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Abstract

By allocating different information to team members, secret contracts can
provide better incentives to perform with an intuitive organizational design.
For instance, they may help to monitor monitors, and attain approximately
efficient partnerships by appointing a secret principal. More generally, secret
contracts highlight a rich duality between enforceability and identifiability. It
naturally yields necessary and sufficient conditions on a monitoring technology
for any team using linear transfers to approximate efficiency (with and without
budget balance). The duality is far-reaching: it is robust to complications in
the basic model such as environments with limited liability and participation
constraints.
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But who will monitor the monitor? Alchian and Demsetz (1972, p. 782)

1 Introduction

Ann owns a restaurant. She hires Bob to tally up the till every night and report

back any mismatch between the till and that night’s bills. Ann can motivate Bob to

exert such effort and report truthfully any mismatch by secretly taking some money

from the till herself with positive probability and offering him the following incentive

scheme: if Ann took some money, she will pay Bob his wage only when he reports a

mismatch; if Ann did not take any money, she will pay Bob only when a mismatch

is not reported.

Bob faces a secret contract: his report-contingent wage is unknown to him a priori

(it depends on whether or not Ann secretly took some money). If Bob fails to exert

effort, he won’t know what to report in order to secure his wage. However, if he does

his job he’ll discover whether or not there is a mismatch and deduce from this Ann’s

behavior. Only after tallying the till will Bob know what to report in order to receive

his wage, which turns out to be optimally truthful.

This paper studies contracts like Bob’s and how they might help organizations to

function productively. By allocating different information to team members, secret

contracts often provide better incentives to perform with an intuitive organizational

design. Thus, they give Bob incentives to acquire costly information and reveal it. In

general, they provide a way of “monitoring the monitor” (Section 2.1), and can yield

approximately efficient partnerships by appointing a “secret principal” (Section 2.2).

A rich duality between enforceability and identifiability—more specifically, between

incentive compatible contracts and indistinguishable deviation plans—is exploited. It

leads us to identify teams that can approximate efficiency (with and without budget-

balanced transfers) by means of their “monitoring technology” (Section 3). This

duality is far-reaching: it is amenable to complications in the basic model such as

individual rationality and limited liability (Section 4).
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1.1 Monitors and Principals

According to Alchian and Demsetz (1972, p. 778, their footnote), [t ]wo key demands

are placed on an economic organization—metering input productivity and metering

rewards.1 At the heart of their “metering problem” lies the question of how to give

incentives to monitors, which they answered by making the monitor residual claimant.

However, this can leave the monitor with incentives to misreport input productivity if

his report influences input rewards, like workers’ wages, since—given efforts—paying

workers hurts him directly.2

On the other hand, Holmström (1982, p. 325) argues that . . . the principal’s role

is not essentially one of monitoring . . . the principal’s primary role is to break the

budget-balance constraint. Where Alchian and Demsetz seem to overemphasize the

role of monitoring in organizations, Holmström seems to underemphasize it. He

provides incentives with “team punishments” that reward all agents when output is

good and punish them all when it is bad. Assuming that output is publicly verifiable,

he finds little role for monitoring,3 and perhaps as a result Holmström (1982, p. 339)

concludes wondering: . . . how should output be shared so as to provide all members

of the organization (including monitors) with the best incentives to perform?

Secret contracts motivate monitors: If the principal secretly recommends a worker

to shirk or work, both with some probability (the worker can easily be motivated to

willingly obey recommendations), and pays the monitor only if he reports back the

recommendation, then—like Bob—the monitor will prefer to exert effort and report

truthfully. To implement such contracts, the team requires (i) a disinterested media-

tor or machine that makes confidential, verifiable but non-binding recommendations

to players, and (ii) transfers that depend on the mediator’s recommendation as well as

the monitor’s report. As this requirement suggests, incentive compatibility of secret

contracts is described here by Myerson’s (1986) communication equilibrium.

1Meter means to measure and also to apportion. One can meter (measure) output and one can
also meter (control) the output. We use the word to denote both; the context should indicate which.

2A comparable argument was put forward by Strausz (1997) by observing that delegated moni-
toring dominates monitoring by a principal who cannot commit to his agent that he will verify the
agent’s effort when it is only privately verifiable. However, Strausz assumes that monitoring signals
are “hard evidence,” so a monitor cannot misreport his information.

3Intuitively, if output were not publicly verifiable then his team punishments would no longer
provide the right incentives: monitors would always report good output to secure payment and shirk
from their monitoring responsibilities to save on effort. Knowing this, workers would also shirk.
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Monitoring adds value only insofar as it helps to provide incentives. Heuristically,

if monitors never monitor then workers will not work, so costly monitoring may be

worthwhile. Nevertheless, it is cost-efficient to do so as little as necessary. This leads

naturally to approximate efficiency as the appropriate optimality criterion for a team

with costly monitoring, especially when having access to linear transfers. For exam-

ple, secret (mixed) monitoring of workers with small but positive probability together

with large punishments if caught shirking saves costs while providing incentives.

This use of mixed strategies to approximate efficiency was developed by Legros and

Matthews (1993) in Nash equilibrium with public, deterministic output. Not only

can secret contracts exploit such mixing, too, but also (and in addition to monitoring

the monitor) they can improve a team’s contractual prospects even in the restricted

setting of publicly verifiable output, as the secret principal demonstrates.

To see this, recall the partnership problem of Radner et al. (1986). It shows that no

budget-balanced linear transfers contingent only on output can approximate efficiency

in a team whose members can either work or shirk and whose joint output is (publicly

verifiable and) either high or low with a probability that is increasing only in the

number of workers. A secret principal approximates efficiency: With arbitrarily large

probability, suppose everyone is recommended to work, and paid nothing regardless.

With complementary probability, everybody is told to work except for one randomly

picked team member, who is secretly told to shirk. This individual must pay everyone

else if output is high and be paid by everyone else if output is low. Such a scheme is

incentive compatible with large payments, budget-balanced, approximately efficient.

1.2 Enforceability and Identifiability

Assuming correlated equilibrium and approximate efficiency/enforceability renders

linear our formal description of incentive compatible contracts. In other words, some

given team behavior is approximately implementable with incentive compatible secret

transfers if and only if a certain family of linear inequalities is satisfied. A duality

theory of contracts therefore obtains as a result of this linearity, with basic implica-

tions for understanding incentives. We take advantage of this duality throughout the

paper, which prevails over gradual complications in our basic model. Technically, our

linear methods rely on Rahman (2005a) to extend those of Nau and McCardle (1990)

and d’Aspremont and Gérard-Varet (1998) with substantially stronger results.
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Duality yields two sides of the same coin, two opposite views of the same problem—in

our case, a metering problem. As the title of this subsection—taken from Fudenberg

et al. (1994, p. 1013)—suggests, enforceable contracts and unidentifiable deviation

plans are mutually dual variables. As such, two natural descriptions of a team’s mon-

itoring technology emerge from each point of view. The primal side of the coin de-

scribes when contracts are approximately enforceable, whereas the dual side describes

when deviation plans cannot be identified. Thus, the smaller the set of unidentifiable

deviation plans, the larger the set of enforceable contracts—like a cone and its polar.

In the limit, our main results (Theorems 1 and 3) provide intuitive conditions on a

monitoring technology that are necessary and sufficient for any team outcome to be

approximately enforceable via secret contracts (with and without budget balance).

Theorem 1 provides a minimal requirement on a team’s monitoring technology, called

detecting unilateral disobedience (DUD), that characterizes approximate enforceabil-

ity with secret contracts of any team outcome. Intuitively, for every disobedient

deviation plan there must be some correlated strategy (not necessarily the same one

for every plan) that renders the disobedience statistically detectable. (Dishonesty

may remain undetectable, though.) DUD turns out to be weak and generic.4

Restricting attention to budget-balanced secret contracts, Theorem 3 characterizes

approximate enforceability of team behavior with a stronger condition, called identi-

fying obedient players (IOP). Intuitively, IOP requires that—in addition to DUD—it

is possible to statistically identify some player as obedient upon any disobedience.

IOP is weak5 and generic,6 too. Intuitively, IOP delivers incentives with budget

balance by rewarding those known to be “innocent” while punishing all others.

Our use of duality facilitates the study of other restrictions to the metering problem,

like limited liability and individual rationality. Well-known results, such as that only

total liability matters when providing a team with incentives or that reasonably low

participation constraints don’t bind even with budget balance, are extended to this

framework without complications. Exact implementation fits relatively nicely, too.

4DUD is weaker than comparable conditions in Compte (1998) and Obara (2005). Restricted to
public monitoring, DUD is weaker than local individual full rank, of d’Aspremont and Gérard-Varet
(1998), which in turn is weaker than the condition in Legros and Matsushima (1991).

5IOP is weaker than comparable conditions such as those in Kandori and Matsushima (1998),
Aoyagi (2005), and Tomala (2005). With public monitoring, it is still weaker than the compatibility
of d’Aspremont and Gérard-Varet (1998) and even Kandori’s (2003) version of pairwise full rank.

6Like DUD, IOP is “as generic if not more” than other conditions in the literature (Section ??).
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Further discussion of secret contracts, particularly as regards the theory of mechanism

design and their susceptibility to collusion, is deferred to the conclusion (Section 5).

2 Examples

We begin our formal analysis of secret contracts with two important, motivating

examples mentioned in the introduction: monitoring the monitor, and the secret

principal. The first example studies an environment involving contractual variations

on a three-player game that attempts to typify the strategic interaction between a

principal, an agent, and a monitor. The second example finds an intuitive way of

attaining approximately efficient partnership with budget-balanced contracts.

2.1 Robinson and Friday

There are three players. The first is Robinson, who can either monitor or shirk.

The second is Friday, who can either work or shirk. The third player is a so-called

mediating principal, a disinterested party who makes recommendations and enforces

contingent contractual payments. For simplicity, suppose the principal’s utility is

constant regardless of the outcome of the game. Robinson (the row player) and

Friday (the column player) interact according to the left bi-matrix below.

work shirk work shirk

monitor 2,−1 −1, 0 monitor 1, 0 0, 1

shirk 3,−1 0, 0 shirk 1/2, 1/2 1/2, 1/2

Utility Payoffs Signal Probabilities

The action profile (shirk,work) is Pareto efficient, since Robinson finds monitoring

costly and it does not intrinsically add value. However, this strategy profile is not

incentive compatible by itself, since Friday always prefers to shirk rather than work.

The team’s monitoring technology is given by a set S = {g, b}—so there are only

two possible signals contingent upon which contracts may be written—together with

the conditional probability system given by the right bi-matrix above. In words, if

Robinson shirks then both signals are equiprobable, whereas if he monitors then the

realized signal will accurately identify whether or not Friday worked. Contractual
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payments are assumed to be denominated in a private good (“money”) that enters

players’ utility linearly with unit marginal utility.

Clearly, the efficient strategy profile (shirk,work) cannot be implemented.7 However,

we can get arbitrarily close: When signals are publicly verifiable, the correlated strat-

egy8 σ[(monitor,work)] + (1− σ)[(shirk,work)] can be implemented for any σ ∈ (0, 1]

with Holmström’s team punishments. For example, paying Robinson $2 and Friday

$1/σ if g and both players zero if b makes (shirk,work) approximately implementable.

If only Robinson observes the signal, and it is not verifiable, then for the principal to

write signal-contingent contracts, he must first solicit the realizations from Robinson,

who may in principle misreport them. Notice that now team punishments break down,

since not only will Robinson always report g and shirk, but also Friday will shirk.

Furthermore, if Robinson was rewarded independently of his report then although he

would happily tell the truth, he would find no reason to monitor.

Another possibility is to have Friday mix between working and shirking. On its own,

this strategy doesn’t change Robinson’s incentives to either lie or shirk. However, if

the principal and Friday correlate their play without Robinson knowing when, it is

possible to “cross-check” Robinson’s report, thereby “monitoring the monitor.”

Specifically, the following correlated strategy is incentive compatible given µ ∈ (0, 1):

(i) Robinson is told to monitor with probability σ (and shirk with probability 1−σ),

(ii) Friday is independently told to work with probability µ (to shirk with 1−µ), and

(iii) the principal correlates his contractual strategy with players’ recommendations:

(monitor,work) (monitor,shirk) (shirk,work) (shirk,shirk)

g 1/µ, 1/σ 0, 0 0, 0 0, 0

b 0, 0 1/(1− µ), 0 0, 0 0, 0

The numbers on the left are Robinson’s contingent payments, and those on the right

are Friday’s. Thus, Robinson is paid $1/µ if he reports g when (monitor,work) was

recommended and $1/(1−µ) if he reports b when (monitor,shirk) was recommended.

It is easily seen that honesty and obedience to the mediator is incentive compatible.

This contract approximately implements (shirk,work) by letting σ → 0 and µ→ 1.

7If Robinson shirks then no signal-contingent contract can compensate Friday more when working
than shirking, since each signal carries the same probability regardless of Friday’s effort.

8As a matter of notation, let [a] stand for Dirac measure (or the pure strategy profile a living in
the space of correlated strategies) for any action profile a.
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Particularly distinguishing properties of this contract are that Robinson does not di-

rectly observe the principal’s recommendation to Friday, and that Robinson has the

incentive to monitor inasmuch as he is rewarded for reporting accuracy. Notice also

that Robinson’s report only confirms to the principal his recommendation to Friday.

As such, the principal strips away Robinson’s a priori informational advantage, which

is why his surplus can be extracted. The principal allocates private information to

approximate efficiency, so a team without asymmetric information may prefer to cre-

ate some as part of its organizational design. A salient problem of the contract is not

being robust to “collusion:” If Friday told Robinson his recommendation then both

players could save on effort. We do not address collusion formally in this paper, but

see Section 5.3 for a way to dissuade extra-contractual communication. On the other

hand, there is no other way for Friday to work with positive probability—not without

secrets. Finally, it is impossible to approximate efficiency with budget balance, but

a reasonably different monitoring technology permits budget balanced approximate

efficiency (Example 3) only with secret contracts, robust to this collusion.

2.2 Secret Principal

A team has n individuals. Each team member i can either work (ai = 1) or shirk

(ai = 0). Let c > 0 be each individual’s cost of effort. Effort is not observable.

Output is publicly verifiable and can be either good (g) or bad (b). The probability

of g equals P (
∑

i ai), where P is a strictly increasing function of the sum of efforts.

Radner et al. (1986) showed that in this environment there do not exist budget-

balanced output-contingent linear transfers to induce everyone to work, not even

approximately. One arrangement that is not approximately efficient but nevertheless

induces most people to work is appointing Holmström’s principal. Call this player 1

and define transfers as follows. For i = 2, . . . , n let ζi(g) = k and ζi(b) = 0 be player

i’s output-contingent linear transfer, for some k ≥ 0. Let player 1’s transfer equal

ζ1 = −
n∑
i=2

ζi.

By construction, the budget is balanced. Everyone but player 1 will work if k is

sufficiently large. However, player 1 has the incentive to shirk. This contract follows

Holmström’s suggestion to the letter: Player 1 is a “fixed” principal who absorbs the

incentive payments to all others by “breaking” everyone else’s budget constraint.
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Allowing now for secret contracts, consider the following scheme. For any small ε > 0,

a mediator asks every individual to work (call this event 1) with probability 1 − ε.
With probability ε, he picks some player i at random (with probability ε/n for all

i) and asks him secretly to shirk, while telling all others to work (call this event

1−i). For i = 1, . . . , n let ζi(g|1) = ζi(b|1) = 0 be player i’s contingent transfer if the

mediator asked everyone to work. Otherwise, if player i was secretly told to shirk,

for j 6= i let ζj(g|1−i) = k and ζj(b|1−i) = 0 be player j’s transfer. For player i, let

ζi = −
∑
j 6=i

ζj.

Clearly, this contract is budget-balanced. It is also incentive compatible. Indeed, if

player i is recommended to work, incentive compatibility requires that

ε(n− 1)

n
P (n− 1)k − c ≥ ε(n− 1)

n
P (n− 2)k,

which is satisfied if k is sufficiently large. If player i is asked to shirk, we require

−(n− 1)P (n− 1)k ≥ −(n− 1)P (n)k − c,

which always holds.

Therefore, this contract implements the efficient outcome with probability 1− ε and

a slightly inefficient outcome with probability ε. Since ε can be made arbitrarily

small (by choosing an appropriate reward k), we obtain an approximately efficient

partnership. The role of principal is not fixed here. It is randomly assigned with very

small probability to make negligible the loss from having a principal.
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3 Model

Let I = {1, . . . , n} be a finite set of players, Ai a finite set of actions available

to player i ∈ I, and A =
∏

iAi the (nonempty) space of action profiles. Actions

are neither verifiable nor directly observable. A correlated strategy is a probability

measure σ ∈ ∆(A). Let vi(a) be the utility to player i ∈ I from action profile a ∈ A.

Let Si be a finite set of private signals observable only by individual member i ∈ I
and S0 a finite set of publicly verifiable signals. Let

S :=
n∏
j=0

Sj

be the (nonempty) product space of all observable signals. A monitoring technology

is a measure-valued map Pr : A → ∆(S), where Pr(s|a) stands for the conditional

probability that s = (s0, s1, . . . , sn) ∈ S was observed given that the team played

a = (a1, . . . , an) ∈ A. For every s ∈ S, suppose Pr(s|a) > 0 for some a ∈ A.

Assume that the team has access to linear transfers. An incentive scheme is any

map ζ : I × A × S → R that assigns monetary transfers contingent on individuals,

recommended actions, and reported signals. It is assumed that recommendations are

verifiable.9 Rather than focus on incentive schemes ζ, we will also study probability

weighted transfers, ξ : I×A×S → R. For any recommendation a ∈ A with σ(a) > 0,

one may think of ξ as solving ξi(a, s) = σ(a)ζi(a, s) for some ζ. For any a ∈ A with

σ(a) = 0 and ξ(a) 6= 0, one may think of ξ as either arising from unbounded incentive

schemes (i.e., ζi(a, s) = ±∞) or as the limit of a sequence {σmζm}. This change of

variables from ζ to ξ is explained further in Section 4.1.

The timing of team members’ interaction runs as follows. Firstly, players agree upon

some contract (σ, ζ) consisting of a correlated strategy σ and an incentive scheme

ζ. A profile of recommendations is drawn according to σ and made to players con-

fidentially and verifiably by some machine. Players then simultaneously take some

action. Afterwards, they observe their private signals and submit a verifiable report

of their observations (given by an element of their personal signal space) before ob-

serving the public signal (not essential, just simplifying). Finally, recommendation-

and report-contingent transfers are made according to ζ.

9This assumption is without loss of generality: If recommendations were not directly verifiable,
then players could be asked to announce theirs as verifiable messages.
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If every player obeys his recommendation and reports truthfully, the expected utility

to player i (before recommendations are actually made) from a contract (σ, ζ) is∑
a∈A

σ(a)vi(a) +
∑
(a,s)

σ(a)ζi(a, s) Pr(s|a).

Of course, Mr. i may disobey his recommendation ai to play some other action bi and

lie about his privately observed signal. A reporting strategy is a map ρi : Si → Si,

where ρi(si) is the reported signal when Mr. i privately observes si. Let Ri be the

set of all reporting strategies for player i. The truthful reporting strategy is the

identity map τi : Si → Si with τi(si) = si. Thus, both ζi(a, s−i, τi(si)) = ζi(a, s) and

ξi(a, s−i, τi(si)) = ξi(a, s).
10 The space of pure deviations for i is therefore Ai ×Ri.

For every player i and every deviation (bi, ρi), the conditional probability that signal

profile s will be reported when everyone else is honest and plays a−i ∈ A−i equals

Pr(s|a−i, bi, ρi) :=
∑

ti∈ρ−1
i (si)

Pr(s−i, ti|a−i, bi).

When all other players are honest and obedient, the utility to i from deviating to

(bi, ρi) conditional on being recommended to play ai under contract (σ, ζ) equals∑
a−i

σ(a)

σ(ai)
vi(a−i, bi) +

∑
(a−i,s)

σ(a)

σ(ai)
ζi(a, s) Pr(s|a−i, bi, ρi),

where σ(ai) =
∑

a−i
σ(a) > 0 is the probability that ai was recommended.

A team’s metering problem is to find a contract (σ, ζ) that makes incentive compatible

obeying recommended behavior as well as honest reporting of monitoring signals.

This is captured by the following family of inequalities.

∀i ∈ I, ai ∈ Ai, (bi, ρi) ∈ Ai ×Ri,∑
a−i

σ(a)(vi(a−i, bi)− vi(a)) ≤
∑

(a−i,s)

σ(a)ζi(a, s)(Pr(s|a)− Pr(s|a−i, bi, ρi)). (∗)

The left-hand side reflects the deviation gain in terms of utility11 for a player i from

playing bi when asked to play ai. The right-hand side reflects his contractual loss

from deviating to (bi, ρi) relative to honesty and obedience (i.e., playing ai after being

10We will often use the notation s = (s−i, si) and a = (a−i, ai) for any i, where si ∈ Si and
s−i ∈ S−i =

∏
j 6=i Sj ; similarly for A−i.

11Specifically, in terms of probability weighted utility, weighted by σ(ai). If ai is never recom-
mended then σ(ai) = 0 and both sides of the inequality equal zero.
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asked to do so and reporting according to τi). Such a loss originates from two sources.

On the one hand, playing bi instead of ai may change conditional probabilities over

signals. On the other, reporting according to ρi may affect conditional payments.

Definition 1. A correlated strategy σ is exactly enforceable (or simply enforceable)

if there exists an incentive scheme ζ : I×A×S → R to satisfy (∗) for all (i, ai, bi, ρi).

Call σ exactly enforceable with budget balance if it is exactly enforceable and

∀(a, s),
∑
i∈I

ζi(a, s) = 0. (∗∗)

A correlated strategy σ is approximately enforceable if there exists a sequence of

contracts {(σm, ζm)} such that (σm, ζm) satisfies (∗) for every m ∈ N and σm → σ.

Call σ approximately enforceable with budget balance if it is approximately enforceable

and ζm satisfies (∗∗) for all m.

A correlated strategy is approximately enforceable if it is the limit of exactly enforce-

able ones. Approximate enforcement with budget balance requires that the budget

be balanced along the way, not just asymptotically. For example, in Robinson and

Friday (Section 2.1) the correlated strategy [(shirk,work)] is approximately enforce-

able but not enforceable. In the secret principal (Section 2.2), everybody working

is approximately enforceable with budget balance, but not exactly enforceable with

budget balance, although it is exactly enforceable (without budget balance).

Before solving the model, a little more notation will be useful. A deviation plan

for any player i is a map αi : Ai → ∆(Ai × Ri), where αi(bi, ρi|ai) stands for the

probability that i deviates to (bi, ρi) when recommended to play ai. Given σ ∈ ∆(A),

let Pr(σ) ∈ RS be the vector defined by Pr(σ)(s) =
∑

a σ(a) Pr(s|a). Intuitively,

Pr(σ) is the expected vector of report probabilities if everyone is honest and obediently

playing according to σ. Let Pr(σ, αi) ∈ RS, defined pointwise by

Pr(σ, αi)(s) =
∑
a∈A

σ(a)
∑

(bi,ρi)

Pr(s|a−i, bi, ρi)αi(bi, ρi|ai),

be the expected vector of probabilities if player i deviates from σ according to αi.

A deviation plan αi is disobedient if αi(ρi, bi|ai) > 0 for some ai 6= bi, i.e., it disobeys

some recommendation ai with positive probability. A disobedient deviation plan may

be “honest,” i.e., ρi may equal τi with probability one after every recommendation.

Although dishonesty is arguably a form of disobedience, it will be useful in the sequel

to distinguish between them.
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3.1 Detection

Definition 2 (Detection). A deviation plan αi for player i is called undetectable if

∀σ ∈ ∆(A), Pr(σ) = Pr(σ, αi).

Call αi detectable if it is not undetectable, i.e., Pr(σ) 6= Pr(σ, αi) for some σ ∈ ∆(A).

Intuitively, a deviation plan αi is undetectable if the probability of reported signals

induced by αi, Pr(σ, αi), coincides with that arising from honesty and obedience,

Pr(σ), regardless of the team’s correlated strategy, σ, assuming that others are honest

and obedient. Detectability is a weak requirement. Undetectable deviation plans

may be defined equivalently by Pr(a) = Pr(a, αi) for every a ∈ A due to linearity,

but it seems to be a less intuitive description of detectability, albeit more tractable.12

Definition 3 (DUD). A monitoring technology Pr detects unilateral disobedience

(DUD) if every disobedient deviation plan is detectable.

DUD is intuitively defined. Formally, note that different correlated strategies may

be used to decide whether or not different disobedient deviation plans are detectable.

This is one important aspect that renders DUD substantially weaker than other

conditions in the literature. A detailed comparison will be made shortly, but first let

us characterize DUD in terms of approximate enforceability.

Definition 4 (PSI). A monitoring technology Pr provides strict incentives (PSI) if

there exists a probability weighted incentive scheme ξ : I × A× S → R such that

∀(i, ai, bi, ρi), 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a)− Pr(s|a−i, bi, ρi)),

with a strict inequality whenever ai 6= bi.

If the left-hand side above is interpreted as a player’s deviation gain from playing bi

when recommended to play ai, then PSI implies that for any given deviation gains

by the players, there is an incentive scheme such that any deviator’s contractual loss

outweighs his deviation gain after every recommendation. It may appear that PSI is

a rather strong condition on a monitoring technology, in contrast with the weakness

of DUD argued below (Example 1). As it turns out, both conditions are equivalent,

in fact mutually dual.

12For a differently tractable version of DUD (without using reporting strategies), see Lemma B.1.
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Theorem 1. A monitoring technology detects unilateral disobedience if and only if it

provides strict incentives.

Proof. By the Alternative Theorem (Rockafellar, 1970, Theorem 22.2, p. 198), a given

monitoring technology Pr fails to provide strict incentives if and only if there exists

a vector λ ≥ 0 such that λi(ai, bi, ρi) > 0 for some (i, ai, bi, ρi) with ai 6= bi and

∀(a, s),
∑

(bi,ρi)

λi(ai, bi, ρi)(Pr(s|a)− Pr(s|a−i, bi, ρi)) = 0.

Let αi be the deviation plan defined pointwise by

αi(bi, ρi|ai) :=

{
λi(ai, bi, ρi)/

∑
(b′i,ρ

′
i)
λi(ai, b

′
i, ρ
′
i) if

∑
(b′i,ρ

′
i)
λi(ai, b

′
i, ρ
′
i) > 0, and

[(ai, τi)] (bi, ρi) otherwise (where [·] denotes Dirac measure).

By construction, αi is disobedient and undetectable: DUD fails. �

This proof describes the duality between identifiability and enforceability via secret

contracts. The next result, which may be viewed as a corollary, characterizes DUD

as the weakest identifiability required for any action to be approximately enforceable.

Corollary 1. A monitoring technology detects unilateral disobedience if and only if

any team with any profile of utility functions can approximately enforce any correlated

strategy with secret contracts.

Corollary 1 is proved in Appendix A with two mutually dual linear programs. The

primal problem chooses a contract to fulfill some given objective subject to incentive

compatibility.13 Its dual problem has contracts as multipliers and chooses unde-

tectable deviation plans. This motivates Definition 3 as a “backward-engineering”

exercise: what minimal requirement on a monitoring technology yields multipliers on

incentive constraints equal to zero (i.e., incentive constraints do not bind)?

When can secret (i.e., recommendation-contingent) contracts add value over and

above standard ones? In other words, when can secret contracts approximately en-

force more action profiles than standard ones? To motivate, consider an example.

13Although no budget constraints were imposed, we could have added expected budget balance,∑
(i,a,s)

ξi(a, s) = 0,

but this constraint would not bind, since adding a constant to any ξ preserves its incentive properties.
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Example 1. There are two publicly verifiable signals, S = S0 = {x, y}, and two

players, I = {1, 2}. Player 1 has two actions, A1 = {U,D}, and player 2 has three

actions, A2 = {L,M,R}. The conditional probability system Pr is given below.

L M R

U 1, 0 0, 1 1/2, 1/2

D 0, 1 1, 0 1/3, 2/3

Pr(U,R) clearly lies in the convex hull of Pr(U,L) and Pr(U,M). Intuitively, there is

a mixed deviation (namely 1
2
[L]+ 1

2
[M ], where [·] stands for Dirac measure) by player

2 such that the conditional probability over signals is indistinguishable from what it

would be if he played R. In fact, a similar phenomenon takes place when player 1

plays D (this time with mixed deviation 2
3
[L] + 1

3
[M ]) or indeed regardless of player

1’s mixed strategy. It is therefore impossible to even approximately enforce R with

transfers contingent only on signals if player 2 strictly prefers playing L and M , since

there always exists a profitable deviation without any contractual losses.

However, Pr detects unilateral disobedience, so by Corollary 1 the profile (U,R) can

be approximately enforced even if R is strictly dominated by both L and M . By

correlating player 2’s payment with player 1’s recommendation, secret contracts can

keep player 2 from knowing the proportion with which he ought to mix between L and

M in order for his contractual payment to equal what he would obtain by playing R.

This suggests how secret contracts can extract more information from a monitoring

technology to provide incentives, even with publicly verifiable signals.

In general, the limited scope of standard contracts is characterized below. Given

σ ∈ ∆(A), a monitoring technology Pr detects unilateral disobedience at σ (DUD-σ)

if Pr(σ) 6= Pr(σ, αi) for every player i and every disobedient deviation plan αi.

Corollary 2. Fix any monitoring technology Pr. Any team with any profile of utility

functions can approximately enforce any correlated strategy with just signal-contingent

contracts if and only if for every correlated strategy σ there is a sequence {σm} of

correlated strategies such that σm → σ and Pr satisfies DUD-σm for all m ∈ N.

With secret contracts, different correlated strategies may be used to detect different

deviation plans, whereas with standard contracts, the same correlated strategy must

detect all deviation plans by all players in order to characterize approximate enforce-

ment. For instance, in Example 1 there is no sequence {σm} of correlated strategies

converging to [(U,R)] with Pr satisfying DUD-σm for all m, yet DUD holds.

14



Let us relate DUD to the literature. If monitoring is publicly verifiable (i.e., Si is a

singleton for all i 6= 0), DUD reduces to the following convex independence (CI):

∀(i, ai), Pr(ai) /∈ conv{Pr(bi) : bi 6= ai} in RA−i×S,

where Pr(bi) ∈ RA−i×S is given by Pr(bi)(a−i, s) = Pr(s|a−i, bi) and “conv” stands for

convex hull. This is substantially weaker than the following condition, call it exact

convex independence (ECI), where Pr(a) ∈ RS is defined by Pr(a)(s) = Pr(s|a):

∀(i, a), Pr(a) /∈ conv{Pr(a−i, bi) : bi 6= ai} in RS.

ECI means that signal probabilities conditional on any action profile change with ev-

ery (mixed) unilateral deviation. In Section 4.2 it is shown that ECI is necessary and

sufficient to exactly enforce any correlated strategy (without budget-balance). CI is

substantially weaker than ECI, since CI is necessary and sufficient to approximately

enforce any correlated strategy (Corollary 1). Formally, both CI and ECI require

certain vectors to lie outside some convex hull. For CI, the vectors have dimension

A−i × S, while for ECI they only have dimension S. Intuitively, CI requires that

every deviation plan be detectable, allowing for different correlated strategies to de-

tect different deviations, whereas ECI requires detectability with the same correlated

strategy across all deviations and players.

Legros and Matsushima (1991) and Legros and Matthews (1993) provide conditions

equivalent to ECI (but differently interpreted) and establish exact enforcement with

standard contracts. In repeated games, and to prove folk theorems, individual full

rank (IFR) has been prominent in the literature with public monitoring (Fudenberg

et al., 1994). Formally, IFR (at some σ) means that Pr(σ) /∈ lin{Pr(σ, bi) : bi 6= ai}
for every i, where “lin” stands for linear span. Arguably, the spirit of IFR (and how

it is used in practice) is to detect deviations away from some prescribed σ, i.e., ECI

at σ: Pr(σ) /∈ conv{Pr(σ, bi) : bi 6= ai} for every i. Clearly, IFR implies ECI, but not

conversely. If |S| < |Ai| for some i then this holds trivially, since IFR is impossible yet

ECI is possible (e.g., all the points on a circle are convexly independent). This holds

even with at least as many signals as actions (e.g., the vectors (1
3
, 1

3
, 0, 1

3
), (0, 1

3
, 1

3
, 1

3
),

(1
6
, 0, 1

3
, 1

2
) and (1

3
, 0, 1

6
, 1

2
) are convexly independent but linearly dependent). CI is

also weaker than local individual full rank (LIFR) of d’Aspremont and Gérard-Varet

(1998), which requires IFR at some σ, possibly different for each i.14 This is true

even in spirit, as Example 1 shows, since even “local ECI” fails there.

14For CI, every deviation plan can be detected with different correlated strategies for each plan,
whereas LIFR uses the same correlated strategy across deviation plans, though not across players.
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DUD is still weak even if monitoring is not verifiable. It is weaker than generalizations

of IFR in Compte (1998), Kandori and Matsushima (1998), Obara (2005) and Tomala

(2005)15 used to prove folk theorems with private monitoring (and communication),

as well as a condition by Obara (2006) in mechanism design (Lemma B.2).

We conclude this section by establishing genericity of DUD. Given a player with at

least two observations, there must be at least as many action-signal pairs for others

as for that player. Given a player without observations to report, genericity requires

slightly fewer action-signal pairs for others: at least as many action-signal pairs for

others with one signal omitted as actions for that player with one action omitted.

Theorem 2. DUD is generic if and only if |Ai × Si| ≤ |A−i × S−i| for every i such

that |Si| > 1 and |Ai| − 1 ≤ |A−i| × (|S−i| − 1) for every i such that |Si| = 1.

Proof. For necessity, by Lemma B.2, DUD is implied by convex independence (CI):

∀(i, ai, si), Pr(ai, si) /∈ conv{Pr(bi, ti) : (bi, ti) 6= (ai, si)}.

In turn, CI is implied by linear independence, or full row rank, for all i, of the matrix

with |Ai × Si| rows, |A−i × S−i| columns and entries Pr(ai, si)(a−i, s−i) = Pr(s|a).

Since the set of full rank matrices is generic, if |Si| > 1 then this is satisfied generically

when |Ai × Si| ≤ |A−i × S−i|. If |Si| = 1, then adding with respect to s−i for each

a−i yields column vectors equal to (1, . . . , 1) ∈ RAi . Therefore, there are A−i − 1

linearly dependent columns. Eliminating them, it follows that genericity requires

|Ai| = |Ai × Si| ≤ |A−i × S−i| − (|A−i| − 1) = 1 + |A−i| × (|S−i| − 1).

This must hold for all i. Since the intersection of finitely many generic sets is generic,

necessity follows. For a proof of sufficiency, see Appendix A. �

If |S| = 1 then DUD is generic only if |A| = 1. More interestingly, DUD is generic

even if |S| = 2, as long as players have enough actions. Hence, a team may overcome

incentive constraints (i.e., Corollary 1 holds) generically even if only one individual is

able to make substantive observations and these observations are just a simple binary

bit of information. If others’ action spaces are large enough and their actions have

generic effect on the bit’s probability, this uniquely informed individual could still be

controlled by testing him with unpredictable combinations of others’ actions.16

15Here, detection is defined with respect to the same correlated strategy for each deviation plan.
16We thank an anonymous referee for urging us to emphasize this point.
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3.2 Attribution

Definition 5 (Attribution). A deviation plan αi for player i is unattributable if

there exists a profile α−i = (α1, . . . , αi−1, αi+1, . . . , αn) of deviation plans such that

∀σ ∈ ∆(A), Pr(σ, α1) = · · · = Pr(σ, αi) = · · · = Pr(σ, αn).

Call αi attributable if it is not unattributable, i.e., for every profile α−i of deviation

plans, there is a correlated strategy σ and a player j such that Pr(σ, αi) 6= Pr(σ, αj).

Intuitively, a deviation plan is unattributable if there exists a profile of opponents’

deviation plans such that every unilateral deviation would lead to the same expected

report probabilities. Heuristically, after an unattributable unilateral deviation, even

if the fact that someone deviated is detected, anyone could have been the culprit.

Definition 6 (IOP). A monitoring technology Pr identifies obedient players (IOP)

if every disobedient deviation plan is attributable.

IOP is a stronger requirement on a monitoring technology than DUD. Indeed, DUD

follows by replacing αj above with honesty and obedience. IOP means that any

profile of disobedient deviation plans that affects the probability of reported signals

must do so in a way that is different for some players, since otherwise they would be

unattributable. Conversely, if IOP fails then there exist disobedient deviation plans

that change conditional probabilities in the same way for every player, so anyone

could have disobeyed. Budget-balanced implementation must therefore fail, since

players’ incentives would “overlap.” In other words, it would be impossible to punish

some and reward others at the same time in order to provide adequate incentives. If

all players must be punished or rewarded together, then budget balance must fail.

In comparison with Holmström (1982), who appointed a principal to play the role

of budget-breaker, it will be seen that a team whose monitoring technology exhibits

IOP can share that role internally. In some teams, this might be allocated stochas-

tically, even leading to a secret principal (Section 2.2). Indeed, Holmström (1982)’s

principal works because after a unilateral deviation, the principal (having no actions

to take) can be identified as an obedient player, i.e., obedience is ‘attributable’ to the

principal. Heuristically, IOP emphasizes rewarding the innocent rather than punish-

ing the guilty. Furthermore, Corollary 3 below argues that the former perspective on

incentives delivers informational economies relative to the latter.
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Theorem 3. A monitoring technology identifies obedient players if and only if it

provides strict incentives with budget balance, i.e., there exists a probability weighted

incentive scheme ξ : I × A× S → R such that
∑

i ξi(a, s) = 0 for every (a, s), and

∀(i, ai, bi, ρi), 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a)− Pr(s|a−i, bi, ρi)),

with a strict inequality whenever ai 6= bi.

Proof. By the Alternative Theorem (Rockafellar, 1970, Theorem 22.2, p. 198), Pr

fails to provide strict incentives with budget balance if and only if there exist vectors

λ ≥ 0 and η ∈ RA×S such that λi(ai, bi, ρi) > 0 for some (i, ai, bi, ρi) with ai 6= bi and

∀(i, a, s),
∑

(bi,ρi)

λi(ai, bi, ρi)(Pr(s|a)− Pr(s|a−i, bi, ρi)) = η(a, s),

where η is independent of i. Let Λ = max(i,ai)

∑
(bi,ρi)

λi(ai, bi, ρi) > 0. For every

player i, let αi be the deviation plan defined pointwise by

αi(bi, ρi|ai) :=

{
λi(ai, bi, ρi)/Λ if (bi, ρi) 6= (ai, τi), and

1−
∑

(bi,ρi)6=(ai,τi)
λi(ai, bi, ρi)/Λ otherwise.

By construction, αi is disobedient and unattributable (using α−i): IOP fails. �

Corollary 3. A monitoring technology identifies obedient players if and only if any

team with any profile of utility functions can approximately enforce any correlated

strategy with budget balanced secret contracts.

The proof of this result is almost identical to that of Corollary 1, therefore omitted.

The only difference is that the primal includes (∗∗), yielding a slightly different dual.

In the context of publicly verifiable monitoring, IOP reduces to DUD together with⋂
i∈I

Ci = {0},

where 0 stands for the origin of RA×S and for every i, Ci (called the cone of player i)

is the set of all vectors η ∈ RA×S such that for some deviation plan αi : Ai → ∆(Ai),

∀(a, s), η(a, s) =
∑
bi∈Ai

αi(bi|ai)(Pr(s|a)− Pr(s|bi, a−i)).

Call this condition on {Ci} non-overlapping cones (NOC). Fudenberg et al. (1994)

impose a full rank condition for each pair of players at each action profile, implying
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that certain hyperplanes intersect only at the origin for every pair of players. On

the other hand, NOC requires that certain cones intersect only at the origin for all

players. Thus, it is possible that two players’ cones overlap, i.e., their intersection

is larger than just the origin. In general, NOC does not even require that there

always be two players whose cones fail to overlap, in contrast with the compatibility

condition of d’Aspremont and Gérard-Varet (1998), as Figure 1 below illustrates.17

Figure 1: A cross-section of three non-overlapping cones in R3 (pointed at the origin

behind the page) such that every pair of cones overlaps.

Upon a unilateral disobedience that changes probabilities by DUD, although it may

be impossible to identify deviator(s), there must be someone to who could not have

generated the statistical change. This way, IOP identifies obedient players. Budget

balanced incentives are now possible, rewarding the obedient and punishing all others.

Just as for DUD, IOP can be translated to an equivalent condition with dual economic

interpretation. The condition is PSI with budget balance, and its equivalence to IOP

follows by the same argument as for DUD and PSI. Specifically for (publicly) verifiable

monitoring, the fact that IOP can be decomposed into two separate conditions, DUD

and NOC, provides useful insights, as shown next.

Definition 7. A verifiable monitoring technology Pr clears every budget (CEB) if

given K : A× S → R there exists ξ : I × A× S → R such that

∀(i, ai, bi), 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a)− Pr(s|bi, a−i)), and

∀(a, s),
∑
i∈I

ξi(a, s) = K(a, s).

The function K(a, s) may be regarded as a budgetary surplus or deficit for each

combination of recommended action and realized signal. CEB means that any level

17IOP is weaker than pairwise full rank, local pairwise full rank, and compatibility of d’Aspremont
and Gérard-Varet (1998) also in the sense of approximate versus exact implementation (as well as
information extraction), like DUD versus (local) individual full rank in Example 1.

19



of such budgetary surplus or deficit can be attained by a team without disrupting

any incentive compatibility constraints. As it turns out, this is equivalent to NOC.

Proposition 1. A verifiable monitoring technology has non-overlapping cones if and

only if it clears every budget.

This result further clarifies the relative roles of DUD and NOC. By Theorem 1, DUD

characterizes approximate enforceability of any action profile a by secret contract.

However, the team’s budget may not be balanced ex post. NOC guarantees existence

of a further contract to absorb any budgetary deficit or surplus of the original contract

without violating any incentive constraints. Therefore, the original contract plus this

further contract can now approximately enforce a with ex post budget balance.18

Without verifiability, a decomposition of IOP into two separate parts does not emerge

naturally. Indeed, it is not difficult to see that NOC plus DUD is sufficient but not

necessary for IOP. To see this, notice there exist deviations, namely dishonest but

obedient ones, that do not directly affect anyone’s utility, and as such IOP allows

them to remain unattributable (like DUD). With verifiability, every deviation may

in principle affect players directly.

Example 2. Suppose there exists an individual i0 such that Ai0 and Si0 are both

singleton sets. Here, DUD suffices for approximate implementability with ex post

budget balance for this team, since player i0 cannot be a deviator. She may become

a “principal” and serve as “budget-breaker,” much like a seller in an auction.

Example 3. Consider a team with two players (I = {1, 2}) and two publicly verifiable

signals (S = S0 = {x, y}). The players play the normal-form game (left) with public

monitoring technology (right) below:

w s2 w s2

m 2,−1 −1, 0 m p, 1− p q, 1− q
s1 3,−1 0, 0 s1 1/2, 1/2 1/2, 1/2

Utility Payoffs Signal Probabilities

Suppose that q > p > 1/2. First we will show that the “desirable” profile (s1, w)

cannot even be implemented approximately with standard (i.e., non-secret) contracts.

With any standard contract, player 1 must be indifferent between monitoring and

18A similar argument is provided by d’Aspremont et al. (2004) for Bayesian mechanisms.
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shirking to approximate efficiency (it can be shown that player 2’s randomization

does not help). This implies that 1 = 1
4
(ζ1(x) − ζ1(y)), where ζ1(ω) is the transfer

to player 1 when ω ∈ {x, y} realizes. Budget balance requires 1 = 1
4
(ζ2(y) − ζ2(x)).

Since player 2’s incentive constraint is 1 ≤ σ 1
4
(ζ2(y) − ζ2(x)), where σ denotes the

probability that player 1 plays m, it follows that σ cannot be smaller than 1.

There exist budget-balanced secret contracts that approximately implement (s1, w).

Indeed, let player 1 play m with any probability σ > 0 and player 2 play w with

probability 1. Let ζ : A× S → R denote monetary transfers to player 1 from player

2, and fix ζ(a, s) = 0 for all (a, s) except (m,w, x). That is, no money is transferred at

all except when (m,w) is recommended and x realizes. Clearly, s1 and s2 are incentive

compatible when recommended. The remaining incentive constraints simplify to:

m : 1 +
σ(m,w)

σ(m)
(1

2
− p)ζ(m,w, x) ≤ 0

w : 1 +
σ(m,w)

σ(w)
(p− q)ζ(m,w, x) ≤ 0

These two inequalities can clearly be satisfied by taking ζ(m,w, x) large enough. It is

not difficult to check that IOP is satisfied (hence also DUD) if and only if p 6= q and

(p−1/2)(q−1/2) > 0. Thus, Robinson and Friday (Section 2.1) cannot approximately

enforce (s1, w) with budget balance.

Example 4. Without verifiability (S = S1 = {x, y}) IOP fails, but the same con-

dition suffices to approximately enforce (s1, w) with budget balance. However, not

everything is approximately enforceable. See Section 4.2 for conditions on a moni-

toring technology to approximately enforce a given action profile.

Finally, we establish genericity.

Proposition 2. IOP is generic if also
∣∣A−{i,j} × S−{i,j}∣∣ ≥ |Ai × Si|+ |Aj × Sj| − 1

for some i, j ∈ I.

Proof. �
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4 Discussion

This section makes four comments. Firstly, it fills an important gap in the inter-

pretation of Theorems 1 and 3. Secondly, it reconciles our main results with the

literature by applying the duality of our model to the case of fixed action profiles and

utility functions. Thirdly, environmental complications such as limited liability and

individual rationality are examined, where standard results generalize to our setting

easily, such as that only total liability matters to a team or that individual rationality

is not a binding constraint. We end the section by arguing that DUD and IOP, as

well as similar variants, are generic in relatively low dimensional spaces.

4.1 Exact versus Approximate Enforcement

A correlated strategy σ is (exactly) implementable if there is a scheme ζ such that

∀i ∈ I, ai ∈ Ai, θi ∈ Θi,∑
a−i

σ(a)(vi(bi, a−i)− vi(a)) ≤
∑

(a−i,s)

σ(a)ζi(a, s)(Pr(s|a)− Pr(s|θi, a−i)). (∗ ∗ ∗)

In Section ??, approximate implementability is defined in terms of linear inequalities:

σ is approximately implementable if a ξ exists such that (σ, ξ) satisfies (∗). To justify,

it must be shown that (σ, ξ) is approachable: there is a sequence {(σm, ζm)} such that

(σm, ζm) satisfies (∗∗∗) for every m, σm → σ, and σmζm → ξ. The next result proves

this under DUD and IOP. In addition, IOP implies every action profile is approachable

with contracts that are budget balanced “along the way,” not just asymptotically.

Proposition 3. Pr satisfies DUD (IOP) only if every completely mixed correlated

strategy is implementable (with budget balance). Hence, DUD (IOP) implies that

every contract satisfying (∗) (and (∗∗)) is approachable (with budget balance).

When DUD or IOP fails, the “closure” of (∗ ∗ ∗) does not necessarily equal (∗). To

illustrate, consider the following variation of Robinson and Friday (Section 2.1):

work shirk rest work shirk rest

monitor 2,−1 −1, 0 −1, 0 monitor 1, 0 0, 1 1, 0

shirk 3,−1 0, 0 0,−1 shirk 1/2, 1/2 1/2, 1/2 1/2, 1/2

Utility Payoffs Signal Probabilities
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Assume the signal is public. The profile (shirk,work) is approximately implementable

with transfers ξ given by ξF (g|monitor,work) = 1 and ξi(a, s) = 0 for other (i, a, s).

However, since rest is indistinguishable from work and rest weakly dominates work,

no contract can dissuade Friday from resting. Hence, (shirk,work) is not approach-

able. Generalizing Proposition 3 involves iterated elimination of weakly dominated

indistinguishable strategies in the spirit of Myerson’s (1997) dual reduction; details

are left for another paper. (But Theorem 4 below provides a partial generalization.)

4.2 Fixed Action Profiles and Utility Functions

A characterization of implementable action profiles also follows. We focus on budget

balanced implementation (without proof, since it is just like that of Theorem 3); the

unbalanced case—being similar—is omitted.

A mixed deviation αi ∈ ∆(Θi) for player i is unattributable at a ∈ A if there is

a profile of mixed deviations α such that Pr(αi, a) = Pr(αj, a) for every j, where

Pr(αi, a)(s) =
∑

θi
αi(θi) Pr(s|θi, a−i) for every s; otherwise it is attributable at a.

Say Pr identifies obedient players at a (IOP-a) if every mixed deviation αi with

αi(ρi, bi) > 0 for some bi 6= ai is attributable at a.

Proposition 4. A monitoring technology identifies obedient players at an action

profile a if and only if any team with any profile of utility functions can exactly

implement a with budget balanced secret contracts.

With verifiable monitoring, IOP-a can be decomposed into two conditions. The first

is exact convex independence at a (ECI-a), which means that the requirement for ECI

from Section 3.1 holds at a. For the second, let Ci(a) be the cone of player i at a,

i.e., the set of all vectors η ∈ RS such that for some mixed deviation αi,

∀s ∈ S, η(s) =
∑
bi∈Ai

αi(bi)(Pr(s|a)− Pr(s|bi, a−i)).

A verifiable monitoring technology Pr has non-overlapping cones at a (NOC-a) if⋂
i∈I

Ci(a) = {0}.

IOP-a is equivalent to ECI-a and NOC-a. It generalizes the famous pairwise full rank

condition of Fudenberg et al. (1994), and implies (but is not implied by) for all i 6= j,

Ci(a) ∩ Cj(a) = {0}.
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Intuitively, i’s and j’s deviations can be statistically distinguished at a. On the other

hand, NOC-a allows some players’ cones to overlap. Naturally, this is weaker than

pairwise full rank at a, and generally even weaker than Ci(a)∩Cj(a) = {0} for some

i, j. Intuitively, NOC-a requires that some player can be identified as obedient at a.19

It is possible to partially generalize Proposition 3 by fixing utility functions. To this

end, a deviation plan αi for i is vi-detectable if Pr(σ) = Pr(αi, σ) for every correlated

strategy σ implies vi(αi, σ) ≤ vi(σ) for every σ, where vi(σ) =
∑

a vi(a)σ(a) and

vi(σ) =
∑

(a,θi)
vi(bi, a−i)αi(θi|ai)σ(a). Pr v-detects unilateral disobedience (v-DUD)

if every disobedient deviation plan αi of any player i is vi-detectable. Similarly, call αi

v-attributable if existence of a profile α of deviation plans with Pr(αi, σ) = Pr(αj, σ)

for every σ and every j implies that
∑

i vi(αi, σ)− vi(σ) ≤ 0. Pr v-identifies obedient

players (v-IOP) if every disobedient deviation plan is v-attributable.

The next result follows immediately from the duality of Theorem 1 and Proposition 3,

so its proof is omitted. It could also be extended to describe exact implementability

in line with Proposition 4 after suitably amending v-DUD/v-IOP; details are left to

the reader.

Theorem 4. A monitoring technology exhibits v-DUD (v-IOP) if and only if any

action profile is approximately implementable with (budget balanced) secret contracts.

Furthermore, Proposition 3 still holds with v-DUD (v-IOP) replacing DUD (IOP).

4.3 Participation and Liability

In this subsection we will use duality to study teams subject to liquidity constraints.

One such constraint is limited liability, where an individual’s transfers are bounded

below. This can be taken into account by adding ζi(a, s) ≥ `i or ξi(a, s) ≥ σ(a)`i

to the metering problem, where `i is an exogenous parameter representing player i’s

liability. Let ` = (`1, . . . , `n) be the profile of liabilities faced by a team. A team’s

total liability is defined by ̂̀=
∑

i `i. By a simple duality and without restrictions

on a team’s monitoring technology, we can generalize to our setting Theorem 5 of

Legros and Matsushima (1991) and Theorem 4 of Legros and Matthews (1993).

19Restricted to public monitoring, Proposition 4 is equivalent to Proposition 3 in Legros and
Matsushima (1991). Similar results are also in Lemma 1 of d’Aspremont and Gérard-Varet (1998),
but our decomposition and interpretation are new. Indeed, IOP-a is weaker than their compatibility,
which requires pairwise full rank for some pair of players.
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Proposition 5. Only total liability affects a team’s (approximately) implementable

action profiles (with and without budget balance).

It is possible that the team faces double-sided limited liability, which may be captured

by adding a version of the following constraints to the metering problem:

∀(i, a, s), −σ(a)`i ≤ ξi(a, s) ≤ σ(a)`i,

for some `i ≥ 0. These constraints lead to an alternative, linear way of requiring that

ξ be adapted to σ (i.e., ξi(a, s) = 0 whenever σ(a) = 0).

Individual rationality is also amenable to our study of incentives. Without budget

balance, since players can be paid lump sums to become indifferent between belonging

to the team and forsaking it, individual rationality constraints cannot bind. Hence,

suppose the team’s budget must be balanced ex post. As a normalization, assume

that
∑

i vi(a) ≥ 0 for all a ∈ A. Participation constraints may be incorporated as:

∀i ∈ I,
∑
a∈A

σ(a)vi(a) +
∑
s∈S

ξi(a, s) Pr(s|a) ≥ 0.

Proposition 6. Participation is not a binding constraint if
∑

i vi(a) ≥ 0 for all a.

5 Conclusion

In this paper we have explored possible ways in which secret contracts may help

organizations, with particular emphasis on the question of monitoring a monitor and

maintaining budget balance. Formally, we have used duality systematically to make

general statements about a team’s contractual scope. We have exploited this duality

to consider teams with infinitely many actions and signals, with fruitful applications

such as a subdifferential characterization equilibrium payoffs. Below, we conclude

this paper with some comments to connect the paper with the (mechanism design

and implementation) literature, discuss weaknesses (collusion), and further research.

5.1 Abstract Mechanisms in Concrete Contracts

We build a bridge between abstract mechanism design and concrete contract theory in

this paper. Some of the mechanism design literature has focused on surplus extraction
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in environments with adverse selection. Thus, Cremer and McLean (1988) argued

that if individuals have “correlated types” then their surplus may be extracted.20 On

the other hand, they do not explain the source of such correlation. Secret contracts

provide an explanation for the emergence of correlated types.

As part of a team’s economic organization, it may be beneficial for private information

to be allocated differently in order to provide the right incentives. As has been argued

here, this is true even if the team starts without informational asymmetry. In a sense,

correlated types emerge endogenously, and as such there are incidental similarities

between this paper and the mechanism design literature even if conceptually there

are important differences. For instance, the essence of secret contracts is lost in the

abstraction of mechanism design because it so reduced. With moral hazard, our

identifiability conditions apparently lend themselves easily to interpretation.

Nonetheless, a hybrid exercise where players begin with some private information and

face an additional metering problem is amenable to the techniques developed here.

Initial results are promising (Rahman, 2005b, Ch. 5); details are for another paper.

5.2 Secrets and Verifiable Recommendations

Secret contracts rely on making payments contingent on verifiable recommendations.

Even if the mediator’s messages are unverifiable, it may still be possible for players

to verifiably reveal their recommendations. Player i’s reporting strategy would then

involve announcing a recommended action and a private signal. Incentive constraints

would be only slightly different.

Kandori (2003) used similar schemes in Nash equilibrium for repeated games with

public monitoring, by having players mix independently and transfers depend on

reported realizations of mixed strategies. Our framework is more general because we

study private monitoring with communication in correlated equilibrium. Moreover,

we do not require pairwise conditions on the monitoring technology for a folk theorem.

As illustrated by Robinson and Friday in Section 2.1, secret contracts provide an

intuitive organizational design. If recommendations were not verifiable, then in order

to approximate efficiency Friday would need to report whether or not he worked,

20d’Aspremont et al. (2004) extend this result to include budget balance. The additional constraint
of individual rationality is studied by Kosenok and Severinov (2004).
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which broadly interpreted provides a different answer to the question of monitoring

the monitor: have two monitors monitoring each other. We purposely avoided this.

5.3 Usual Problems with Collusion

[Discuss the model with multilateral deviations.]

A notable weakness of secret contracts is not being collusion-proof. To illustrate, in

our leading example (Section 2.1) Robinson and Friday could communicate to break

down the incentives that secrets tried to provide. However, this problem is neither

inherent to secrets nor widespread to all teams. Example 3 describes when Robinson

and Friday can approximate efficiency with budget balance, for which they require

secrets. There, contracts are naturally robust to collusion, since budget balance

implies that Friday’s gain is Robinson’s loss.

Collusion is a problem for secret contracts inasmuch as it is a problem for contracts

in general. For instance, the transfer schemes of Cremer and McLean (1988) are

not generally collusion-proof for similar reasons. In any case, although there may be

partial solutions to the problem of collusion with secret contracts in the spirit of, say,

Che and Kim (2006), the main purpose of this paper is to introduce secret contracts.

Thus, analysis of collusion is postponed for the future. Meanwhile, the scheme below

weakly dissuades extra-contractual communication between Robinson and Friday.

(monitor,work) (monitor,shirk) (shirk,work) (shirk,shirk)

g 1/µ, 1/σ 0, 1/σ 1/2µ, 0 0, 1/2(1− σ)

b 0, 0 1/(1− µ), 0 0, 1/(1− σ) 1/2(1− µ), 1/2(1− σ)

A Proofs

Corollary 1. Consider the following linear program, called the primal.

Vf (v) := sup
σ≥0,ξ

∑
a∈A

f(a)σ(a) s.t.
∑
a∈A

σ(a) = 1,

∀(i, ai, θi),
∑
a−i

σ(a)(vi(bi, a−i)− vi(a)) ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a)− Pr(s|θi, a−i)).
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The dual is given below. By FTLP, the value of the dual equals that of the primal.

Vf (v) = inf
λ≥0,κ

κ s.t.

∀a ∈ A, κ ≥ f(a)−
∑
(i,θi)

λi(ai, θi)(vi(bi, a−i)− vi(a))

∀(i, a, s),
∑
θi∈Θi

λi(ai, θi)(Pr(s|a)− Pr(s|θi, a−i)) = 0

Clearly, λ is feasible if and only if its probabilistic normalization is undetectable. We will
show that DUD is equivalent to Vf (v) = max{f(a) : a ∈ A} for all f . If Pr satisfies DUD
then by the second family of dual constraints, any feasible λ 6= 0 must have λi(ai, θi) > 0
only if ai = bi. Hence, the first family of dual constraints becomes κ ≥ f(a) for all a.
Minimizing κ subject to them yields max{f(a) : a ∈ A} for any f and v, proving sufficiency.
For necessity, if DUD fails there is λ ≥ 0 with∑

θi∈Θi

λi(ai, θi)(Pr(s|a)− Pr(s|θi, a−i)) = 0

for all (i, a, s) and λj(âj , θ̂j) > 0 for some (j, âj , θ̂j) with b̂j 6= âj . Let f = 1baj
and choose v

as follows. For any a−j , the utility to each player depending on whether or not j plays âj
is given by (first is j then anyone else):

aj âj

1, 0 0, 2

Given a with aj 6= âj , the first dual constraint becomes 0 +
∑

ρj
λ(aj , âj , ρj) ≤ κ. This can

be made smaller than 1 by multiplying λ by a sufficiently small positive number. At âj , the
constraint becomes 1−

∑
θj
λj(âj , θj) ≤ κ. Since

∑
λ > 0, there is a feasible dual solution

with κ < 1 = max{f(a)}, as required. �

Proposition 1. Consider the following primal problem: Find a feasible ξ to solve

∀(i, ai, bi), 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a)− Pr(s|bi, a−i)), and ∀(a, s),
∑
i∈I

ξi(a, s) = K(a, s).

The dual of this problem is given by

inf
λ≥0,η

∑
(a,s)

η(a, s)K(a, s) s.t. ∀(i, a, s),
∑
bi∈Ai

λi(ai, bi)(Pr(s|a)− Pr(s|bi, a−i)) = η(a, s).

If CEB is satisfied, then the value of the primal equals 0 for any K : A×S → R. By FTLP,
the value of the dual is also 0 for any K : A × S → R. Therefore, any η satisfying the
constraint for some λ must be 0 for all (a, s), so NOC is satisfied. For necessity, if NOC is
satisfied then the value of the dual is always 0 for any K : A×S → R. By FTLP, the value
of the primal is also 0 for any K. Therefore, given K, there is a feasible primal solution
ξi(a, s) that satisfies all the primal constraints, and CEB is satisfied. �
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Proposition 3. For B ⊂ A, the B-cone generated by unidentifiable deviation profiles is

K(B) := {λ ≥ 0 : ∀i ∈ I, a ∈ B, s ∈ S,
∑
θi∈Θi

λi(ai, θi)(Pr(s|a)− Pr(s|θi, a−i)) = 0}.

By the Alternative Theorem (Rockafellar, 1970, p. 198), a given σ is implementable, i.e.,
there exists ζ to solve (∗ ∗ ∗), if and only if the following dual inequalities are satisfied:

∀λ ∈ K(supp σ),
∑

(i,ai,θi)

λi(ai, θi)
∑
a−i

σ(a)(vi(bi, a−i)− vi(a)) ≤ 0.

In contrast, approximate implementability of σ as in Definition 1 is equivalent to the smaller
system of inequalities indexed instead by λ ∈ K(A) ⊂ K(supp σ). (Hence, exact imple-
mentability implies approximate.) Now, if σ is completely mixed then σ(a) > 0 for all a,
so K(supp σ) = K(A). By DUD, K(A) consists of all λ ≥ 0 with λi(ai, θi) > 0 implying
ai = bi, where θi = (ρi, bi). Therefore,

∑
(i,ai,θi)

λi(ai, θi)
∑

a−i
σ(a)(vi(bi, a−i)− vi(a)) = 0,

and implementability follows. For IOP, replacing K(B) with

K0(B) := {λ ≥ 0 : ∀i ∈ I, a ∈ B, s ∈ S,
∑
θi∈Θi

λi(ai, θi)(Pr(s|a)− Pr(s|θi, a−i)) = η(a, s)}

leads to the corresponding result by an almost identical argument.

Clearly, the closure of the space of contracts satisfying (∗ ∗ ∗) (and (∗∗)) is contained in the
space of contracts satisfying (∗) (and (∗∗)), so it remains only to show the converse con-
tainment. To this end, pick any (σ, ξ) satisfying (∗) (and (∗∗)). By the previous argument,
the uniformly distributed correlated strategy with full support σ0 = (1/ |A| , . . . , 1/ |A|)
is implementable (with budget balance). For any sequence of positive probabilities {pm}
decreasing to 0, consider the sequence of contracts {(σm, ζm)} defined for every (i, a, s) by
σm(a) = pmσ

0(a) + (1− pm)σ(a) and ζmi (a, s) = pmζ
0
i (a, s) + (1− pm)ξi(a, s)/σm(a). This

sequence of contracts converges to (σ, ξ) and satisfies (∗ ∗ ∗) (as well as (∗∗)) for all m. �

Proposition 5. We just prove the result with budget balance; the rest follows similarly.
The dual of the metering problem of maximizing

∑
a f(a)σ(a) subject to limited liability,

approximate implementability, and budget balance is

Vf (v, `) = inf
λ,µ≥0,η,κ

κ s.t.

∀a ∈ A, κ ≥ f(a)−
∑
(i,θi)

λi(ai, θi)(vi(bi, a−i)− vi(a))−
∑
(i,s)

µi(a, s)`i,

∀(i, a, s),
∑
θi∈Θi

λi(ai, θi)(Pr(s|a)− Pr(s|θi, a−i)) + µi(a, s) = η(a, s),

where µi(a, s) is a multiplier on the liquidity constraint for player i at (a, s). Adding the last
family of equations with respect to s implies

∑
s qi(a, s) =

∑
s η(a, s) for every i. Therefore,∑

(i,s)

µi(a, s)`i =
∑
(i,s)

η(a, s)`i =
∑
s∈S

η(a, s)̂̀,
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where ̂̀=
∑

i `i, so we may eliminate µi(a, s) from the dual problem as follows:

Vf (v, `) = inf
λ,η,κ

κ s.t.

∀a ∈ A, κ ≥ f(a)−
∑
(i,θi)

λi(ai, θi)(vi(bi, a−i)− vi(a))−
∑
s∈S

η(a, s)̂̀
∀(i, a, s),

∑
θi∈Θi

λi(ai, θi)(Pr(s|a)− Pr(s|θi, a−i)) ≤ η(a, s).

Any two liability profiles ` and `′ with ̂̀= ̂̀′ lead to this same dual with the same value. �

Proposition 6. The dual of the metering problem subject to participation is:

Vf (v) = inf
λ,π≥0,κ,η

κ s.t.

∀a ∈ A, κ ≥ f(a)−
∑
(i,θi)

λi(ai, θi)(vi(bi, a−i)− vi(a)) +
∑
i∈I

πivi(a)

∀(i, a, s), πi Pr(s|a) +
∑
θi∈Θi

λi(ai, θi)(Pr(s|a)− Pr(s|θi, a−i)) = η(a, s)

where πi is a multiplier for player i’s participation constraint. Adding the second family
of dual constraints with respect to s ∈ S, it follows that πi = π does not depend on i.
Redefining η(a, s) as η(a, s)− πPr(s|a), the set of all feasible λ ≥ 0 is the same as without
participation constraints. Since

∑
i vi(a) ≥ 0 for all a, the dual is minimized by π = 0. �

Sufficiency in Theorem 2. For sufficiency, suppose firstly that |Si| > 1 yet |Ai × Si| >
|A−i × S−i| for some i. For a fixed (a0

i , s
0
i ), let Pr(a0

i , s
0
i ) = (1/ |S| , . . . , 1/ |S|). For all

other (ai, si),

[A proof of genericity via convex independence: if there are more points than dimensions
(i.e., more rows than columns) then have all the vertices be one of the points. Then
have another point (there’s at least one left over by assumption) be the equally weighted
average of all the vertices. Any remaining points can go anywhere. Clearly there is convex
dependence. A small perturbation of all the points preserves convex dependence, so there
is an open set of monitoring technologies with convex dependence. But an open set has
positive Lebesgue measure. Therefore, SCI is generic if |S| > 1 and there are at least as
many columns as rows.]

�

Corollary 2. By the Alternative Theorem (Rockafellar, 1970, Theorem 22.2, p. 198), for
any correlated strategy σ, Pr satisfies DUD-σ if and only if there exists a signal contingent
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transfer scheme ζ : I × S → R such that

∀(i, ai, bi, ρi), 0 ≤
∑

(a−i,s)

σ(a)ζi(s)(Pr(s|a)− Pr(s|a−i, bi, ρi)),

with a strict inequality whenever ai 6= bi. Therefore, by scaling ζ appropriately, any devia-
tion gains can be outweighed by contractual losses. The result now follows. �

B Lemmata

Lemma B.1. DUD is equivalent to the following condition: If λ ≥ 0 satisfies

∀(i, a, s), Pr(s|a) =
∑

(bi,ti)

λi(bi, ti|ai, si) Pr(s−i, ti|a−i, bi)

then λi(bi, ti|ai, si) = 0 whenever ai 6= bi.

Proof.

�

Lemma B.2. CI implies DUD.

Proof.

�
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