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Abstract

This paper studies the effects of analogy-based expectations in static two-player games of incomplete
information. Players are assumed to be boundedly rational in the way they forecast their opponent’s state-
contingent strategy: they bundle states into analogy classes and play best-responses to their opponent’s
average strategy in those analogy classes. We provide general properties of analogy-based expectation equi-
libria and apply the model to a variety of well known games. We characterize conditions on the analogy
partitions for successful coordination in coordination games under incomplete information [Rubinstein, A.,
1989. The electronic mail game: Strategic behavior under ‘almost common knowledge’. Amer. Econ. Rev.
79, 385–391], we show how analogy grouping of the receiver may facilitate information transmission in
Crawford and Sobel’s cheap talk games [Crawford, V.P., Sobel, J., 1982. Strategic information transmission.
Econometrica 50, 1431–1451], and we show how analogy grouping may give rise to betting in zero-sum
betting games such as those studied to illustrate the no trade theorem.
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1. Introduction

In games involving many states, it is implausible to assume that players understand the strat-
egy of their opponent state by state. In this paper, we take the view that players understand only
the average behavior of their opponent over bundles of states. Players are then characterized by
how finely they understand the strategy of their opponent together with their information and
payoff structure.

The class of games that we consider are two-player games of incomplete information. Our
only departure from standard approaches lies in the modeling of players’ expectations about their
opponent’ strategy. Players bundle states into analogy classes and play best-responses to their
opponent’s average strategy in those analogy classes. More precisely, given the prior probabilities
of states of the world and the strategy σj of player j in every state, one can infer for every analogy
class αi of player i �= j the average behavior of player j in αi . Call σj the strategy of player j

that specifies that in any state belonging to αi player j plays according to the average behavior
in αi . In equilibrium, σi is assumed to be a best-response to σj given player i’s information
partition for i, j = 1,2 and j �= i, where σj is interpreted as i’s perception of j ’s strategy.

The equilibrium that is so obtained is the analog for static games of incomplete information
of the solution concept considered in Jehiel (2005) for extensive form games. It is called the
analogy-based expectation equilibrium, and it is interpreted in Section 3 as the limiting outcome
of a learning process involving populations of player i = 1,2 who would get a coarse feedback
about the past behavior of players in population j �= i and no feedback on their own past perfor-
mance until they exit the system.1

One of our main objectives is to apply the approach to a number of classic games such as
coordination games (with noisy signals), strategic information transmission games and betting
games. For each application, we illustrate the working of the approach, and how the obtained
outcomes differ from those obtained with the standard approach. We consider various analogy
groupings throughout the applications.

In one application, the e-mail game (Rubinstein, 1989), many states correspond to the same
underlying payoff structure (whether the enemy is prepared or not). Our leading result for this
application considers the payoff-relevant analogy partition which groups states according to the
underlying payoff structure (as opposed to the fine details of the state which include the higher
order beliefs of the two players). That is, our equilibrium in the payoff-relevant analogy case
assumes that the only feedback transmitted from one generation of players to the next (in the
underlying dynamic learning model sustaining the approach) is the average probability of attack
conditional on whether or not the enemy was prepared (and not conditional on how many mes-
sages were sent back and forth). Such a view on feedback agrees with the recent literature on
robust implementation (Bergemann and Morris, 2005) which points out that it may be hard to
have access to (and thus have feedback about) others’ beliefs and higher order beliefs.

In Crawford and Sobel’s (1982) information transmission game, there is a natural notion of
proximity between states as payoffs vary continuously with the state and states are linearly or-
dered. Our analogy partition in this application is the interval analogy partition that groups states
into intervals so as to reflect the view that the feedback aggregates the communication strategy
of the senders over nearby states.

1 The latter assumption is automatically satisfied whenever each individual player plays only once.
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Finally, we apply the approach to zero-sum betting games and consider the analogy partition
in which states are bundled according to whether betting induces a loss or a gain to the opponent
so as to reflect the idea that in some cases whether the opponent could have avoided a loss by
not betting or could have made a gain by betting are more salient pieces of information on which
getting feedback is easier.

Before considering the applications, we provide a general framework that allows for arbitrary
analogy partitions (Section 2). In Section 3 we discuss the learning interpretation of the model
and discuss a few examples of analogy partitions. In Section 4 we briefly characterize general
properties of analogy-based expectation equilibria. Existence in finite Bayesian games is estab-
lished (Proposition 1) and the contrast with other solution concepts is illustrated through a series
of examples.

Sections 5, 6 and 7 are devoted to applications. In Section 5 we show that successful coordina-
tion may arise in Rubinstein’s (1989) electronic mail game when players use the payoff-relevant
analogy partition. More generally, we analyze the various forms of analogy grouping that per-
mit successful coordination. Relatedly, we show that “global games” arguments (Carlson and
van Damme, 1993), used to select a unique equilibrium (the risk dominant one), do not extend
to situations in which players use a coarse analogy partitioning (bundling all states into one
analogy class). In Section 6 we consider strategic information transmission games (Crawford
and Sobel, 1982) for which it is shown that a coarse (but not too coarse) analogy grouping of
the receiver may facilitate information transmission even though the coarseness of the analogy
grouping makes the receiver’s inferences harder. Finally, in Section 7 we show how equilibrium
betting may arise in zero-sum settings with common priors where the no trade theorem would
apply with the standard approach.

Section 8 concludes. All proofs are relegated to the appendix. The results of standard and
alternative bounded rationality approaches are compared with ours in the corresponding sections
when appropriate.2

2. Model

For ease of exposition, we confine ourselves to two-person games. Unless explicitly specified,
the sets of actions and states of the world are assumed finite. Players are denoted by 1 and 2, and
we adopt the convention that i, j ∈ {1,2} and i �= j . An information structure is denoted by

I = 〈Ω,p,P1,P2〉,
where Ω is a set of states of the world, p is a strictly positive common prior probability distribu-
tion on Ω , and Pi is the partition of states of the world representing the information of player i.
We write Pi(ω) for the element of Pi containing ω. This set, called the information set of player i

at ω, is the set of states which player i thinks possible.
A Bayesian game is denoted by

G = 〈I,A1,A2, u1, u2〉,
where I is an information structure, Ai is the set of actions available to player i, and ui :A ×
Ω → R is player i’s state dependent utility function, where A = A1 × A2. A strategy of player i

in G is a Pi -measurable function σi :Ω → Δ(Ai).

2 A presentation of how other approaches to bounded rationality relate to the analogy-based expectation equilibrium in
extensive form games can be found in Jehiel (2005, Section 7).
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A pair of strategies σ = (σ1, σ2) is a Nash equilibrium (NE) of G if for each player i, each
state ω and each action a∗

i ∈ supp[σi(ω)] (i.e., such that the probability of playing a∗
i at ω,

σi(a
∗
i | ω), is strictly positive),

a∗
i ∈ arg max

ai∈Ai

∑
ω′∈Ω

p
(
ω′ | Pi(ω)

) ∑
aj ∈Aj

σj (aj | ω′)ui(ai, aj ;ω′).

Following Jehiel (2005), we depart from Nash equilibrium by assuming that players form
expectations about their opponent’s behavior by grouping states into analogy classes and by
averaging behavior in each analogy class.

Definition 1. An analogy system is a pair A = (A1,A2), where Ai is the analogy partition of Ω

for player i. The element of Ai containing ω is denoted by αi(ω) and is called the analogy class
for player i at ω.

A strategic environment is summarized by (G,A). Each player i forms an expectation about
the average behavior of player j in each analogy class αi of Ai . In equilibrium this expectation
coincides with the effective average behavior of j over the states ω ∈ αi , and player i plays a
best-response against the induced strategy of player j that specifies the same average behavior in
all states ω ∈ αi for every αi . Formally, given the strategy σj of player j, the strategy of player j

perceived by player i (given Ai ) is defined by the function σj : Ω → Δ(Aj ) such that for all
ω ∈ Ω ,

σj (ω) =
∑

ω′∈αi(ω) p(ω′)σj (ω
′)∑

ω′∈αi(ω) p(ω′)
=

∑
ω′∈Ω

p
(
ω′ | αi(ω)

)
σj (ω

′). (1)

Definition 2. A pair of strategies σ = (σ1, σ2) is an analogy-based expectation equilibrium
(ABEE) of the strategic environment (G,A) if for all i ∈ {1,2}, ω ∈ Ω and a∗

i ∈ supp[σi(ω)],
a∗
i ∈ arg max

ai∈Ai

∑
ω′∈Ω

p
(
ω′ | Pi(ω)

) ∑
aj ∈Aj

σ j (aj | ω′)ui(ai, aj ;ω′),

where σj (ω) is given by (1).

3. Motivation and interpretation

In this section we address the issues of how to interpret the solution concept, what features
of the game players are assumed to be aware of, and how to think of the analogy partitions
considered by the players.

Our premise is that players are aware of the prior, the action space and the structure of their
payoffs and of their information. They are not (necessarily) aware of the information nor of the
payoff structure of their opponent.

We think of each player i’s perception σj about player j ’s strategy as the outcome of a learn-
ing process (assumed to be converging) involving populations of players 1 and 2. Specifically,
assume that populations of players 1 and 2 are repeatedly matched in an anonymous way to play
game G and assume each individual player plays only once.3 Along the learning process, play-
ers of population i receive feedback about the average behavior of players of population j in

3 This is similar to the learning framework considered in recurring games (Jackson and Kalai, 1997).
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the various analogy classes αi , but no feedback about the past performances of other players in
populations i and j .4 They play a best-response to this feedback, which in turn generates new
data for the feedback in the next round.

Clearly, if the behaviors of players in populations 1 and 2 stabilize in the above learning model,
it should correspond to an ABEE.5 This is because the feedback generated by the strategy σj of
players j (assumed to be stable) leads players of population i to play a best-response to σj

(because σj corresponds to the real average behavior of player j as derived from σj in every
considered analogy class of player i).

In our learning scenario, we assumed that players played only once. We could alternatively
assume that players play several times, but then we should add that players receive no feedback
about their past performance nor about what their matched partners did until they exit the system
(so as to avoid that players make further inferences).6

In line with this learning interpretation, observe that the ABEE can be viewed as a selection
of self-confirming equilibrium in which the signals received by players i after each round corre-
spond to the average plays of players j over αi (see, for example, Battigalli, 1987 or Dekel et al.,
2004, for a general presentation of self-confirming equilibria for arbitrary signal structures). As it
turns out, the structure of our signals led us to consider a selection of self-confirming equilibrium
(which the general signal structure of Battigalli, 1987 or Dekel et al., 2004 would not permit):
the selection comes from the fact that in ABEE player i is assumed to play a best-response to
the simplest (as opposed to some) theory about player j ’s behavior that is consistent with i’s
observation (of j ’s play).7

The above learning model takes as exogenous the analogy classes αi . One interpretation is
that, along the learning process, only statistics about the average past play of players j in αi are
available to players i. Another interpretation is that more data are a priori available, but statistics
about average play in αi are more salient or accessible to subjects (see Higgins, 1996, for an
account of accessibility in psychology), and somehow players’ behaviors are best explained as if
only these statistics were available.

In line with the above interpretation, Huck et al. (2007) have conducted an experiment in
which players played two normal form games with an equal frequency (in our language, G con-
sisted of two possible states having the same prior probability). The feedback provided to subjects
between the various rounds concerned the behavior of the players over the two games. By play-
ing on the accessibility of the feedback, the system stabilized to different outcomes, which were
well predicted by the analogy approach.8

From an applied perspective, a question of primary importance is about which statistics about
opponents’ attitudes are likely to be more accessible as a function of the context. This obviously

4 Players could be assumed to receive additional feedback about the frequency of the various states as realized in past
matches in which case we could dispense with the assumption that players are aware of the prior.

5 Whether or not behaviors stabilize should be the subject of future work.
6 See Esponda (2007) for a model that mixes observations about payoffs and opponents’ behaviors in the context of

adverse selection problems. Observe that when players observe their opponents’ actions, one should have that Ai is finer
than Pi as player i can map player j ’s action with his own private information.

7 To the extent that player i has no knowledge at all about the payoff and information structure of player j , assuming
player j ’s play is constant over states in αi seems pretty natural for player i.

8 When behaviors were accessible game by game this corresponded to the fine analogy grouping. When they were
accessible only in aggregate over the two games, this corresponded to the coarse analogy grouping. The games were
chosen so that the equilibrium predictions are markedly different according to the analogy grouping.
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depends on the application, and to some extent this is an empirical question.9 In this paper, we
analyze from a theoretical viewpoint the implications of different analogy groupings. It is our
hope that the theoretical insights obtained in our paper will help make progress in the broader
understanding of how agents process data in interactive learning processes. Specifically, we con-
sider the following families of analogy partitions.

(i) The coarsest analogy partition. Ai = {Ω}. In this situation player i only perceives the
average behavior of player j across all states of the world. Hence, at equilibrium he plays a best-
response to the belief that player j behaves in the same way in all states of the world. Such an
analogy system is suited in situations in which only aggregate behaviors are made available or
accessible to agents at the learning stage. This fits in well with the coarse accessibility treatment
of the experiment conducted in Huck et al. (2007).

(ii) The private information analogy partition. Ai = Pi . In this situation player i believes in
each state ω that player j behaves in the same way in all states player i conceives as possible at ω.
This fits in well in situations in which agents construct themselves their statistics and somehow
believe erroneously that all players share their own information structure.

(iii) The payoff-relevant analogy partition. Ai = F , where F is the partition of Ω generated
by the fundamentals.10 In this situation, player i believes that his opponent’s strategy is only
correlated to the fundamentals. This analogy system is particularly suited if there are many states
associated with the same payoff configuration, and payoff-irrelevant information such as beliefs
of any order is hard to convey to others. This will be our benchmark case in the study of the
e-mail game.

In some applications, the structure of states and/or payoffs makes some analogy groupings
more focal. For example,

(iv) When there is a natural notion of proximity of states (for example because the correspond-
ing payoffs are nearby), grouping states in terms of neighborhood seems natural. In Crawford and
Sobel’s game, states are linearly ordered, and the Euclidean distance defines a relevant notion of
proximity. We then consider the grouping of states into intervals and the corresponding interpre-
tation of feedback is that receivers get to know the communication strategy of the sender only
coarsely by range of states which are nearby.11

(v) In our study of betting games, we will consider the two-type error analogy system in which
states are partitioned according to whether a player would have made a gain by betting or would
have avoided a loss by not betting. Presumably, statistics about the frequency of the two types of
betting errors are more salient (thus they are easier to remember, communicate and process) than
statistics about the detailed behaviors in each state of the economy.

9 Our framework does not allow the feedback transmitted to future generations to be a function of the action profile.
Such an extension would require further generalization of the framework. (Note that such a dependence naturally arises
in the context of extensive form games, as considered in Jehiel, 2005.)
10 That is, if we denote by F(ω) the element of F containing ω, then F(ω) = F(ω′) if and only if ui(a;ω) = ui(a;ω′)
for all i ∈ {1,2} and a ∈ A.
11 Think, for example, in the context of financial advisers of feedbacks taking the form of what the adviser previously
recommended to buy as a function of how high the stock market approximately was.
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It should be noted that an ABEE in the private information analogy partition (see (ii) above) is
equivalent to Eyster and Rabin’s (2005) fully cursed equilibrium. Observe that Eyster and Rabin’s
analysis (and most interesting insights) focuses on the concept of partially cursed equilibrium
in which players’ expectations are convex combinations of the expectations arising from the
private information analogy partition and those arising under perfect rationality. By allowing for
arbitrary analogy partitions, we consider a different approach to partial sophistication than that
in Eyster and Rabin (which is measured by the weight assigned to the rational expectations). We
believe that an advantage of our approach to partial sophistication is that it can receive an easier
learning interpretation.12

4. Preliminaries

We first provide a basic existence result for finite games.

Proposition 1. Every finite13 strategic environment (G,A) has at least one analogy-based ex-
pectation equilibrium.

We further observe that:
(1) If Ai is finer14 than Pj for all i ∈ {1,2}, then the set of analogy-based expectation equi-

libria of (G,A) coincides with the set of Nash equilibria of G. This is because the strategy of
player j is Pj -measurable and thus σj (ω) = σj (ω) for all j ∈ {1,2} and ω ∈ Ω .

(2) A pooling strategy profile is a simple strategy profile that satisfies σi(ai | ω) = σi(ai |
ω′) for all i ∈ {1,2}, ai ∈ Ai and ω, ω′ ∈ Ω . Clearly, in any strategic environment, the set of
pooling analogy-based expectation equilibria coincide with the set of pooling Nash equilibria
since perceived strategies coincide with actual pooling strategies.

4.1. Can an ABEE be viewed as a Nash equilibrium of a modified Bayesian game?

By definition, an ABEE of a finite strategic environment (G,A) is equivalent to a (mixed-
strategy) NE of the normal form game 〈{1,2}, (Si)i , (Vi)i〉, where Si is the set of Pi -measurable
functions si : Ω → Ai and,15

Vi(si, sj ) ≡
∑
ω∈Ω

p(ω)
∑

ω′∈αi(ω)

p
(
ω′ | αi(ω)

)
ui

(
si(ω), sj (ω

′);ω)
. (2)

But a question arises as to whether it is possible to view the ABEE as an NE of the original
game with different information partitions and/or different payoff functions that depend solely
on the state and the action profile in the state. In the next example we first show that an analogy-
based expectation equilibrium cannot be seen, in general, as a Nash equilibrium of the initial
Bayesian game with different information partitions.

12 See Fudenberg (2006) for further discussion of Eyster–Rabin’s partially cursed equilibrium.
13 A strategic environment is said finite if the set of states of the world, Ω , and the set of action profiles, A, are finite.
14 When we say “finer (coarser) than” we mean “finer (coarser) than or equal to.”
15 We are grateful to the associate editor for suggesting this transformation. A similar transformation would not work
for the extensive form games considered in Jehiel (2005) because the weights attached to the various nodes would be a
function of the strategy profile itself.
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ω1 L M R R′
U (5,2) (0,2) (2,4) (0,0)

D (4,3) (3,0) (1,0) (2,0)

ω2 L M R R′
U (3,0) (4,2) (2,0) (1,1)

D (0,2) (5,2) (0,0) (2,4)

Fig. 1. Game of Example 1 (Jehiel, 2005).

Example 1. The game of Fig. 1, due to Jehiel (2005), where p(ω1) = p(ω2) and P1 = P2 =
{{ω1}, {ω2}}, has a unique NE (obtained by iterative elimination of strictly dominated strategies)
in which player 1 plays U at ω1 and D at ω2, and player 2 plays R at ω1 and R′ at ω2.

If player 1 uses the coarsest analogy partition and player 2 uses the finest one, then the previ-
ous strategy profile is not an ABEE. It can be shown that the unique ABEE is the strategy profile
((D,L | ω1); (U,M | ω2)).16 Since both players choose a different action in each strategic form
game of Fig. 1, their behavior cannot be replicated by introducing incomplete information about
which strategic form game is being played.

Example 1 can also be used to illustrate that an ABEE cannot be interpreted either as a Nash
equilibrium with subjective prior in which player 1 would erroneously believe that player 2’s
information partition is P2 = {ω1,ω2} (and player 2 is playing a best-response to 1’s strategy).
(See Jehiel, 2005.)

Another way to view the ABEE as a NE of a modified game would be to allow for an appro-
priate transformation of players’ payoffs. Yet, the following example shows that there may be no
payoff transformation ũ1, ũ2 such that the set of ABEE of (G,A) where G = 〈I,A1,A2, u1, u2〉
coincides with the set of NE of 〈I,A1,A2, ũ1, ũ2〉.

Example 2. Consider the strategic environment

ω1 L R

U (2,2) (0,0)

D (0,0) (1,1)

ω2 L R

U (1,1) (0,0)

D (0,0) (2,2)

where p(ω1) = p(ω2), A1 = A2 = {{ω1,ω2}} and P1 = P2 = {{ω1}, {ω2}}. There are three
ABEE in pure strategies: ((U,L | ω1); (D,R | ω2)), ((U,L | ω1); (U,L | ω2)) and ((D,R |
ω1); (D,R | ω2)). Observe that the NE ((D,R | ω1); (U,L | ω2)) is not an ABEE. Yet, in a setup
in which players know the state, if ((U,L | ω1); (U,L | ω2)) and ((D,R | ω1); (D,R | ω2)) are
NE, it should be that ((U,L | ω1); (D,R | ω2)) and ((D,R | ω1); (U,L | ω2)) are both NE. This
shows that no payoff transformation permits the replication of the set of ABEE.

In some special cases, namely in the private information analogy partition case (Ai = Pi ), an
ABEE corresponds to a NE of a virtual game in which player i’s payoff at state ω is taken to be
the average payoff over the states of the information set Pi(ω). This is an observation made in
Eyster and Rabin (2005). We extend it to the case in which Ai is finer than Pi for both players
i = 1,2:

Proposition 2. If Ai is finer than Pi for all i, then the strategy profile σ is an analogy-based
expectation equilibrium of the strategic environment (G,A) if and only if σ is a Nash equilibrium

16 Notice that player 1 is better off (compared to the NE outcome) albeit his imperfect perception of player 2’s strategy.
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of the “virtual” Bayesian game GA = 〈I,A1,A2, u
A
1 , uA2 〉, where for all i ∈ {1,2}, a ∈ A and

ω ∈ Ω , uAi (a;ω) = ∑
ω′∈Ω p(ω′ | αi(ω))ui(a;ω′).

4.2. Links to other solution concepts

As it turns out, in an ABEE, player i’s strategy may be strictly dominated given the informa-
tion partition of player j . This is so because player i’s perceived strategy of player j , i.e. σj ,
need not be measurable w.r.t. Pj (so that σj would not be a feasible strategy for player j ).17 This
is only possible if i’s analogy partition Ai is neither coarser nor finer than Pj . This is illustrated
in the following example.

Example 3 (ABEE with a Strictly Dominated Strategy). Consider the strategic environment of
Fig. 2, where Ω = {ω1,ω2,ω3}, P1 = P2 = {{ω1}, {ω2,ω3}} and A1 = {{ω1,ω2}, {ω3}}. What-
ever his analogy partition, player 2 always plays action a2 at {ω1} and b2 at {ω2,ω3}, so given A1,
player 1’s perception of player 2’s strategy is18: σ̄2(ω1) = σ̄2(ω2) = (1/2,1/2) and σ 2(ω3) =
(0,1). Player 1’s best response at {ω1} is clearly a1. At {ω2,ω3}, action b1 gives him a payoff of 2,
whereas action a1 gives him a perceived expected payoff of (1/2)[(1/2)3+ (1/2)0]+ (1/2)[3] =
9/4 > 2, so he plays action a1 which is strictly dominated at {ω2,ω3} in the Bayesian game.
(Given the measurability of σ2 w.r.t. P2, at {ω2,ω3} playing a1 (resp. b1) yields 3

2 (resp. 2) to
player 1.)

In the special case in which states of the world are payoff irrelevant it is possible to relate an
ABEE to a correlated equilibrium (Aumann, 1974), i.e., to a NE of the original game with private,
payoff-irrelevant and possibly correlated signals. To see this, observe that when Pi(ω) = {ω} and
ui(a;ω) = ui(a) for all i ∈ {1,2}, a ∈ A and ω ∈ Ω , σ is an ABEE if for all i ∈ {1,2}, ω ∈ Ω

and a∗
i ∈ supp[σi(ω)],
a∗
i ∈ arg max

ai∈Ai

∑
ω′∈Ω

p
(
ω′ | αi(ω)

) ∑
aj ∈Aj

σj (aj | ω′)ui(ai, aj ).

The correlated equilibrium is usually presented as a Nash–Bayes equilibrium of a game with
incomplete information. As the condition shown above reveals, it may alternatively be viewed as
an ABEE of a game with complete information but coarse analogy partitions (where a player’s
analogy partition coincides with his information partition in the usual approach).

Thus, for any correlated equilibrium distribution μ ∈ Δ(A) of a strategic form game
〈A1,A2, u1, u2〉 there exists a finite state space (Ω,p), an analogy system A, and an ABEE of
the strategic environment (〈Ω,p,P1,P2,A1,A2, u1, u2〉,A) with Pi(ω) = {ω} and ui(a;ω) =

ω1 a2 b2
a1 (3,3) (3,2)

b1 (2,3) (2,2)

ω2 a2 b2
a1 (3,2) (0,3)

b1 (2,2) (2,3)

ω3 a2 b2
a1 (0,2) (3,3)

b1 (2,2) (2,3)

Fig. 2. Game with a strictly dominated ABEE strategy.

17 Remember that in our motivation for ABEE (see Section 3) we have assumed that player i need not know a priori
the information partition of j . So in i’s mind, he is not playing a dominated strategy (but a best-response to his theory
about j ).
18 A vector (x,1 − x) denotes the behavioral strategy of player 2 that assigns probability x to a2 and 1 − x to b2.
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a b

a (0,1) (1,0)

b (1,0) (0,1)

Fig. 3. ABEE vs. correlated equilibrium.

ui(a) for all i ∈ {1,2}, a ∈ A and ω ∈ Ω that generates the outcome distribution μ. A “converse”
but only partial link is established in the following proposition, with no restriction on players’
information partitions.

Proposition 3. Let (G = 〈Ω,p,P1,P2,A1,A2, u1, u2〉,A) be a strategic environment satisfying
ui(a;ω) = ui(a) for all i ∈ {1,2}, a ∈ A and ω ∈ Ω . If μ ∈ Δ(A) is an outcome distribution
generated by an ABEE of (G,A) such that σi is measurable w.r.t. Ai for all i, then μ is a
correlated equilibrium distribution of the strategic form game 〈A1,A2, u1, u2〉.

A key condition is that σi be measurable with respect to Ai . When not met, an ABEE, even
of a complete information strategic environment with payoff irrelevant states, may not induce
a correlated equilibrium distribution. To see this, consider the strategic environment based on
the strategic form game of Fig. 3, with p(ω1) = p(ω2), A1 = A2 = {{ω1,ω2}} and P1 = P2 =
{{ω1}, {ω2}}. It is readily verified that the strategy profile σ1(ω1) = σ2(ω1) = a and σ1(ω2) =
σ2(ω2) = b is an ABEE. Yet, player 1 gets 0, which cannot be rationalized in any correlated
equilibrium distribution since player 1’s maxmin payoff is 1/2.19

5. Coordination under “almost common knowledge”

In this section we consider Rubinstein’s (1989) electronic mail game, and analyze the possi-
bility of coordinated attack for various analogy partitions. We also briefly discuss Carlson and
van Damme’s (1993) global game.

In the electronic mail game, the payoff matrices in each state of Nature are as in Fig. 4.20

Referring to the original version of the coordinated attack problem (Gray, 1978; Halpern and
Moses, 1990), action D corresponds to “Don’t Attack” and action A corresponds to “Attack.”
The payoff-relevant state Ga corresponds to “The enemy is prepared” and Gb corresponds to
“The enemy is unprepared.” The information structure generated by the ε-noisy communication
protocol where only player 1 is initially informed about the actual matrix game, sends a message
to player 2 if the game is Gb and then each player sends back and forth a receipt confirmation,
is represented by Fig. 5, where the state space is {Ga, (Gb,0), (Gb,1), (Gb,2), . . .}. Player 1’s
information sets are represented by dotted boxes and player 2’s information sets by solid boxes.
We assume that 1 − p > 1/2, ε, δ > 0 and L > M > 0, where 1 − p is the probability that state
Ga occurs.

19 Since the payoffs are the same in each state, this example further shows that expanding the state space, modifying
the information, and transforming the payoffs by averaging the payoff functions across states cannot help to interpret an
ABEE as an NE of a modified Bayesian game.
20 As is often done in the literature (e.g., Morris and Shin, 1997), to simplify the exposition we have slightly modified
Rubinstein’s (1989) original game so that there is a strictly dominant strategy in one state of the world. Here, we consider
payoffs (−δ,−δ) instead of (0,0) for the action profile (A,A) in game Ga . This allows us to exclude the weakly
dominated equilibrium strategy profile in which both players always play A, and so to get a unique NE.
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Ga D A

D (M,M) (0,−L)

A (−L,0) (−δ,−δ)

Gb D A

D (0,0) (0,−L)

A (−L,0) (M,M)

Fig. 4. The electronic mail game.

Fig. 5. Information structure in the Email game. Player 1’s information sets are represented by dotted boxes and player 2’s
information sets by solid boxes.

Iterative elimination of strictly dominated strategies yields the unique NE: each player plays D

in all states of the world.21 Hence, even if the game Gb is mutually known up to, say, one million
levels, it is never an equilibrium to play the Pareto dominant action profile (A,A). Some authors
have explained how coordinated attack may be possible, but they all modify the communication
protocol and thus the information structure of the Bayesian game (Morris and Shin, 1997; Urbano
and Vila, 2003). Here, we will show how the analogy-based expectation approach may explain
coordinated attack while keeping the same information structure of the game.

We first note that the NE is always an ABEE whatever the analogy system because the NE
strategy profile is pooling. In the rest of this section we investigate whether other equilibria
may emerge depending on the analogy partitions. We first consider the payoff-relevant analogy
system (A1 = A2 = {{Ga}, {(Gb,0), (Gb,1), (Gb,2), . . .}}) in which each player i gets only to
know the average probability of attack of player j conditional on the underlying stage game
being Ga or Gb . We observe that coordinated attack is possible for ε not too large (i.e., when the
communication protocol is sufficiently reliable).

Proposition 4. With the payoff-relevant analogy system coordinated attack is possible at an
analogy-based expectation equilibrium if and only if ε � M

M+L
. In such an equilibrium players

attack whenever they know Gb . Coordination failure occurs at (Gb,0) and attack is successfully
coordinated in state (Gb, t) for all t � 1.

The intuition for the result is as follows. Conditional on Gb being the game played, player 1
attacks always and player 2 attacks on average with probability 1 − ε (he does not attack only
in (Gb,0) and the weight of (Gb,0) relative to other states (Gb, t), t � 1, is ε). Given their
analogy-based expectations, players attack whenever they know Gb (this is so even for player 1
because (1 − ε)M − εL > 0).

In the standard setting the ex ante expected payoff of both players is M(1 − p). In the payoff-
relevant analogy setting, the ex ante expected payoff of both players of the equilibrium shown

21 Player 1 necessarily plays D at his singleton information set {Ga}, which implies that player 2 also plays D at
{Ga, (Gb,0)}. At all other information sets both players know that the game played is Gb . Each player plays A only
if his opponent plays A with probability at least L

M+L
> 1/2. Since D is played by player 2 at (Gb,0) and since

Pr(Gb,0) > Pr(Gb,1) > Pr(Gb,2) > · · ·, this action is diffused in all other states.
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in Proposition 4 is larger; it is equal to M(1 − pε) − Lpε for player 1 and to M(1 − pε) for
player 2. It is interesting to note that this is exactly the ex ante expected payoff achieved at
one of the NE (that exists also under the same condition ε � M

M+L
) with the simple commu-

nication protocol, where only one message is sent so that the information structure is simply
P1 = {{Ga}, {(Gb,0), (Gb,1)}} and P2 = {{Ga, (Gb,0)}, {(Gb,1)}}.22

The result of Proposition 4 holds whenever player 1 uses the payoff-relevant analogy partition
no matter what the analogy partition of player 2 is. When player 1 is rational but player 2 uses
the payoff-relevant analogy partition, we have:

Proposition 5. When player 1 is rational and player 2 uses the payoff-relevant analogy par-
tition, coordinated attack is possible at an analogy-based expectation equilibrium if and only
if ε(2 − ε) � M

M+L
. In such an equilibrium player 1 attacks in all information sets except

{Ga}, {(Gb,0), (Gb,1)} (where he plays D); player 2 attacks in all information sets except
{Ga, (Gb,0)} (where he plays D).

In the equilibrium of Proposition 5, player 2 attacks whenever he knows the underlying game
is Gb because his belief is that player 1 attacks on average with probability 1 − [ε + (1 − ε)ε] =
1 − ε(2 − ε) in such an event (player 1 does not attack in (Gb,0), (Gb,1) and attacks in all other
states (Gb, k), k > 1).

The next proposition shows that with the coarsest or the private information analogy system
coordinated attack is impossible.

Proposition 6. If at least one player uses the coarsest analogy partition (i.e., Ai = {Ω} for some
i ∈ {1,2}) or if both use the private information analogy partition, then the unique analogy-based
expectation equilibrium consists for both players never to attack.

While the intuition for the private information analogy partition follows the usual type of
infection argument, the result for the coarsest analogy partition is of a different (simpler) nature.
For example, if agent 2 uses the coarsest analogy partition, he must expect (in equilibrium) that
player 1 does not attack with a probability no smaller than 1 − p (because at Ga , player 1 plays
D and the weight of Ga relative to other states is 1 − p). Since 1 − p > 1/2 (and L > M) play-
er 2’s best-response is to never attack whatever his information, which in turn leads player 1 not
to attack as well.

5.1. “Finest” analogy system allowing coordinated attack

Now we are looking for some “finest” analogy partitions such that a coordinated attack is
possible after a finite number of communication periods. Assume that player 1 is “rational” so
that A1 is finer than P2, and assume that player 2’s analogy partition has the form

22 Or alternatively, messages are sent back and forth as in the original formulation, but player 1 does not remember
whether he received any message, and player 2 remembers only whether he receives a message but not how many
messages he received. That is, P1 = {{Ga}, {(Gb,0), (Gb,1), . . .} and P2 = {{Ga, (Gb,0)}, {(Gb,1), . . .}.
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A2 =
{{

Ga

}
,
{
(Gb,0), (Gb,1)

}
, . . . ,

{
(Gb,2l − 2), (Gb,2l − 1)

}
,{

(Gb,2l), (Gb,2l + 1), . . . , (Gb,2l + 1 + 2k∗)
}︸ ︷︷ ︸

α∗
2

, . . .
}
,

where the last dots can be any partitioning of the remaining states. By standard arguments we
obtain that player 1 plays D up to ω = (Gb,2l + 1) and player 2 plays D up to ω = (Gb,2l). We
are looking for necessary and sufficient conditions for both players to attack at an ABEE in all
other information sets. If this is the case, player 1 plays optimally because he assigns probability
one to player 2 choosing action A. In this situation the average strategy of player 1 in the analogy
class α∗

2 is

σ ∗
1(D) =

∑
ω∈α∗

2

p(ω | α∗
2)σ1(ω)(D) = pε(1 − ε)2l + pε(1 − ε)2l+1

pε
∑2l+2k∗+1

t=2l (1 − ε)t

= 2 − ε∑2k∗+1
t=0 (1 − ε)t

= (2 − ε)ε

1 − (1 − ε)2k∗+2
.

Notice that limε→0 σ ∗
1(D) = 1

k∗+1 . Player 2 plays A in his information sets included in α∗
2 if

σ ∗
1(D) � M

M+L
, i.e.,

k∗ �
ln M(1−ε)2−L(2−ε)ε

M

2 ln(1 − ε)
− 1 → L

M
(ε → 0).

Since L/M > 1 a necessary condition is k∗ � 2 (at least 3 information sets should be pooled
together by player 2).

5.2. Global games

We have seen that at an ABEE a Pareto dominant equilibrium may be played even when it
is risk dominated and when coordination is not common knowledge. In the following lines we
check whether this is also possible in Carlson and van Damme’s (1993) global games framework,
which is similar in spirit to the coordinated attack problem. Consider the game of Fig. 6, taken
from the introduction of Carlson and van Damme (1993). Each player has a safe action (action a)
which yields x independently of the other player’s action, and a risky action (action b) which
gives a payoff of 4 if the other player also plays b and 0 otherwise. The payoff-relevant state
(state of fundamentals) x is assumed to be the realization of a random variable X distributed
according to a density h(·) which is strictly positive, continuously differentiable and bounded on
[x, x], with x < 0 and x > 4.

Each player i receives a private signal xi corresponding to a random variable Xi = X + Ei ,
where Ei, Ej are distributed uniformly on [−ε, ε] independently of each other and of X.23 In

a b

a (x, x) (x,0)

b (0, x) (4,4)

Fig. 6. Carlson and van Damme’s (1993) global game example.

23 Hence, a state of the world is a tuple ω = (x, ei , ej ) ∈ [x, x] × [−ε, ε]2 and player i’s information set at ω is given
by Pi(ω = (x, ei , ej )) = {ω′ = (x′, e′

i
, e′

j
): x′ + e′

i
= x + ei }.
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the standard rationality paradigm, Carlson and van Damme (1993) have shown that for ε small
enough, there exists a unique dominant solvable equilibrium outcome. In this equilibrium play-
er i plays b (resp. a) if xi < x∗(ε) (resp. xi > x∗(ε)), and x∗(ε) → x∗ as ε → 0, where x∗ = 2.
Thus, in the limit as ε tends to 0, the risk dominant equilibrium of the corresponding game of
complete information game is played. Observe that these results (uniqueness of the equilibrium
and link to the risk dominance property) hold true independently of the distribution h(·) of X.24

Suppose that players use the coarsest analogy partitions. It is readily verified that the equilib-
rium shown in Carlson and van Damme is no longer an ABEE in general. To illustrate the point,
assume that X is uniformly distributed on [x, x]. Then, when ε → 0, the perceived strategies are

σj = 2 − x

x − x
b + x − 2

x − x
a, j = 1,2.

So, for player i with signal xi choosing a yields E(X | xi) = xi and choosing b is perceived to
yield 4 2−x

x−x
. Best-response to σj will lead player i to choose b if xi < 4 2−x

x−x
and a if the reverse

inequality holds. Thus, unless x + x = 4, the NE of the original game is not an ABEE.
Since the best-response to any perceived strategy σj is a threshold strategy, all ABEE are of

the following form when ε → 0: player i chooses b (resp. a) if xi < x∗
i (resp. xi > x∗

i ), where
4H(x∗

j ) = x∗
i and H(·) denotes the cumulative of h(·). By the theorem of intermediate values this

equation always has a symmetric solution in the open interval (0,4) because 4H(0) − 0 > 0 and
4H(4)−4 < 0, so there is always a symmetric ABEE in pure strategies. For example, in the case
of a uniform distribution of X, i.e., h ≡ 1/(x − x), there exists a unique ABEE characterized
by x∗

i = x∗
j = x∗ = 4x

4−x+x
∈ [0,4]. So, when x + x > 4 (i.e., x∗ < 2) there is an extra bias

toward the risk-dominant equilibrium and when x + x < 4 (i.e., x∗ > 2) there is a bias toward
the Pareto-dominant equilibrium.

Notice that, whatever the distribution of X, all equilibria are symmetric because 4H(x∗
j ) = x∗

i

and 4H(x∗
i ) = x∗

j implies x∗
i = x∗

j = x∗ since H(·) is increasing. Consequently, as in the
standard global game model, when the noise vanishes coordination failure never occurs. Nev-
ertheless, there may exist several symmetric ABEE because there may be several solutions
to 4H(x#) = x#. By the theorem of intermediate values, a necessary and sufficient condi-
tion for having several (at least three) ABEE is that there exists 0 < y1 < y2 < 4 such that
y1 − 4H(y1) > 0 and y2 − 4H(y2) < 0. This condition is satisfied if the distribution of X is
centered and sufficiently concentrated around 2.

Thus, with the coarsest analogy system, we lose the connection to risk dominance, we lose
the property of uniqueness, yet we keep the property of threshold equilibria and we exclude the
possibility of coordination failure.

Finally, notice that with the private information analogy system, in the limit as ε tends to 0, we
find the same insight as in the standard rationality paradigm. That is, the unique equilibrium is a
threshold equilibrium and the risk-dominant equilibrium is selected irrespective of the distribu-
tion of X. This can be seen directly by writing the associated virtual Bayesian game characterized
in Proposition 2, which is the same as the game of Fig. 6 except that player i’s payoff of type xi

when he chooses action a is equal to E(X | Xi = xi) instead of x, i = 1,2.

24 When X is uniformly distributed on [x, x] the result is easily obtained by noting that the (iterated) dominance region
of action a is (x̄∗(ε), x̄] with x∗(ε) � 2 and the (iterated) dominance region of action b is [x, x∗(ε)) with x∗(ε) � 2, so
x∗(ε) = x∗(ε) = x∗(ε) = 2 (hence, in that case the result holds even when ε does not tend to zero). For general priors the
proof is done in the same way by noting that Pr[Xj � Xi | Xi ] and Pr[X � Xi | Xi ] tend to 1/2 when ε → 0 (when the
noise vanishes it is as if the prior distribution of X were uniform). See Carlson and van Damme (1993) for more details.
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6. Strategic information transmission

In this section we consider a class of sender-receiver cheap talk games studied by Crawford
and Sobel (1982). The set of states of the world is the set of types of the sender (player 1),
T = [0,1]. They are distributed according to a smooth probability distribution with density f (t)

and cumulative F(t) assumed to be differentiable. After learning his type, the sender chooses a
costless message m ∈ M = [0,1]. Upon receiving this message, the receiver (player 2) chooses
a payoff-relevant action a ∈ A = [0,1]. The payoffs of the sender and the receiver are respec-
tively:

uS(a; t) = −[
a − (t + b)

]2
,

uR(a; t) = −[a − t]2,

where b > 0. Hence, for all b > 0, when t increases both players prefer a higher action,
but the best action for the sender, t + b, is always strictly higher than the best action for
the receiver, t . The smaller b, the more congruent the preferences of the sender and the re-
ceiver.

The strategies of the sender and the receiver are respectively denoted by σS : T → Δ(M)

and σR : M → A. Crawford and Sobel (1982) have shown that every NE outcome of this sig-
naling game can be generated by an L-step partitional communication strategy of the form
σS(t) = ml if t ∈ [xl−1, xl), l = 1, . . . ,L, where 0 = x0 < x1 < · · · < xL−1 < xL = 1 and
mk �= ml ∀k �= l. When types are uniformly distributed, such an equilibrium exists under the
condition b < 1

2L(L−1)
. In particular, when b � 1/4 no information can be transmitted in equi-

librium.
In this section we revisit Crawford and Sobel’s game within the analogy setup. Our main

observation is that even though the receiver’s action is never ex ante biased (Proposition 7) and
there is a bound on the quality of the inference that the receiver can make from the sender’s
message (Propositions 8 and 9) there may be more information transmission in the analogy setup
than in the standard rationality paradigm (Proposition 10).

Specifically, assume that the receiver bundles states into analogy classes according to an in-
terval analogy partition of the following form:

A = { [0, y1)︸ ︷︷ ︸
α1

, [y1, y2)︸ ︷︷ ︸
α2

, . . . , [yk−1, yk)︸ ︷︷ ︸
αk

, . . . , [yn−1,1]︸ ︷︷ ︸
αn

}
.

From the viewpoint of the learning story outlined in Section 3, this amounts to assuming
the feedback about Senders’ strategies observed by Receivers takes the form of an aggregate
communication strategy for every state s ∈ [yk−1, yk) for k = 1, . . . , n.

Given this analogy partition, the strategy of the sender perceived by the receiver is, for t ∈
[yk−1, yk),

σS(t) =
yk∫

y

σS(s)

F (yk) − F(yk−1)
f (s)ds.
k−1
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By Bayes’ rule we get the belief μ(t | m) = σS(m | t)f (t)/
∫ 1

0 σS(m | s)f (s)ds and the best-
response of the receiver to σS , for all m ∈ supp[σS] is25:

σR(m) =
n∑

k=1

Pr
[
t ∈ αk

∣∣ t ∈ σ−1
S (m)

]
E(t | αk). (3)

In short, the best-response requires for the receiver to choose a convex combination of the
average value of t in each class αk , E(t | αk), where the weight of E(t | αk) is determined by
the likelihood that t lies in αk given that message m was sent. Note that the receiver chooses
the rational action σR(ml) = E(t | t ∈ [xl−1, xl)) only if his analogy partition is finer than the
partition generated by the sender’s strategy, for example when xk = yk for all k.

Given the form of the preferences, it is readily verified that as in the standard rationality par-
adigm case, any ABEE must take a partitional form described by σS(t) = ml if t ∈ [xl−1, xl),
l = 1, . . . ,L, where 0 = x0 < x1 < · · · < xL−1 < xL = 1.26 In addition, we show in the follow-
ing proposition that the outcome of an ABEE is never ex ante biased, which follows from the
equilibrium requirement that the receiver correctly perceives the average strategy of the sender.
This should be contrasted with Kartik et al. (2007) who exhibit biased equilibrium outcomes in a
variant of Crawford and Sobel’s (1982) model where the receiver is naive (i.e., blindly plays the
recommended action) with an exogenous and strictly positive probability.27

Proposition 7. At an analogy-based expectation equilibrium the action taken by the receiver is
never ex ante biased, i.e. the action made by the receiver is E(t) on average.

An important insight in Crawford and Sobel’s analysis is that the number of meaningful mes-
sages sent in equilibrium is bounded whenever b > 0. We will show that this is also the case in
our setting and that there is an upper bound on the number of messages that applies uniformly
over all possible interval analogy partitions. This is to be contrasted with Blume et al. (2007)
who show that an arbitrarily large number of meaningful messages can be sent in a noisy variant
of the cheap talk game in which the receiver does not always observe the correct message sent
by the sender.

We first observe that the number of analogy classes used by the receiver gives an upper bound
on the informativeness of an equilibrium. This is essentially because if two different messages
were sent with probability 1 in states lying in the same analogy class, then the receiver would
react in the same way to these two messages, thereby making it equivalent to just one message.
Formally, we refer to an ABEE (σS, σR) as an L-step ABEE if σS is an L-step communication
strategy and σR(m) �= σR(m′) for all m, m′ ∈ supp[σS], m �= m′. We have:

25 Indeed, we have: σR(m) = Eμ(t | m) = ∫ 1
0 μ(t | m)t dt = ∑n

k=1
∫ yk
yk−1

Pr[σ−1
S

(m) |αk ]f (t)

Pr[σ−1
S

(m)] t dt =∑n
k=1

Pr[σ−1
S

(m) |αk ]
Pr[σ−1

S
(m)]

∫ yk
yk−1

tf (t)dt = ∑n
k=1

Pr[σ−1
S

(m)∩αk ]
Pr[σ−1

S
(m)] E(t | αk). To complete the characterization of the

best-response we may assume that a message that is not played (i.e., not in supp[σS ]) is identified with one of the
messages in supp[σS ] with the corresponding best-response. With such an assumption, it is enough for equilibrium
characterization to restrict the message space to the space of messages played in equilibrium.
26 This follows by looking at the best-response of the sender and noting that there is a one to one correspondence
between the message sent and the choice of action by the receiver.
27 Ex ante biased equilibrium actions are also obtained by Morgan and Stocken (2003) in another variant of the model
in which there are two types of senders (with aligned incentives or not).
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Proposition 8. If the receiver uses an interval analogy partition with n analogy classes then
there exists no L-step analogy-based expectation equilibrium with L > 2n − 1.

A simple corollary is that when the receiver uses the coarsest analogy partition (n = 1),28 the
unique ABEE is pooling: the receiver chooses action σR(m) = E(t) for all m.

From Proposition 8, it might seem possible that the number L of messages grows without
bound as the number n of analogy classes increases. This is however ruled out by the next propo-
sition. A uniform bound applies essentially because either analogy classes are small and the
Crawford and Sobel’s bound applies or analogy classes are big but then few meaningful mes-
sages can be sent in states lying in such analogy classes. Formally, we let � 1

b
 be the smallest

integer that is no smaller than 1
b

. We have:

Proposition 9. No matter what the interval analogy partition is, there exists no L-step analogy-
based expectation equilibrium with L > 6� 1

b
.

Even though the number of messages is bounded as in Crawford and Sobel’s analysis, our next
and main observation is that sometimes more messages can be sent with the analogy approach
than with the standard approach. More precisely, we observe that for some analogy partitions
there may exist a partially revealing ABEE even when the unique NE does not allow for infor-
mation transmission. Furthermore, this ABEE may Pareto dominate (ex ante) all Nash equilibria.

Proposition 10. Assume that types are uniformly distributed and the receiver has an analogy
partition with only n = 2 analogy classes, A = {[0, y), [y,1]}, with y � 1/2. If b <

1+y
4 then

there exists a 2-step ABEE

σS(t) =
{

m1 if t < x∗(b, y),

m2 if t � x∗(b, y),

where

x∗(b, y) = 2 − 2b + y − √
4b(2 + b) − 4by + y2

4
< y.

Such an ABEE may Pareto dominate (ex ante) all Nash equilibria (the pooling as well as the
2-step NE when it exists).29

Since a 2-step NE exists in the uniform case if and only if b < 1/4 <
1+y

4 , the proposition
above shows that a 2-step ABEE exists when a 2-step NE exists and, more importantly, that a 2-
step ABEE may exist even when all NE are pooling, i.e., whenever b ∈ (1/4, (1 + y)/4). In light
of Propositions 8 and 9 it might be surprising that a coarse analogy partition might permit more
information transmission than in the standard approach. The reason is as follows. In the standard

28 Notice that the coarsest analogy partition also coincides with the receiver’s private information analogy partition, and
the finest partition coincides with the payoff-relevant partition.
29 Notice that, as in Crawford and Sobel (1982), equilibrium outcomes cannot be compared according to interim effi-
ciency since different sender’s types prefer different equilibria (e.g., the sender of type t = 1/2 − b always prefers the
pooling equilibrium). Krishna and Morgan (2004) also show that it is possible to Pareto improve, ex ante, the NE found
in Crawford and Sobel (1982), by allowing multiple rounds of communication and jointly controlled lotteries. How-
ever, to get information transmission for b > 1/4 they have to consider non-monotonic equilibria, whereas the ABEE
characterized here is monotonic (i.e., the action taken by the receiver is a non-decreasing function of the sender’s type).
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approach, if the receiver expects the sender to follow the strategy σS(·) and the state is x∗(b, y)

the sender strictly prefers to send message m2 thereby inducing action (1 + x∗)/2 rather than
message m1 that would result in action x∗/2 (x∗ + b is closer to (1 + x∗)/2 than to x∗/2 when
b > 1/4). The analogy grouping of the receiver changes that conclusion. Because x∗ is smaller
than y, when message m1 is being sent, the action of the receiver is biased upwards relative to
the standard case (when m1 is sent the action is now y/2 instead of x∗/2), and consequently
when message m2 is being sent the action of the receiver is biased downwards (this is because by
Proposition 7 the action taken by the receiver is ex ante unbiased as in the standard case). These
biases make message m1 (resp. m2) relatively more (resp. less) attractive than in the standard
case, which in turn permits to sustain a 2-step ABEE.

7. Zero-sum betting

We consider the following framework: A gamble (zero-sum bet) x : Ω → R is proposed to the
players. They simultaneously decide to bet (action B) or to drop out (action D). If both players
bet and the state is ω player 1 gets x1(ω) = x(ω) and player 2 gets x2(ω) = −x(ω). Betting costs
ε to a player regardless of whether the other player bets or not (ε is assumed to be arbitrarily
small). Thus, the payoff of player i at ω is

ui(a1, a2;ω) =
⎧⎨
⎩

xi(ω) − ε if a1 = a2 = B,

−ε if ai = B and aj = D,

0 if ai = D.

The framework is the same as that of Sebenius and Geanakoplos (1983) and Perets and Son-
sino (1999) who assume that ε = 0 and that players bet only if they expect strictly positive
payoffs.30 In the standard rationality paradigm, we get the celebrated no trade theorem (Milgrom
and Stockey, 1982): In all zero-sum betting games with ε > 0 the unique NE consists for both
players to drop out from betting in all states of the world.

For general analogy systems though some betting is possible. In particular, define a naive (or
non-strategic) betting strategy as follows:

Definition 3. The strategy of player i is a naive betting strategy31 if

σi(B | ω) = 1 if E
[
xi | Pi(ω)

]
> 0,

σi(D | ω) = 1 if E
[
xi | Pi(ω)

]
� 0.

Obviously, when players use the coarsest analogy partition, the naive betting strategy profile
is an ABEE for ε = 0.32 More generally, keeping Ai coarser than Pi and adding a small ε > 0
cost to betting, naive betting remains an equilibrium when the perceived chances of profitable
bets are bounded away from 0.

30 Assuming that ε is sufficiently small but strictly positive is essentially equivalent to assuming that ε = 0 and that each
player bets only if he expects strictly positive payoff.
31 It is referred to as naive because it is defined independently of player j ’s strategy; so such a betting requires no
knowledge of the opponent’s strategy.
32 It is readily verified that the naive strategy profile is the only ABEE that satisfies the trembling-hand refinement
(imposing that any action must be played with some arbitrarily small probability).
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Proposition 11. Assume that Ai is coarser than Pi and let Yi = {ω ∈ Ω: E[xi | Pi(ω)] > 0} for
all i ∈ {1,2}.33

(i) If ε = 0 then the naive strategy profile is an analogy-based expectation equilibrium.
(ii) If for all i ∈ {1,2} and ω ∈ Yi we have αi(ω) ∩ Yj �= ∅, then there exists ε > 0 such that the

naive strategy profile is an analogy-based expectation equilibrium.

The next question of interest is whether there may be situations in which there is some betting
and yet players do not follow the naive betting strategy. The answer is affirmative, as will be
shown in Example 4. In this example, we introduce an analogy system referred to as the “two-
type error” analogy system, in which a player bundles states according to whether or not he wins
money in case of mutual bet. It is called the two-type error analogy system because a player
bases his decision on the frequency of type I and type II errors of his opponent corresponding to
the frequency with which the opponent bets whereas he should not and the frequency with which
the opponent does not bet whereas he should have.

Example 4. There are five states Ω = {ω1,ω2,ω3,ω4,ω5} which all have the same prior proba-
bility. Players’ information partitions are given by

P1 = {{ω1,ω4,ω5}, {ω2,ω3}
}
,

P2 = {{ω1,ω2}, {ω3,ω4,ω5}
}
.

Player 1’s payoffs are given by

x(ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

9 for ω = ω1,

−8 for ω = ω2,

7 for ω = ω3,

−9 for ω = ω4,

1 for ω = ω5.

The two-type error analogy system is thus defined by A1 = A2 = {{ω1,ω3,ω5}, {ω2,ω4}}.
Naive betting would require that player 1 bets in {ω1,ω4,ω5} and that player 2 bets in
{ω3,ω4,ω5}. It is easily seen that this is not an ABEE (player 1 deviates in {ω2,ω3}). But, the
following strategy profile is an ABEE, as we now check: player 1 bets always (hence he does not
follow the naive betting strategy) and player 2 follows the naive betting strategy (i.e., he bets in
{ω3,ω4,ω5}). Given that player 1 always bets, the naive betting strategy is optimal for player 2.
Also,

σ 2(ω) =
{

2
3B + 1

3D for ω ∈ {ω1,ω3,ω5},
1
2B + 1

2D for ω ∈ {ω2,ω4}.
Thus (for ε small enough), at {ω1,ω4,ω5} player 1 finds it optimal to bet because 2

3x(ω1) +
1
2x(ω4) + 2

3x(ω5) > 0 and at {ω2,ω3} he finds it optimal to bet because 1
2x(ω2) + 2

3x(ω3) > 0.

33 Yi is the set of states in which the naive strategy of player i is to bet with probability one.
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8. Conclusion

This paper has revisited a number of classic games with incomplete information relaxing the
cognitive skills of the players about their ability to know or learn the strategy of their opponent.
It was shown how deeply the strategic interaction is affected by such a change in the cognitive
abilities of the players. Of course, the qualitative nature of the effect depends on how the players
bundle states of the world into analogy classes. Analyzing which analogy groupings are effec-
tively used in each application would require further work. From an experimental viewpoint, the
methodology developed in Huck et al. (2007) can be used for that purpose.
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Appendix A. Proofs

Proof of Proposition 1. The mapping (referred to as the P mapping) that maps the strategy
profile (σi, σj ) into the perceived strategy profile (σ i, σ j ) (see Definition 2) is continuous. The
best-response mapping (referred to as BR) that maps the expectation profile (σ i, σ j ) into the
set of strategy profiles (σi, σj ) such that σi is a best-response to σj is upper hemicontinuous.
It follows from Kakutani’s (1941) theorem that there is a fixed point of the compound mapping
(σi, σj ) →P (σ i, σ j ) →BR (σi, σj ). Such a fixed point is an ABEE. �
Proof of Proposition 2. By definition, σ is a NE of GA if for each player i, each state ω and
each action a∗

i ∈ supp[σi(ω)],
a∗
i ∈ arg max

ai∈Ai

∑
aj ∈Aj

∑
ω′∈Ω

p
(
ω′ | Pi(ω)

)
σj (aj | ω′)

∑
ω′′∈Ω

p
(
ω′′ | αi(ω

′)
)
ui(a;ω′′). (4)

We have∑
ω′∈Ω

p
(
ω′ | Pi(ω)

)
σj (aj | ω′)

∑
ω′′∈Ω

p
(
ω′′ | αi(ω

′)
)
ui(a;ω′′)

= 1

p(Pi(ω))

∑
ω′∈Pi(ω)

p(ω′)σj (aj | ω′) 1

p(αi(ω′))
∑

ω′′∈αi(ω
′)
p(ω′′)ui(a;ω′′).

Since Ai is finer than Pi , the last expression can be rewritten, with Pi(ω) = ⋃
k αk and αk ∈ Ai

for all k,

1

p(Pi(ω))

∑
k

∑
ω′∈αk

p(ω′)σj (aj | ω′) 1

p(αk)

∑
ω′′∈αk

p(ω′′)ui(a;ω′′)

= 1

p(Pi(ω))

∑ ∑
′′ k

p(ω′′)ui(a;ω′′)
∑
′ k

p(ω′ | αk)σj (aj | ω′)

k ω ∈α ω ∈α
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= 1

p(Pi(ω))

∑
k

∑
ω′′∈αk

p(ω′′)ui(a;ω′′)σ j (aj | ω′′)

= 1

p(Pi(ω))

∑
ω′∈Pi(ω)

p(ω′)ui(a;ω′)σ j (aj | ω′)

=
∑
ω′∈Ω

p
(
ω′ | Pi(ω)

)
σj (aj | ω′)ui(a;ω′).

Thus, Eq. (4) is equivalent to a∗
i ∈ arg maxai∈Ai

∑
ω′∈Ω p(ω′ | Pi(ω))

∑
aj ∈Aj

σ j (aj | ω′)ui(a;
ω′), which means that σ is an ABEE of (G,A). �
Proof of Proposition 3. Let Mi = Pi ∧Ai be the meet (finest common coarsening) of player i’s
information and analogy partitions, and let σ be an ABEE of (G,A). By assumption, σi is
measurable w.r.t. Ai , and since it is measurable w.r.t. Pi it is also measurable w.r.t. Mi . So,
σi will remain a best response to σj if we replace i’s information partition Pi by Mi . In
this new strategic environment Ai is finer than i’s information partition, Mi , so by Proposi-
tion 2 σ is a NE of the virtual Bayesian game 〈Ω,p,M1,M2,A1,A2, u

A
1 , uA2 〉. But, since

by assumption the payoff functions are independent of the state of the world, σ is a NE of
〈Ω,p,M1,M2,A1,A2, u1, u2〉. By the definition of a correlated equilibrium, this NE gener-
ates a correlated equilibrium distribution of 〈A1,A2, u1, u2〉. �
Proof of Proposition 4. Player 1 plays D at Ga , so player 2 plays D at {Ga, (Gb,0)}. In all other
information sets players know Gb and have the same beliefs about the other player’s strategy.
Hence, if it is optimal to attack in some of these information sets then it is at all. So, an ABEE
with coordinated attack exists iff all players always attack in these information sets. In that case,
perceived strategies are σ 1(Ga) = σ 2(Ga) = (1,0), σ 1(Gb) = (0,1) and σ 2(Gb) = (ε,1 − ε).
Player 1’s perceived expected payoff when he attacks is (1 − ε)M + ε(−L), which is positive
(larger than when he plays D) if ε � M

M+L
. Player 2’s payoff when he attacks is M , so it is always

optimal. �
Proof of Proposition 5. This is a corollary of the analysis of the “finest” analogy system allow-
ing coordinated attack. �
Proof of Proposition 6. First consider the case A2 = {Ω}. Since player 1 does not attack at Ga ,
the strategy of player 1 perceived by player 2 is such that σ 1(D) � 1 − p. Hence, if player 2
attacks his perceived expected payoff is less than pM − (1 − p)L < 0 in all states of the world,
so he never attacks. Consequently, player 1 never attacks whatever his analogy partition. Now,
consider the case A1 = {Ω}. Player 1 still plays his dominant strategy (D) at {Ga}. Consider
player 2 at {Ga, (Gb,0)} and let q1 = σ 1(Ga)(D) and q2 = σ 1(Gb,0)(D) be the average prob-
ability that player 1 chooses action D in the analogy classes used by player 2 at Ga and (Gb,0)

respectively. Since 1 − p > 1/2 and since player 1 plays D at Ga we necessarily have q1 > 1/2.
If player 2 chooses D, his perceived expected payoff is

1 − p

1 − p + pε
q1M >

1 − p

1 − p + pε

1

2
M.
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If player 2 chooses A, his perceived expected payoff is

1 − p

1 − p + pε

(−q1L − (1 − q1)δ
) + pε

1 − p + pε

(−q2L + (1 − q2)M
)

< − 1 − p

1 − p + pε

1

2
M + pε

1 − p + pε
M.

Hence, a necessary condition for A to be optimal is

− 1 − p

1 − p + pε

1

2
M + pε

1 − p + pε
M � 1 − p

1 − p + pε

1

2
M

⇔ −1 − p

2
M + pεM � 1 − p

2
M ⇔ pε � 1 − p,

which is impossible since 1 − p > p. Thus, we have σ 2(D) > 1/2, which implies that player 1
plays D in all states, so player 2 also always plays D.

In the private information analogy system case, the argument is almost the same as in the
standard framework. Player 1 plays D at his information set {Ga} because it is a strictly dominant
strategy. Consider now player 2 at his information set {Ga, (Gb,0)}. If player 1 plays D at
{(Gb,0), (Gb,1)} then his strategy perceived by player 2 at {Ga, (Gb,0)} is σ 1 = (1,0), so
player 2 plays D. If player 1 plays A at {(Gb,0), (Gb,1)} then his strategy perceived by player 2
at {Ga, (Gb,0)} is σ 1 = (

1−p
1−p+pε

,
pε

1−p+pε
). Player 2 gets a positive perceived expected payoff

if he plays D. If he plays A then his perceived expected payoff is

1 − p

1 − p + pε

(
1 − p

1 − p + pε
(−L) + pε

1 − p + pε
(−δ)

)

+ pε

1 − p + pε

(
1 − p

1 − p + pε
(−L) + M

pε

1 − p + pε

)
< 0,

so player 2 necessarily plays D at his information set {Ga, (Gb,0)}. Consider now player 1
at his information set {(Gb,0), (Gb,1)}. The strategy of player 2 perceived by player 1 at this
information set puts at least probability pε

pε+p(1−ε)ε
= 1

2−ε
> 1/2 to action D, so player 1’s best

response is D. The same reasoning applies inductively to all other players’ information sets, so
both players always play D. �
Proof of Proposition 7. We show that the average action taken by the receiver is the ex ante
expected sender’s type. This average action is

1∫
0

σR

(
σS(t)

)
dt =

1∫
0

σR(m)Pr
[
σ−1

S (m)
]

dm =
1∫

0

n∑
k=1

Pr
[
σ−1

S (m) ∩ αk

]
E(t | αk)dm

=
n∑

k=1

E(t | αk)Pr(αk) = E(t),

where the second equality follows from Eq. (3). �
Proof of Proposition 8. Consider an L-step partitional communication strategy of the form
σS(t) = ml if t ∈ [xl−1, xl), l = 1, . . . ,L, where 0 = x0 < x1 < · · · < xL−1 < xL = 1 and
mk �= ml ∀k �= l. We will show that L � 2n − 1. For this, it suffices to prove the three following
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assertions: (i) y1 < x2; (ii) xL−2 < yn−1; (iii) if yk−1 � xl−1 < xl � yk then xl−2 < yk−1 and
xl+1 > yk . If (i) were not true then we would have σR(m1) = σR(m2) = E(t | α1), a contradic-
tion with an L-step ABEE. Similarly, if (ii) were not true then σR(mL−1) = σR(mL) = E(t | αn),
a contradiction. Finally, to prove (iii) assume that yk−1 � xl−1 < xl � yk but xl−2 � yk−1 or
xl+1 � yk . In the former case we get yk−1 � xl−2 < xl−1 < xl � yk so σR(ml−1) = σR(ml) =
E(t | αk) and in the latter case we get yk−1 � xl−1 < xl < xl+1 � yk so σR(ml) = σR(ml+1) =
E(t | αk), a contradiction. �
Proof of Proposition 9. Consider an L-step partitional communication strategy as in the proof
of Proposition 8. We first observe the following additional assertion: (iv) If yk � xl < xl+1 <

xl+2 � ym then ym − yk > b. This is because σR(ml+1) and σR(ml+2) both belong to [yk, ym]
(see the best response (3) of the receiver), and σR(ml+1) � xl+1 + b � σR(ml+2) by the sender’s
equilibrium condition, so ym −yk > σR(ml+2)−xl+1 � b. Next, we give a bound on the number
of messages sent in each interval of size b:

Assume y3 < b. Take the largest k such that yk < b. By assertion (iv), the largest l such that
xl � yk is at most 1. So, by assertion (iii) in the proof of Proposition 8, the largest l such that
xl � yk+1 is at most 3. Hence, the largest l such that xl � b is at most 3.

Assume y3 � b. By assertion (iii) the largest l such that xl � b is at most 5.
We deduce that for every y3 the largest l such that xl � b is at most 5. We repeat inductively

this argument for states lying in [mb, (m + 1)b] to show that L � 6� 1
b
. �

Proof of Proposition 10. From Eq. (3), the best response of the receiver is

σR(m) =
{ y

2 if m = m1,

1−xy
2(1−x)

if m = m2.

The sender of type t sends the message m ∈ M such that the response σR(m) is the closest as
possible to t + b.34 Hence, he sends{

m1 if t + b < c,

m2 if t + b > c,

where c = 1+y−2xy
4(1−x)

is the midpoint of [σR(m1), σR(m2)]. So, to have an equilibrium we must

have x = 1+y−2xy
4(1−x)

− b, which gives the solution of the proposition. It can be checked that x∗ is
always decreasing with b and that

x∗(b, y) =
{

1/2 if b = 0,

0 if b = (1 + y)/4,

so we always have x∗ < y. We thus have a 2-step ABEE whenever x∗ > 0, i.e., b <
1+y

4 . To see
that such an ABEE may Pareto dominate (ex ante) all Nash equilibria let y = 1/2 and b = 1/4.
Since b < (1 + y)/4 = 3/8 the unique NE is pooling (the receiver always chooses σR(m) =
1/2) whereas there exists a 2-step ABEE with x∗ = 1/2 − √

2/4 � 0.146, which leads to action
σR(m1) = 1/4 when t < x∗ and σR(m2) = 5/4−1/

√
2 � 0.543 when t � x∗. It can be computed

that the expected payoff EUR of the receiver is −16/192 at the pooling equilibrium and (−7 +

34 To avoid deviations to off-the-equilibrium messages let, e.g., σR(m) = y/2 for all m �= m2. That is, any unplayed
message is interpreted as m1.
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√

2)/48 � −11.029/192 at the 2-step ABEE, so this ABEE Pareto dominates the (unique) NE
(the expected payoff of the sender is always EUR − b2). Finally, to illustrate that the 2-step
ABEE may Pareto dominates all NE even when there also exists a 2-step NE, let b = 1/8. In
that case, there is a 2-step NE, characterized by x∗ = 1/4, σR(m1) = 1/8, σR(m2) = 5/8, and
EUR = −7/192, but since b > 1/12 there is no L-step NE for L � 3.35 The 2-step ABEE is
characterized by x∗ = (9 − √

17)/16 � 0.305, σR(m1) = 1/4, σR(m2) = 1/4 + 4/(7 + √
17) �

0.61, and EUR = (−19 + 3
√

17)/192 � −6.63/192, so it Pareto dominates all NE (the pooling
equilibrium and the 2-step NE). �
Proof of Proposition 11. (i) If ε = 0 then player i’s payoff at some state ω if he plays D is null
and if he plays B it is equal to∑

ω′∈Ω

p
(
ω′ | Pi(ω)

)
σj (B | ω′)xi(ω) = σj (B | ω)

∑
ω′∈Ω

p
(
ω′ | Pi(ω)

)
xi(ω),

because σj is Pi -measurable (Ai is coarser than Pi ). It is therefore (perceived to be) optimal
for player i to bet if E[xi | Pi(ω)] > 0 and to drop out otherwise, which means that the naive
strategy is always a (perceived) best response and thus the naive strategy profile is an ABEE.

(ii) Let σ be the naive strategy profile, i.e., σi(B | ω) = 1 if ω ∈ Yi and σi(B | ω) = 0 if
ω /∈ Yi . If ω /∈ Yi then the perceived expected payoff of player i if he bets is equal to σj (B |
ω)E[xi | Pi(ω)] − ε � 0, so to play D at ω is (perceived as) optimal for player i. If ω ∈ Yi , then
αi(ω) ∩ Yj �= ∅ implies that σ j (B | ω) > 0. Since E[xi | Pi(ω)] > 0 this implies that there exists
ε > 0 such that the perceived expected payoff of player i if he bets is positive, so to play B at ω

is (perceived as) optimal for player i. �
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