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Abstract

In a model with a large number of agents who have constant relative risk aversion (CRRA)

preferences, market incompleteness has no effect on the premium for aggregate risk if the dis-

tribution of idiosyncratic risk is independent of aggregate shocks and aggregate consumption

growth is distributed independently over time. In the equilibrium, which features trade and

binding solvency constraints, as opposed to Constantinides and Duffie (1996), households only

use the stock market to smooth consumption; there is no trade in bond markets. Furthermore,

we show that the cross-sectional wealth and consumption distributions are not affected by

aggregate shocks. These results hold regardless of the persistence of idiosyncratic shocks. A

weaker irrelevance result survives when we allow for predictability in aggregate consumption

growth.

∗We would like to thank Andy Atkeson, John Campbell, Nicolae Garleanu, John Heaton, Francis Longstaff,

Narayana Kocherlakota, Per Krusell, Victor Rios-Rull, Kjetil Storesletten, Dimitry Vayanos, the Wharton and

UCLA macro lunch participants and seminar participants at UCLA Anderson, UC Irvine, USC, NYU Stern, Prince-

ton, the University of Wisconsin, SUNY Stonybrook, Toronto, the UC Santa Barbara Conference on Risk Sharing,

the Tokyo Conference in honor of Ed Prescott and the AP sessions of the NBER Summer Institute for comments

and the NSF for financial support. Dave Backus, Hal Cole, Stijn Van Nieuwerburgh, Pierre-Olivier Weill and Stan

Zin provided exceptionally detailed and helpful comments. All remaining errors are our own.
†email address: dkrueger@econ.upenn.edu.
‡email address: hlustig@anderson.ucla.edu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7282561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

This paper provides general conditions under which closing down insurance markets for idiosyn-

cratic risk (our definition of market incompleteness) does not increase the risk premium that stocks

command over bonds. We study a standard incomplete markets endowment economy populated

by a continuum of agents who have CRRA preferences and who can trade a risk-free bond and a

stock, subject to potentially binding solvency constraints. In the benchmark version of our model

the growth rate of the aggregate endowment is uncorrelated over time, that is, the logarithm of

aggregate income is a random walk. Under these assumptions, the presence of uninsurable idiosyn-

cratic risk is shown to lower the equilibrium risk-free rate, but it has no effect on the price of

aggregate risk in equilibrium if the distribution of idiosyncratic shocks is statistically independent

of aggregate shocks. Consequently, we show analytically that in this class of models, the represen-

tative agent Consumption-CAPM (CCAPM) developed by Rubinstein (1974), Breeden (1979) and

Lucas (1978) prices the excess returns on the stock correctly. Therefore, as long as idiosyncratic

shocks are distributed independently of aggregate shocks, the extent to which household can insure

against idiosyncratic income risk as well as the tightness of the borrowing constraints they face are

irrelevant for risk premia. These results deepen the equity premium puzzle, because we show that

Mehra and Prescott’s (1985) statement of the puzzle applies to a much larger class of incomplete

market models.1 We also show that uninsurable income risk does not contribute to any variation

in the conditional market price of risk.

While earlier work exploring autarchic equilibria by Constantinides and Duffie (1996) is sugges-

tive of the irrelevance of idiosyncratic (consumption) risk, our work derives the exact conditions for

the irrelevance of uninsurable idiosyncratic income risk in non-autarchic equilibria for economies

with standard labor income processes while allowing for binding borrowing constraints. We show

that these conditions depend critically on the properties of aggregate consumption growth once

one allows for trade.2

The stark asset pricing implications of our model follow from a crucial result about equilibrium

consumption and portfolio allocations. We show that in this class of incomplete market models

with idiosyncratic and aggregate risk, the equilibrium allocations and prices can be obtained from

the allocations and interest rates of an equilibrium in a stationary model with only idiosyncratic

risk (as in Bewley (1986), Huggett (1993) or Aiyagari (1994)). We call this the Bewley model.

1Weil’s (1989) statement of the risk-free rate puzzle, on the contrary, does not.
2There are few general theoretical results in this literature. Levine and Zame (2002) show that in economies

populated by agents with infinite horizons, the equilibrium allocations converge in the limit, as their discount factors
approach one, to the complete markets allocations. We provide a qualitatively similar equivalence result that applies
only to the risk premium. Our result, however, does not depend at all on the time discount factor of households.
For examples of numerical solutions of calibrated models, see the important work of Ayiagari and Gertler (1991),
Telmer (1993), Lucas (1994), Heaton and Lucas (1996), Krusell and Smith (1998), and Marcet and Singleton (1999).
Also see Kocherlakota (1996) for an overview of this literature.
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Specifically, we demonstrate that scaling up the consumption allocation of the Bewley equilibrium

by the aggregate endowment delivers an equilibrium for the model with aggregate risk. In this

equilibrium, there is no trade in bond markets, only in stock markets. This result is the key

to why the history of aggregate shocks has no bearing on equilibrium allocations and prices.

Households in equilibrium only trade the stock (i.e. the market portfolio), regardless of their history

of idiosyncratic shocks, even in the presence of binding solvency constraints. This invariance of the

household’s portfolio composition directly implies the irrelevance of the history of aggregate shocks

for equilibrium prices and allocations. The wealth and consumption distribution in the model with

aggregate risk (normalized by the aggregate endowment) coincides with the stationary wealth and

consumption distribution of the Bewley equilibrium. Aggregate shocks therefore have no impact

on these equilibrium distributions.

Due to the absence of aggregate risk in the Bewley model, a bond and a stock have exactly

the same return characteristics in equilibrium and thus one asset is redundant. Households need

not use the bond to smooth consumption. Remarkably, this prediction for portfolio allocations

carries over to the model with aggregate risk: at the equilibrium prices households do not trade

the uncontingent bond and they only use the stock (i.e. a claim to aggregate consumption), to

transfer resources over time. In equilibrium, all households bear the same share of aggregate risk

and they all hold the same portfolio, regardless of their history of idiosyncratic shocks and the

implied financial wealth holdings. Hence, this class of models does not generate any demand for

bonds at the equilibrium interest rate, if bonds are in zero net supply.3 If there was some household

that wanted to hold bonds at the equilibrium interest rate, then all households would want to go

long in bonds, and the bond market could not be cleared. Hence in equilibrium, no household

holds bonds.

Our portfolio result depends on the properties of aggregate consumption growth. In our bench-

mark model, aggregate consumption growth is not predictable (that is, the growth rate of the

aggregate endowment is i.i.d.). This is a standard assumption in the asset pricing literature (e.g.

Campbell and Cochrane (1999)), because the empirical evidence for such predictability is rather

weak (see e.g. Heaton and Lucas (1996)). However, if there is predictability in aggregate income

growth in our model, as in the model with long-run risk developed by Bansal and Yaron (2004),

then agents want to hedge their portfolio against interest rate shocks, creating a role for trade

in a richer menu of assets. The risk premium irrelevance result goes through only if households

can trade a full set of aggregate state-contingent claims and if the solvency constraints do not

bind. In this case, there is scope for trade in the contingent bond markets, because the hedging

3In our model, what we refer to as the stock is a claim to aggregate consumption. We show this is the only
security households trade. However, if we take equity to be a levered claim to aggregate consumption, then the
households effectively hold a fixed portfolio of corporate bonds and stocks. As is easy to verify, the proportion
of corporate bonds in the portfolio is 2/3 when corporate leverage is 2. The remaining 1/3 is in equities. A key
implication of the equilibrium we derive is that households do not deviate from these fixed proportions.
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demands depend on the household’s history of idiosyncratic shocks. So, only a weaker form of

our result survives predictability in aggregate consumption growth. In contrast, in the autarchic

equilibria examined by Constantinides and Duffie (1996), the irrelevance result does not depend

on the properties of aggregate consumption growth because households by construction do not use

assets to hedge against predictable changes in consumption.

The key ingredients underlying our irrelevance result are (i) a continuum of agents, (ii) CRRA

utility, (iii) idiosyncratic labor income risk that is independent of aggregate risk, (iv) a constant

capital share of income and (v) solvency constraints or borrowing constraints on total financial

wealth that are proportional to aggregate income. We now discuss each of these assumptions in

detail to highlight and explain the differences with existing papers in the literature.

First, we need to have a large number of agents in the economy. As pointed out by Denhaan

(2001), in an economy with a finite number of agents, each idiosyncratic shock is by construction

an aggregate shock because it changes the wealth distribution and, through these wealth effects,

asset prices. Second, our results rely on the homotheticity property of the CRRA utility function.

Third, in our model labor income grows with the aggregate endowment, as is standard in this liter-

ature. In addition, for our results to go through, idiosyncratic income shocks must be distributed

independently of aggregate shocks. This explicitly rules out that the variance of idiosyncratic

shocks is higher in recessions (henceforth we refer to this type of correlation as countercyclical

cross-sectional variance of labor income shocks, or CCV). Fourth, we require that the capital share

of income is independent of the aggregate state of the economy. This assumption is standard in

macroeconomics, and it is not obviously at odds with the data (see Cooley and Prescott (1995)).

Finally, in the main section of the paper, households face either constraints on total net wealth

today or state-by-state solvency constraints on the value of their portfolio in each state tomor-

row.4 These solvency constraints have to be proportional to aggregate income. This assumption

is standard in the literature. For example, the liquidity constraints used by Deaton (1991) satisfy

this condition, as do the tight borrowing constraints used by Krusell and Smith (1997), and the

endogenous solvency constraints derived by Alvarez and Jermann (2000).

The paper is structured as follows. In section 2, we lay out the physical environment of our

model. In section 3, we consider the benchmark model without predictability in aggregate con-

sumption growth. We show that the prices and allocations in a model without aggregate risk,

called the Bewley model, can be mapped into the equilibrium prices and allocations of an economy

with aggregate risk in which households trade only a bond and a stock. This result then imme-

diately implies that market incompleteness is irrelevant for risk premia. In section 4, we allow

4However, in the case in which aggregate consumption growth is uncorrelated over time, we can allow for arbitrary
separate constraints on the household bond positions, e.g. a short-sale constraint for bonds only. In this case, our
result is also robust to the introduction of transaction costs in the bond market (but not to transaction costs in the
stock market).
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for predictability in aggregate consumption growth. Finally, section 5 concludes; all proofs are

contained in the appendix. In a separate appendix, downloadable from the authors’ web sites5, we

show these results survive when idiosyncratic income shocks are permanent, when labor supply is

endogenous, and when households have Epstein-Zin preferences.

2 Environment

Our exchange economy is populated by a continuum of individuals of measure 1. There is a

single nonstorable consumption good. The aggregate endowment of this good is stochastic. Each

individual’s endowment depends, in addition to the aggregate shock, also on the realization of an

idiosyncratic shock. Thus, the model we study is identical to the one described by Lucas (1994),

except that ours is populated by a continuum of agents (as in Bewley (1986), Aiyagari and Gertler

(1991), Huggett (1993) and Aiyagari (1994)), instead of just two agents.

2.1 Representation of Uncertainty

We denote the current aggregate shock by zt ∈ Z and the current idiosyncratic shock by yt ∈ Y .

For simplicity, both Z and Y are assumed to be finite. Furthermore, let zt = (z0, . . . , zt) and

yt = (y0, . . . , yt) denote the history of aggregate and idiosyncratic shocks. As shorthand notation,

we use st = (yt, zt) and st = (yt, zt). We let the economy start at an initial aggregate node z0.

Conditional on an idiosyncratic shock y0 and thus s0 = (y0, z0), the probability of a history st

is given by πt(s
t|s0). We assume that shocks follow a first order Markov process with transition

probabilities given by π(s′|s).

2.2 Preferences and Endowments

Consumers rank stochastic consumption streams {ct(s
t)} according to the following homothetic

utility function:

U(c)(s0) =

∞∑

t=0

∑

st≥s0

βtπ(st|s0)
ct(s

t)

1 − γ

1−γ

, (1)

where γ > 0 is the coefficient of relative risk aversion and β ∈ (0, 1) is the constant time discount

factor. We define U(c)(st) to be the continuation expected lifetime utility from a consumption

allocation c = {ct(s
t)} in node st. Lifetime utility can be written recursively as follows:

U(c)(st) = u(ct(s
t)) + β

∑

st+1

π(st+1|st)U(c)(st, st+1),

5See http://www.econ.upenn.edu/˜dkrueger/research/assetpricingapp.pdf
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where we made use of the Markov property the underlying stochastic processes. The economy’s

aggregate endowment process {et} depends only on the aggregate event history; we let et(z
t) denote

the aggregate endowment at node zt. Each agent draws a ‘labor income’ share η(yt, zt), as a fraction

of the aggregate endowment in each period. Her labor income share only depends on the current

individual and aggregate event. We denote the resulting individual labor income process by {ηt},

with

ηt(s
t) = η(yt, zt)et(z

t), (2)

where st = (st−1, yt, zt). We assume that η(yt, zt) > 0 in all states of the world. The stochastic

growth rate of the endowment of the economy is denoted by λ(zt+1) = et+1(z
t+1)/et(z

t). We assume

that aggregate endowment growth only depends on the current aggregate state.

Condition 2.1. Aggregate endowment growth is a function of the current aggregate shock only:

λ(zt+1) = λ(zt+1).

Furthermore, we assume that a Law of Large Numbers holds6, so that π(st|s0) is not only a

household’s individual probability of drawing a history st, but also the deterministic fraction of

the population drawing that same history.

In addition to labor income, there is a Lucas tree that yields a constant share α of the total

aggregate endowment as capital income, so that the total dividends of the tree are given by αet(z
t)

in each period. The remaining fraction 1 − α is labor income. Therefore, by construction, the

aggregate labor share of equals the sum over all individual labor income shares:

∑

yt∈Y

Πzt
(yt)η(yt, zt) = (1 − α), (3)

for all zt, where Πzt
(yt) represents the cross-sectional distribution of idiosyncratic shocks yt, condi-

tional on the aggregate shock zt. By the law of large numbers, the fraction of agents who draw y in

state z only depends on z. An increase in the capital income share α translates into proportionally

lower individual labor income shares η(y, z) for all (y, z).7

At time 0, the agents are endowed with initial wealth θ0. This wealth represents the value of an

agent’s share of the Lucas tree producing the dividend flow in units of time 0 consumption, as well

as the value of her labor endowment at date 0. We use Θ0 to denote the initial joint distribution

of wealth and idiosyncratic shocks (θ0, y0).

6See e.g. Hammond and Sun (2003) for conditions under which a LLN holds with a continuum of random
variables.

7Our setup nests the baseline model of Heaton and Lucas (1996), except for the fact that they allow for the
capital share α to depend on z. In their benchmark parameterization, however, fluctuations in α(z) are rather small..
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Next, we assume that idiosyncratic shocks are independent of the aggregate shocks. This

assumption is crucial for most of the results in this paper.

Condition 2.2. Individual endowment shares η(yt, zt) are functions of the current idiosyncratic

state yt only, that is η(yt, zt) = η(yt). Also, the transition probabilities of the shocks can be decom-

posed as

π(zt+1, yt+1|zt, yt) = ϕ(yt+1|yt)φ(zt+1|zt).

This means that individual endowment shares and the transition probabilities of the idiosyn-

cratic shocks are independent of the aggregate state of the economy z.

In the baseline model, we also assume that the aggregate shocks are independent over time.

Condition 2.3. The growth rate of the aggregate endowment is i.i.d.:

φ(zt+1|zt) = φ(zt+1).

In this case the logarithm of the aggregate endowment follows a random walk with drift.

3 No Predictability in Aggregate Consumption Growth

In this section we assume that condition 2.3 holds so that aggregate endowment and thus consump-

tion growth is i.i.d. aggregate consumption growth shocks. First, analyze the model with Arrow

market structure in which households can trade shares in the stock and a complete menu of claims

that pay out contingent on the aggregate shock. Idiosyncratic shocks are (as in the entire paper)

uninsurable. We first establish an equivalence result: we demonstrate that equilibrium allocations

and prices of a stationary version of the model with only idiosyncratic, but no aggregate shocks

(which we label the Bewley model) can be transformed, through simple scaling by the aggregate

shock, into equilibrium allocations and prices in the Arrow model with aggregate risk. In that

equilibrium a zero trade result for all contingent claims is obtained. This zero trade result, in turn,

implies that equivalence result for the Arrow model directly extends to the Bond model, in which

households can only trade a single uncontingent bond, in addition to the stock. We conclude this

section with the risk premium irrelevance result which follows directly from the fact that consump-

tion allocations in the model with aggregate risk are equal to consumption allocations from the

model with only idiosyncratic risk, scaled up by the same factor for all households (the stochastic

aggregate endowment)..
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3.1 The Arrow Model

Let at(s
t, zt+1) denote the quantity purchased of a security that pays off one unit of the consumption

good if aggregate shock in the next period is zt+1, irrespective of the idiosyncratic shock yt+1. Its

price today is given by qt(z
t, zt+1). In addition, households trade shares in the Lucas tree. We use

σt(s
t) to denote the number of shares a household with history st = (yt, zt) purchases today and

we let vt(z
t) denote the price of one share.

An agent starting period t with wealth θt(s
t) buys consumption commodities in the spot market

and trades securities subject to the usual budget constraint:

ct(s
t) +

∑

zt+1

at(s
t, zt+1)qt(z

t, zt+1) + σt(s
t)vt(z

t) ≤ θt(s
t). (4)

If next period’s state is st+1 = (st, yt+1, zt+1), her wealth is given by her labor income, the payoff

from the contingent claim purchased in the previous period as well as the value of her position in

the stock, including dividends:

θt+1(s
t+1) = η(yt+1, zt+1)et+1(zt+1) + at(s

t, zt+1) + σt(s
t)
[
vt+1(z

t+1) + αet+1(zt+1).
]

(5)

In addition to the budget constraints, the households’ trading strategies are subject to solvency

constraints of one of two types. The first type of constraint imposes a lower bound on the value of

the asset portfolio at the end of the period today,

∑

zt+1

at(s
t, zt+1)qt(z

t, zt+1) + σt(s
t)vt(z

t) ≥ Kt(s
t), (6)

while the second type imposes state-by-state lower bounds on net wealth tomorrow,

at(s
t, zt+1) + σt(s

t)
[
vt+1(z

t+1) + αet+1(zt+1)
]
≥ Mt(s

t, zt+1) for all zt+1. (7)

While we can handle potentially very tight solvency constraints we need to assume that they are

proportional to the aggregate endowment.

Condition 3.1. The solvency constraints lie between the natural solvency constraints (the maxi-

mum negative value of assets that households can repay by setting consumption to zero in all future

periods) and zero

Knat
t (yt, zt) ≤ Kt(y

t, zt) ≤ 0,

Mnat
t (yt, zt, zt+1) ≤ Mt(y

t, zt, zt+1) ≤ 0.
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The solvency constraints depend on the aggregate history zt only through the level of the aggregate

endowment:

Kt(y
t, zt) = K̂t(y

t)et(z
t),

Mt(y
t, zt, zt+1) = M̂t(y

t)et+1(z
t+1).

The solvency constraints are not so tight as to make the feasible consumption set empty, but

they are tight enough to prevent Ponzi schemes. If the constraints did not have the proportion-

ality feature in a stochastically growing economy, they would become more or less binding as the

aggregate economy grows, clearly not a desirable feature.8. Obviously, the tight standard liquidity

constraint Kt(y
t, zt) = 0 satisfies this condition (see Deaton (1991)).

In a competitive equilibrium households optimize, given prices, and for each zt the goods

market, the stock market and all markets for the Arrow securities clear (for a formal definition see

section A of the Appendix).

3.2 The De-trended Arrow Model

In order to establish our equivalence result we first show how to transform the Arrow model with

idiosyncratic and aggregate risk into a stationary model with only idiosyncratic risk. The mapping

from the stochastically growing to a detrended stationary model involves a change of measures

that is similar but not identical to the switch to a risk-neutral measure commonly used in asset

pricing.

Transformation of the Model with Aggregate Shocks into a Stationary Model We

transform the Arrow model with aggregate shocks into a stationary model with a stochastic time

discount factor and a growth-adjusted probability matrix, following Alvarez and Jermann (2001).

We let Û(ĉ)(st) denote the expected lifetime continuation utility in node st, under the new transition

probabilities and discount factor, defined over consumption shares {ĉt(s
t)} =

{
ct(st)
et(zt)

}

Û(ĉ)(st) = u(ĉt(s
t)) + β̂(st)

∑

st+1

π̂(st+1|st)Û(ĉ)(st, st+1), (8)

where the growth-adjusted probabilities and the growth-adjusted discount factor are defined as:

π̂(st+1|st) =
π(st+1|st)λ(zt+1)

1−γ

∑
st+1

π(st+1|st)λ(zt+1)1−γ
and β̂(st) = β

∑

st+1

π(st+1|st)λ(zt+1)
1−γ .

8Without this assumption, for example, the risk-free rate would depend on the level of aggregate consumption,
which in turn follows a random walk. In the incomplete markets asset pricing literature the borrowing constraints
usually satisfy this condition (see e.g. Heaton and Lucas (1996)).
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π̂ is a well-defined Markov matrix in that
∑

st+1
π̂(st+1|st) = 1 for all st. Given the independence

condition (2.2), the growth-adjusted probability matrix π̂ and the re-scaled discount factor are

obtained by adjusting only the transition probabilities for the aggregate shock, φ, but not the

transition probabilities for the idiosyncratic shocks:

π̂(st+1|st) = ϕ(yt+1|yt)φ̂(zt+1|zt), and φ̂(zt+1|zt) =
φ(zt+1|zt)λ(zt+1)

1−γ

∑
zt+1

φ(zt+1|zt)λ(zt+1)1−γ
.

Furthermore, the growth-adjusted discount factor only depends on the aggregate state zt:

β̂(zt) = β
∑

zt+1

φ(zt+1|zt)λ(zt+1)
1−γ (9)

We assume that maxzt
β̂(zt) < 1 in order to insure that lifetime utility remains finite. Evidently

this jointly restricts the time discount factor β, the endowment growth process and the coefficient

of relative risk aversion γ. Since aggregate shocks are i.i.d. in the baseline model, in this case the

growth-adjusted discount factor is a constant: β̂(zt) = β̂, since φ̂(zt+1|zt) = φ̂(zt+1) for all zt.

In the appendix we prove that this transformation does not alter the agents’ preference ranking

over different consumption streams.

Proposition 3.1. Households rank consumption share allocations ĉ = c
e

in the de-trended model

in exactly the same way as they rank the corresponding consumption allocations c in the original

model with growth: for any st and any two consumption allocations c, c′

U(c)(st) ≥ U(c′)(st) ⇐⇒ Û(ĉ)(st) ≥ Û(ĉ′)(st).

This result is crucial for showing that we can compute the equilibrium allocations c for the

stochastically growing model by solving for equilibrium allocations ĉ in the detrended model.

Trading Using hats ˆ to denote the variables in the stationary model we divide the budget

constraint (4) by et(z
t), and obtain, using equation (5):

ĉt(s
t) +

∑

zt+1

ât(s
t, zt+1)q̂t(z

t, zt+1) + σt(s
t)v̂t(z

t)

≤ η(yt) + ât−1(s
t−1, zt) + σt−1(s

t−1)
[
v̂t(z

t) + α
]
, (10)

where we have defined the deflated Arrow positions as ât(s
t, zt+1) = at(st,zt+1)

et+1(zt+1)
and prices as

q̂t(z
t, zt+1) = qt(z

t, zt+1)λ(zt+1). The deflated stock price is given by v̂t(z
t) = vt(zt)

et(zt)
. Similarly,
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deflating the solvency constraints (6) and (7), using condition (3.1), yields:

∑

zt+1

ât(s
t, zt+1)q̂t(z

t, zt+1) + σt(s
t)v̂t(z

t) ≥ K̂t(y
t). (11)

ât(s
t, zt+1) + σt(s

t)
[
v̂t+1(z

t+1) + α
]

≥ M̂t(y
t) for all zt+1. (12)

Finally, the goods market clearing condition is given by:

∫ ∑

yt

ϕ(yt|y0)ĉt(θ0, s
t)dΘ0 = 1. (13)

Note that the conditional probabilities simplify due to condition (2.2). In the detrended model, the

household maximizes Û(ĉ)(s0) by choosing consumption, Arrow securities and shares of the Lucas

tree, subject to the budget constraint (10) and the solvency constraint (11) or (12) in each node st.

The definition of a competitive equilibrium in the de-trended Arrow model is now straightforward.

Definition 3.1. For initial aggregate state z0 and distribution Θ0 over (θ0, y0) , a competitive equi-

librium for the de-trended Arrow model consists of trading strategies {ât(θ0, s
t, zt+1)} , {σ̂t(θ0, s

t)},

{ĉt(θ0, s
t)} and prices {q̂t(z

t, zt+1)} , {v̂t(z
t)} such that

1. Given prices, trading strategies solve the household maximization problem

2. The goods market and asset markets clear, that is, equation (13) holds for all zt and

∫ ∑

yt

ϕ(yt|y0)σ̂t(θ0, s
t)dΘ0 = 1

∫ ∑

yt

ϕ(yt|y0)ât(θ0, s
t, zt+1)dΘ0 = 0 for all zt+1 ∈ Z

The first order conditions and complementary slackness conditions, together with the appropri-

ate transversality condition, are listed in the appendix in section (A.1). These are necessary and

sufficient conditions for optimality on the household side. We will now argue that these conditions

are identical to those obtained in a version of the model without any aggregate risk (which we

name the Bewley model).

3.3 The Bewley Model

In this model the aggregate endowment is constant and equal to 1. Households face idiosyncratic

shocks y that follow a Markov process with transition probabilities ϕ(y′|y). The household’s pref-

erences over consumption shares {ĉ(yt)} are defined in equation (8), with a constant time discount

factor β̂ as defined in equation (9).
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Market Structure In this model without aggregate risk agents trade only a riskless one-period

discount bond and shares in a Lucas tree that yields safe dividends of α in every period. The

price of the Lucas tree at time t is denoted by v̂t.
9 The riskless bond is in zero net supply. Each

household is indexed by an initial condition (θ0, y0), where θ0 denotes its wealth (including period

0 labor income) at time 0.

The household chooses consumption {ĉt(θ0, y
t)}, bond positions {ât(θ0, y

t)} and share holdings

{σ̂t(θ0, y
t)} to maximize its normalized expected lifetime utility Û(ĉ)(s0), subject to a standard

budget constraint:10

ĉt(y
t) +

ât(y
t)

R̂t

+ σ̂t(y
t)v̂t = η(yt) + ât−1(y

t−1) + σ̂t−1(y
t−1)(v̂t + α).

Finally, each household faces one of two types of borrowing constraints. The first one restricts

household wealth at the end of the current period. The second one restricts household wealth at

the beginning of the next period: 11

ât(y
t)

R̂t

+ σ̂t(y
t)v̂t ≥ K̂t(y

t) for all yt. (14)

ât(y
t) + σ̂t(y

t)(v̂t+1 + α) ≥ M̂t(y
t) for all yt. (15)

The definition of equilibrium in this model is standard:

Definition 3.2. For an initial distribution Θ0 over (θ0, y0) , a competitive equilibrium for the

Bewley model consists of trading strategies {ĉt(θ0, y
t), ât(θ0, y

t), σ̂t(θ0, y
t)} , and prices {R̂t, v̂t} such

that

1. Given prices, trading strategies solve the household maximization problem

2. The goods markets and asset markets clear in all periods t

∫ ∑

yt

ϕ(yt|y0)ĉt(θ0, y
t)dΘ0 = 1.

∫ ∑

yt

ϕ(yt|y0)ât(θ0, y
t)dΘ0 = 0.

∫ ∑

yt

ϕ(yt|y0)σ̂t(θ0, y
t)dΘ0 = 1.

9The price of the tree is obviously nonstochastic due to the absence of aggregate risk.
10We suppress dependence on θ0 for simplicity whenever there is no room for confusion.
11This distinction is redundant in the Bewley model, but it is useful for establishing our equivalence results below.
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In the absence of aggregate risk, the bond and the stock are perfect substitutes for households,

and no-arbitrage implies that the stock return equals the risk-free rate:

R̂t =
v̂t+1 + α

v̂t

.

In addition, at these equilibrium prices, household portfolios are indeterminate. Without loss of

generality one can therefore focus on trading strategies in which households only trade the stock,

but not the bond: ât(θ0, y
t) ≡ 0.

A stationary equilibrium in the Bewley model consists of a constant interest rate R̂, share

price v̂, optimal household allocations and a time-invariant measure Φ over income shocks and

financial wealth.12 In the stationary equilibrium, households move within the invariant wealth

distribution, but the wealth distribution itself is constant over time. Now we are ready to establish

the equivalence between equilibria in the Bewley model and in the Arrow model.

3.4 Equivalence I: No Trade in Markets for Arrow Securities

Equilibria in the Bewley model without aggregate risk can be transformed into equilibria of the

Arrow model with aggregate risk.

Theorem 3.1. An equilibrium of the Bewley model {ĉt(θ0, y
t), ât(θ0, y

t), σ̂t(θ0, y
t)} and {R̂t, v̂t} can

be implemented as an equilibrium for the Arrow model with growth, {at(θ0, s
t, zt+1)} , {σt(θ0, s

t)},

{ct(θ0, s
t)} and {qt(z

t, zt+1)} , {vt(z
t)}, with

ct(θ0, s
t) = ĉt(θ0, y

t)et(z
t)

σt(θ0, s
t) = σ̂t(θ0, y

t)

at(θ0, s
t, zt+1) = ât(θ0, y

t)et+1(z
t+1)

vt(z
t) = v̂tet(z

t)

qt(z
t, zt+1) =

1

R̂t

∗
φ̂(zt+1)

λ(zt+1)
=

1

R̂t

∗
φ(zt+1)λ(zt+1)

−γ

∑
zt+1

φ(zt+1)λ(zt+1)1−γ
(16)

The proof of this result is given in the appendix; here we provide its main intuition. Conjecture

that the equilibrium prices of Arrow securities in the de-trended Arrow model are given by:

q̂t(z
t, zt+1) =

φ̂(zt+1)

R̂t

. (17)

An unconstrained household’s Euler equation for the Arrow securities in the (detrended) Arrow

12See Chapter 17 of Ljungqvist and Sargent (2004) for the standard formal definition and the straightforward
algorithm to compute such a stationary equilibrium.
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model is given by (see section (A.1) in the appendix)

1 =
β̂(st)

q̂t(zt, zt+1)

∑

st+1|st,zt+1

π̂(st+1|st)
u′(ĉt+1(s

t, st+1))

u′(ĉt(st))
.

But, in light of conditions (2.2) and (2.3) and given our conjecture that consumption allocations in

the de-trended Arrow model only depend on idiosyncratic shock histories yt and not on st = (yt, zt),

this Euler equation reduces to

1 = β̂R̂t

∑

yt+1

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))
,

where we used the conjectured form of prices in (17). This is exactly the same Euler equation

for bonds in the Bewley model. Since Bewley equilibrium consumption allocations satisfy this

condition, they also satisfy the Euler equation in the de-trended Arrow model, if prices are of the

form (17). Hence the equivalence.

The proof in the appendix shows that a similar argument applies to the Euler equation for the

stock (under the conjectured stock prices). We also show that, in the case of binding solvency

constraints, the Lagrange multipliers on the constraints in the Bewley equilibrium are also valid

multipliers for the constraints in the de-trended Arrow model. Hence, the equivalence result goes

through regardless of how tight the solvency constraints are.

Once one has established that allocations and prices of a Bewley equilibrium are an equilibrium

in the de-trended Arrow model, one simply needs to scale up allocation and prices by the appro-

priate growth factors to obtain the equilibrium prices and allocations in the stochastically growing

Arrow model, as stated in the theorem.

It is straightforward to compute the equilibrium risk-free interest rates for the Arrow model. By

summing over aggregate states tomorrow on both sides of equation (17), we find that the risk-free

rate in the de-trended Arrow model coincides with that of the Bewley model:

R̂A
t =

1∑
zt+1

q̂t(zt, zt+1)
= R̂t. (18)

We can then back out the implied interest rate for the original growing Arrow model, using (16)

in the previous theorem.

Corollary 3.1. Equilibrium risk-free interest rates in the Arrow model with aggregate risk are

given by

RA
t =

1∑
zt+1

qt(zt, zt+1)
= R̂t

∑
zt+1

φ(zt+1)λ(zt+1)
1−γ

∑
zt+1

φ(zt+1)λ(zt+1)−γ
. (19)
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The theorem implies that we can solve for equilibria in the Bewley model of section 3.3 (and,

in particular, a stationary equilibrium), including risk free interest rates R̂t, and we can deduce

the equilibrium allocations and prices for the Arrow model from those in the Bewley model, using

the mapping described in theorem 3.1. The key to this result is that households in the Bewley

model face exactly the same Euler equations (at equilibrium prices) as households in the de-trended

version of the Arrow model.

In the Arrow equilibrium that we propose, the contingent bond holdings are simply proportional

to the aggregate endowment: at(θ0, s
t, zt+1) = ât(θ0, y

t)et+1(z
t+1). Equivalently, in the de-trended

Arrow model households choose not to make their Arrow securities purchases contingent on next

period’s aggregate shock: ât(θ0, s
t, zt+1) = ât(θ0, y

t). Furthermore, without loss of generality we

can set the bond holdings to zero ât(θ0, y
t) = 0 in the Bewley model. In that case there is no trade

in Arrow securities at all in the equivalent Arrow equilibrium: at(θ0, s
t, zt+1) = 0.

We will use this equivalence result to show below that asset prices in the Arrow model are

identical to those in the representative agent model, except for a lower risk-free interest rate (and

a higher price/dividend ratio for stocks).13

3.5 Equivalence II: No Trade in Uncontingent Bond Markets

The equivalence result stated in Theorem 3.1 carries over to a model with aggregate risk in which

only a discount bond and a stock are traded. We call this the Bond model. The no-trade result for

contingent claims directly implies that agents in the Bond model optimally choose bond positions

in equilibrium that are given by:

bt(θ0, y
t, zt) = ât(θ0, y

t)et(z
t) = 0.

Equilibria in the Bewley model can then be transformed into equilibria of the stochastically growing

Bond model, just like for the Arrow model.14

Corollary 3.2. An equilibrium of the Bewley model {ĉt(θ0, y
t), ât(θ0, y

t), σ̂t(θ0, y
t)} and {R̂t, v̂t}

can be implemented as an equilibrium for the Arrow model with growth, {bt(θ0, s
t)} , {σt(θ0, s

t)},

13Our equivalence theorem has two other implications. First, the existence proofs in the literature for stationary
equilibria in the Bewley model directly carry over to the stochastically growing model. Second, the moments of the
wealth distribution vary over time but proportionally to the aggregate endowment. If the initial wealth distribution
in the de-trended model corresponds to an invariant distribution in the Bewley model, then -for example- the ratio
of the mean to the standard deviation of the wealth distribution is constant over time and across states of the world
in the Arrow model with aggregate risk.

14See the separate appendix available at http://www.econ.upenn.edu/˜dkrueger/research/assetpricingapp.pdf for
a complete description of the model and formal proofs of the results..
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{ct(θ0, s
t)} and {Rt(z

t)} , {vt(z
t)}, with

ct(θ0, s
t) = ĉt(θ0, y

t)et(z
t)

σt(θ0, s
t) = σ̂t(θ0, y

t)

bt(θ0, s
t) = ât(θ0, y

t)et+1(z
t+1) = 0

vt(z
t) = v̂tet(z

t)

1

Rt

=
∑

zt+1

qt(z
t, zt+1) =

1

R̂t

∑

zt+1

∗
φ(zt+1)λ(zt+1)

−γ

∑
zs

φ(zs)λ(zs)1−γ
. (20)

There is one difference between this result and the corresponding result for the Arrow model.

In the Arrow model we demonstrated that contingent claims positions were in fact uncontingent:

ât(θ0, s
t, zt+1) = ât(θ0, y

t) and equal to the Bond position in the Bewley equilibrium. It was not

necessary, however, to set them to zero. Since bonds in the Bewley equilibrium are a redundant

asset, one can without loss of generality restrict attention to the situation where ât(θ0, y
t) = 0, but

this is not necessary for our results in the Arrow model. In the Bond model bond positions have to

be zero. This becomes apparent from the deflated household budget constraint in the Bond model:

ĉt(y
t) +

b̂t(y
t)

Rt

+ σt(y
t)v̂t ≤ η(yt) +

b̂t−1(y
t−1)

λ(zt)
+ σt−1(y

t−1) [v̂t + α] ,

where the deflated bond position is b̂(yt) = b(yt)/et(z
t). Bond holdings b̂t(y

t−1) = 0 need to be

zero for all yt−1, even if all the consumption, portfolio choices and prices, are independent of the

aggregate history zt, simply because the bond return in the deflated economy depends on the

aggregate shock zt through λ(zt). This demonstrates the irrelevance of the history of idiosyncratic

shocks yt for portfolio choices in this model. There is no link between financial wealth and the

share of this wealth being held in equity.

3.6 Asset Pricing Implications

By making use of our equivalence results it is now straightforward to derive our main asset pricing

result: the multiplicative risk premium on a claim to aggregate consumption in both the Bond

model and the Arrow model equals the risk premium in the representative agent model. Uninsur-

able idiosyncratic income risk only lowers the risk-free rate, but does not affect the risk premium

at all.

Consumption-CAPM The benchmark model of consumption-based asset pricing is the repre-

sentative agent Breeden-Lucas (BL) model. The representative agent owns a claim to the aggregate

‘labor’ income stream {(1 − α)et(z
t)} and she can trade a stock (a claim to the dividends αet(z

t) of
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the Lucas tree), a bond and a complete set of Arrow securities. First, we show that the Breeden-

Lucas Consumption-CAPM also prices excess returns on the stock in the Bond model and the

Arrow model. Let Rs denote the return on a claim to aggregate consumption. We have

Lemma 3.1. The BL Consumption-CAPM prices excess returns in the Arrow model and the Bond

model. In equilibrium in both models

Et

[(
Rs

t+1 − Rt

)
β (λt+1)

−γ
]

= 0

where βλt+1(zt+1)
−γ = mRE

t+1(z
t+1) is the stochastic discount factor in the BL representative agent

(RE) model.

This result follows directly from subtracting the Euler equations for the bond from that for

the stock in both models. This result has important implications for empirical work in asset

pricing. First, despite the existence of market incompleteness and binding solvency constraints,

an econometrician can estimate the coefficient of risk aversion (or the intertemporal elasticity of

substitution) directly from aggregate consumption data and the excess return on stocks, as in

Hansen and Singleton (1982), if the Bond model or the Arrow model is the true model of the real

world. Second, the result provides a strong justification for work trying to explain the cross-section

of excess returns using the CCAPM, without necessarily trying to match the risk-free rate. As we

show here, the implications of the BL, the Arrow and the Bond model are identical with respect

to excess returns, but not with respect to the risk-free rate.

Risk Premia We now show that the equilibrium risk premium in the Arrow and the Bond model

is identical to the one in the BL representative agent model. While the risk-free rate is higher in the

BL representative agent model than in the Arrow and Bond model, and consequently the price of

the stock is correspondingly lower, the multiplicative risk premium is the same in all three models

and it is nonstochastic.

In order to demonstrate our main asset pricing result we first show that the stochastic discount

factors that price stochastic payoffs in the BL representative agent model and the Arrow (and thus

the Bond) model only differ by a non-random multiplicative term, equal to the ratio of (growth-

deflated) risk-free interest rates in the two models.

Proposition 3.2. The equilibrium stochastic discount factor in the Arrow and the Bond model

given by

mA
t+1 = mRE

t+1κt
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where the non-random multiplicative term is given

κt =
R̂t

RE

R̂t

≥ 1.

The proof that risk premia are identical in the representative agent model and the Arrow as

well as the Bond model follows directly from the previous decomposition of the stochastic discount

factor. Let Rt,j [{dt+k}] denote the j-period holding return on a claim to the endowment stream

{dt+k}
∞
k=0 at time t. Consequently Rt,1 [1] is the gross risk-free rate and Rt,1 [αet+k] is the one-period

holding return on a k-period strip of the aggregate endowment (a claim to α times the aggregate

endowment k periods from now). Thus Rt,1 [{αet+k}] is the one period holding return on an asset

(such as a stock) that pays α times the aggregate endowment in all future periods. Finally, we

define the multiplicative risk premium as the ratio of the expected return on stocks and the risk-free

rate:

1 + νt =
EtRt,1 [{αet+k}]

Rt,1 [1]
.

With this notation in place, we can state now our main asset pricing result.

Theorem 3.2. The multiplicative risk premium in the Arrow model and Bond model equals that

in the representative agent model

1 + νA
t = 1 + νB

t = 1 + νRE
t ,

and is constant across states of the world.

Thus, the extent to which households smooth idiosyncratic income shocks in the Arrow model

or in the Bond model has absolutely no effect on the size of risk premia; it merely lowers the risk-

free rate. Market incompleteness does not generate any dynamics in the conditional risk premia

either: the conditional risk premium is constant.

4 Predictability in Aggregate Consumption Growth

In this section, we investigate how robust our results are to the assumption that endowment growth

is i.i.d over time. We show that our results remain valid even when aggregate endowment growth

is serially correlated, but only for the Arrow model, and only if the solvency constraints (i) do not

bind or (ii) are judiciously chosen (reverse-engineered).

Assume that the aggregate shock z follows a first order Markov chain characterized by the

transition matrix φ(z′|z) > 0. So far we studied the special case in which φ(z′|z) = φ(z′). Recall
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that the growth-adjusted Markov transition matrix and time discount factor are given by

φ̂(z′|z) =
φ(z′|z)λ(z′)1−γ

∑
z′ φ(z′|z)λ(z′)1−γ

and β̂(z) = β
∑

z′

φ(z′|z)λ(z′)1−γ.

Thus if φ is serially correlated, so is φ̂, and the discount factor β̂ now does depend on the current

aggregate state of the world. This indicates (and we will show this below) that the aggregate

endowment shock acts as an aggregate taste shock in the de-trended model which renders all

households simultaneously more or less impatient. Since this shock affects all households in the

same way, they will not able to insure against it. As a result, this shock affects the price/dividend

ratio and the interest rate, but it leaves the risk premium unaltered. In contrast to our previous

results, however, now there is trade in contingent bonds in equilibrium, so the equivalence between

equilibria in the Arrow and the Bond model breaks down.

4.1 The Bewley Model

We apply the same strategy to show our results as before. The equilibrium allocations and prices

in the Bewley model can be implemented, after appropriate scaling by the aggregate endowment,

as equilibria in the stochastically growing model. However, since the time discount factors are

subject to an aggregate shock, we first have to choose an appropriate nonstochastic time discount

factor for this Bewley model. We choose a sequence of non-random time discount factors such

that the Bewley equilibrium allocations satisfy the time zero budget constraint in the model with

aggregate shocks when the initial wealth distribution Θ0 in the two models coincide.

Let

β̂0,τ (z
τ |z0) = β̂(z0)β̂(z1) . . . β̂(zτ )

denote the time discount factor between period 0 and period τ + 1, given by the product of one-

period stochastic time discount factors. We define the average (across aggregate shocks) time

discount factor between period 0 and t as:

β̃t =
∑

zt−1|z0

φ̂(zt−1|z0)β̂0,t−1(z
t−1|z0), t ≥ 1, (21)

where φ̂(zt−1|z0) is the (conditional on z0) probability distribution over zt−1 induced by φ(z′|z). If

aggregate shocks are i.i.d, then we have that β̃t = β̂t, as before. Since z0 is a fixed initial condition,

we chose not to index β̃t by z0 to make sure it is understood that β̃t is nonstochastic.

In order to construct equilibrium allocations in the model with aggregate shocks, we will show

that equilibrium allocations and interest rates in the Bewley model with a sequence of non-random

time discount factors
{

β̃t

}∞

t=1
can be implemented as equilibrium allocations and interest rates for
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the actual Arrow model with stochastic discount factors. The crucial adjustment in this mapping

is to rescale the risk-free interest rate in proportion to the taste shock β̂(z).

To understand the effect of these aggregate taste shocks on the time discount factor to be used

in the Bewley model, consider the following simple example.

Example 4.1. Suppose that β̂(z) = e−ρ̂(z) is lognormal and i.i.d, where ρ̂(z) has mean ρ̂ and

variance σ2. Define the average t-period time discount rate ρ̃t by the equation β̃t = e−ρ̃t . Then the

average one-period discount rate used in the Bewley model is given by:

ρ̃t

t
= ρ̂ −

1

2
σ2 for any t ≥ 1

The presence of taste shocks (σ2 > 0) in the de-trended Arrow model induces a discount rate ρ̃ in

the Bewley model that is lower than the mean discount rate ρ̂ because of the risk associated with

taste shocks.

This example shows that the taste shocks (originating from serially correlated endowment

growth rates) tend to lower the risk-free interest rates compared to a model without taste shocks.

As before, we denote the Bewley equilibrium allocations by {ĉt(θ0, y
t), ât(θ0, y

t), σ̂t(θ0, y
t)} and

prices by
{

R̂t, v̂t

}
, for a given sequence of time discount factors

{
β̃t

}
. Only the total wealth

positions in the Bewley model are uniquely pinned down. Without loss of generality, we focus on

the case where ât(θ0, y
t) = 0 for all yt. We now argue that the allocation {ĉt(θ0, y

t), σ̂t(θ0, y
t)} can

be made into an Arrow equilibrium, and in the process we show why we need to choose the specific

discount factor sequence in (21) for the Bewley model. We introduce some additional notation for

state prices. Let

Q̃t,τ =
τ−t−1∏

j=0

R̂−1
t+j =

1

R̂t,τ

(22)

denote the Bewley equilibrium price of one unit of consumption to be delivered at time τ, in terms

of consumption at time t. By convention Q̃τ = Q̃0,τ and Q̃τ,τ = 1 for all τ. In other words, R̂t,τ is

the gross risk-free interest rate between period t and τ in the Bewley equilibrium.

4.2 The Detrended Arrow Model

In contrast to the Bewley model, the de-trended Arrow model features aggregate shocks to the

time discount factor β̂. These need to be reflected in prices. We therefore first conjecture state-

dependent equilibrium prices for the de-trended Arrow model. Then we show that the Bewley

equilibrium allocations satisfy the Euler equations of the detrended Arrow model when evaluated

at these prices, and that they also satisfy the intertemporal budget constraint in the de-trended

Arrow model. This implies that, absent binding solvency constraints, the Bewley equilibrium can
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be implemented as an equilibrium of the de-trended Arrow model, and thus, after the appropriate

scaling, as an equilibrium of the original Arrow model. Finally, we discuss potentially binding

solvency constraints and the Bond model.

We conjecture that the Arrow-Debreu prices in the deflated Arrow model are given by

Q̂t(z
t|z0) = φ̂(zt|z0)Q̃t

β̂0,t−1(z
t−1|z0)

β̃t

= φ̂(zt|z0)
β̂0,t−1(z

t−1|z0)

β̃tR̂0,t

, (23)

where Q̃t was defined above as the time 0 price of consumption in period t in the Bewley model.

The prices of the (one-period ahead) Arrow securities are then given by:

q̂t(z
t, zt+1) =

Q̂t+1(z
t+1|z0)

Q̂t(zt|z0)
= β̂(zt)φ̂(zt+1|zt)

1

R̂t

β̃t

β̃t+1

, (24)

where we used the fact that 1
R̂t

= R̂0,t

R̂0,t+1

. Arrow prices are Markovian in zt, since R̂t and (β̃t, β̃t+1)

are all deterministic. Equation (24) implies that interest rates in the de-trended Arrow model are

given by

R̂A
t (zt) ≡

∑

zt+1

q̂t(zt+1|zt) = R̂t

β̃t+1

β̂(zt)β̃t

. (25)

Interest rates in the detrended Arrow model now depend on the current aggregate state of the

world zt. Finally, we conjecture that the stock price in the de-trended Arrow model satisfies:

v̂t(z
t) = v̂t(zt) =

∑

zt+1

φ̂(zt+1|zt)

(
v̂t+1(zt+1) + α

R̂A
t (zt)

)
(26)

Armed with these conjectured prices we can now prove the following result.

Lemma 4.1. Absent solvency constraints, the household Euler equations are satisfied in the Arrow

model at the Bewley allocations {ĉt+1(y
t, yt+1)} and prices for Arrow securities {q̂t(zt+1|zt)} given

by (24).

4.3 Trade in Arrow Securities Markets

Next, we spell out which asset trades support the Bewley equilibrium consumption allocations in

the de-trended Arrow model. The Arrow security positions implied by the Bewley allocations are

not zero, but they are zero on average across households and hence clear the asset markets.

At any point in time and any node of the event tree, the Arrow securities position, plus the

value of the stock position cum dividends, has to finance the value of excess demand from today

into the infinite future. Thus, the Arrow securities position implied by the Bewley equilibrium
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allocation {ĉt(θ0, y
t), σ̂t(θ0, y

t)} is given by:

ât−1(θ0, y
t−1, zt) = ĉt(θ0, y

t) − η(yt) +

∞∑

τ=t+1

∑

zτ ,yτ

Q̂τ (z
τ |zt)ϕ(yτ |yt) (ĉτ (θ0, y

τ) − η(yτ))

−σ̂t−1(θ0, y
t−1) [v̂t(zt) + α] (27)

Proposition 4.1. The Arrow securities positions implied by the Bewley allocations in (27) clear

the Arrow securities markets, that is

∫ ∑

yt−1

ϕ(yt−1|y0)ât−1(θ0, y
t−1, zt)dΘ0 = 0 for all zt.

Since the wealth from stock holdings at the beginning of the period

σ̂t−1(θ0, y
t−1) [v̂t + α] = ασ̂t−1(θ0, y

t−1)
∞∑

τ=t

Q̃t,τ

has to finance future excess consumption demand in the Bewley equilibrium, we can state the

Arrow securities positions as:

ât−1(θ0, y
t−1, zt) =

∞∑

τ=t+1

∑

zτ

(
Q̂τ (z

τ |zt) − Q̃t,τ

)∑

yτ

ϕ(yτ |yt) (ĉτ (θ0, y
τ) − η(yτ ))

−σ̂t−1(θ0, y
t−1)α

∞∑

τ=t+1

∑

zτ

(
Q̂τ (z

τ |zt) − Q̃t,τ

)

The Arrow security portfolios held by households are used to hedge against the interest rate shocks

that govern the difference between the stochastic state prices Q̂τ (z
τ |zt) and the deterministic prices

Q̃t,τ . If aggregate endowment growth is i.i.d, there are no taste shocks in the detrended Arrow

model, and from (25) we see that then interest rates are deterministic. The gap between Q̂τ (z
τ |zt)

and Q̃t,τ is zero and no Arrow securities are traded in equilibrium, confirming the results in section

3.1.

In order to close our argument, we need to show that no initial wealth transfers between

individuals are required for this implementation. In other words, the initial Arrow securities

position â−1(θ0, y
−1, z0) implied by (27) at time 0, is zero for all households.15

To do so we proceed in two steps. First, we show that average time zero state prices in the

Arrow model coincide with the state prices in the Bewley model. For this result to hold our

15Without this argument we merely would have shown that a Bewley equilibrium for initial condition Θ0 can be
implemented as equilibrium of the de-trended Arrow model with initial conditions z0 and some initial distribution
Ψ0 of wealth, but not necessarily Θ0.
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particular choice of time discount factors
{
β̃t

}
for the Bewley model is crucial.

Lemma 4.2. The conjectured prices for the Arrow model in (23) and the prices in the Bewley

model defined in (22) satisfy ∑

zτ

Q̂τ (z
τ |z0) = Q̃τ

Finally, using this result we can establish that no wealth transfers are necessary to implement

the Bewley equilibrium as equilibrium in the de-trended Arrow model.

Lemma 4.3. The Arrow securities position at time 0 given in (27) is zero:

â−1(θ0, y
−1, z0) = 0.

The Bewley equilibrium therefore is an equilibrium for the de-trended Arrow model with the

same initial wealth distribution Θ0. This result then immediately implies the following theorem.

Theorem 4.2. An equilibrium of the Bewley model {ĉt(θ0, y
t), σ̂t(θ0, y

t)} and {R̂t, v̂t} where house-

holds have a sequence of time discount factors
{

β̃t

}
can be implemented as an equilibrium for the

Arrow model with growth, {at(θ0, s
t, zt+1)} , {σt(θ0, s

t)}, {ct(θ0, s
t)} and {qt(z

t, zt+1)} , {vt(z
t)},

with

ct(θ0, s
t) = ĉt(θ0, y

t)et(z
t)

σt(θ0, s
t) = σ̂t(θ0, y

t)

at(θ0, s
t, zt+1) = ât(θ0, y

t, zt+1)et+1(z
t+1) with ât defined in (27)

vt(zt) =
∑

zt+1

φ̂(zt+1|zt)

λ(zt+1)

[
vt+1(zt+1) + αet+1(zt+1)

R̂A
t (zt)

]

R̂A
t (zt) =

R̂tβ̃t+1

β̂(zt)β̃t

qt(z
t, zt+1) =

q̂t(z
t, zt+1)

λ(zt+1)
=

1

R̂A
t (zt)

∗
φ(zt+1|zt)λ(zt+1)

−γ

∑
zt+1

φ(zt+1|zt)λ(zt+1)1−γ

Risk Premia Of course, this result implies that our baseline irrelevance result for risk pre-

mia survives the introduction of non-i.i.d. aggregate shocks, provided that a complete menu of

aggregate-state-contingent securities is traded. Note that

κt(zt) =
R̂t

RE
(zt)

R̂A
t (zt)

=
β̃t

R̂tβ̃t+1

= κt

is still deterministic, and thus the proofs of section 3.6 go through unchanged. These aggregate

taste shocks only affect interest rates and price/dividend ratios, not risk premia. When agents in
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the transformed model become more impatient, the interest rate rises and the price/dividend ratio

falls, but the conditional expected excess return is unchanged.

Solvency Constraints So far, we have abstracted from binding solvency constraints. Previ-

ously, we assumed that the solvency constraints satisfy Kt(s
t) = K̂t(y

t)et(z
t) and Mt+1(s

t+1) =

M̂t(y
t)et(z

t+1). The allocations in theorem 4.2 derived from the stationary model using K̂t(y
t)

and M̂t(y
t) as solvency constraints do not necessarily satisfy the solvency constraints given by

Kt(s
t) = K̂t(y

t)et(z
t) and Mt+1(s

t+1) = M̂t(y
t)et(z

t+1), but they satisfy modified solvency con-

straints.

Proposition 4.2. The allocations from theorem 4.2 satisfy the modified solvency constraints:

K∗
t (st) = Kt(s

t) +
∑

zt+1

qt(z
t, zt+1)at(θ0, s

t, zt+1) + σt(θ0, s
t)
[
vt(zt) − v̂tet(z

t)
]

(28)

M∗
t+1(s

t+1) = Mt+1(s
t+1) + at(θ0, s

t, zt+1) + σt(θ0, s
t)
[
vt+1(zt+1) − v̂t+1et+1(z

t+1)
]

(29)

where v̂t is the (deterministic) Bewley equilibrium stock price.

If the allocations satisfy the constraints in the stationary Bewley model, they satisfy the mod-

ified solvency constraints (28) or (29) in the actual Arrow model, but not the ones we originally

specified, because of the nonzero state-contingent claims positions. These violations of the origi-

nal constraints are completely due to the impact of interest rate shocks on the value of the asset

portfolio.

Finally, in the Bond model, our previous equivalence result no longer holds, since with pre-

dictability in aggregate consumption growth households trade state-contingent claims in the equi-

librium of the Arrow model. Unless the aggregate shock can only take two values, the market

structure of the Bond model prevents them from doing so, and thus our implementation and irrel-

evance results in this model are not robust to the introduction of non-i.i.d aggregate endowment

growth.

5 Conclusion

We have derived conditions under which the history of a household’s idiosyncratic shocks has no

effect on his portfolio choice, even in the presence of binding solvency constraints. This portfolio

irrelevance result directly implies our risk premium irrelevance result. Since all households bear

the same amount of aggregate risk in equilibrium, the history of aggregate shocks does not af-

fect equilibrium prices and allocations. The equilibrium risk-free rate, the risk premium and the

price/dividend ratio are all deterministic, at least in the benchmark model without predictabil-

ity in aggregate consumption growth. However, only a weaker version of this irrelevance result
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survives in economies with a predictable component in aggregate consumption growth (see e.g.

Bansal and Yaron (2004)), because the associated interest rate risk gives rise to heterogeneous

hedging demands that do depend on the household’s history of idiosyncratic shocks. Surprisingly,

the impact of idiosyncratic risk on risk premia depends critically on the predictability of aggregate

consumption growth, but it does not depend at all on the persistence or variance of household

labor income.

Other than predictability in aggregate consumption growth shocks, there are two main avenues

around our results. One approach is to concentrate aggregate risk by forcing some households out of

the stock market altogether. This is the approach adopted in the literature on limited participation

(see e.g. Guvenen (2003), Vissing-Jorgensen (2002), Gomes and Michaelides (2007) and Attanasio,

Banks, and Tanner (2002)). The second approach consists of concentrating labor income risk in

recessions. Recently Krusell and Smith (1997) and Storesletten, Telmer, and Yaron (2007) have

argued that models with idiosyncratic income shocks and incomplete markets can generate an

equity premium that is substantially larger than the CCAPM if there is counter-cyclical cross-

sectional variance (CCV) in labor income shocks. Our paper demonstrates analytically that CCV

in labor income, limited stock market participation or some form of predictability in aggregate

consumption growth is necessary to make uninsurable idiosyncratic income shocks potentially

useful for explaining the equity premium.
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A Equilibrium in Arrow Model

The definition of an equilibrium in the Arrow model is standard. Each household is assigned a label that consists of

its initial financial wealth θ0 and its initial state s0 = (y0, z0). A household of type (θ0, s0) then chooses consumption

allocations {ct(θ0, s
t)} , trading strategies for Arrow securities {at(θ0, s

t, zt+1)} and shares {σt(θ0, s
t)} to maximize

her expected utility (1), subject to the budget constraints (4) and subject to solvency constraints (6) or (7).

Definition A.1. For initial aggregate state z0 and distribution Θ0 over (θ0, y0) , a competitive equilibrium for the

Arrow model consists of household allocations {at(θ0, s
t, zt+1)} , {σt(θ0, s

t)}, {ct(θ0, s
t)} and prices {qt(z

t, zt+1)} ,

{vt(z
t)} such that

1. Given prices, household allocations solve the household maximization problem
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2. The goods market clears for all zt,

∫ ∑

yt

π(yt, zt|y0, z0)

π(zt|z0)
ct(θ0, s

t)dΘ0 = et(z
t)

3. The asset markets clear for all zt

∫ ∑

yt

π(yt, zt|y0, z0)

π(zt|z0)
σt(θ0, s

t)dΘ0 = 1

∫ ∑

yt

π(yt, zt|y0, z0)

π(zt|z0)
at(θ0, s

t, zt+1)dΘ0 = 0 for all zt+1 ∈ Z

A.1 Optimality Conditions for De-trended Arrow Model

Define the Lagrange multiplier

β̂(st)π̂(st|s0)u
′(ĉt(s

t))µ̂(st) ≥ 0

for the constraint in (11) and

β̂(st)π̂(st|s0)u
′(ĉt(s

t))κ̂t(s
t, zt+1) ≥ 0

for the constraint in (12). The Euler equations of the de-trended Arrow model are given by:

1 =
β̂(st)

q̂t(zt, zt+1)

∑

st+1|st,zt+1

π̂(st+1|st)
u′(ĉt+1(s

t, st+1))

u′(ĉt(st))

+µ̂t(s
t) +

κ̂t(s
t, zt+1)

q̂t(zt, zt+1)
∀zt+1. (30)

1 = β̂(st)
∑

st+1|st

π̂(st+1|st)

[
v̂t+1(z

t+1) + α

v̂t(zt)

]
u′(ĉt+1(s

t, st+1))

u′(ĉt(st))

+µ̂t(s
t) +

∑

zt+1

κ̂t(s
t, zt+1)

[
v̂t+1(z

t+1) + α

v̂t(zt)

]
. (31)

Only one of the two Lagrange multipliers enters the equations, depending on which version of the solvency constraint

we consider. The complementary slackness conditions for the Lagrange multipliers are given by

µ̂t(s
t)



∑

zt+1

ât(s
t, zt+1)q̂t(z

t, zt+1) + σ̂t(s
t)v̂t(z

t) − K̂t(y
t)


 = 0

κ̂t(s
t, zt+1)

[
ât(s

t, zt+1) + σ̂t(s
t)
[
v̂t+1(z

t+1) + α
]
− M̂t(y

t)
]

= 0.

The appropriate transversality conditions read as

lim
t→∞

∑

st

β̂(st−1)π̂(st|s0)u
′(ĉt(s

t))[ât−1(s
t−1, zt) − M̂t−1(y

t−1)] = 0.

lim
t→∞

∑

st

β̂(st−1)π̂(st|s0)u
′(ĉt(s

t))[σ̂t−1(s
t−1)(v̂t(z

t) + α) − M̂t−1(y
t−1)] = 0,
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and

lim
t→∞

∑

st

β̂(st−1)π̂(st|s0)u
′(ĉt(s

t))




∑

zt+1

ât(s
t, zt+1)q̂t(z

t, zt+1) − K̂t(y
t)



 = 0.

lim
t→∞

∑

st

β̂(st−1)π̂(st|s0)u
′(ĉt(s

t))
[
σ̂t(s

t)v̂t(z
t) − K̂t(y

t)
]

= 0.

Since the household optimization has a concave objective function and a convex constraint set the first order

conditions and complementary slackness conditions, together with the transversality condition, are necessary and

sufficient conditions for optimality of household allocation choices.

B Proofs

• Proof of Proposition 3.1:

Proof. We use U(c)(st) to denote the continuation utility of an agent from consumption stream c, starting

at history st. This continuation utility follows the simple recursion

U(c)(st) = u(ct(s
t)) + β

∑

st+1

π(st+1|st)U(c)(st, st+1),

where it is understood that (st, st+1) = (zt, zt+1, y
t, yt+1). Divide both sides by et(s

t)1−γ to obtain

U(c)(st)

et(zt)1−γ
= u(ĉt(s

t)) + β
∑

st+1

π(st+1|st)
et+1(z

t+1)1−γ

et(zt)1−γ

U(c)(st, st+1)

et+1(zt+1)1−γ
.

Define a new continuation utility index Û(·) as follows:

Û(ĉ)(st) =
U(c)(st)

et(zt)1−γ
.

It follows that

Û(ĉ)(st) = u(ĉt(s
t)) + β

∑

st+1

π(st+1|st)λ(zt+1)
1−γÛ(ĉ)(st, st+1).

= u(ĉt(s
t)) + β̂(st)

∑

st+1

π̂(st+1|st)Û(ĉ)(st, st+1).

Thus it follows, for two consumption streams c and c′, that

U(c)(st) ≥ U(c′)(st) if and only if Û(ĉ)(st) ≥ Û(ĉ′)(st),

i.e., the household orders original and growth-deflated consumption streams in exactly the same way.

• Proof of Theorem 3.1:

Proof. The proof consists of two parts. In a first step, we argue that the Bewley equilibrium allocations

and prices can be transformed into an equilibrium for the de-trended Arrow model, and in a second step, we
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argue that by scaling the allocations and prices by the appropriate endowment (growth) factors, we obtain

an equilibrium of the stochastically growing Arrow model.

Step 1: Take allocations and prices from a Bewley equilibrium, {ĉt(y
t), ât(y

t), σ̂t(y
t)} , {R̂t, v̂t} and let the

associated Lagrange multipliers on the solvency constraints be given by

β̂tϕ(yt|y0)u
′(ĉt(y

t))µ̂(yt) ≥ 0,

for the constraint in (14) and

β̂tϕ(yt|y0)u
′(ĉt(y

t))κ̂t(y
t) ≥ 0,

for the constraint in (15). The first order conditions (which are necessary and sufficient for household optimal

choices together with the complementary slackness and transversality conditions) in the Bewley model, once

combined to the Euler equations, are given by:

1 = R̂tβ̂
∑

yt+1|yt

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))
+ µ̂t(y

t) + R̂tκ̂t(y
t). (32)

= β̂

[
v̂t+1 + α

v̂t

] ∑

yt+1|yt

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))
+ µ̂t(y

t) +

[
v̂t+1 + α

v̂t

]
κ̂t(y

t). (33)

The corresponding Euler equations for the de-trended Arrow model, evaluated at the Bewley equilibrium

allocations and Lagrange multipliers µ̂(yt) and κ̂t(y
t)φ̂(zt+1), read as (see (30) and (31)):

1 =
β̂(st)

q̂t(zt, zt+1)

∑

st+1|st,zt+1

π̂(st+1|st)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))

+µ̂t(y
t) +

κ̂t(y
t)φ̂(zt+1)

q̂t(zt, zt+1)
∀zt+1.

1 = β̂(st)
∑

st+1|st

π̂(st+1|st)

[
v̂t+1(z

t+1) + α

v̂t(zt)

]
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))

+µ̂t(y
t) + κ̂t(y

t)
∑

zt+1

φ̂(zt+1)

[
v̂t+1(z

t+1) + α

v̂t(zt)

]
.

Evaluated at the conjectured prices,

v̂t(z
t) = v̂t (34)

q̂t(z
t, zt+1) =

φ̂(zt+1)

R̂t

, (35)

and using the independence and i.i.d. assumptions, which imply

π̂(st+1|st) = ϕ(yt+1|yt)φ̂(zt+1)

β̂(st) = β̂
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these Euler equations can be restated as follows:

1 =
β̂R̂t

φ̂(zt+1)

∑

yt+1|yt

ϕ(yt+1|yt)φ̂(zt+1)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))
+ µ̂t(y

t) + R̂tκ̂t(y
t). (36)

1 = β̂
∑

yt+1|yt

ϕ(yt+1|yt)
∑

zt+1

φ̂(zt+1)

[
v̂t+1 + α

v̂t

]
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))
(37)

+µ̂t(y
t) + κ̂t(y

t)

[
v̂t+1 + α

v̂t

]∑

zt+1

φ̂(zt+1),

which are, given that
∑

zt+1
φ̂(zt+1) = 1, exactly the Euler conditions (32) and (33) of the Bewley model

and hence satisfied by the Bewley equilibrium allocations. A similar argument applies to the complementary

slackness conditions, which for the Bewley model read as

µ̂t(y
t)

[
ât(y

t)

R̂t

+ σ̂t(y
t)v̂t − K̂t(y

t)

]
= 0. (38)

κ̂t(y
t)
[
ât(y

t) + σ̂t(y
t)(v̂t+1 + α) − M̂t(y

t)
]

= 0, (39)

and for the de-trended Arrow model, evaluated at Bewley equilibrium allocations and conjectured prices,

read as

µ̂t(y
t)




ât(y
t)

R̂t

∑
φ̂(zt+1)

zt+1

+ σ̂t(y
t) − K̂t(y

t)


 = 0.

κ̂t(y
t)
[
ât(y

t) + σ̂t(y
t) [v̂t+1 + α] − M̂t(y

t)
]

= 0/φ̂(zt+1).

Again, the Bewley equilibrium allocations satisfy the complementary slackness conditions in the de-trended

Arrow model. The argument is exactly identical for the transversality conditions. Finally, we have to check

whether the Bewley equilibrium allocation satisfies the de-trended Arrow budget constraints. Plugging in

the allocations yields:

ĉt(s
t) +

ât(y
t)

R̂t

∑

zt+1

φ̂(zt+1) + σ̂t(y
t)v̂t ≤ η(yt) + ât−1(y

t−1) + σt−1(y
t−1) [v̂t + α] , (40)

which is exactly the budget constraint in the Bewley model. Thus, given the conjectured prices, the Bewley

equilibrium allocations are optimal in the de-trended Arrow model.

Since the market clearing conditions for assets and consumption goods coincide in the two models, Bewley

allocations satisfy the market clearing conditions in the de-trended Arrow model. Thus we conclude that

the Bewley equilibrium allocations, together with prices (34) and (35) are an equilibrium in the de-trended

Arrow model.

Step 2: Now, we need to show that an equilibrium of the de-trended Arrow model is, after appropriate scaling,

an equilibrium in the stochastically growing model, but this was established in section 3.2, in which we showed

that by with the transformations ĉt(s
t) = ct(s

t)
et(zt) , ât(s

t, zt+1) = at(s
t,zt+1)

et+1(zt+1) , σ̂t(s
t) = σt(s

t), q̂t(z
t, zt+1) =

qt(z
t, zt+1)λ(zt+1), v̂t(z

t) = vt(z
t)

et(zt) household problems and market clearing conditions in the de-trended and

the stochastically growing Arrow model coincide.
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• Proof of Lemma 3.1:

Proof. The stock return is defined as:

Rs
t+1(z

t+1) =
vt+1(z

t+1) + αet+1(zt+1)

vt(zt)
.

Subtracting the two Euler equations (36)-(37) in the Arrow model and (65)-(66) in the Bond model yields,

in both cases

β̂
∑

zt+1|zt

φ̂(zt+1)

[
v̂t+1(z

t+1) + α

v̂t(zt)
− R̂t(z

t)

]
= 0.

Using the fact that v̂t+1(z
t+1) = vt+1(z

t+1)/et+1(zt+1) and the definition of φ̂(zt+1) and β̂, as well as (18)

yields

β
∑

zt+1|zt

φ(zt+1)λ(zt+1)
−γ
[
Rs

t+1(z
t+1) − Rt(z

t)
]

= 0

or in short

Et

{
βλ(zt+1)

−γ
[
Rs

t+1 − Rt

]}
= 0

Thus the representative agent stochastic discount factor βλ(zt+1)
−γ prices the excess return of stocks over

bonds in both the Arrow and the Bond model. Note that in the Arrow model (but not in the Bond model)

this stochastic discount factor any excess return Ri
t+1−Rt as long as the returns only depend on the aggregate

state zt+1.

• Proof of Proposition 3.2:

Proof. From theorem 3.1 we know that in the Arrow model equilibrium prices for Arrow securities are given

by:

qA
t (zt, zt+1) =

q̂A
t (zt, zt+1)

λ(zt+1)
=

φ̂(zt+1)

λ(zt+1)R̂A
t

whereas in the representative agent model equilibrium prices for Arrow securities are given by:

qt(z
t, zt+1) =

q̂t(z
t, zt+1)

λ(zt+1)
= β̂

φ̂(zt+1)

λ(zt+1)

so that
qA
t (zt, zt+1)

qt(zt, zt+1)
=

1

β̂R̂A
t

=
R̂RE

R̂A
t

= κt ≥ 1 (41)

where

R̂RE
t = R̂RE =

1∑
zt+1

q̂t(zt, zt+1)
=

1
∑

zt+1

β̂φ̂(zt+1)
=

1

β̂

is the risk-free interest rate in the de-trended representative agent model. Note that the multiplicative factor

κt may depend on time since R̂A
t may, but is nonstochastic, since R̂A

t = R̂t (the risk-free interest rate in the

de-trended Arrow model equals that in the Bewley model, which is evidently nonstochastic). Since interest

rates in the Bewley model are (weakly) smaller than in the representative agent model, κt ≥ 1. Equation (41)

implies that the stochastic discount factor in the Arrow model equals the SDF in the representative agent

model, multiplied by κt:

mA
t+1(z

t+1) = mRE
t+1(z

t+1)κt
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Finally, since the stochastic discount factor for the Arrow model is also a valid stochastic discount factor in

the Bond model (although not necessarily the unique valid stochastic discount factor), the previous result

also applies to the Bond model.

• Proof of Theorem 3.2:

Proof. Remember that we defined the multiplicative risk premium in the main text as

1 + νt =
EtRt,1 [{et+k}]

Rt,1 [1]

We use mt,t+k = mt+1 · mt+2 . . . · mt+k to denote the k-period ahead pricing kernel (with convention that

mt,t = 1), such that Et(dt+kmt,t+k) denotes the price at time t of a random payoff dt+k. Note that whenever

there is no room for confusion we suppress the dependence of variables on zt.

First, note that the multiplicative risk premium on a claim to aggregate consumption can be stated as

a weighted sum of risk premia on strips (as shown by Alvarez and Jermann (2001)). By definition of

Rt,1 [{et+k}] we have

Rt,1 [{et+k}] =

∑∞
k=1 Et+1mt+1,t+kαet+k∑∞

k=1 Etmt,t+kαet+k
(42)

=
1∑∞

j=1 Etmt,t+jet+j
∗

∞∑

k=1

Et+1mt+1,t+ket+k

Etmt,t+ket+k
∗ Etmt,t+ket+k (43)

=
∞∑

k=1

Et+1mt+1,t+ket+k

Etmt,t+ket+k

Etmt,t+ket+k∑∞
j=1 Etmt,t+jet+j

=

∞∑

k=1

ωkRt,1 [et+k] (44)

where the nonrandom weights ωk are given by

ωk =
Etmt,t+ket+k∑∞
j=1 Etmt,t+jet+j

Thus

1 + νt =
EtRt,1 [{et+k}]

Rt,1 [1]
=

∞∑

k=1

ωk
EtRt,1 [et+k]

Rt,1 [1]
(45)

and it is sufficient to show that the multiplicative risk premium EtRt,1 [et+k] /Rt,1 [1] on all k-period strips

of aggregate consumption (a claim to the Lucas tree’s dividend in period k only, not the entire stream) is

the same in the Arrow model as in the representative agent model. First, we show that the one-period ahead

conditional strip risk premia are identical:

Et
Et+1et+1

Et[mA
t+1

et+1]

1
Et[mA

t+1
]

=
Et

Et+1λt+1

Et[mA
t+1

λt+1]

1
Et[mA

t+1
]

=
Et

Et+1λt+1

Et[mRE
t+1

λt+1]

1
Et[mRE

t+1
]

The first equality follows from dividing through by et. The second equality follows from the expression for

mA in Proposition 3.2: mA
t+1 = mRE

t+1κt.
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Next we repeat the argument for the risk premium of a k-period strip:

EtR
A
t,1 [et+k]

EtRA
t,1 [1]

=
Et

Et+1[m
A
t+1,t+ket+k]

Et[mA
t,t+ket+k]

1
Et[mA

t+1
]

=
Et

κt+1·...·κt+k−1

κt·κt+1·...·κt+k−1

Et+1[mRE
t+1,t+ket+k]

Et[mRE
t,t+ket+k]

1
κtEt[mRE

t+1
]

=
EtR

RE
t,1 [et+k]

RRE
t,1 [1]

and thus risk premia on all k-period consumption strips in the Arrow model coincide with those in the

representative agent model. But then (45) implies that the multiplicative risk premium in the two models

coincide as well.

• Proof of Lemma 4.1:

Proof. Absent binding solvency constraints the Euler equation in the Bewley model read as

1 =
β̃t+1

β̃t

R̂t

∑

yt+1|yt

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))

=
β̃t+1

β̃t

v̂t+1 + α

v̂t

∑

yt+1|yt

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))

while in the Arrow model the Euler equations for Arrow securities are given by

1 =
β̂(zt)φ̂(zt+1|zt)

q̂t(zt, zt+1)

∑

yt+1|yt

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))
.

With conjectured Arrow securities prices q̂t(z
t, zt+1) = β̂(zt)φ̂(zt+1|zt)

1
R̂t

β̃t

β̃t+1

these equations obviously coin-

cide with the bond Euler equation in the Bewley model, and thus the Bewley equilibrium allocation satisfies

the Euler equations for Arrow securities. A similar argument applies to the Euler equation for stocks:

1 = β̂(zt)
∑

zt+1|zt

φ̂(zt+1|zt)

[
v̂t+1(z

t+1) + α

v̂t(zt)

] ∑

yt+1|yt

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))

=
β̃t+1

β̃t

R̂t

∑

yt+1|yt

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))

The state-contingent interest rate in this model is given by:

1

R̂A
t (zt)

= β̂(zt)
β̃t

R̂tβ̃t+1

which can easily be verified from equation (24).

• Proof of Proposition 4.1:

Proof. We need to check that Arrow securities positions defined in (27) satisfy the market clearing condition

∫ ∑

yt−1

ϕ(yt−1|y0)ât−1(θ0, y
t−1, zt)dΘ0 = 0 for all zt.
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for each zt. By the goods market clearing condition in the Bewley model we have, since total labor income

makes up a fraction 1 − α of total income

∫ ∑

yt−1

ϕ(yt−1|y0)
(
ĉt(y

t, θ0) − η(yt)
)
dΘ0

=

∫ ∑

yt−1

ϕ(yt−1|y0)
∑

yt|yt−1

ϕ(yt|yt−1)
(
ĉt(y

t, θ0) − η(yt)
)
dΘ0

=
∑

yt

ϕ(yt|y0)
(
ĉt(y

t, θ0) − η(yt)
)
dΘ0 = α

Similarly ∫ ∑

yt−1

ϕ(yt−1|y0)
∑

yτ

ϕ(yτ |yt) [ĉτ (θ0, y
τ ) − η(yτ )] dΘ0 = α for all τ > t

Since the stock market clears in the Bewley model we have

∫ ∑

yt−1

ϕ(yt−1|y0)σ̂t−1(θ0, y
t−1)dΘ0 = 1.

Since the stock is a claim to α times the aggregate endowment in all future periods its (ex-dividend) price

has to satisfy

v̂t(zt) = α

∞∑

τ=t+1

∑

zτ

Q̂τ (zτ |zt)

Combining these results implies that

∫ ∑

yt

ϕ(yt|y0)ât−1(θ0, y
t−1, zt)dΘ0

= α + α

∞∑

τ=t+1

∑

zτ

Q̂τ (zτ |zt) − 1

(
α + α

∞∑

τ=t+1

∑

zτ

Q̂τ (zτ |zt)

)
= 0

for each zt. Thus, each of the Arrow securities markets clears if households hold portfolios given by (27).

• Proof of Lemma 4.2:

Proof. By (23)

Q̂t(z
t|z0) = φ̂(zt|z0)Q̃t

β̂0,t−1(z
t−1|z0)

β̃t

and thus

∑

zt

Q̂t(z
t|z0) =

Q̃t

β̃t

∑

zt|z0

φ̂(zt|z0)β̂0,t−1(z
t−1|z0)

=
Q̃t

β̃t

∑

zt|zt−1

φ̂(zt|zt−1)
∑

zt−1|z0

φ̂(zt−1|z0)β̂0,t−1(z
t−1|z0) = Q̃t.

by definition of β̃t in equation (21) and the fact that
∑

zt|zt−1 φ̂(zt|zt−1) = 1.

• Proof of Lemma 4.3:
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Proof. The Arrow securities position at time zero needed to finance all future excess consumption mandated

by the Bewley equilibrium is given by

â−1(θ0, y0, z0) = ĉ0(θ0, y0) − η(y0) +

∞∑

τ=1

∑

zτ ,yτ

Q̂τ (zτ |z0) (ĉτ (θ0, y
τ ) − η(yτ ))

−σ̂0(θ0, y0) [v̂0(z0) + α] ,

where we substituted indexes −1 by 0 to denote initial conditions. In particular, σ̂0(θ0, y0) is the initial share

position of an individual with wealth θ0. But

â−1(θ0, y0, z0).

= ĉ0(θ0, y0) − η(y0) +
∞∑

τ=1

∑

zτ ,yτ |z0,y0

Q̂τ (zτ |z0)ϕ(yτ |y0) (ĉτ (θ0, y
τ ) − η(yτ )) − σ̂0(θ0, y0) [v̂0(z0) + α] .

= ĉ0(θ0, y0) − η(y0) +

∞∑

τ=1

∑

yτ |y0

ϕ(yτ |y0) (ĉτ (θ0, y
τ ) − η(yτ ))

∑

zτ |z0

Q̂τ (zτ |z0)

−σ̂0(θ0, y0)α



1 +

∞∑

τ=1

∑

zτ |z0

Q̂τ (zτ |z0)



 .

= ĉ0(θ0, y0) − η(y0) +

∞∑

τ=1

Q̃τ

∑

yτ |y0

ϕ(yτ |y0) (ĉτ (θ0, y
τ ) − η(yτ )) − σ̂0(θ0, y0)α

[
∞∑

τ=0

Q̃τ

]

= 0,

where the last equality comes from the intertemporal budget constraint in the standard incomplete markets

Bewley model and the fact that the initial share position in that model is given by σ̂0(θ0, y0).

• Proof of Proposition 4.2:

Proof. The stationary Bewley allocation {âB
t (yt) = 0, σ̂t(y

t)} satisfies the constraint

âB
t (yt)

R̂t

+ σ̂t(y
t)v̂t ≥ K̂t(y

t). (46)

Using the fact that âB
t (yt) = 0 and adding

∑

zt+1

q̂t(zt+1|zt)ât(y
t, zt+1) + σ̂t(y

t)v̂t(zt)

to both sides of (46) yields

∑

zt+1

q̂t(zt+1|zt)ât(y
t, zt+1) + σ̂t(y

t)v̂t(zt)

≥ K̂t(y
t) +

∑

zt+1

q̂t(zt+1|zt)ât(y
t, zt+1) + σ̂t(y

t) [v̂t(zt) − v̂t]

≡ K̂∗
t (yt, zt)

where K̂∗
t (yt) is the modified constraint for the de-trended Arrow model. Multiplying both sides by et(z

t)

gives the modified constraint for the Arrow model with growth stated in the main text. For the alternative
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constraint, we know that the Bewley equilibrium allocation satisfies

âB
t (yt) + σ̂t(y

t)[v̂t+1 + α] ≥ M̂t(y
t). (47)

Again using âB
t (yt) = 0 and adding

ât(y
t, zt+1) + σ̂t(y

t) [v̂t+1(zt+1) + α]

to both sides of (46) yields

ât(y
t, zt+1) + σ̂t(y

t) [v̂t+1(zt+1) + α]

≥ M̂t(y
t) + ât(y

t, zt+1) + σ̂t(y
t) [v̂t+1(zt+1) − v̂t+1]

≡ M̂∗
t (yt, zt+1)

Multiplying both sides by et+1(z
t+1) again gives rise to the constraint stated in the main text.
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