs on the common prior, which in

general has an ambiguous effect. When the prior mean is high (i.e., favorable to the status quo),

discounting the prior also contributes to making a new attack possible; the opposite is true when

the prior mean is low. A high prior mean thus ensures existence of an equilibrium where a second

attack occurs once private information becomes sufficiently precise.

More generally, we show that, when the prior mean is sufficiently high, the arrival of private

information over time suffices for the existence of arbitrarily many equilibria, which differ in both

the number and the timing of attacks.

Dynamics of coordination. The multiplicity discussed above does not mean that “anything

goes”: equilibrium outcomes in any given period depend critically on available information and the

history of past play.

The learning induced by the knowledge that the status quo survived past attacks introduces

a form of strategic substitutability across periods: the more aggressive the agents’ strategy in

one period, the higher the threshold in θ below which regime change occurs in that period; but

then the larger the upward shift in posterior beliefs induced by the knowledge that the regime

survived this attack, and hence the lower the incentive to attack in subsequent periods. When an

aggressive attack takes place in one period but fails to trigger regime change, then a significant

increase in the precision of private information is necessary to offset the endogenous upward shift in

posterior beliefs and make a new attack possible in equilibrium. As a result, dynamics take the form
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of sequences of periods in which attacks can not occur and agents only accumulate information,

followed by periods in which an attack is possible but does not materialize, eventually resulting in

a new attack.

Moreover, although it is possible that attacks continue indefinitely as long as new information

arrives over time, strategic uncertainty significantly limits the size of attacks. For θ high enough,

the status quo may survive forever, independently of which equilibrium is played and despite the

fact that it might have been vulnerable to a sufficiently strong attack.

Implications for crises. These results translate to interesting predictions for the dynam-

ics of crises. First, fundamentals may determine eventual outcomes—e.g., whether a currency is

devalued—but not the timing and number of attacks. Second, an economy can transit from phases

of “tranquility”, where the unique possible outcome is no attack, to phases of “distress”, where

a significant change in outcomes can be triggered by a shift in “market sentiments”. Finally, the

transition from one phase to another can be caused by a small change in information or, in a later

extension, by a small change in fundamentals.

These predictions strike a delicate balance between two alternative views of crises. The first

associates crises with multiple self-fulfilling equilibria: large and abrupt changes in outcomes are at-

tributed to shifts in “market sentiments” or “animal spirits” (Obstfeld, 1996). The second associates

crises with a discontinuity, or strong non-linearity, in the dependence of the unique equilibrium to

exogenous variables: large and abrupt changes in outcomes are attributed to small changes in fun-

damentals, or in agents’ information (Morris and Shin, 1998, 2001). Our results combine a refined

role for multiple self-fulfilling expectations with a certain discontinuity in equilibrium outcomes

with respect to information and fundamentals.

Extensions. The benchmark model focuses on the arrival of private information as the only

exogenous source of change in beliefs. In an extension we show how the analysis can accommo-

date public news about the underlying fundamentals. This only reinforces the multiplicity result.

Moreover, equilibrium dynamics continue to be characterized by phases of tranquility and phases

of distress, but now the transition from one phase to another can be triggered by public news.

The benchmark model also deliberately assumes away the possibility that the critical size of

attack that triggers regime change may vary over time. This permits us to isolate the impact of

changes in information (beliefs), as opposed to changes in fundamentals (payoffs), on the dynamics

of coordination. Nevertheless, introducing shocks to fundamentals is important for applications, as

well as for understanding the robustness of our results.

We first examine the case in which the shocks are perfectly observable. Shocks then provide an

additional driving force for dynamics: a transition from tranquility to distress may now be triggered

by a deterioration in fundamentals. Moreover, a sufficiently bad shock can push the economy into

a phase where an attack becomes inevitable—a possibility absent in the benchmark model.

We next consider the case in which the shocks are unobservable (or observed with private noise).

The novel effect is that the uncertainty about the shocks “noises up” the learning induced by the
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knowledge that the regime survived past attacks: whereas in the benchmark model this knowledge

leads to a truncation in the support of posterior beliefs about the strength of the status quo, here

posterior beliefs retain full support over the entire real line. Thus, in contrast to the benchmark

model, agents with very low signals may now find it dominant to attack in every period; and,

other things equal, a unique equilibrium outcome may obtain in any given period when private

information in that period is sufficiently precise. Nevertheless, our results are robust as long as the

noise in learning is small: any equilibrium of the benchmark model is approximated arbitrarily well

by an equilibrium of the game with shocks as the volatility of the shocks vanishes.

Thus, what sustains the multiplicity of equilibria and the structure of dynamics identified

in this paper is the combination of exogenous changes in information or fundamentals with the

endogenous learning induced by the knowledge that the regime survived past attacks. That in

the benchmark model this learning takes the sharp form of a truncation in the support of beliefs

simplifies the analysis but is not essential for the results. What is essential is that this learning

implies a significant change in common beliefs about the strength of the status quo.

Related literature. This paper contributes to the literature on global games by highlighting

the importance of learning for equilibrium determinacy. In this respect, it shares with Angeletos,

Hellwig and Pavan (2006)—which considers the signaling effects of policy interventions in a static

environment—the idea that natural sources of endogenous information may qualify the applicability

of global-game uniqueness results, while at the same time reinforcing the more general point that

information is important for coordination. In our framework this leads to novel predictions that

would have not been possible with either common knowledge or a unique equilibrium.3

The paper also contributes to a small but growing literature on dynamic global games. Morris

and Shin (1999) consider a dynamic model whose stage game is similar to ours, but where the

strength of the status quo follows a random walk and is commonly observed at the end of each

period. This reduces the analysis to a sequence of essentially unrelated static games, each with a

unique equilibrium. Heidhues and Melissas (2006) and Giannitsarou and Toxvaerd (2003) establish

uniqueness results for dynamic global games on the basis of dynamic strategic complementarities.

Dasgupta (2006) examines the role of noisy social learning in a two-period investment model with

irreversible actions. Levin (2001) considers a global game with overlapping generations of players.

Goldstein and Pauzner (2004) and Goldstein (2005) consider models of contagion. Frankel and

Pauzner (2000) examine a dynamic coordination game where uniqueness is obtained by combining

aggregate shocks with idiosyncratic inertia. Abreu and Brunnermeier (2003) consider a setting in

which speculators become gradually and asymmetrically aware of the mispricing of a financial asset.

All these papers feature multi-period coordination problems; but none of them features the form

3Information is endogenized also in Angeletos and Werning (2006), Hellwig, Mukherji and Tsyvinski (2006), and

Tarashev (2005), where financial prices aggregate and publicize disperse private information, and in Edmond (2005),

where a dictator manipulates the distribution of private signals.
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of learning that is the center of our analysis.4 Our methodological approach is also quite different:

instead of forcing uniqueness, we wish to understand how a natural form of learning sustained by

repeated play may affect both the determinacy of equilibria and the structure of dynamics.

Finally, this paper shares with Chari and Kehoe (2003) the motivation that information is

important for understanding crises: our benchmark model offers a theory where changes in infor-

mation are the sole source for the dynamics of crises. However, there are two important differences.

First, Chari and Kehoe focus on the effect of herding in an environment without strategic comple-

mentarities. In contrast, we focus on the impact of learning on the dynamics of coordination. The

coordination element is crucial for the prediction that there is a phase of distress during which an

attack is possible but does not necessary take place, as well as for the prediction that attacks occur

as sudden and synchronized events. Second, the main learning effect in Chari and Kehoe is the

negative information about the fundamentals revealed by the choice by some agents to attack—a

form of learning that generates “build-up” or “snow-balling” effects. In contrast, the main learning

effect in our benchmark model is the positive information revealed by the failure of an attack to

trigger regime change—a form of learning that is crucial for our prediction that phases of distress

are eventually followed by phases of tranquility. In Section 5.2 we discuss an extension of our bench-

mark model in which agents observe noisy signals about the size of past attacks. This extension

combines our cycles between phases of distress and tranquility with snow-balling effects similar to

those stressed in the herding literature.

The rest of the paper is organized as follows. Section 2 reviews the static benchmark and

introduces the dynamic model. Section 3 characterizes the set of monotone equilibria. Section 4

establishes the multiplicity result and examines the properties of equilibrium dynamics. Section 5

considers a few extensions of the benchmark model and examines robustness. Section 6 concludes.

Proofs omitted in the main text are in the Appendix.

2 A simple game of regime change

2.1 Static benchmark

Model set-up. There is a continuum of agents of measure one, indexed by i and uniformly

distributed over [0, 1]. Agents move simultaneously, choosing between two actions: they can either

attack the status quo (i.e., take an action that favors regime change) or refrain from attacking.

The payoff structure is illustrated in Table 1. The payoff from not attacking (ai = 0) is zero,

whereas the payoff from attacking (ai = 1) is 1− c > 0 if the status quo is abandoned (R = 1) and

−c < 0 otherwise (R = 0), where c ∈ (0, 1) parameterizes the relative cost of attacking. An agent

hence finds it optimal to attack if and only if he expects regime change with probability at least

4Chamley (2003) also considers learning in a dynamic coordination game. However, his model is not a global

game; all information is public, and so is learning.
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equal to c. The status quo, in turn, is abandoned if and only if the measure of agents attacking,

which we denote by A, is no less than a critical value θ ∈ R, which parameterizes the strength

of the status quo. An agent’s incentive to attack thus increases with the aggregate size of attack,

implying that agents’ actions are strategic complements.5

Regime Change (A ≥ θ) Status Quo (A < θ)

Attack (ai = 1) 1 − c −c
Not Attack (ai = 0) 0 0

Table I: Payoffs

Agents have heterogeneous information about the strength of the status quo. Nature first draws

θ from a normal distribution N (z, 1/α) , which defines the initial common prior about θ. Each agent

then receives a private signal xi = θ + ξi, where ξi ∼ N (0, 1/β) is noise, i.i.d. across agents and

independent of θ. The Normality assumptions allow us to parameterize the information structure

parsimoniously with (β, α, z) , that is, the precision of private information and the precision and

the mean of the common prior.

Interpretation. Although the game presented above is highly stylized, it admits a variety

of interpretations and possible applications. The most celebrated examples are self-fulfilling bank

runs, currency attacks, and debt crises. In these contexts, regime change occurs, respectively,

when a large run forces the banking system to suspend its payments, when a large speculative

attack forces the central bank to abandon the peg, or when a country/company fails to coordinate

its creditors to roll over its debt and is hence forced into bankruptcy. The model can also be

interpreted as one of political change, in which a large number of citizens decide whether or not to

take actions to subvert a repressive dictator or some other political establishment. (For references,

see footnote 1.)

Equilibrium analysis. Note that the c.d.f. of an agent’s posterior about θ is decreasing in

his private signal x. Moreover, it is strictly dominant to attack for sufficiently low signals (namely

for x < x, where x solves Pr (θ ≤ 0|x) = c) and not to attack for sufficient high signals (namely

for x > x̄,where x̄ solves Pr (θ ≤ 1|x̄) = c). It is thus natural to look at monotone Bayesian Nash

equilibria in which the agents’ strategy is non-increasing in x.

Indeed, suppose there is a threshold x̂ ∈ R such that each agent attacks if and only if x ≤ x̂.

The measure of agents attacking is then decreasing in θ and is given by

A (θ) = Pr (x ≤ x̂|θ) = Φ(
√
β(x̂− θ)),

5The role of coordination is most evident when θ is commonly known by all agents: for θ ∈ (0, 1], there exist two

pure-strategy equilibria, one in which all agents attack and the status quo is abandoned (A = 1 ≥ θ) and another in

which no agent attacks and the status quo is maintained (A = 0 < θ).
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where Φ is the c.d.f. of the standard Normal. It follows that the status quo is abandoned if and

only if θ ≤ θ̂, where θ̂ solves θ̂ = A(θ̂), or equivalently

θ̂ = Φ(
√
β(x̂− θ̂)). (1)

By standard Gaussian updating, the posterior about θ conditional on private signal x is Normal

with mean β
β+αx + α

β+αz and precision β + α. It follows that the posterior probability of regime

change is simply

Pr (R = 1|x) = Pr(θ ≤ θ̂|x) = 1 − Φ
(√

β + α
(

β
β+αx+ α

β+αz − θ̂
))

.

Since the latter is decreasing in x, an agent finds it optimal to attack if and only if x ≤ x̂, where x̂

solves Pr(θ ≤ θ̂|x̂) = c, or equivalently

1 − Φ
(√

β + α
(

β
β+α x̂+ α

β+αz − θ̂
))

= c. (2)

A monotone equilibrium is thus identified by a joint solution (x̂, θ̂) to (1) and (2). Such a solution

always exists and is unique for all z if and only if β ≥ α2/ (2π) . Moreover, iterated elimination of

strictly dominated strategies implies that, when the monotone equilibrium is unique, there is no

other equilibrium.

Proposition 1 In the static game, the equilibrium is unique if and only if β ≥ α2/ (2π) , and is in

monotone strategies.

In the limit as β → ∞ for given α, the threshold θ̂ converges to θ∞ ≡ 1 − c, and the size of

attack A (θ) converges to 1 for all θ < θ∞ and to 0 for all θ > θ∞. Hence, when the noise in private

information is small and θ is in the neighborhood of θ∞, a small variation in θ can trigger a large

variation in the size of attack and in the regime outcome. This kind of discontinuity, or strong

non-linearity, in the response of equilibrium outcomes to exogenous variables underlies the view of

crises advocated by most global-game applications.6

2.2 Dynamic game

We modify the static game reviewed above in two ways: first, we allow agents to attack the status

quo repeatedly; second, we let agents accumulate information over time.

Time is discrete and indexed by t ∈ {1, 2, ...}. The game continues as long as the status quo

is in place and is over once the status quo is abandoned. We denote by Rt = 0 the event that the

status quo is in place at the beginning of period t, by Rt = 1 the alternative event, by ait ∈ {0, 1}
the action of agent i, and by At ∈ [0, 1] the measure of agents attacking at date t. Conditional on

6A related strong non-linearity emerges in the response of equilibrium outcomes to noise in public information;

see the discussion of the “publicity multiplier” in Morris and Shin (2003) and that of “non-fundamental volatility”

in Angeletos and Werning (2005).
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the regime being in place at the beginning of period t (Rt = 0), the regime is abandoned in that

period (Rt+1 = 1) if and only if At ≥ θ, where θ again represents the strength of the status quo.

Agent i’s flow payoff for period t (conditional on Rt = 0) is thus πit = ait (Rt+1 − c) , while his

payoff from the entire game is Πi =
∑∞

t=1 ρ
t−1(1 −Rt)πit, where ρ ∈ (0, 1) is the discount factor.

Like in the static model, θ is drawn at the beginning of the game from N (z, 1/α), which defines

the initial common prior, and never becomes common knowledge. Private information, however,

evolves over time. In each period t ≥ 1, every agent i receives a private signal x̃it = θ + ξit

about θ, where ξit ∼ N (0, 1/ηt) is i.i.d. across i, independent of θ, and serially uncorrelated. Let

x̃t
i = {x̃iτ}t

τ=1 denote agent i’s history of private signals up to period t. Individual actions and the

size of past attacks are not observable, hence the public history in period t simply consists of the

information that the regime is still in place, whereas the private history of an agent is the sequence

of own private signals and own past actions. Finally, we let βt ≡
∑t

τ=1 ητ and assume that

∞ > βt ≥ α2/(2π) ∀t and lim
t→∞

βt = ∞.

As shown in the next section, βt parameterizes the precision of private information accumulated

up to period t. The assumptions we make here for βt ensure (i) that the static game defined by the

restriction that agents can move only in period t has a unique equilibrium for every t, and (ii) that

private information becomes infinitely precise only in the limit.

Remark. While this dynamic game is highly stylized, it captures two important dimensions

that are absent in the static benchmark: first, the possibility of multiple attacks against the status

quo; and, second, the evolution of beliefs about the strength of the status quo. By assuming that

per-period payoffs do not depend on past or future actions and by ignoring specific institutional

details, the model may of course fail to capture other interesting effects introduced by dynamics,

such as, for example, the role of wealth accumulation or liquidity in currency crises. However,

abstracting from these other dimensions allows us to isolate information as the driving force for the

dynamics of coordination and crises.

Equilibrium. In what follows, we limit attention to monotone equilibria, that is, symmetric

Perfect Bayesian equilibria in which the probability an agent attacks in period t, which we denote

by at(x̃
t), is non-increasing in his private signals x̃t and independent of his own past actions.7

Restricting attention to this class of equilibria suffices to establish our results.

3 Equilibrium characterization

Let at : R
t → [0, 1] denote the strategy for period t and at = {aτ}t

τ=1 the strategy up to period t,

with a∞ = {aτ}∞τ=1 denoting the complete strategy for the dynamic game. Since x̃t is i.i.d. across

agents conditional on θ, for any given strategy a∞ the size of attack and the regime outcome in

period t depend only on θ. Thus let pt(θ; at) denote the probability that the status quo is abandoned

7We do not restrict the set of available strategies: we look at equilibria in which these properties are satisfied.

8



in period t when all agents follow the strategy at, conditional on the status quo being in place at the

beginning of period t and the fundamentals being θ. Finally, let Ψ1(θ|x̃1) denote the c.d.f. of the

posterior beliefs in period 1, while for any t ≥ 2 let Ψt(θ|x̃t; at−1) denote the c.d.f. of the posterior

beliefs in period t conditional on the knowledge that the status quo is still in place (i.e., Rt = 0)

and that agents have played in past periods according to at−1.

Since neither individual nor aggregate actions are observable, and Rt = 0 is always compatible

with any strategy profile at any t, no agent can detect out-of-equilibrium play as long as the status

quo is in place.8 It follows that beliefs are pinned down by Bayes’ rule in any relevant history of

the game. Furthermore, as long as the status quo is in place, payoffs in one period do not depend

on own or other players’ actions in any other period, and hence strategies are sequentially rational

if and only if the action prescribed for any given period maximizes the payoff for that period. We

conclude that the strategy a∞ = {at}∞t=1 is part of an equilibrium if and only if the following hold:

at t = 1, for all x̃1,

a1(x̃1) ∈ arg max
a∈[0,1]

{[∫
p1(θ; a1)dΨ1(θ|x̃1) − c

]
a

}
; (3)

and at any t ≥ 2, for all x̃t,

at(x̃
t) ∈ arg max

a∈[0,1]

{[∫
pt(θ; at)dΨt(θ|x̃t; at−1) − c

]
a

}
. (4)

Next, define xt and βt recursively by

xt =
βt−1

βt
xt−1 +

ηt

βt
x̃t and βt = βt−1 + ηt.

with x1 = x̃1 and β1 = η1. By standard Gaussian updating, the distribution of θ conditional on

x̃t = {x̃τ}t
τ=1 is Normal with mean βt

α+βt
xt + α

α+βt
z and precision βt + α. It follows that xt is a

sufficient statistic for x̃t with respect to θ, and hence with respect to the event of regime change

as well. As we show below (and further discuss in Section 5.5), this ability to summarize private

information into a one-dimensional sufficient statistic greatly simplifies the analysis.

Clearly, condition (3) implies that in any equilibrium of the dynamic game agents play in

the first period exactly as in the static game in which they can attack only at t = 1. Hence, by

Proposition 1, equilibrium play is uniquely determined in the first period and is characterized in

terms of thresholds for x1 and θ. The following lemma shows that a similar property holds for

subsequent periods.9

Lemma 1 Any monotone equilibrium is characterized by a sequence {x∗t , θ∗t }∞t=1, where x∗t ∈ R ∪
{−∞}, θ∗t ∈ (0, 1), and θ∗t ≥ θ∗t−1 for all t ≥ 2, such that:

(i) at any t ≥ 1, an agent attacks if xt < x∗t and does not attack if xt > x∗t ;

(ii) the status quo is in place in period t ≥ 2 if and only if θ > θ∗t−1.

8Indeed, the regime always survives any attack for θ > 1 and no realization of the private signal rules out θ > 1.
9To simplify the notation, we allow for x∗

t = −∞ and x∗

t = +∞, with which we denote the case where an agent

attacks for, respectively, none and every realization of his private information.
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Proof. We prove the claim by induction. For t = 1, the result follows from Proposition 1.

Consider next any t ≥ 2 and suppose that the result holds for any τ ≤ t − 1. Since at is non-

increasing in x̃t, the size of attack At (θ) is non-increasing in θ, implying that either At (θ) < θ (and

therefore Rt+1 = 0) for all θ > θ∗t−1, in which case θ∗t = θ∗t−1, or there exists θ∗t > θ∗t−1 such that

At(θ) < θ if and only if θ > θ∗t . In the former case, the posterior probability of regime change is 0

for all xt and hence x∗t = −∞. In the latter, the posterior probability of regime change is given by

∫
pt(θ; at)dΨt(θ|x̃t; at−1) = Pr

(
θ ≤ θ∗t |xt, θ > θ∗t−1

)
= 1 −

Φ
(√

βt + α
[

βtxt+αz
βt+α − θ∗t

])

Φ
(√

βt + α
[

βtxt+αz
βt+α − θ∗t−1

]) ; (5)

and since this is continuous and strictly decreasing in xt, and converges to 1 as xt → −∞ and

to 0 as xt → +∞, there exists x∗t ∈ R such that Pr(θ ≤ θ∗t |xt, θ > θ∗t−1) = c for xt = x∗t ,

Pr(θ ≤ θ∗t |xt, θ > θ∗t−1) > c for xt < x∗t and Pr(θ ≤ θ∗t |xt, θ > θ∗t−1) < c for xt > x∗t . In either case,

At (θ) < 1 for all θ and hence θ∗t < 1, which together with θ∗t ≥ θ∗1 > 0, implies that θ∗t ∈ (0, 1) for

all t, which completes the proof.

Clearly, since the status quo can not be in place in one period without also being in place

in the previous, the sequence {θ∗t } is non-decreasing. On the other hand, the sequence {x∗t } is

non-monotonic in general: periods where some agents attack (x∗t > −∞) may indefinitely alternate

with periods where nobody attacks (x∗t = −∞).

As mentioned above, the first period in our dynamic game is similar to the static game; but

any subsequent period is very different. In any t ≥ 2, the fact that the status quo is still in place

makes it common certainty that θ > θ∗t−1.
10 Since θ∗t−1 ≥ θ∗1 > 0, this immediately implies that

there always exist equilibria in which nobody attacks in period t ≥ 2 (in which case x∗t = −∞ and

θ∗t = θ∗t−1). In particular, there exists an equilibrium in which an attack takes place in period one

and never thereafter. If this were the unique equilibrium, the possibility to take repeated actions

against the regime would add nothing to the static analysis and the equilibrium outcome in the

dynamic game would coincide with that in the static benchmark. In what follows we thus examine

under what conditions there also exist equilibria with further attacks.

Lemma 1 rules out x∗t = +∞ (situations where everybody attacks). This follows directly from

the fact that the status quo always survives for θ > 1 and hence it is dominant not to attack for xt

sufficiently high. We thus look for equilibria in which x∗t ∈ R.

The size of attack is then given by At(θ) = Pr (xt ≤ x∗t |θ) = Φ(
√
βt (x∗t − θt)), which is con-

tinuous and strictly decreasing in θ, while the probability of regime change for an agent with

10Clearly, the knowledge that the regime is in place in period t is a form of public information. However, this is

very different from the type of information conveyed by additive public signals of θ (Morris and Shin, 2001, 2003;

Hellwig, 2002). First, the information here is endogenous, as it depends on the particular equilibrium being played;

and second, it leads to a first-order stochastic-dominance shift in beliefs. We introduce additive public signals about

θ in Section 5.1.
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statistic xt is given by (5), which is continuous and strictly decreasing in xt if θ∗t > θ∗t−1. It follows

that, in any equilibrium in which an attack occurs in period t, θ∗t and x∗t solve θ∗t = At(θ
∗
t ) and

Pr
(
θ ≤ θ∗t |x∗t , θ > θ∗t−1

)
= c, or equivalently

θ∗t = Φ(
√
βt (x∗t − θ∗t )), (6)

1 −
Φ

(√
βt + α

(
βt

βt+αx
∗
t + α

βt+αz − θ∗t

))

Φ
(√

βt + α
(

βt

βt+αx
∗
t + α

βt+αz − θ∗t−1

)) = c. (7)

Conditions (6) and (7) are the analogs in the dynamic game of conditions (1) and (2) in the static

game: (6) states that the equilibrium size of an attack is equal to the critical size that triggers

regime change if and only if the fundamentals are θ∗t , while (7) states that an agent is indifferent

between attacking and not attacking if and only if his private information is x∗t .

An alternative representation of the equilibrium conditions is also useful. Define the functions

u : R× [0, 1]×R×R
2
+×R → [−c, 1−c], X : [0, 1]×R+ → R, and U : [0, 1]×R×R

2
+×R → [−c, 1−c]

as follows:11

u
(
x, θ∗, θ∗−1, β, α, z

)
≡






1 −
Φ

�√
β+α

�
β

β+αx+
α

β+αz−θ∗
��

Φ

�√
β+α

�
β

β+αx+
α

β+αz−θ∗
−1

�� − c if θ∗ > θ∗−1

−c if θ∗ ≤ θ∗−1

X (θ∗, β) ≡ θ∗ + 1√
β
Φ−1 (θ∗)

U
(
θ∗, θ∗−1, β, α, z

)
≡






limx→−∞ u
(
x, θ∗, θ∗−1, β, α, z

)
if θ∗ = 0

u
(
X (θ∗, β) , θ∗, θ∗−1, β, α, z

)
if θ∗ ∈ (0, 1)

limx→+∞ u
(
x, θ∗, θ∗−1, β, α, z

)
if θ∗−1 = 1

These functions have a simple interpretation: u
(
xt, θ

∗, θ∗−1, βt, α, z
)

is the net payoff from attacking

in period t for an agent with statistic xt when it is known that θ > θ∗−1 and that regime change

will occur if and only if θ ≤ θ∗; X (θ∗, βt) is the threshold x∗ such that, if agents attack in period

t if and only if xt ≤ x∗, then At (θ) ≥ θ if and only if θ ≤ θ∗; U
(
θ∗, θ∗−1, βt, α, z

)
is the net payoff

from attacking for the “marginal agent” with signal x∗ = X (θ∗, βt) when it is known that θ > θ∗−1.

Next, solving (6) for x∗t gives x∗t = X (θ∗t , βt) ; substituting the latter into (7) gives

U
(
θ∗t , θ

∗
t−1, βt, α, z

)
= 0, (8)

which represents the indifference condition for the marginal agent in period t, for t ≥ 2. As for t = 1,

since the regime has never been challenged in the past, the corresponding indifference condition is

U (θ∗1,−∞, β1, α, z) = 0; clearly, U (θ,−∞, β, α, z) coincides with the payoff of the marginal agent

in the static benchmark.

We can thus characterize the set of monotone equilibria as follows.

11With a slight abuse of notation, we let Φ(+∞) = 1, Φ(−∞) = 0, Φ−1(1) = +∞ and Φ−1(0) = −∞.
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Proposition 2 {at (·)}∞t=1 is a monotone equilibrium if and only if there exists a sequence {x∗t , θ∗t }∞t=1

such that:

(i) for all t, at (·) = 1 if xt < x∗t and at (·) = 0 if xt > x∗t .

(ii) for t = 1, θ∗1 solves U (θ∗1,−∞, β1, α, z) = 0 and x∗1 = X(θ∗1, β1).

(iii) for any t ≥ 2, either θ∗t = θ∗t−1 > 0 and x∗t = −∞, or θ∗t > θ∗t−1 is a solution to

U
(
θ∗t , θ

∗
t−1, βt, α, z

)
= 0 and x∗t = X(θ∗t , βt).

A monotone equilibrium always exists.

Proposition 2 provides a simple algorithm for constructing the entire set of monotone equilibria:

first, start with t = 1 and let θ∗1 be the unique solution to U (θ∗1,−∞, β1, α, z) = 0; next, proceed to

period t = 2; if U (θ∗2, θ
∗
1, β2, α, z) = 0 admits no solution, set θ∗2 = θ∗1; if it admits a solution, either

let θ∗2 be such a solution, or simply set θ∗2 = θ∗1; finally, repeat for all t ≥ 3 the same step as for

t = 2. The set of sequences {θ∗t }∞t=1 constructed this way, together with the associated sequences

{x∗t }∞t=1 , gives the set of monotone equilibria.

This recursive algorithm is based on the property that equilibrium learning takes the simple

form of a truncation in the support of beliefs about θ : the knowledge that the regime has survived

past attacks simply translates into the knowledge that θ is above a threshold θ∗t−1. In Section 5 we

examine how this property may, or may not, extend to richer environments. Note also that the

above characterization is independent of whether the horizon is finite or infinite: it is clearly valid

even if the game ends exogenously at an arbitrary period T <∞.

Existence of at least one monotone equilibrium follows immediately from the fact that the

equation U (θ∗1,−∞, β1, α, z) = 0 always admits a solution, and θ∗t = θ∗1 for all t is always an equi-

librium. To understand whether there are other monotone equilibria, the next lemma investigates

the properties of U and the existence of solutions to condition (8).

Lemma 2 (i) U
(
θ∗, θ∗−1, β, α, z

)
is continuous in all its arguments, non-monotonic in θ∗ when

θ∗−1 ∈ (0, 1), and strictly decreasing in θ∗−1 and z for θ∗−1 < θ∗. Furthermore, for all θ∗−1 < 1 and

θ∗ > θ∗−1, limβ→∞U
(
θ∗, θ∗−1, ·

)
= θ∞ − θ∗, where θ∞ ≡ 1 − c.

(ii) Let θ̂t be the unique solution to U(θ̂t,−∞, βt, α, z) = 0. A solution to (8) exists only if

θ∗t−1 < θ̂t and is necessarily bounded from above by θ̂t.

(iii) If θ∗t−1 > θ∞, a solution to (8) does not exist for βt sufficiently high.

(iv) If θ∗t−1 < θ∞, a solution to (8) necessarily exists for βt sufficiently high.

(v) If θ∗t−1 is the highest solution to (8) for period t − 1, there exists β > βt−1 such that (8)

admits no solution for any period τ ≥ t such that βτ < β.

To understand why U
(
θ∗, θ∗−1, ·

)
is non-monotonic in θ∗ whenever θ∗−1 ∈ (0, 1), recall that the

higher θ∗, the higher the threshold x∗ = X (θ∗, βt) such that, if agents attack in period t if and only

if xt ≤ x∗, then At (θ) ≥ θ if and only if θ ≤ θ∗. When θ∗ < θ∗−1, the threshold x∗ is so low that the

size of attack is smaller than θ for all θ > θ∗−1; but then the marginal agent attaches zero probability

12
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Figure 1: The payoff of the marginal agent.

to regime change, which explains why U
(
θ∗, θ∗−1, ·

)
= −c for θ∗ < θ∗−1. When instead θ∗ > θ∗−1,

the threshold x∗ is high enough that regime change occurs for a positive measure of θ > θ∗−1;

but then the marginal agent attaches positive probability to regime change, which explains why

U
(
θ∗, θ∗−1, ·

)
> −c for θ∗ > θ∗−1. Finally, when θ∗ → 1, x∗ → ∞ and hence the probability that

the marginal agent attaches to the event that θ > 1 converges to 1; but then the probability he

attaches to regime change converges to zero, which explains why U
(
θ∗, θ∗−1, ·

)
→ −c as θ∗ → 1.

We thus have that U is flat at −c for θ∗ < θ∗−1, it then increases with θ∗ and eventually

decreases with θ∗ and converges again to −c as θ∗ → 1. This is illustrated by the solid curve in

Figure 1. Any intersection of this curve with the horizontal axis corresponds to a solution to (8).12

The dashed line instead represents the payoff of the marginal agent in the static game in which

agents can attack only in period t; when βt is sufficiently high, this is monotonic in θ∗. While

the monotonicity of the payoff of the marginal agent in the static game ensures uniqueness, the

non-monotonicity in the dynamic game leaves open the possibility for multiple equilibria.

Next, to understand why U decreases with z, note that an increase in the prior mean implies

a first-order stochastic-dominance change in posterior beliefs about θ : the higher z, the lower the

probability of regime change for any given monotone strategy, and hence the lower the net payoff

from attacking for the marginal agent.

Similarly, since an increase in θ∗−1 also corresponds to an upward shift in posterior beliefs

12It can be shown that U (θ∗, θ∗−1, ·) is single-peaked in θ∗ when θ∗−1 ≥ 1/2. Numerical simulations suggest that

this is true even when θ∗−1 < 1/2, although we have not been able to prove it. Single-peakedness of U implies that

(8) admits at most two solutions (generically none or two). When there are two solutions, as in the case of the

solid line in Figure 1, the lowest one corresponds to an unstable equilibrium, while the highest one corresponds to

a stable equilibrium. None of these properties, however, are needed for our results. All that matters is that U is

non-monotonic in θ∗ when θ∗−1 ∈ (0, 1), with a finite number of stationary points.
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about θ, U also decreases with θ∗−1. This implies that, at any t ≥ 2, the payoff of the marginal

agent is always lower than U (θ∗,−∞, βt, α, z) , that is, than the payoff in the static game where

the precision of private information is βt. This in turn explains why the static-game threshold θ̂t

(which corresponds to the intersection of the dashed line with the horizontal axis in Figure 1) is an

upper bound for any solution to (8).

To understand (iii) and (iv), note that as βt → ∞ the impact on posterior beliefs of the

knowledge that θ > θ∗t−1 vanishes for any xt > θ∗t−1. By implication, as βt → ∞, the difference

between U
(
θ∗, θ∗t−1, βt, α, z

)
and U(θ∗,−∞, βt, α, z) also vanishes for any θ∗ > θ∗t−1. Combined

with the fact that U(θ∗,−∞, βt, α, z) → θ∞ − θ∗ as βt → ∞, this implies that, for βt sufficiently

high, (8) necessarily admits at least one solution if θ∗t−1 < θ∞, and no solution if θ∗t−1 > θ∞, where

θ∞ = limt→∞ θ̂t is the limit of the equilibrium threshold in the static game for β → ∞.

Finally, to understand (v), suppose that the largest possible attack (that is, the one correspond-

ing to the highest solution to (8)) is played in one period and is unsuccessful. Then the upward

shift in posterior beliefs induced by the observation that the status quo survived the attack is such

that, if no new information arrives, no further attack is possible in any subsequent period. By

continuity then, further attacks remain impossible as long as the change in the precision of private

information is not large enough.

4 Multiplicity and dynamics

Part (v) of Lemma 2 highlights that the arrival of new private information is necessary for further

attacks to become possible after period 1. Whether this is also sufficient depends on the prior

mean, as anticipated in the Introduction.

When z is sufficiently low (“aggressive prior”), discounting the prior contributes to less aggres-

sive behavior in the sense that θ̂t decreases with βt and hence θ̂t < θ̂1 for all t ≥ 2. It follows that

an agent who is aware of the fact that the regime survived period one (i.e., that θ > θ̂1) would

not be willing to attack in any period t ≥ 2 if he expected all other agents to play as if no attack

occurred prior to period t (i.e., as in the equilibrium of the static game where attacking is allowed

only in period t). The anticipation that other agents will also take into account the fact that the

regime survived past attacks then makes that agent even less willing to attack. Therefore, when z

is low, the game has a unique equilibrium, with no attack occurring after the first period.

When, instead, z is sufficiently high (“lenient prior”), discounting the prior contributes to more

aggressive behavior in the sense that θ̂t increases with βt. This effect can offset the incentive not

to attack induced by the knowledge that the regime survived past attacks, making new attacks

eventually possible. Indeed, Lemma 2 implies that, when θ∗1 < θ∞ (which is the case for z high

enough), a second attack necessarily becomes possible once βt is large enough. Such an example is

illustrated in Figure 2. The dashed line represents the payoff of the marginal agent in period 1. Its

intersection with the horizontal axis defines θ∗1 < θ∞. The payoff of the marginal agent in period 2

14
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Figure 2: Equilibria with multiple attacks.

is represented by the dotted line, and that in period 3 by the solid line. Clearly, β2 is low enough

that no attack is possible in period 2. In contrast, β3 is high enough that a new attack is possible.

Thus, there exist at least three equilibria in this example: one in which θ∗t = θ∗1 for all t, another in

which θ∗2 = θ∗1 and θ∗t = θ′3 for all t ≥ 3, and a third one in which θ∗2 = θ∗1 and θ∗t = θ′′3 for all t ≥ 3,

where θ′3 and θ′′3 correspond to the two intersections of the solid line with the horizontal axis.

In the example of Figure 2, both θ′3 and θ′′3 are lower than θ∞. By Lemma 2, then, a third

attack also becomes possible at some future date. More generally, if z is sufficiently high, any

solution to (8) is strictly less than θ∞ in all periods, which ensures that a new attack eventually

becomes possible after any unsuccessful one. Hence, for z sufficiently high, not only there are

multiple equilibria, but any arbitrary number of attacks can be sustained in equilibrium.

Theorem 1 There exist thresholds z ≤ z ≤ z such that:

(i) If z ≤ z, there is a unique monotone equilibrium and is such that an attack occurs only in

period one.

(ii) If z ∈ (z, z), there are at most finitely many monotone equilibria and there exists t̄ < ∞
such that in any of these equilibria, no attack occurs after period t̄.

(iii) If z > z, there are infinitely many equilibria; if in addition z > z, for any t and N, there

is an equilibrium in which N attacks occur after period t.

Finally, z = z = z when c ≤ 1/2, whereas z ≤ z < z when c > 1/2.

Proof. Recall that θ∗1 = θ̂1 and, for all t ≥ 2, θ∗t < θ̂t, where θ̂t = θ̂ (βt, α, z) is the unique

solution to U(θ̂,−∞, βt, α, z) = 0. As proved in Lemma A1 in the Appendix, there exist thresholds

z ≤ z ≤ z (possibly functions of β1 and α) with the following properties: θ̂t ≤ θ̂1 for all t if z ≤ z;

θ̂1 ≤ (≥) θ∞ if and only z ≥ (≤) z; and θ̂t < θ∞ for all t if and only if z > z.
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(i) Consider first z ≤ z. Then, θ̂t ≤ θ̂1 = θ∗1 for all t, and hence, by part (ii) of Lemma 2, (8)

admits no solution at any t ≥ 2. The unique monotone equilibrium is thus θ∗t = θ∗1 for all t.

(ii) Next, consider z ∈ (z, z), in which case θ̂1 = θ∗1 > θ∞, but we can not rule out the possibility

that there exists a period t ≥ 2 such that θ̂t > θ̂1 and U (θ∗, θ∗1, βt, α, z) = 0 admits a solution.

Nevertheless, since θ∗t−1 ≥ θ∗1 > θ∞ for all t, by part (iii) of Lemma 2 and the fact that βt → ∞ as

t → ∞, there exists t̄ < ∞ such that (8) admits no solution for t ≥ t̄. Moreover, since (8) admits

at most finitely many solutions for any t < t̄, there are at most finitely many monotone equilibria,

and in any such equilibrium no attack occurs after period t̄.

(iii) Finally, consider z > z, in which case θ∗1 < θ∞. Then, by part (iv) of Lemma 2, there

exists a t′ < ∞ such that U (θ∗, θ∗1, βt, α, z) = 0 admits a solution for all t ≥ t′. Hence, for any

t ≥ t′, there is a monotone equilibrium in which θ∗τ = θ∗1 for τ < t, θ∗t solves U (θ∗t , θ
∗
1, βt, α, z) = 0,

and θ∗τ = θ∗t for all τ > t. That is, there exist (countably) infinitely many equilibria, indexed by the

time at which the second attack occurs.

When z ∈ (z, z), the second attack may lead to a threshold θ∗t > θ∞, in which case a third

attack might be impossible. If however z > z, then θ̂t < θ∞ for all t, and hence by part (ii) of

Lemma 2, θ∗t < θ∞, for all t. But then by part (iv), a new attack eventually becomes possible after

any unsuccessful one. It follows that, for any t ≥ 1 and any N ≥ 1, there exist increasing sequences

{t2, ..., tN} and {θ2, ..., θN}, with t2 ≥ t, such that U (θ2, θ
∗
1, βt2 , α, z) = 0, U (θ3, θ2, βt3 , α, z) = 0,

and so on. The following is then an equilibrium: θ∗τ = θ∗1 for τ < t2, θ
∗
τ = θj for τ ∈ {tj, ..., tj+1−1}

and j ∈ {2, ..., N − 1}, and θ∗τ = θN for τ ≥ tN . That is, for any t ≥ 1 and any N ≥ 1, there exists

an equilibrium in which N attacks occur after period t.

The existence of infinitely many equilibria in the case z > z relies on the assumption that

the game continues forever as long as the status quo is in place: if the game ended for exogenous

reasons at a finite date, there would exist only finitely many equilibria. Nevertheless, as long as

z > z and βt → ∞ as t → ∞, then, for any M, there exists a finite T such that the game would

have at least M equilibria if it ended at date T . Moreover, even when T = 2, the game has multiple

equilibria if β2 is sufficiently high and z > z.

In the remainder of this section, we identify equilibrium properties that seem useful in under-

standing the dynamics of crises.

Corollary 1 Suppose θ > θ∞ and z > z. The status quo survives in any monotone equilibrium.

Nevertheless, there exists t <∞ such that, at any t ≥ t, an attack can occur, yet does not necessarily

take place. Furthermore, any arbitrary number of attacks is possible.

This seems to square well with the common view that economic fundamentals may help predict

eventual outcomes (e.g., whether a currency is eventually devalued) but not when a crisis will

occur or whether attacks will cease. On the contrary, this view is inconsistent with the common-

knowledge version of the model, in which fundamentals fail to predict both the timing of attacks
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and the eventual regime outcome whenever they are inside the critical region. It is also inconsistent

with unique-equilibrium models like Morris and Shin (1999), in which both the timing of attacks

and the ultimate fate of the regime are uniquely pinned down by the fundamentals.

Consider now how the dynamics of attacks depend on the dynamics of information.

Corollary 2 After the most aggressive attack for a given period occurs, the game enters a phase

of tranquillity, during which no attack is possible. This phase is longer the slower the arrival of

private information.

Along with the property that for θ > θ∞ and z > z a new attack eventually becomes possible

after any unsuccessful one, the above result implies that dynamics may take the form of cycles in

which the economy alternates from phases of tranquillity to phases of distress, eventually resulting

into a new attack, without any change in the underlying fundamentals. Once again, this would

not have been possible in our framework if θ were common knowledge, or if there were a unique

equilibrium.13

Also note that the set of equilibrium outcomes in any given period exhibits a discontinuity

with respect to the precision of private information in that period: a transition from a phase of

tranquility, where nobody attacking is the unique equilibrium outcome, to a phase of distress, where

the size of attack associated with any solution of (8) is bounded away from zero, can be triggered

by a small change in βt. As we will see in Section 5.3, a similar discontinuity emerges with respect

to shocks that affect the strength of the status quo: a transition from one phase to another can

then be triggered by an arbitrarily small change in fundamentals (that is, in payoffs).

Finally, note that these results raise some interesting possibilities for policy in the context of

currency crises. On the one hand, since an increase in c shifts U downwards, a central bank might

be able to prevent a transition from a phase of tranquility to a phase of distress—and thus eliminate

the risk of a speculative attack—by raising interest rates, or otherwise increasing the opportunity

cost of attacking, up to the point that the (8) admits no solution. On the other hand, the level

of policy intervention required to achieve this may increase over time as speculators become more

informed about the underlying fundamentals, and may eventually become prohibitively expensive.

Thus an interesting possibility is that certain defense policies succeed in postponing but not in

escaping a crisis.14

13Broner (2005) considers a model that combines a common-knowledge coordination problem à la Obstfeld (1996)

with a negative trend in fundamentals à la Krugman (1979). The first feature delivers multiplicity, while the second

ensures that devaluation is eventually inevitable for exogenous reasons. His analysis thus shares with ours the property

that it may be easier to predict the eventual outcome than the timing of attacks; but it does not share our predictions

about the repeated succession of phases of tranquility and phases of distress, nor our focus on changes in information,

rather than changes in fundamentals, as the source of dynamics.
14Another possibility is that such defense measures themselves convey valuable information; Angeletos, Hellwig

and Pavan (2006) examine such signaling effects in a static global game.
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5 Extensions

In this section, we consider a few extensions of the benchmark model. The purpose of these

extensions is to show how the analysis can accommodate additional elements which the benchmark

model has deliberately abstracted from, but which can be relevant for applications. At the same

time, these extensions show robustness to alternative information assumptions and further clarify

the driving forces behind our results.

5.1 Public news

To capture the effect of public news, we now modify the game as follows. In addition to their private

signals, agents observe in each period t ≥ 1 a public signal z̃t = θ + εt, where εt is common noise,

normally distributed with zero mean and precision ηz
t > 0, serially uncorrelated, and independent

of θ and the noise in the agents’ private information. These signals may represent, for example, the

information generated by news in the media, publication of government statistics, or announcements

by policy makers. We also allow for the possibility that the game ends for exogenous reasons at a

finite date and denote the horizon of the game with T, where T ∈ {2, 3, ...} or T = ∞.

The common posterior about θ conditional on z̃t ≡ {z̃τ}t
τ=1 is Normal with mean zt and

precision αt, where

zt =
αt−1

αt
zt−1 +

ηz
t

αt
z̃t, αt = αt−1 + ηz

t ,

with (z0, α0) = (z, α). However, since equilibrium play in past periods now depends on the re-

alizations of past public signals, zt is not a sufficient statistic conditional on the event that the

regime is still in place. We thus allow agents to condition their actions on the entire sequence z̃t,

or equivalently on zt ≡ {zτ}t
τ=1. Apart from this modification, the set of monotone equilibria can

be constructed following the same algorithm as in the benchmark model.

Proposition 3 In the game with public signals, {at (·)}T
t=0 is a monotone equilibrium if and only

if there exists a sequence of functions {x∗t , θ∗t }T
t=1 , with x∗t : R

t → R and θ∗t : R
t → (0, 1) , such that:

(i) for all t, at (·) = 1 if xt < x∗t
(
zt

)
and at (·) = 0 if xt > x∗t

(
zt

)
;

(ii) at t = 1, θ∗1 (z1) solves U (θ∗1,−∞, β1, α1, z1) = 0 and x∗1 (z1) = X(θ∗1 (z1) , β1);

(iii) at any t ≥ 2, either θ∗t
(
zt

)
solves

U
(
θ∗t , θ

∗
t−1(z

t−1), βt, αt, zt
)

= 0 (9)

and x∗t
(
zt

)
= X(θ∗t

(
zt

)
, βt), or θ∗t

(
zt

)
= θ∗t−1

(
zt−1

)
and x∗t

(
zt

)
= −∞.

As in the benchmark model without public signals, there always exist equilibria in which attacks

cease after any arbitrary period. However, since for any θ∗t−1(z
t−1), βt, αt, (9) admits a solution if

and only if zt ≤ z̄t, where z̄t = z̄
(
θ∗t−1, βt, αt

)
is always finite, there also exist equilibria in which

an attack occurs in period t for sufficiently low realizations of zt, which proves the following.
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Theorem 2 In the game with public signals, there always exist multiple equilibria.

This result extends and reinforces Theorem 1: multiplicity now emerges no matter the mean

z of the prior, the precisions {βt, αt}T
t=1 of private and public information, and the horizon T

of the game. This stronger version of multiplicity relies on the combination of two properties:

that sufficiently low realizations of zt make an attack possible in every period; and that the lower

dominance region is eliminated in all periods t ≥ 2 so that no attack also remains possible in every

period after the first one.

Consider now how the introduction of public news affects the ability of an “econometrician”

to predict the regime outcome and/or the occurrence of an attack in any given period. For any t,

any θ ∈ (0, 1), and any θ∗t−1(z
t−1) < θ, condition (9) admits a solution higher than θ if and only if

zt is low enough, implying that, conditional on θ, the probability that the status quo is abandoned

in any given period is strictly between 0 and 1. It follows that an econometrician who can observe

θ but can not observe zt, necessarily faces uncertainty about the event of regime change. On the

other hand, if he also knows zt, he may be able to predict the regime outcome in a given period

for some combinations of θ and zt, without, however, being able to predict whether an attack will

occur or not. For example, take any t ≥ 2, let θ1 (z1) and θ̄t

(
zt

)
be the lowest and the highest

solutions to U (θ∗,−∞, β1, α1, z1) = 0 and U (θ∗, θ1 (z1) , βt, αt, zt) = 0, respectively, and assume

that θ > θ̄t

(
zt

)
> θ1 (z1). There is no equilibrium in which the status is abandoned in period t,

but there exist both an equilibrium in which an attack occurs and one in which no attack takes

place in that period.15 Therefore, the combination of fundamentals and public information may

help predict regime outcomes but not the occurrence of attacks, as in the benchmark model.

Also note that the threshold z̄t, below which (9) admits a solution, decreases with θ∗t−1. Hence,

an unsuccessful attack, other things equal, causes a discrete increase in the probability that the game

enters a phase during which no attack is possible. In this sense, the prediction of the benchmark

model that equilibrium dynamics are characterized by the alternation of phases of tranquility and

phases of distress survives the introduction of public news; the novelty is that the transition from

one phase to another is now stochastic, as it depends on the realization of zt.

5.2 Signals about past attacks

In the analysis so far, agents learn from the outcome of past attacks but receive no information

about the size of these attacks. For many applications, however, it seems natural to allow agents

to observe noisy private and/or public signals about the size of past attacks.

In the online Supplementary Material we show how this can be done without any sacrifice in

15Since in any equilibrium necessarily θ∗t−1

�
zt−1

�
≥ θ1 (z1), from part (i) in Lemma 1, θ̄t

�
zt
�

is an upper bound

for θ∗t
�
zt
�
. This implies that, if θ > θ̄t

�
zt
�
> θ1 (z1) , there is no equilibrium in which the regime is abandon in

period t. On the other hand, since U (θ∗, θ1 (z1) , βt, αt, zt) = 0 admits a solution θ∗ = θ̄t

�
zt
�
> θ1 (z1) , there exists

an equilibrium in which the second attack occurs exactly in period t.

19



tractability. The key is to maintain the Normality of the information structure. The algorithm

for monotone equilibria then remains the same as in Proposition 3, except for the fact that the

sequence {βt, αt}∞t=1 is now part of the equilibrium: the precisions of private and public information

in any period t ≥ 2 depend on whether an attack occurred in the previous period.

As for the structure of equilibrium dynamics, the novelty is that the upward shift in posterior

beliefs caused by an unsuccessful attack may now be diluted by the information about θ conveyed

by the size of the attack. This in turn may lead to situations where new attacks become possible

immediately after unsuccessful ones, even without any exogenous arrival of information. As a result,

equilibrium dynamics may now feature snow-balling effects reminiscent of the ones highlighted in

herding models of crises (e.g., Chari and Kehoe, 2003).

5.3 Observable shocks: changes in fundamentals as a source of dynamics

In this section we introduce shocks to the sustainability of the regime. In particular, we modify the

benchmark model as follows. The regime is abandoned in period t if and only if At ≥ h (θ, δωt) .

The variable θ continues to represent the “strength of the status quo”, while ωt is an exogenous

disturbance, independent of θ and i.i.d. over time, with absolutely continuous c.d.f. F and support

R. The scalar δ > 0 parameterizes the volatility of these disturbances. Finally, for simplicity, the

function h is assumed to be linear, with h (θ, δωt) = θ + δωt. We denote this game with Γ (δ),

nesting the baseline model as δ = 0.

We assume here that ωt is publicly observable, which may be relevant for some applications of

interest. In the case of currency attacks, for example, θ may represent the “type” of the central

banker, whereas ωt may capture the role of interest rates, financial prices, and other macroeconomic

variables that are readily observable by economic agents and that may affect the willingness or

ability of the central banker to defend the peg.16

As we show below, observable shocks are easy to incorporate in the analysis, because they

affect equilibrium dynamics without introducing any noise in the learning about θ. The exercise

here is thus useful not only for applications, but also for separating the role of shocks as drivers of

equilibrium dynamics from their role as additional sources of noise in learning.

Equilibrium characterization. Since the shocks are observable, the strategy of the agents in

period t is contingent on both xt and ωt ≡ {ω1, ..., ωt}. Accordingly, the regime outcome in period

t is contingent on both θ and ωt. The set of monotone equilibria can thus be characterized by a

sequence {x∗t
(
ωt

)
, θ∗t

(
ωt

)
}∞t=1 such that an agent attacks in period t if and only if xt < x∗

(
ωt

)

and the status quo is in place in next period if and only if θ > θ∗t
(
ωt

)
.

Note that sufficiently negative shocks re-introduce the lower dominance region: whenever

θ∗t−1

(
ωt−1

)
+ δωt < 0, it is dominant for agents with sufficiently low xt to attack. Otherwise,

16We could have allowed for shocks in the opportunity cost of attacking by letting c depend on ωt; we omitted this

possibility only for expositional simplicity.
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the structure of equilibria, and the algorithm for constructing them, is similar to the one in the

benchmark model.

Proposition 4 In the game with shocks, {at (·)}∞t=1 is a monotone equilibrium if and only if there

exists a sequence {x∗t
(
ωt

)
, θ∗t

(
ωt

)
}∞t=1 such that:

(i) for all t, at (·) = 1 if xt < x∗t
(
ωt

)
and at (·) = 0 if xt > x∗t

(
ωt

)
.

(ii) for t = 1, U (θ∗1 (ω1) + δω1,−∞;β1, α, z + δω1) = 0 and x∗1 (ω1)+δω1 = X(θ∗t (ω1)+δω1;β1)

(iii) for any t ≥ 2, either θ∗t
(
ωt

)
> θ∗t−1

(
ωt−1

)
,

U
(
θ∗t (ω

t) + δωt, θ
∗
t−1

(
ωt−1

)
+ δωt;βt, α, z + δωt

)
= 0 (10)

and x∗t
(
ωt

)
+ δωt = X(θ∗t

(
ωt

)
+ δωt;βt), or θ∗t

(
ωt

)
= θ∗t−1

(
ωt−1

)
≥ −δωt and x∗t

(
ωt

)
= −∞.

This result can be understood as follows. While the critical size of attack that is necessary for

regime change is constant in the benchmark model, here it varies over time as a consequence of

shocks. However, since shocks are observable, the structure of beliefs remains the same apart from

a “change of variables” in the following sense. Let ht ≡ θ + δωt be the critical size for period t,

x′t ≡ xt + δωt, and z′t ≡ z + δωt. The distribution of ht conditional on xt is Normal with mean
βt

βt+αx
′
t +

α
βt+αz

′
t and precision βt +α, while the knowledge that θ > θ∗t−1

(
ωt−1

)
is equivalent to the

knowledge that ht > θ∗t−1

(
ωt−1

)
+δωt. It follows that the net payoff from attacking for the marginal

agent in period t is U
(
θ∗t

(
ωt

)
+ δωt, θ

∗
t−1

(
ωt

)
+ δωt;βt, α, z + δωt

)
. The result then follows from

the same arguments as in the proof of Proposition 2.

Multiplicity and dynamics. Interesting new effects can emerge because of the interaction

of information and shocks. The equilibrium dynamics again feature phases of tranquility, where an

attack is impossible, and phases of distress, where an attack is possible but does not necessarily

take place. However, shocks provide a second channel through which a transition from one phase

to another can occur. In particular, a transition from distress to tranquility may now be triggered

either by an unsuccessful attack, or by an improvement in fundamentals (a positive ωt); and a

transition from tranquility to distress can be caused either by the arrival of new private information,

or by a deterioration in fundamentals. What is more, the economy can now enter a phase where an

attack is inevitable—a scenario that was impossible in the benchmark model, but becomes possible

here because sufficiently bad shocks re-introduce a lower dominance region.17

If the benchmark game Γ (0) admits multiple equilibria, then the game with shocks Γ (δ) also

admits multiple equilibria, no matter δ; to see this, it suffices to consider realizations of ωt close

enough to zero. Moreover, since the impact of shocks on the conditions that characterize the

equilibrium dynamics clearly vanishes as δ → 0, the following equilibrium convergence result holds:

for any T > 0, any ε > 0, and any equilibrium {x∗t , θ∗t } of the benchmark game Γ (0), there exists

17Another difference is that not attacking becomes dominant for sufficiently high ωt no matter xt, whereas in the

benchmark model not attacking is at most iteratively dominant for sufficiently low xt. This, however, makes little

difference in terms of observable dynamics.
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a δ̂ > 0 such that for all δ < δ̂ the game Γ (δ) admits an equilibrium {xδ
t (ω

t), θδ
t (ω

t)} such that the

unconditional probability that |θδ
t

(
ωt

)
− θ∗t | < ε for all t ≤ T is higher than 1 − ε.18

None of these results, however, should be surprising given that shocks do not interfere with

the learning process. Indeed, what is important for the results of this section is not the absence of

uncertainty about these shocks, but the fact that the shocks do not introduce noise in learning.

To see this, consider the case that ωt is unobservable in period t but becomes commonly

known at the beginning of period t+ 1. Then agents face additional uncertainty about the regime

outcome—indeed, the regime outcome would remain uncertain even if agents had known θ—but

the knowledge that the regime has survived past attacks still translates into common certainty that

θ is above a certain threshold. That is, the form of learning remains as sharp as in the benchmark

model. Not surprisingly then, the equilibrium convergence result described above extends to this

case as well.19

We conclude that with respect to robustness the question of interest is whether equilibrium

convergence obtains in situations where shocks also introduce noise in learning. To examine this

question, we next turn to the case that ωt remains unobservable in all periods.

5.4 Unobservable shocks: noisy learning

We now modify the game with shocks examined in the previous section by letting ωt be unob-

servable. The unobservability of shocks “noises up” the learning process and ensures that the

updating of beliefs caused by the knowledge that the regime is still in place never takes the form

of a truncation—agents’ posteriors have full support in R in all periods. The case of unobservable

shocks that we examine in this section is therefore most significant from a theoretical perspective.

Below we first explain how unobservable shocks affect the algorithm for the construction of

equilibria. We then show how the equilibria in the benchmark model can be approximated ar-

bitrarily well by equilibria of the perturbed game as δ → 0. It follows that the key qualitative

properties of the equilibrium dynamics identified in the benchmark model—the multiplicity and

the succession of phases of tranquility and distress—extend to the case with unobservable shocks

provided that the volatility of these shocks is small enough and that we reinterpret a phase of

tranquility as one where at most an (arbitrarily) small attack is possible.

Equilibrium characterization. Because ωt affects the regime outcome and is unobserved,

the ability to characterize the set of monotone equilibria in terms of a sequence of truncation points

for θ is lost. Nevertheless, as long as private information can be summarized by a sufficient statistic

xt ∈ R, we can still characterize monotone equilibria as sequences of thresholds {x∗t }∞t=1 such that

an agent attacks in period t if and only if xt ≤ x∗t , where x∗t ∈ R.

To see this, consider an arbitrary monotone strategy, indexed by {x̄t}∞t=1, such that an agent

attacks in period t if and only if xt < x̄t. Given this strategy, the size of the attack in period t

18This result is proved in the online Supplementary Material.
19This case is also examined in the online Supplementary Material.
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is At (θ) = Φ
(√
βt (x̄t − θ)

)
, and hence the status quo is abandoned in that period if and only if

ωt ≤ ω̄δ
t (θ; x̄t) , where

ω̄δ
t (θ; x̄t) ≡

1

δ

[
Φ

(√
βt (x̄t − θ)

)
− θ

]
.

It follows that the probability of regime change in period t conditional on θ is

pδ
t (θ; x̄t) = F (ω̄δ

t (θ; x̄t)).

Next, consider the learning induced when the strategy {x̄t}∞t=1 is played. For any t ≥ 2, let

ψδ
t

(
θ; x̄t−1

)
denote the density of the common posterior about θ, when in previous periods agents

followed monotone strategies with thresholds x̄t−1 = {x̄1, ..., x̄t−1}. By Bayes’ rule,

ψδ
t

(
θ; x̄t−1

)
=

[
1 − pδ

t−1 (θ; x̄t−1)
]
ψδ

t−1

(
θ; x̄t−2

)
∫ +∞
−∞

[
1 − pδ

t−1 (θ′; x̄t−1)
]
ψδ

t−1 (θ′; x̄t−2) dθ′
=

Πt−1
s=1

[
1 − pδ

s (θ; x̄s)
]
ψδ

1 (θ)
∫ +∞
−∞ Πt−1

s=1 [1 − pδ
s (θ′; x̄s)]ψδ

1 (θ′) dθ′

where ψδ
1 (θ) =

√
αφ(

√
α (θ − z)) is the density of the initial prior. When δ = 0, the above reduces to

a truncated Normal distribution, with truncation point θ̄t−1

(
x̄t−1

)
≡ min{θ : θ ≥ Φ

(√
βτ (x̄τ − θ)

)

∀τ ≤ t − 1}. When instead δ > 0, learning is “smoother” in the sense that ψδ
t

(
θ; x̄t−1

)
is strictly

positive and continuous over the entire real line.

Finally, consider payoffs. For any t ≥ 1, x ∈ R, and x̄t ∈ R
t
, let vδ

t

(
x; x̄t

)
denote the net

expected payoff from attacking in period t for an agent with sufficient statistics x when all other

agents attack in period τ ≤ t if and only if their sufficient statistic in τ is less than or equal to x̄τ .

This is given by

vδ
t

(
x; x̄t

)
=

∫ +∞

−∞
pδ

t (θ; x̄)ψδ
t

(
θ|x; x̄t−1

)
dθ − c,

where ψδ
t

(
θ|x; x̄t−1

)
denotes the density of the private posterior in period t. (The latter are com-

puted applying Bayes’ rule to the common posteriors described above.) Note that vδ
t

(
x; x̄t

)
depends

on both the contemporaneous threshold x̄t and the sequence of past thresholds x̄t−1; the former

determines the probability of regime change conditional on θ, whereas the latter determines the

posterior beliefs about θ. Next, for any t ≥ 1 and x̄t ∈ R
t
, let

V δ
t

(
x̄t

)
≡






limx→+∞ vδ
t

(
x; x̄t

)
if x̄t = +∞

vδ
t

(
x̄t; x̄

t
)

if x̄t ∈ R

limx→−∞ vδ
t

(
x; x̄t

)
if x̄t = −∞

(11)

Vt is the analogue of the function U in the benchmark model: it represents the net payoff from

attacking in period t for the marginal agent with threshold x̄t.

In Lemma A2 in the Appendix, we prove that, for any δ > 0, V δ
t

(
x̄t

)
is continuous in x̄t for

any x̄t ∈ R
t−1 × R, which we use to establish the existence, and complete the characterization, of

monotone equilibria.
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Proposition 5 For any δ > 0, {at (·)}∞t=1 is a monotone equilibrium for Γ (δ) if and only if there

exists a sequence {x∗t}∞t=1 such that:

(i) for all t, at (·) = 1 if xt < x∗t and at (·) = 0 if xt > x∗t ;

(ii) for t = 1, x∗1 ∈ R and V δ
1 (x∗1) = 0;

(iii) for any t ≥ 2, either x∗t = −∞ and V δ
t

(
x∗t

)
≤ 0, or x∗t ∈ R and V δ

t

(
x∗t

)
= 0.

A monotone equilibrium exists for any δ > 0.

The equilibrium algorithm provided above clearly applies also to δ = 0 and is similar to the

one in Proposition 2: start with t = 1 and let x∗1 be the unique solution to V δ
1 (x∗1) = 0; proceed to

period t = 2 and either let x∗2 = −∞ if V δ
2 (x∗1,−∞) ≤ 0, or let x∗2 be the solution to V δ

2 (x∗1, x
∗
2) = 0;

repeat for any t ≥ 3. The difference is that here at each step t we need to keep track of the entire

sequence of past thresholds x∗t−1, while in the algorithm of Proposition 2 the impact of x∗t−1 on

period-t beliefs was summarized by θ∗t−1.

Multiplicity and dynamics. As δ → 0, the dependence of the regime outcome on the shock

ωt vanishes. By implication, the posteriors in any period t ≥ 2 converge pointwise to truncated

Normals as in the benchmark model. The pointwise convergence of pδ
t and ψδ

t in turn implies

pointwise convergence of the payoff of the marginal agent: for t = 1 and any x̄1, V
δ
1 (x̄1) →

V 0
1 (x̄1) ≡ U

(
θ̄1 (x̄1) ,−∞, β1, α, z

)
; similarly, for any t ≥ 2, x̄t−1 and x̄t > −∞,

V δ
t

(
x̄t

)
→ V 0

t

(
x̄t

)
≡ U

(
θ̄t (x̄t) , θ̄t−1

(
x̄t−1

)
, βt, α, z

)
.

Pointwise convergence of payoffs, however, can fail for t ≥ 2 at x̄t = −∞. To see why, note that,

in the presence of shocks, an agent with sufficiently low xt may attach probability higher than c to

regime change in period t ≥ 2 even if he expects no other agent to attack in that period. When

this is the case, a positive measure of agents may attack in every period in the perturbed game,

unlike the benchmark model.

Nevertheless, the pointwise convergence of V δ
t (x̄t) for any x̄t > −∞ ensures that this dominance

region vanishes as δ → 0. It also ensures that whenever V 0
t (x̄t) has an intersection with the

horizontal axis, V δ
t (x̄t) also has a nearby intersection for δ > 0 small enough. These properties

together imply that any equilibrium in the benchmark game can be approximated arbitrarily well

by an equilibrium in the perturbed game, except for knife-edge cases where V 0
t (or equivalently U)

is tangent to the horizontal axis instead of intersecting it.

Theorem 3 For any ε > 0 and any T < ∞, there exists δ (ε, T ) > 0 such that the following is

true for all δ < δ (ε, T ):

For any equilibrium {x∗t }∞t=1 of Γ (0) such that x∗t /∈ arg maxx V
0
t

(
x∗t−1, x

)
for all t ∈ {2, ..., T},

there exists an equilibrium {xδ
t}∞t=1 of Γ (δ) such that, for all t ≤ T, either |x∗t − xδ

t | < ε, or

x∗t = −∞ and xδ
t < −1/ε.

The result is illustrated in Figures 3 and 4 for an example where T = 2 and where Γ (0) admits

multiple equilibria. The solid line in Figure 3 represents the p.d.f. of the common posterior in
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Figure 3: Common posteriors with and without shocks.
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Figure 4: Payoff of marginal agent with and without shocks.

period 2 generated by equilibrium play in period 1 in the game without shocks (δ = 0). This is

simply the initial prior truncated at θ∗1 = θ̄1 (x∗1), where x∗1 is the unique solution to V 0
1 (x∗1) = 0

(or equivalently where θ∗1 is the unique solution to U (θ∗1,−∞, β1, α, z) = 0). The other two lines

represent the equilibrium common posteriors ψδ
2(θ;x

δ
1) for the game with shocks (δ > 0), where

xδ
1 is the unique solution to V δ

1 (xδ
1) = 0; the dotted line corresponds to a relatively high δ and

the dashed one to a low δ. Since the support of ωt is the entire real line, the probability of regime

change is less than 1 for any θ and therefore ψδ
2 assigns positive probability to all θ. However, as δ

becomes smaller, xδ
1 converges to x∗1 and the probability of regime change converges to 1 for θ < θ∗1

and to 0 for θ > θ∗1. By implication, the smooth common posterior of the perturbed game in period

2 converges to the truncated one of the benchmark model.
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In Figure 4, the solid line represents the payoff V 0
2 (x∗1, x2) of the marginal agent in period 2

for δ = 0, whereas the other two lines represent V δ
2 (xδ

1, x2) for δ > 0.20 Note that, for x2 small

enough, V 0
2 is negative but V δ

2 is positive, which implies that nobody attacking in period 2 is

part of an equilibrium in the benchmark model but not in the game with shocks.21 Moreover,

when δ is high (dotted line), V δ
2 is monotonic in x2 and therefore has a single intersection with

the horizontal line, in which case the equilibrium would be unique if the game ended in period 2.

When, instead, δ is sufficiently small (dashed line), V δ
2 is non-monotonic and has three intersections,

which correspond to three different equilibria for the two-period game with shocks. Finally, the

middle and the highest intersections approximate the two intersections of the solid line, while the

lowest intersection is arbitrarily small, thus approximating x∗2 = −∞. Along with the fact that xδ
1

converges to x∗1, this implies that any equilibrium of the two-period game without shocks can be

approximated by an equilibrium of the perturbed game.

At the same time, it is important to recognize that uniqueness is ensured in the alternative

limit as β2 → ∞ for given δ > 0. To see this, note that, for any given δ > 0, the common posterior

in period 2 has a strictly positive density over the entire real line, and hence over a connected set

of θ that includes both dominance regions (θ < 0 and θ > 1). This in turn ensures that standard

global-game uniqueness results apply: uniqueness necessarily obtains in the limit as the noise in

private information vanishes (see Proposition 2.2 in Morris and Shin, 2003).

However, away from this limit, the impact of private information here is quite different from

that in the static Gaussian benchmark (Section 2.1). There, private information always contributes

toward uniqueness.22 Here, instead, it can have a non-monotonic effect on the determinacy of

equilibria: for δ small enough, in period 2 uniqueness obtains for β2 either close to β1 or close to

∞, while multiplicity obtains for intermediate β2.

This non-monotonic effect of private information in our game highlights the interaction of

private information with equilibrium learning. On the one hand, more precise private information

increases strategic uncertainty as in the static game; on the other, it dilutes the upward shift in

posterior beliefs caused by the knowledge that the regime survived past attacks. Whereas the first

effect contributes to uniqueness, the second can contribute to multiplicity in a similar fashion as in

the benchmark game without shocks.

In conclusion, what sustains multiplicity in the dynamic game is the property that the knowl-

edge that the regime survived attacks in the past provides relevant common information about

20In order to illustrate V δ
2 over its entire domain, the figure depicts V δ

2

�
xδ

1, x2

�
against f (x2) rather than x2, where

f is a strictly increasing function that maps R onto a bounded interval (e.g., f = Φ).
21In the example discussed here, an agent finds it dominant to attack in period 2 for sufficiently low x2. However,

this need not be the case if ωt had a bounded support and δ were small enough.
22This is true in two senses. First, a higher β makes it more likely that the economy satisfies β ≥ α2/ (2π) in

which case the equilibrium is unique. Second, whenever β < α2/ (2π) the range of z for which (1) and (2) admit

multiple solutions shrinks with β, and the distance between the largest and the smallest solutions for any given z

also diminishes with β.
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the strength of the status quo in the present. That this knowledge resulted in posterior beliefs

that assign zero measure to sufficiently low θ in the benchmark model is not essential. What is

important is that the effect of this information on posterior beliefs is not diluted too much either

by a significant change in fundamentals (sufficiently high δ) or by a significant increase in strategic

uncertainty (sufficiently high β).

5.5 Private information about shocks: long- versus short-lived agents

In the environments examined above, agents had no private information about the innovations in

fundamentals. Relaxing this assumption may compromise tractability by removing the ability to

summarize the history of private information with a one-dimensional sufficient statistic.

To see this, consider the following variation of the game with shocks. Let ht denote again

the critical size of attack that triggers regime change in period t and assume that {ht} are jointly

Normal with non-zero correlation across time. To simplify, think of ht following a Gaussian random

walk: h1 = θ ∼ N(z, 1/α) and ht = ht−1 + δωt for t ≥ 2, with ωt ∼ N(0, 1) being i.i.d. across

time and independent of θ.23 Next, let the private signals agents receive in period t be x̃t = ht + ξt,

where ξt is i.i.d. across agents and time, and independent of hs for any s.

Consider first t = 1. Equilibrium play is the same as in the static benchmark: there exist

thresholds x∗1 and h∗1 such that an agent attacks if and only if x̃1 ≤ x∗1 and the status quo is

abandoned if and only if h1 ≤ h∗1. Consider next t = 2. The posterior beliefs about h2 given the

private signals x̃1 and x̃2 alone are Normal with mean x2 ≡ λ0 + λ1x̃1 + λ2x̃2 and variance σ2
2 , for

some coefficients (λ0, λ1, λ2, σ2) . This may suggest that x2 can be used as a sufficient statistic for

(x̃1, x̃2) with respect to h2. However, the posterior beliefs about h2 conditional also on the event

that h1 > h∗1 are not invariant in (x̃1, x̃2) for given x2; the problem is that x2 is not a sufficient

statistic for (x̃1, x̃2) with respect to h1. Thus, private information cannot be summarized in x2 and

equilibrium play in period 2 is characterized by a function Y2 : R
2 → R such that an agent attacks

if and only if Y2 (x̃1, x̃2) ≤ 0 (and a corresponding function Q2 : R
2 → R such that regime change

occurs if and only if Q2 (h1, h2) ≤ 0). Similarly, equilibrium play in any period t ≥ 2 is characterized

by a function Yt : R
t → R such that at

(
x̃t

)
= 1 if and only if Yt

(
x̃t

)
≤ 0.

Contrast this with the formalization in the previous section. There, in each period, we had to

solve an equation where the unknown was a real variable x̄t ∈ R. Here, instead, we need to solve

each period a functional equation where the unknown is a function Yt with domain R
t—a function

whose dimensionality explodes with t. Clearly, this is far less tractable, if at all feasible.

Moreover, it is not clear if this alternative formalization brings any substantial gain from a

theoretical perspective. Both formalizations ensure that the critical size of attack ht (and hence

the payoff structure) may change over time, that agents have asymmetric information about ht

23Note that this is the same as ht = θ+ δω̃t, where ω̃t ≡ ω1 + ...+ωt; that is, the same as in the game with shocks

in Sections 5.3 and 5.4, but with the shocks correlated across time. Such correlation was not allowed in Sections 5.3

and 5.4, but this was only for simplicity.
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in each period, and that the common posterior about ht is continuous over a connected set that

includes both ht < 0 and ht > 1 (and hence that dominance regions are possible for both actions).

In these respects, they both seem appropriate extensions of global games to a dynamic setting.24

Nevertheless, this second formalization may be more appropriate for certain applications. One

way then to restore tractability is to assume that agents are short-lived. In particular, consider the

game described above, in which ht follows a Gaussian random walk, with the following modification.

As long as the status quo is in place, a new cohort of agents replaces the old one in each period.

Each cohort is of measure 1 and lives exactly one period. Agents who are born in period t receive

private signals xt = ht + ξt, where ξt is Normal noise with precision βt, i.i.d. across agents and

independent of hs for any s ≤ t.

Given that ht is correlated across time, the knowledge that the regime survived past attacks is

informative about the strength of the regime in the present, as in the case with long-lived agents.

But unlike that case, agents playing in period t have no private information other than xt. Together

with the fact that ht alone pins down the cross-sectional distribution of xt, this property ensures

that monotone equilibria can again be characterized by sequences {x∗t , h∗t }∞t=1 such that in period

t an agent attacks if and only if xt < x∗t and the status quo is abandoned if and only if ht < h∗t .

The characterization of equilibria then parallels that in the previous section. To see this, let

Ψδ
t

(
ht; x̄

t−1
)

denote the c.d.f. of the common posterior in period t about ht, when agents in earlier

cohorts attacked in periods τ ≤ t − 1 if and only if xτ < x̄τ . When earlier cohorts followed such

strategies, the status quo survived period τ if and only if hτ > θ̄τ (x̄τ ) , where θ̄τ (x̄τ ) is the solution

to Φ
(√
βτ (x̄τ − hτ )

)
= hτ . Therefore, for any t ≥ 2, Ψδ

t

(
ht; x̄

t−1
)

is recursively defined by

Ψδ
t

(
ht; x̄

t−1
)

=

∫ +∞
θ̄t−1(x̄t−1)

Φ
(

ht−ht−1

δ

)
dΨδ

t−1

(
ht−1; x̄

t−2
)

1 − Ψδ
t−1

(
θ̄t−1 (x̄t−1) ; x̄t−2

) (12)

with Ψδ
1 (h1) = Φ (

√
α (h1 − z)). Next, let Ψδ

t

(
ht|x; x̄t−1

)
denote the c.d.f. of private posteriors

about ht; this is obtained by applying Bayes’ rule to (12). Then, the expected net payoff from

attacking in period t for an agent with signal x is vδ
1 (x; x̄1) = Ψδ

1

(
θ̄1 (x̄1) |x

)
− c for t = 1 and

vδ
t

(
x; x̄t

)
= Ψδ

t

(
θ̄t (x̄t) |x; x̄t−1

)
− c

for t ≥ 2. Finally, let V δ
t denote the payoff of the marginal agent, as defined in condition (11)) but

using the function vδ
t above. With V δ

t defined this way, the equilibrium algorithm of Proposition

5 applies to the environment examined here as well. What is more, because beliefs—and hence

payoffs—again converge to their counterparts in the benchmark game as δ → 0, Theorem 3 also

applies. (See the Supplementary Material for details.)

The game with short-lived agents thus permits one to examine environments where agents have

private information about the innovations in fundamentals while maintaining tractability.

24Note that global-game results do not require that agents have private information about all payoff-relevant

variables, nor that uncertainty vanishes in the limit for all payoff-relevant variables.
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6 Conclusion

This paper examined how learning influences the dynamics of coordination in a global game of

regime change. Our results struck a delicate balance between the earlier common-knowledge and

the more recent global-games literature: the dynamics featured both a refined role for multiplicity

and a certain discontinuity of outcomes with respect to changes in information or payoffs. They

also led to novel predictions, such as the possibility that fundamentals predict eventual outcomes

but not the timing and number of attacks, or that dynamics alternate between phases of tranquility,

during which agents accumulate information and no attacks are possible, and phases of distress,

during which attacks may occur but do no necessarily take place.

From a methodological perspective, our results offer two lessons with regard to the recent

debate about uniqueness versus multiplicity in coordination environments. First, that equilibrium

learning can be a natural source of multiplicity in a dynamic setting, despite the heterogeneity of

beliefs. Second, and most importantly, that this debate may dilute what, at least in our view, is the

central contribution of the global-games approach: the understanding of how the structure of beliefs

can lead to interesting and novel predictions about equilibrium behavior well beyond equilibrium

determinacy.

From an applied perspective, on the other hand, the predictions we derived may help understand

the dynamics of currency attacks, financial crashes, political change, and other crises phenomena.

With this in mind, in Section 5 we sought to give some guidance on how the analysis can be extended

to accommodate certain features that were absent in the benchmark model but may be important

for applications. The scope of these extensions, however, was limited to changes in information

or in fundamentals—we remained silent about other dynamic effects (such as those introduced by

irreversible actions or liquidity constraints), as well as about the role of large players (such as that

of a “Soros” or a policy maker). Extending the analysis in these directions seems a promising line

for future research.
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Appendix: proofs omitted in the main text

Proof of Proposition 1. Solving (1) for x̂ gives x̂ = θ̂ + β−1/2Φ−1(θ̂). Substituting this into

(2) gives a single equation in θ̂ :

U st(θ̂;β, α, z) = 0, (13)

where

U st (θ;β, α, z) ≡ 1 − Φ
( √

β√
β+α

[
Φ−1 (θ) + α√

β
(z − θ)

])
− c. (14)

Note that U st (θ; ·) is continuous and differentiable in θ ∈ (0, 1), with limθ→0 U
st (θ) = 1 − c > 0

and limθ→1 U
st (θ) = −c < 0. A solution to (13) therefore always exists. Next, note that

∂U st (θ; .)

∂θ
= −

√
β√

β+α
φ

( √
β√

β+α

[
Φ−1 (θ) + α√

β
(z − θ)

]) [
1

φ(Φ−1(θ))
− α√

β

]
.

Since minθ∈(0,1)

[
1/φ

(
Φ−1 (θ)

)]
=

√
2π, the condition β ≥ α2/ (2π) is both necessary and sufficient

for U st to be monotonic in θ, in which case the monotone equilibrium is unique. Finally, for

the proof that only this equilibrium survives iterated deletion of strictly dominated strategies, see

Morris and Shin (2001, 2003).

Proof of Proposition 2. Necessity follows from the arguments in the main text. For suffi-

ciency, take any sequence {x∗t , θ∗t }∞t=1that satisfies conditions (ii) and (iii); let θ∗0 = −∞; suppose

all other agents follow strategies as in (i), in which case Rt = 0 if and only if θ > θ∗t−1, for all t ≥ 1;

and consider the best response for an individual agent. If θ∗t = θ∗t−1, in which case t ≥ 2, θ∗t−1 > 0

and x∗t = −∞, then Pr (Rt+1 = 1|xt, Rt = 0) = Pr
(
θ ≤ θ∗t |xt, θ > θ∗t−1

)
= 0 for all xt and therefore

not attacking is indeed optimal. If instead θ∗t > θ∗t−1, in which case U
(
θ∗t , θ

∗
t−1, βt, α, z

)
= 0 and

x∗t = X (θ∗t , βt) , then, by the monotonicity of the private posterior in xt and the definitions of X(·)
and U(·), Pr

(
θ ≤ θ∗t |xt, θ > θ∗t−1

)
− c ≥ (≤)U

(
θ∗t , θ

∗
t−1, βt, α, z

)
if and only if xt ≤ (≥)X (θ∗t , βt)

and therefore it is indeed optimal to attack for xt < x∗t and not to attack for xt > x∗t .

Proof of Lemma 2. Combining the definitions of u, X and U, we have that

U
(
θ∗, θ∗−1, β, α, z

)
=






1 − c if θ∗ = 0 > θ∗−1

1 −
Φ

� √
β√

β+α

�
Φ−1(θ∗)+

α√
β

(z−θ∗)

��
Φ

� √
β√

β+α

�
Φ−1(θ∗)+

α√
β

(z−θ∗)

�
+
√

β+α(θ∗−θ∗
−1

)

� − c if max{0, θ∗−1} < θ∗ < 1

−c if θ∗ ≤ θ∗−1 or θ∗ = 1 > θ∗−1

Part (i) follows by inspecting U.

For (ii), note that U
(
θ∗, θ∗t−1, βt, α, z

)
< U (θ∗,−∞, βt, α, z) for all θ∗ (since θ∗t−1 > −∞) and

that U (θ∗,−∞, βt, α, z) = U st (θ∗, βt, α, z) is strictly decreasing in θ∗ (since βt ≥ α2/ (2π)). It

follows that U
(
θ∗, θ∗t−1, βt, α, z

)
< 0 for all θ∗ ≥ θ̂t, which gives the result.

For (iii), take any θ∗t−1 > θ∞. Note that for all θ∗ ∈ [θ∗t−1, 1], limβ→∞ U (θ∗,−∞, β, α, z) =

θ∞ − θ∗ < 0. Since U (θ∗,−∞, β, α, z) is continuous in θ∗ and [θ∗t−1, 1] is compact, it follows that
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there exists β such that, for any β > β, U (θ∗,−∞, β, α, z) < 0 for all θ∗ ∈ [θ∗t−1, 1]. Moreover, for

all β, U
(
θ∗, θ∗t−1, β, α, z

)
= −c < 0 for θ ≤ θ∗t−1 and U

(
θ∗, θ∗t−1, β, α, z

)
< U (θ∗,−∞, β, α, z) for

θ∗ > θ∗t−1. It follows that, for any β > β, U
(
θ∗, θ∗t−1, β, α, z

)
< 0 for all θ∗ and therefore (8) admits

no solution.

For (iv), take any θ∗t−1 < θ∞. Since limβ→∞ U
(
θ∗, θ∗t−1, β, α, z

)
= θ∞ − θ∗ > 0 for any θ∗ ∈

(θ∗t−1, θ∞), there exist θ′ ∈
(
θ∗t−1, θ∞

)
and β such that, for any β > β, U

(
θ′, θ∗t−1, β, α, z

)
> 0. By

the continuity of U
(
θ∗, θ∗t−1, β, α, z

)
in θ∗ and the fact that limθ∗→1 U

(
θ∗, θ∗t−1, β, α, z

)
= −c, it

follows then that (8) admits a solution for βt > β.

Finally, consider (v). Fix t ≥ 2, θ∗t−2, βt−1, α, and z (where we use the convention θ∗0 =

−∞) and suppose that θ∗t−1 is the highest solution to (8) for period t − 1, which means that

U
(
θ∗, θ∗t−2, βt−1, α, z

)
< 0 for all θ∗ > θ∗t−1. This, together with the properties that U (θ∗, θ−1, β, α, z)

is non-increasing in θ−1, continuous in θ∗, and equal to −c for θ∗ ≤ θ−1, implies that there exists

∆ > 0 such that U
(
θ∗, θ∗t−1, βt−1, α, z

)
< −∆ for all θ∗ ∈ [0, 1]. Furthermore, by continuity of U in

(θ∗, β) , there exists β > βt−1 such that U (θ∗, ·, β, ·) is uniformly continuous over [0, 1] × [βt−1, β].

This also implies that there exists β ∈ (βt−1, β) such that U
(
θ∗, θ∗t−1, β, α, z

)
< 0 for all β ∈ [βt−1, β)

and all θ∗ ∈ [0, 1], which proves that condition (8) admits no solution in any period τ > t for which

βτ < β.

Lemma A1 There exist thresholds z ≤ z ≤ z such that: θ̂t ≤ θ̂1 for all t if z ≤ z; θ̂1 ≤ (≥) θ∞ if

and only z ≥ (≤) z; and θ̂t < θ∞ for all t if and only if z > z. These thresholds satisfy z = z = z

when c ≤ 1/2 and z ≤ z < z when c > 1/2.

Proof. For any β ≥ β1

(
≥ α2/ (2π)

)
, let θ̂ = θ̂ (β, α, z) be the unique solution to the equation

U(θ̂,−∞, β, α, z) = 0 (i.e., the static equilibrium threshold) and

z̃ (β, α) ≡ θ∞ +
√

β+α−
√

β
α Φ−1 (θ∞) ,

ẑ (β, α) ≡ Φ
( √

β√
β+α

Φ−1 (θ∞)
)

+ 1√
β+α

Φ−1 (θ∞) .

The threshold z̃ (β, α) is defined by U(θ∞,−∞, β, α, z̃ (β, α)) = 0 and is such that θ̂ ≥ (≤) θ∞ if

and only if z ≤ (≥) z̃. The threshold ẑ (β, α) , on the other hand, is defined so that ∂θ̂/∂β ≥ (≤) 0

if and only if z ≥ (≤) ẑ. To simplify notation, we henceforth suppress the dependence of θ̂ on (α, z)

and of z̃ and ẑ on α.

First, consider c = 1/2, in which case ẑ (β) = z̃ (β) = 1/2 for all β. When z < 1/2, θ̂ (β) > θ∞

and ∂θ̂/∂β < 0 for all β ≥ β1 and therefore θ̂1 ≥ θ̂t > θ∞ for all t. When instead z = 1/2,

θ̂ (β) = θ∞ for any β ≥ β1, and therefore θ̂1 = θ̂t = θ∞ for all t. Finally, when z > 1/2, for any

β ≥ β1, θ̂ (β) < θ∞ and ∂θ̂/∂β > 0, and hence θ̂1 ≤ θ̂t < θ∞ for all t. The result thus holds with

z = z = z = 1/2.

Next, consider c < 1/2, in which case z̃ (β) and ẑ (β) are both decreasing in β, satisfy ẑ (β) >

z̃ (β) > θ∞ for all β, and converge to θ∞ as β → ∞. When z ≤ θ∞, then clearly z < z̃ (β) < ẑ (β)
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for all β and therefore θ̂ (β) is always higher than θ∞ and decreasing in β, which implies that

θ̂1 ≥ θ̂t > θ∞ for all t. When z ∈ (θ∞, z̃ (β1)), there are β′′ > β′ > β1 such that z̃ (β′) = ẑ (β′′) = z.

For β ∈ [β1, β
′), θ̂ (β) is higher than θ∞ and decreases with β. As soon as β ∈ (β′, β′′), θ̂ (β) becomes

lower than θ∞ and continues to decrease with β. Once β ≥ β′′, θ̂ (β) starts increasing with β, but

never exceeds θ∞. Hence, θ̂1 > θ∞ and θ̂1 ≥ θ̂t for all t. When z = z̃ (β1) , θ̂1 = θ∞ ≥ θ̂t for all t.

Finally, when z > z̃ (β1) , θ̂ (β) < θ∞ for all β, and therefore θ̂t < θ∞ for all t. We conclude that

the result holds for c < 1/2 with z = z = z = z̃ (β1) .

Finally, consider c > 1/2, in which case ẑ (β) and z̃ (β) are both increasing in β, satisfy

ẑ (β) < z̃ (β) < θ∞, and converge to θ∞ as β → ∞.When z ≤ ẑ (β1) , then clearly z < ẑ (β) < z̃ (β)

for all β > β1 and therefore θ̂ (β) is always higher than θ∞ and decreasing in β, which implies that

θ̂1 ≥ θ̂t > θ∞ for all t. When z ∈ (ẑ (β1) , z̃ (β1)), there is β′ > β1 such ẑ (β′) = z. For β ∈ (β1, β
′),

θ̂ (β) is higher than θ∞ and increasing in β, whereas for β > β′, θ̂ (β) decreases with β, converging to

θ∞ from above. It follows that maxt≥1 θ̂t ≥ θ̂1 > θ∞. When z = z̃ (β1) , maxt≥1 θ̂t ≥ θ̂1 = θ∞. When

z ∈ (z̃ (β1) , θ∞), there are β′′ > β′ > β1 such that z̃ (β′) = ẑ (β′′) = z. For β ∈ (β1, β
′), θ̂ (β) is lower

than θ∞ and increasing in β. For β ∈ (β′, β′′), θ̂ (β) is higher than θ∞ and increases with β. And

for β > β′′, θ̂ (β) decreases with β and asymptotes to θ∞ from above. Hence, maxt≥1 θ̂t > θ∞ > θ̂1.

Finally, when z ≥ θ∞, then clearly z > z̃ (β) > ẑ (β) for all β and therefore θ̂ (β) is always lower

than θ∞, increases with β, and asymptotes θ∞ from below. Hence, θ̂1 ≤ θ̂t < θ∞ for all t. We

conclude that the result holds for c > 1/2 with z = ẑ (β1), z = z̃ (β1) , and z = θ∞.

Proof of Proposition 3. Apart from a notational adjustment – namely the dependence of

U in period t on (αt, zt) and of (x∗t , θ
∗
t ) on zt – the proof follows exactly the same steps as in the

model with only private information, and is thus omitted for brevity.

Proof of Theorem 2. Consider first t = 1. For any (β1, α1, z1) , U (θ∗,−∞, β1, α1, z1) is

continuous in θ∗ ∈ [0, 1] with U (0,−∞, ·) = 1 − c and U (1,−∞, ·) = −c. Hence a solution

θ∗1(z1) to U (θ∗1,−∞, β1, α1, z1) = 0 always exists.25 Next, consider any t ≥ 2 and note that,

for any (θ∗t−1, βt, αt) and any θ∗ ∈ (θ∗t−1, 1), U
(
θ∗, θ∗t−1, βt, αt, zt

)
is strictly decreasing in zt and

U (θ∗, ·, zt) → 1 − c > 0 as zt → −∞, implying that necessarily maxθ∗∈[θ−1,1] U (θ∗, ·, zt) > 0

for zt sufficiently low. Furthermore, since U (θ∗, ·, zt) is continuous in θ∗ ∈ [θ∗t−1, 1] for any zt,

and since U
(
θ∗, θ∗t−1, ·

)
→ −c monotonically for any θ∗ ∈ [θ∗t−1, 1] as zt → +∞, from stan-

dard Monotone Convergence Theorems, the function U
(
θ∗, θ∗t−1, ·, zt

)
converges uniformly to −c

as zt → +∞, implying that maxθ∗∈[θ−1,1]U
(
θ∗, θ∗t−1, βt, αt, zt

)
< 0 for zt sufficiently high. The

strict monotonicity of U in zt then guarantees that there exists a finite z̄
(
θ∗t−1, βt, αt

)
such that

maxθ∗∈[θ−1,1] U
(
θ∗, θ∗t−1, βt, αt, zt

)
≥ (≤) 0 if and only if z ≤ (≥) z̄

(
θ∗t−1, βt, αt

)
, which also implies

that (9) admits a solution θ∗t (z
t) > θ∗t−1(z

t−1) if and only if zt ≤ z̄
(
θ∗t−1, βt, αt

)
. The following

25Note that the function θ∗1(·) is unique if and only if β1 ≥ α2
1/2π. Hence for β1 < α2

1/2π, the game trivially admits

multiple equilibria even if T = 1.

32



is then an equilibrium: for t = 1, θ∗1(z1) is any solution to U (θ∗1,−∞, β1, α1, z1) = 0; for all

t ∈ {2, ..., T}, θ∗t (zt) = max({θ∗t−1(z
t−1)}∪{θ∗ : U

(
θ∗, θ∗t−1(z

t−1), βt, αt, zt
)

= 0}. Note that, in this

equilibrium, at any t ≥ 2, θ∗t (z
t) > θ∗t−1(z

t−1) for all zt ≤ z̄
(
θ∗t−1, βt, αt

)
. Since θ∗t

(
zt

)
= θ∗1(z1) for

all zt and all t is also an equilibrium, we conclude that the game admits multiple equilibria for any

{βt, αt}T
t=1 and any T ≥ 2.

Proof of Proposition 4. Parts (i) and (ii) are immediate. For part (iii), note that in each

period t ≥ 2 there are two possible cases: either an attack takes place (x∗t
(
ωt

)
> −∞), or not

(x∗t
(
ωt

)
= −∞).

If x∗t
(
ωt

)
> −∞, it must be that θ∗t

(
ωt

)
> θ∗t−1

(
ωt−1

)
, for otherwise the posterior probability

of regime change would be zero for any xt and attacking would never be optimal; moreover, it must

be that the thresholds θ∗t
(
ωt

)
and x∗t

(
ωt

)
solve At

(
θ∗t , ω

t
)

= θ∗t +δωt and Pr
(
θ < θ∗t |x∗t , ωt, θ ≥ θ∗t−1

)
=

c, or equivalently

θ∗t
(
ωt

)
+ δωt = Φ

(√
βx

(
x∗t

(
ωt

)
− θ∗t

(
ωt

)))

1 −
Φ

(√
βt + α

(
β

βt+αx
∗
t

(
ωt

)
+ α

βt+αz − θ∗t
(
ωt

)))

Φ
(√

βt + α
(

β
βt+αx

∗
t (ωt) + α

βt+αz − θ∗t−1 (ωt−1)
)) = c.

Using the definitions ofX and U from the benchmark model, the above two conditions are equivalent

to x∗t
(
ωt

)
= X(θ∗t

(
ωt

)
+ δωt;βt) − δωt and (10). And conversely, if (10) admits a solution, then

there exists an equilibrium with an attack in period t. This establishes the first half of part (iii).

If, on the other hand, x∗t
(
ωt

)
= −∞, it must be that θ∗t−1

(
ωt−1

)
+ δωt ≥ 0, for otherwise it

would be dominant for some agents to attack. And conversely, θ∗t−1

(
ωt−1

)
+ δωt ≥ 0 ensures that

there is an equilibrium in which no attack takes place in period t. This establishes the second half

of part (iii).

Lemma A2 For t = 1, V δ
1 (x̄1) is continuous in x̄1 for any x̄1 ∈ R; and for t ≥ 2, V δ

t

(
x̄t

)
is

continuous in x̄t for any x̄t ∈ R
t−1 × R.26

Proof. Consider first δ = 0, in which case V 0
1 (x̄1) ≡ U

(
θ̄1 (x̄1) ,−∞, β1, α, z

)
and V 0

t

(
x̄t

)
≡

U
(
θ̄t (x̄t) , θ̄t−1

(
x̄t−1

)
, βt, α, z

)
for t ≥ 2. Note that, for all t, θ̄t

(
x̄t

)
≡ min{θ : θ ≥ Φ(

√
βτ (x̄τ − θ))

∀τ ≤ t} is continuous in x̄t ∈ R
t

and takes values in [0, 1]. Furthermore, U (θ,−∞, β, α, z) is

26Continuity can be extended in R
t

as follows. For any function f : A → R, where A ⊆ R
t

and t ≥ 1, we say that

f is continuous over A if and only if, for any xt ∈ A and any ε > 0, there exists η > 0 such that, for any x̃t ∈ A such

that for all τ ≤ t: (a) |x̃τ − xτ | < η if xτ ∈ R; (b) x̃τ < −1/η if xτ = −∞; (c) x̃τ > 1/η, if xτ = +∞, the following

is true: (a’) if f
�
xt
�
∈ R, then |f

�
x̃t
�
− f

�
xt
�
| < ε; (b’) if f

�
xt
�

= −∞, then f
�
x̃t
�
< −1/ε; (c’) if f

�
xt
�

= +∞,

then f
�
x̃t
�
> 1/ε.

Note that, if f : A → R, g : B → R, and q : C → R are continuous, respectively, in A, B and C, where A ⊆ R
t
,

B ⊆ R
k
, and f (A) × g (B) ⊆ C ⊆ R

2
, then the function w : A×B → R defined by w

�
xt, xk

�
= q

�
f
�
xt
�
, g

�
xk

��
is

continuous in A×B.
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continuous in θ ∈ [0, 1] and U (θ, θ−1, β, α, z) is continuous in (θ, θ−1) ∈ [0, 1]2. It follows that, for

all t, V 0
t

(
x̄t

)
is continuous in R

t
.

Consider next δ > 0. For all t ≥ 1, the function pδ
t (θ; x̄t) = F

([
Φ

(√
βt (x̄t − θ)

)
− θ

]
/δ

)
is

continuous in θ ∈ R and x̄t ∈ R; increasing in x̄t, and decreasing in θ; it is bounded in [0, 1]; and it

satisfies limθ→∞ pδ
t (θ; x̄t) = 0 and limθ→−∞ pδ

t (θ; x̄t) = 1 for any x̄t ∈ R. The p.d.f. of the private

posteriors for t = 1, ψδ
1 (θ|x) = φ

(√
β1 + α

(
θ − β1x+αz

βt+α

))
, is clearly continuous in θ ∈ R and

x ∈ R; and similarly for the c.d.f. Ψδ
1. It follows that v1 (x; x̄1) =

∫ +∞
−∞ pδ

1 (θ; x̄1) dΨ1 (θ|x) − c is

continuous in (x, x̄1) ∈ R×R. For any t ≥ 2, from Bayes’ rule,

ψδ
t

(
θ|x; x̄t−1

)
=

φ
(√
βt (x− θ)

)
ψδ

t

(
θ; x̄t−1

)
∫ +∞
−∞ φ

(√
βt (x− θ′)

)
ψδ

t (θ′; x̄t−1) dθ′

=
Πt−1

s=1

[
1 − pδ

s (θ; x̄s)
]
φ

(√
βt + α

(
θ − βtx+αz

βt+α

))

∫ +∞
−∞ Πt−1

s=1 [1 − pδ
s (θ′; x̄s)]φ

(√
βt + α

(
θ′ − βtx+αz

βt+α

))
dθ′

,

which is also continuous in θ ∈ R and (x, x̄t−1) ∈ R×R
t−1

; and similarly for Ψδ
t .

27 It follows that

vt

(
x; x̄t−1, x̄t

)
=

∫ +∞
−∞ pδ

t (θ; x̄t) dΨ
δ
t

(
θ|x; x̄t−1

)
− c is continuous in (x, x̄t−1, x̄t) ∈ R×R

t
. Moreover,

for all t, since pδ
t (θ; x̄t) is bounded in [0, 1], vδ

t

(
x; x̄t

)
is bounded in [−c, 1 − c]. In addition, since

the distribution of x given θ satisfies the MLRP and pδ
t (θ; x̄t) is decreasing in θ, by standard

representation theorems (Milgrom, 1981) we have that vδ
t

(
x; x̄t

)
is decreasing in x ∈ R. It follows

that limx→−∞ vδ
t

(
x; x̄t

)
and limx→+∞ vδ

t

(
x; x̄t

)
exist for any x̄t ∈ R

t
and therefore V δ

t

(
x̄t

)
is well-

defined for x̄t = ±∞. Finally, since vδ
t

(
x; x̄t−1, x̄t

)
is continuous in (x, x̄t−1, x̄t) ∈ R×R

t−1×R, it is

immediate that V δ
t

(
x̄t−1, x̄t

)
= vδ

t

(
x̄t; x̄

t−1, x̄t

)
is continuous in (x̄t−1, x̄t) ∈ R

t−1×R.

Proof of Proposition 5. Sufficiency. Consider a sequence {x∗t }∞t=1 that satisfies conditions

(ii) and (iii) in the proposition. The monotonicity of vδ
t

(
x; x̄t

)
with respect to x (see proof

of Lemma A2 above) guarantees that, for any x ∈ R, vδ
t

(
x;x∗t

)
≥ (≤)V δ

t

(
x∗t

)
if and only if

x ≤ (≥)x∗t . It follows that the strategies defined by (i) − (iii) constitute a monotone equilibrium.

Necessity. Conversely, suppose that {at(·)}∞t=1 is a monotone equilibrium. Since in any such

equilibrium the measure of agents attacking in every period is decreasing in θ, the probability

of regime change is also decreasing in θ. Then, by standard representation theorems (Milgrom,

1981), the expected payoff from attacking is decreasing in xt, implying that agents must follow

cut-off strategies. For {x∗t }∞t=1 to be equilibrium cutoffs, it must be that, for all t, V δ
t

(
x∗t

)
= 0 if

−∞ < x∗t < +∞, V δ
t

(
x∗t

)
≤ 0 if x∗t = −∞, and V δ

t

(
x∗t

)
≥ 0 if x∗t = +∞.

We next show that, in any equilibrium, x∗t < +∞ for all t ≥ 1 and x∗1 > −∞. Indeed, if

x∗t = +∞, in which case pδ
t (θ;x∗t ) = F ((1 − θ) /δ) , then, for any t ≥ 2, (x, x̄t−1) ∈ R × R

t−1
, and

27To see this, note that the function q defined by q (p1, ..., pt−1, φ) = Πt−1

s=1 [1 − ps]φ is continuous in [0, 1]t−1 × R,

each ps is continuous in x̄s ∈ R, and φ in x ∈ R.
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θ′ ∈ R,

vδ
t

(
x; x̄t−1,+∞

)
=

∫ +∞

−∞
F

(
1
δ (1 − θ)

)
ψδ

t

(
θ|x; x̄t−1

)
dθ − c

=

∫ θ′

−∞
F

(
1
δ (1 − θ)

)
ψδ

t

(
θ|x; x̄t−1

)
dθ +

∫ +∞

θ′
F

(
1
δ (1 − θ)

)
ψδ

t

(
θ|x; x̄t−1

)
dθ − c

≤ Ψδ
t

(
θ′|x; x̄t−1

)
+ F

(
1
δ

(
1 − θ′

)) [
1 − Ψδ

t

(
θ′|x; x̄t−1

)]
− c,

where Ψδ
t

(
θ′|x; x̄t−1

)
=

∫ θ′

−∞ ψδ
t

(
θ|x; x̄t−1

)
dθ. Furthermore, since the knowledge that the status

quo survived past attacks causes a first-order-stochastic-dominance change in posterior beliefs,28

Ψδ
t

(
θ′|x; x̄t−1

)
≤ Φ

(√
βt + α

(
θ′ − βtx+αz

βt+α

))
. Along with limx→+∞ Φ

(√
βt + α

(
θ′ − βtx+αz

βt+α

))
=

0, this implies that limx→+∞ vδ
t

(
x; x̄t−1,+∞

)
≤ F ((1 − θ′) /δ) − c. Since the latter is true for any

θ′ ∈ R, it is also true for θ′ → +∞, in which case F ((1 − θ′) /δ) → 0. Together with the fact that

vδ
t is bounded from below by −c, this implies that V δ

(
x̄t−1,+∞

)
= limx→+∞ vδ

t

(
x; x̄t−1,+∞

)
=

−c < 0 and hence x∗t = +∞ can not be part of any equilibrium. A similar argument rules out

x∗1 = +∞. Finally, suppose x∗1 = −∞. Then, for any x ∈ R and any θ′ ∈ R,

vδ
1 (x;−∞) =

∫ +∞

−∞
F

(
1
δ (−θ)

)
ψδ

1 (θ|x) dθ − c ≥ Ψδ
1

(
θ′|x

)
F

(
1
δ

(
−θ′

))
− c,

where Ψδ
1 (θ′|x) =

∫ θ′

−∞ ψδ
1 (θ|x) dθ, and therefore limx→−∞ vδ

1 (x;−∞) ≥ F ((−θ′) /δ)− c. Since this

is true also for θ′ → −∞, and since vδ
1 is bounded from above by 1 − c, we have that V δ

1 (−∞) =

limx→−∞ vδ
1 (x;−∞) = 1 − c > 0, implying that x∗1 = −∞ can not be part of an equilibrium.

We conclude that (i) − (iii) necessarily hold in any monotone equilibrium.

Existence. For any δ > 0, the monotonicity of vδ
1 (x; x̄1) in x̄1 along with its continuity in

x for any x̄1 and the fact that limx→−∞ vδ
1 (x,−∞) > 0 > limx→+∞ vδ

1 (x,+∞), implies that there

exist x′, x′′ ∈ R such that V δ
1 (x′) ≥ vδ

1 (x′,−∞) > 0 > vδ
1 (x′′,+∞) ≥ V δ

1 (x′′) . The continuity of

V δ
1 (x̄1) in x̄1 then ensures existence of a solution x∗1 ∈ (x′, x′′) to V δ

1 (x∗1) = 0.

Next, consider t ≥ 2. For any given x̄t−1, a similar argument as above ensures the existence of

x′′ ∈ R such that V δ
t

(
x̄t−1, x′′

)
≤ vδ

t

(
x′′, x̄t−1,+∞

)
< 0. Moreover, either there also exists x′ ∈ R

such that V δ
t

(
x̄t−1, x′

)
≥ 0, or V δ

t

(
x̄t−1, x̄t

)
< 0 for all x̄t ∈ R. In the former case, the continuity

of V δ
t

(
x̄t−1, x̄t

)
in x̄t ensures the existence of x̄t ∈ (x′, x′′) such that V δ

t

(
x̄t−1, x̄t

)
= 0. In the latter

case, vδ
t

(
x; x̄t−1,−∞

)
≤ vδ

t

(
x; x̄t−1, x

)
= V δ

t

(
x̄t−1, x

)
< 0 for any x ∈ R and therefore at x̄t = −∞,

V δ
t

(
x̄t−1,−∞

)
≡ limx→−∞ vδ

t

(
x; x̄t−1,−∞

)
≤ 0. We conclude that there exists a sequence {x∗t }∞t=0

that satisfies conditions (ii) and (iii) in the proposition.

Proof of Theorem 3. We prove the result in four steps. Step 1 uses the structure of beliefs

and payoffs to establish that V δ
t converges pointwise to V 0

t as δ → 0. Steps 2 and 3 then use this

pointwise convergence of payoffs to prove the result by induction: Step 2 proves that the result

28This can be seen by noting that the ratio of the densities ψδ
t

�
θ|x; x̄t−1

�
/
√
βt + αφ

�√
βt + α

�
θ − βtx+αz

βt+α

��
is

increasing in θ.
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holds for T = 1, while Step 3 proves that if the result holds for T ′ = T − 1, then it holds also for

T ′ = T.

We start by establishing pointwise convergence of V δ
t as δ → 0.

Step 1. First, note that, for any t ≥ 1 any x̄t ∈ R and any θ 6= θ̄t (x̄t) ,

lim
δ→0

pδ
t (θ; x̄t) = p0

t (θ; x̄t) ≡
{

1 if θ ≤ θ̄t (x̄t) ,

0 if θ > θ̄t (x̄t) .
(15)

This implies that, for any t ≥ 2, any x̄t−1 ∈ R
t−1

and any θ,

lim
δ→0

ψδ
t

(
θ; x̄t−1

)
= ψ0

t

(
θ; x̄t−1

)
≡





0 if θ ≤ θ̄t−1

(
x̄t−1

)
√

αφ(
√

α(θ−z))
1−Φ(

√
α(θ̄t−1(x̄t−1)−z))

otherwise
(16)

and hence limδ→0 ψ
δ
t

(
θ|x; x̄t−1

)
= ψ0

t (θ|x; x̄t−1) for any x ∈ R. From (15), it follows that, at t = 1,

for any x̄1 ∈ R

lim
δ→0

V δ
1 (x̄1) = lim

δ→0

∫ +∞

−∞
pδ
1 (θ; x̄1) dΨ

δ
1 (θ|x̄1) − c

= Ψ0
1

(
θ̄1 (x̄1) |x̄1

)
− c

= U
(
θ̄1 (x̄1) ;−∞, β1, α, z

)
≡ V 0

1 (x̄1) .

Similarly, by (15) and (16), for any t ≥ 2, any
(
x̄t−1, x̄t

)
∈ R

t−1 × R and any θ, we have that

lim
δ→0

V δ
t

(
x̄t−1, x̄t

)
= lim

δ→0

∫ +∞

−∞
pδ

t (θ; x̄t) dΨ
δ
t

(
θ|x̄t; x̄

t−1
)
− c

= Ψ0
t

(
θ̄t (x̄t) |x̄t; x̄

t−1
)
− c

= U
(
θ̄t (x̄t) ; θ̄t−1

(
x̄t−1

)
, βt, α, z

)
≡ V 0

t

(
x̄t−1, x̄t

)
.

We next prove the result by induction.

Step 2. Consider first T = 1 and fix an arbitrary ε > 0. From the strict monotonicity of

V 0
1 (x̄1),

29

V 0
1 (x∗1 − ε) > 0 > V 0

1 (x∗1 + ε) .

By the convergence of V δ
1 to V 0

1 as δ → 0, we can find δ1(ε) > 0 such that, for any δ < δ1 (ε) ,

V δ
1 (x∗1 − ε) > 0 > V δ

1 (x∗1 + ε) .

From the continuity of V δ
1 (x̄1) in x̄1 for any δ > 0, it follows that there exists a solution xδ

1 to

V δ
1 (x1) = 0 such that x∗1 − ε < xδ

1 < x∗1 + ε. Following the same steps as in the proof of existence in

Proposition 5, we can then construct an equilibrium {xδ
t}∞t=1 for Γ (δ) such that |x̄1 (δ) − x∗1| < ε.

This proves the result for T = 1.

29This follows from the monotonicity of U(θ;−∞, β1, α, z) in θ – which in turn is implied by β1 ≥ α2/
√

2π – and

the monotonicity of θ̄1 (x̄1) in x̄1.
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Step 3. Consider next an arbitrary T ≥ 2, fix ε > 0, and suppose the result holds for T − 1.

We seek to prove that the result holds for T. In doing so, we distinguish two cases: Step 3.a below

considers the case that x∗T > −∞, whereas Step 3.b considers the case that x∗T = −∞.

Step 3.a. Take first any equilibrium of Γ(0) such that x∗T > −∞. By the (local) strict monotonic-

ity of V 0
T around x∗T implied by the assumption that x∗T /∈ arg maxx V

0
T

(
x∗T−1, x

)
, there exists

εT < ε such that either

V 0
T

(
x∗T−1, x∗T − εT

)
> 0 > V 0

T

(
x∗T−1, x∗T + εT

)
,

or V 0
T

(
x∗T−1, x∗T − εT

)
< 0 < V 0

T

(
x∗T−1, x∗T + εT

)
. Without loss of generality, assume the first

case—the argument for the other case is identical. From the continuity of V 0
T

(
xT−1, xT

)
in xT−1 ∈

R
T−1

and the fact that the result holds for T − 1, there exists some ε′T ∈ (0, εT ) such that, for any

δ < δ (ε′T , T − 1), there is a sequence xδ,T−1 satisfying the following three conditions:30

[C1] for all t ≤ T − 1, either xδ
t = −∞ and V δ

t

(
xδ,t

)
≤ 0, or xδ

t ∈ R and V δ
t

(
xδ,t

)
= 0;

[C2] for all t ≤ T − 1, |x∗t − xδ
t | < ε′T < ε if x∗t ∈ R, and xδ

t < −1/ε′T < −1/ε if x∗t = −∞;

[C3] in period T,

V 0
T

(
xδ,T−1, x∗T − εT

)
> 0 > V 0

T

(
xδ,T−1, x∗T + εT

)
.

Next, by the convergence of V δ
T

(
xT−1, xT

)
to V 0

T

(
xT−1, xT

)
for any

(
xT−1, xT

)
∈ R

T−1 × R, there

exists δT ∈ (0, δ (ε′T , T − 1)) such that, for any δ < δT , there is xδ,T−1 that satisfies [C1]-[C2] and

such that:

[C3′] in period T,

V δ
T

(
xδ,T−1, x∗T − εT

)
> 0 > V δ

T

(
xδ,T−1, x∗T + εT

)
.

But then, by the continuity of V δ
T

(
xT−1, xT

)
in xT , for the same xδ,T−1, there exists an xδ

T ∈ R,

with |x∗T − xδ
T | < εT < ε, that solves V δ

T

(
xδ,T−1, xδ

T

)
= 0.

Step 3.b. Next, take any equilibrium of Γ(0) such that x∗T = −∞. Recall that, for any t ≥
2, V 0

t

(
x∗t−1, xt

)
= −c < 0 for all xt < x̃t, where x̃t > −∞ solves θ̄t (x̃t) = θ̄t−1

(
x∗t−1

)
≡

maxτ≤t−1 θ̄τ (x∗τ ) . Pick some x′T ∈ (−∞,min{−1/ε, x̃T }). From the continuity of V 0
T

(
xT−1, xT

)
in

xT−1 and the fact that the result holds for T − 1, there exists some ε′ ∈ (0, ε) such that, for any

δ < δ (ε′, T − 1)), there is a sequence xδ,T−1 which satisfies conditions [C1]-[C2] above (replacing

ε′T with ε′) and such that:

[C4] V 0
T

(
xδ,T−1, x′T

)
< 0.

By the pointwise convergence of V δ
T to V 0

T , there also exists a δT ∈ (0, δ (ε′, T − 1))) such that, for

any δ < δT , there is xδ,T−1 that satisfies [C1]-[C2] and such that:

[C4′] V δ
T

(
xδ,T−1, x′T

)
< 0.

If, for the same xδ,T−1, there exists an x′′T ∈ (−∞, x′T ) such that V δ
T

(
xδ,T−1, x′′T

)
≥ 0, then, by the

30Continuity of V 0 implies existence of ε′T such that [C3] holds for any xδ,T−1 that satisfies [C2]; that the result

holds for T − 1 then ensures that, for any δ < δ (ε′T , T − 1) , there exists xδ,T−1 that satisfies both [C1] and [C2].
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continuity of V δ
T

(
xδ,T−1, xT

)
in xT ∈ R, there is also an xδ

T ∈ R, with x′′T < xδ
T < x′T < −1/ε, such

that V δ
T

(
xδ,T−1, xδ

T

)
= 0. If instead V δ

T

(
xδ,T−1, xT

)
< 0 for all xT ∈ (−∞, x′T ), then xδ

T = −∞
satisfies V δ

T

(
xδ,T−1,−∞

)
≤ 0.31

Finally, recall that (8) admits at most two solutions in every t and therefore the set of xT∗ that

can be part of an equilibrium of Γ (0) is finite. Hence, there is δ (ε, T ) ∈ (0, δ (ε, T − 1)) such that,

for any δ < δ (ε, T ) and every equilibrium {x∗t}∞t=1 of Γ (0) for which x∗t /∈ arg maxx V
0
t

(
x∗t−1, x

)
for

all t ≤ T, there exists xδ,T such that, for all t ≤ T : if x∗t ∈ R, then |xδ
t − x∗t | < ε and V δ

t

(
xδ,t

)
= 0;

and if x∗t = −∞, then xδ
t < −1/ε and V δ

t

(
xδ,t

)
≤ 0. From the same arguments as for the proof of

existence in Proposition 5, we conclude that xδ,T is part of an equilibrium {xδ
t}∞t=1 for Γ (δ) , which

completes the proof.
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