
Abstract. It is well known that the set of correlated equilibrium distributions
of an n-player noncooperative game is a convex polytope that includes all the
Nash equilibrium distributions. We demonstrate an elementary yet surprising
result: the Nash equilibria all lie on the boundary of the polytope.

JEL Classification: C720.

1. Introduction

It is a curiosity in the history of game theory that the study of correlated
equilibria has lagged far behind the study of Nash equilibria. At the time that
Nash (1951) formulated the concept of an equilibrium in independent strat-
egies, the use of correlated strategies in noncooperative games was already
under investigation1 and there was keen interest in applications of the newly
developed theory and methods of linear programming. Yet more than 20
years elapsed before Aumann (1974, 1987) proposed the concept of an
equilibrium in correlated strategies and gave examples showing that corre-
lated equilibria are sometimes more efficient and more intuitively reasonable
than Nash equilibria. The set of correlated equilibrium distributions is a
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convex polytope, hence correlated equilibria can be easily found by linear
programming methods, and extreme points of the set of correlated equilibria
have rational coordinates when the payoff matrix is rational. By comparison,
the set of Nash equilibrium distributions may be nonconvex or disconnected
or consist only of points with irrational coordinates (see the examples of
section 4 and 5); and solving for Nash equilibria in games with three or more
players may require nonlinear optimization or the solution of systems of
nonlinear equations. The mathematical simplicity of correlated equilibria
suggests that their existence should be provable using only tools of linear
algebra, rather than powerful fixed-point theorems, yet another 15 years
elapsed before the first such elementary existence proofs were discovered
(Hart and Schmeidler 1989, Nau and McCardle 1990). More recently, the
comparative geometry of Nash and correlated equilibria has been explored
further, and it has been found that in 2-player (bimatrix) games, all extremal
Nash equilibria are also extremal correlated equilibria (Cripps 1995, Evan-
gelista and Raghavan 1996, Gomez Canovas et al. 1999), although this result
does not hold with more than 2 players.2

The purpose of this paper is to point out— ‘‘prove’’ is perhaps too
strong a word—a more elementary fact that so far apparently has gone
unnoticed, but which, once it is pointed out, is the second most obvious
fact about the geometrical relation between Nash and correlated equilibria:
the Nash equilibria all lie on the boundary of the correlated equilibrium
polytope. This means that if the polytope is of full dimension, the Nash
equilibria lie on its relative boundary.

2. Main result

Let G denote a finite noncooperative game, let n denote the number of
players, let Si denote the set of pure strategies of player i, where |Si| ‡ 2 for all
i, let S= S1 · ... · Sn denote the set of all joint strategies (outcomes of G), and
let N = |S| denote the number of outcomes. Let si denote a pure strategy of
player i and let s = (s1, ..., sn) ˛ S denote a joint strategy of all players. Let
ui(s) denote the payoff (utility) of player i when joint strategy s is played, and
let ui(di, s-i) denote the payoff to player i when she chooses strategy di ˛ Si

while the others adhere to s.

Definition: The game G is non-trivial if ui(s) „ ui(di, s-i) for some player i, some
s ˛ S, and some di ˛ Si.

A correlated equilibrium distribution of G is a vector p in ´N satisfying
the following linear constraints (Aumann 1987):

2 In a 2-player game, the set of Nash equilibrium distributions is a finite union of convex
polytopes in the product space of marginal probability distributions on strategies of individual
players (Jansen 1981). The result proved by Cripps, Raghavan and Evangelista, and Gomez
Canovas et al. is that the extreme points of these polytopes correspond to extreme points of the
correlated equilibrium polytope in the higher-dimensional space of joint probability distributions.
Our examples in sections 4 and 6 show that in 3-player games it is possible that none of the
extreme points of the correlated equilibrium polytope is a Nash equilibrium.
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pðsÞ � 0 for all s 2 S ð1aÞ
X

s2S

pðsÞ ¼ 1 ð1bÞ

X

s�i2S�i

pðsÞðuiðsÞ � uiðdi; s�iÞÞ �; 0 for all i and for all si; di 2 Si: ð1cÞ

The first two constraints (1ab) define an N-1 dimensional simplex, henceforth
denoted as P, consisting of all probability distributions on joint strategies.3

The remaining inequalities (1c) are incentive constraints with the following
interpretation: consider p as a commonly-known probability distribution of
‘‘recommended’’ joint strategies generated by a possibly-correlated random-
izing device, and suppose that each player is informed only of her own
component of the recommended joint strategy. Then the constraints (1c)
require that, conditional on knowing that her own recommended strategy
is si, player i should have no incentive to defect to any other strategy di,
assuming that the other players adhere to their own recommendations.

The set of all correlated equilibrium distributions determined by (1abc) is
a convex polytope, henceforth denoted as C, which is a proper subset of P if
the game is non-trivial (because non-triviality entails that at least one of the
incentive constraints is not satisfied everywhere in P). The polytope C is of
full dimension if it has dimension N–1, the same as P. A correlated equilib-
rium distribution p is on the boundary of C if it lies in a face of C whose
dimension is less than N–1, which in turn is true if and only if p lies on a
supporting hyperplane of C whose normal vector is non-constant, i.e., line-
arly independent from the total-probability constraint (1b). If C is of less than
full dimension, then all of its points are boundary and it has no interior, but
if it is not a singleton it still has a relative interior and a relative boundary.
We will return to this point in section 6.

The set I of all joint probability distributions that are independent
between players is defined by a system of nonlinear constraints, viz.

I ¼ fp 2 P : pðsÞ ¼ p1ðs1Þ � � � � � pnðsnÞ 8s 2 Sg;
where pi denotes the marginal probability distribution on Si induced by p. I
includes all the vertices of the simplex P (which correspond to pure strategies
and are trivially independent), as well as faces of the simplex on which only
one player uses a mixed strategy and segments along which the mixed strat-
egies of all the players but one are fixed, but everywhere else it is locally
nonconvex in the sense that a strictly convex combination of two independent
joint distributions in which two or more players have distinct marginal dis-
tributions is not independent. In a 2·2 game, P is a 3-dimensional tetrahe-
dron and I is a 2-dimensional saddle. (See Figure 1 below.) In larger games,
the dimensionality of I may be many orders lower than that of P: the former
has dimension |S1| + ... + |Sn| – n, whereas the latter has dimension
|S1| · … · |Sn| – 1.

3 Although the distributions lie in an N)1 dimensional subspace, it is convenient to represent
them as vectors in ´N in order to treat all strategies symmetrically.
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The set of Nash equilibria is the intersection of C and I, which is non-
empty by virtue of Nash’s (1951) existence proof. We are interested in the
geometry of this intersection: where in C may the independent distributions
lie? The answer is given by

Proposition 1: In any finite, non-trivial game, the Nash equilibria are on the
boundary of the correlated equilibrium polytope. If the polytope is of full
dimension, the Nash equilibria are on its relative boundary.

Proof: If a Nash equilibrium is not completely mixed, it assigns zero prob-
ability to one or more joint strategies, hence it satisfies at least one of the non-
negativity constraints (1a) with equality. If it is completely mixed, a Nash
equilibrium renders every player indifferent among all of her own strategies,
hence it satisfies all of the incentive constraints (1c) with equality, at least one
of which is non-trivial if the game is non-trivial. Hence every Nash equilib-
rium satisfies at least one non-negativity constraint or non-trivial incentive
constraint with equality, and that constraint (together with (1b)) determines a
face of C whose dimension is less than N–1. j

TL

TR

BL

BR

Fig. 1. Geometry of the equilibria of ‘‘battle of the sexes: the tetrahedron is the simplex of
probability distributions on outcomes of the game, the saddle is the set of distributions
independent between players, the polytope with 5 vertices and 6 facets is the set of correlated
equilibria, and their three points of intersection are Nash equilibria
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Thus, an independent distribution cannot be an interior point of C, if C
has a non-empty interior.

3. A generic example: battle of the sexes

The coordination game known as ‘‘battle of the sexes’’ (Raiffa 1951, Luce and
Raiffa 1957) has the following payoff matrix:

As is well known, this game has three Nash equilibria, two of which are in
pure strategies. Its correlated equilibrium polytope has five vertices, two of
which are non-Nash.4 The geometry of these solutions is shown in Figure 1:
the probability simplex is a tetrahedron, the independence set is a saddle, and
the correlated equilibrium polytope is a hexahedron (a triangular dipyramid)
that touches the saddle at exactly three points: the Nash equilibria.

This example is to some extent generic: a 2·2 game in which both players
have distinct strategies that are not weakly dominated either has a correlated
equilibrium polytope with five vertices, three of which are Nash equilibria
arranged as in Figure 1, or else the polytope consists of a singleton, which
may be either a pure-strategy or mixed-strategy Nash equilibrium. If some
strategies lead to identical payoffs or are weakly dominated, then the polytope
may have other numbers of vertices between one and five. For example, if the
incentive constraints of one player in battle-of-the-sexes are eliminated by
equalizing the payoffs of her two strategies, the resulting correlated equilib-
rium polytope has four vertices.5

4. A three-player game with a unique Nash solution in irrational strategies

Nash (1951) gave an example of a 3-player poker game (devised by Lloyd
Shapley) with a rational payoff matrix and a unique independent equilibrium

Left Right

Top 3, 2 0, 0
Bottom 0, 0 2, 3

4 The pure Nash equilibria are TL and BR and the completely mixed Nash equilibrium is (3/5 T,
2/5 B)·(2/5 L, 3/5 R). The two non-Nash extremal correlated equilibria are (2/7 TL, 3/7 TR, 2/7
BR) and (3/8 TL, 1/4 BL, 3/8 BR).
5 While the 2·2 case is extremely simple to characterize, the number of vertices of the correlated
equilibrium polytope may grow explosively with the size of the game. We randomly generated 2-
player games of different sizes with non-negatively correlated payoffs and enumerated the vertices
of their correlated equilibrium polytopes using Fukuda’s (1993) implementation of the double-
description method of Motzkin et al. (1953). Out of 250 4·4 games, half had polytopes with 5 or
fewer vertices, but four games had polytopes with more than 100,000 vertices. However, the
economically important vertices are those on the efficient frontier in expected payoff space, and
their number grows much more slowly with the size of the game. In our sample of 4·4 games,
more than three-quarters had a single efficient vertex (which happened also to be a Nash
equilibrium), and the maximum number of efficient vertices was 65 (none of which was a Nash
equilibrium).
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in irrational mixed strategies. Such an equilibrium cannot be a vertex of the
correlated equilibrium polytope, because the vertices must have rational
coordinates, but according to Proposition 1 it still must lie somewhere on the
boundary of the polytope. It is actually fairly easy to construct 3-player
games with unique, irrational mixed-strategy Nash equilibria, such as:

(The numbers in the cells are the payoffs to Row, Column, and Matrix
respectively.). The unique Nash equilibrium has the following marginal
probabilities: p(L) = (–13 + �601)/24 » 0.480, p(T) = (9p(L) – 1)/(7p(L) +
2) » 0.619, p(1) = (–3p(L) + 2)/(p(L) +1) » 0.379.

The correlated equilibrium polytope of this game is seven-dimensional
(i.e., full dimension) with 33 vertices. Even apart from the fact that the
Nash equilibrium has irrational coordinates, it is clear that it cannot be a
vertex of the polytope. The polytope is defined by a system of six incentive
constraints (two for each player) in addition to the non-negativity and total
probability constraints, and the incentive constraints are linearly indepen-
dent. A completely mixed-strategy Nash equilibrium must satisfy all the
incentive constraints with equality (because it renders every player indif-
ferent among all her strategies), so it must be a point where all the incen-
tive-constraint hyperplanes intersect. But, the probability simplex for this
game is seven-dimensional, hence the intersection of the six hyperplanes
only determines a line, rather than a point, in the linear span of the simplex.
Since there exists a completely mixed Nash equilibrium, the set of correlated
equilibrium distributions that satisfy all the incentive constraints with
equality must be a line segment that passes through the interior of the
probability simplex and terminates in two vertices on its boundary. The
Nash equilibrium lies somewhere in the interior of this line segment, which
is to say, it lies in the middle of an edge of the polytope.6 In particular, it
is equal to ap1 + (1-a)p2, where a = 13((193·�601) – (17·277))/(23·32) »
0.397, and p1 and p2 are vertices of the polytope that assign the following
probabilities to outcomes:

Left Right

Top 3, 0, 2 0, 2, 0

Bottom 0, 1, 0 1, 0, 0

1

Left Right

Top 1, 0, 0 0, 1, 0

Bottom 0, 3, 0 2, 0, 3

2

TL1 TR1 BL1 BR1 TL2 TR2 BL2 BR2

p1 0 24/78 9/78 0 24/78 0 5/78 16/78

p2 216/1158 0 45/1158 144/1158 120/1158 384/1158 169/1158 80/1158

6 By the same reasoning, in any game where the number of incentive constraints is less than N–1,
e.g., any game with 3 or more players in which each player has the same number of strategies (‡
2), a completely mixed-strategy Nash equilibrium cannot be a vertex of the correlated equilibrium
polytope.
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5. A game with a continuum of completely mixed-strategy nash equilibria

The next example illustrates that not only can completely mixed-strategy
Nash equilibria fall elsewhere than at vertices, but they can even form curves
within faces of the polytope:

This game differs from the previous one in that the incentive constraints of
the correlated equilibrium polytope are not all linearly independent: there are
only five distinct incentive constraints, because the constraint for Row
defecting from T to B is the same as the constraint for Column defecting from
L to R. These five distinct constraints are independent, hence the set of points
satisfying them with equality is two-dimensional. The correlated equilibrium
polytope is seven-dimensional and has eight vertices. Three of the vertices
(namely TR1, BL1, and BR2) are pure Nash equilibria, while two are
incompletely mixed Nash equilibria: (1/4 TR1, 3/4 TR2) and (1/4 BL1, 3/4
BL2). The two incompletely mixed Nash equilibria satisfy all the incentive
constraints with equality, as does the following extremal correlated equilib-
rium: (3/20 TL1, 1/10 BR1, 9/20 TL2, 6/20 BR2). The latter three vertices
determine a face of the polytope that harbors a continuum of completely
mixed Nash equilibria lying along an open curve, parameterized by p(1)=1/4
and p(T)=(1-p(L))/(1-1/3p(L)) for 0<p(L)<1.

6. The case of less than full dimension

The preceding three examples are elementary games in the sense of Myerson
(1997). An elementary game has correlated equilibria that satisfy all the
incentive and non-negativity constraints with strict inequality. The correlated
equilibrium polytope of an elementary game has full dimension, in which case
Proposition 1 implies that the polytope has no Nash equilibria in its relative
interior. As Myerson points out, elementary games are games for which it is
unnecessary to consider refinements of correlated equilibrium, and every non-
elementary game can be reduced to an elementary game by a process of
iterative dual reduction, a generalization of the elimination of the weakly
dominated strategies. If the correlated equilibrium polytope C is of less than
full dimension, the game is not elementary, and the polytope has no interior,
in which case Proposition 1 holds trivially. Nevertheless, if C is not a sin-
gleton, it has a relative interior, so the question remains: is it possible for a
Nash equilibrium to exist in the relative interior of C when it is of less than
full dimension? The answer is affirmative, but only for games that are rather
special and seemingly uninteresting:

Proposition 2: A Nash equilibrium may exist in the relative interior of a cor-
related equilibrium polytope of less than full dimension only if the following
conditions are satisfied:

Left Right

Top 0, 0 ,2 0, 3 ,0

Bottom 3, 0, 0 0, 0, 0
1

Left Right

Top 1, 1, 0 0, 0, 0

Bottom 0, 0, 0 0, 0, 3
2
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(i) The Nash equilibrium assigns positive probability to every coherent7

strategy of every player;
(ii) In every correlated equilibrium, the incentive constraints for defecting

from one coherent strategy to another coherent strategy are all satisfied
with equality.

Proof: If the polytope is of less than full dimension, its relative boundary
consists of the equilibria that satisfy with equality a non-negativity constraint
(1a) or incentive constraint (1c) that is not satisfied with equality by all
correlated equilibria. If condition (i) is not satisfied, then the Nash equilib-
rium satisfies with equality some non-negativity constraint that is not satisfied
with equality by all correlated equilibria, hence it is on the relative boundary.
Assume, then, that condition (i) is satisfied by the Nash equilibrium and
consider a player who has more than one coherent strategy. (There must be at
least one such player, otherwise the polytope would be a singleton.) The Nash
equilibrium strategy for that player is a mixture of the coherent strategies, and
as such it must render the player indifferent among all those strategies—i.e., it
must satisfy with equality all the incentive constraints for defecting from one
coherent strategy to another coherent strategy. If condition (ii) is not also
satisfied, then the Nash equilibrium satisfies with equality some incentive
constraint that is not satisfied with equality by all correlated equilibria, hence
it is on the relative boundary. j

A game that satisfies the preceding conditions is one in which, in any
equilibrium, every player is indifferent among all her coherent strategies given
her recommended strategy, and the geometry of the set of correlated equi-
libria is highly non-robust to perturbations of the payoffs. For example,
consider the 2·2·4 game:

The correlated equilibrium polytope is four-dimensional with six vertices.
The set of Nash equilibria is a line segment terminating in two extremal Nash
equilibria on the relative boundary of the polytope, and the interior of this
line segment is in the relative interior of the polytope. The extremal correlated
and Nash equilibria have the distributions shown in the table below.

Nash equilibrium #1 is a convex combination of vertices #1 and #2, while
Nash equilibrium #2 is a convex combination of vertices #3 and #4, hence the
two extremal Nash equilibria lie on (disjoint) edges of the polytope but they
are not extremal correlated equilibria. Any mixture of the two extremal Nash

L R

T 2,0,0 0,1,1

B 0,2,1 1,0,2

1

L R

1,0,2 0,2,1

0,1,1 2,0,0
2

L R

1,0,1 0,1,2

0,2,0 2,0,1
3

L R

2,0,1 0,2,0

0,1,2 1,0,1
4

7 An outcome of the game is defined to be jointly coherent if it does not lead to arbitrage when
players reveal their utilities through side bets, which by linear duality is true if and only if that
outcome has positive probability in some correlated equilibrium (Nau and McCardle 1990). A
strategy of an individual player is therefore called coherent if it has positive probability in some
correlated equilibrium.
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equilibria is a completely mixed Nash equilibrium in the relative interior of
the polytope. The existence of the relative-interior Nash equilibria is a knife-
edge situation, because a small perturbation of any one payoff destroys the
symmetry8 of the game and causes the polytope to inflate to a higher-
dimensional form that no longer satisfies condition (ii).

In the exceptional case where C has a Nash equilibrium in its relative
interior, the set I of independent distributions still intersects it only ‘‘tan-
gentially’’ in the following sense:

Proposition 3: Let G be a non-trivial game in which at least two players have
two or more strategies. If the correlated equilibrium polytope C of G has a Nash
equilibrium in its relative interior, then C lies on the relative boundary of a
higher-dimensional correlated equilibrium polytope C* of a non-trivial game G*
having the same strategy space as G, where C* has no Nash equilibria in its
relative interior.

Proof: Consider two cases: (a) at least one player has an incoherent strategy
in G, and (b) all strategies in G are coherent. In case (a), let G* have the same
strategy space as G, and let the payoffs in G* of all players be equal to 0 in
every outcome where all players use strategies that are coherent in G
(regardless of whether the outcome is jointly coherent in G) and also in exactly
one outcome—call it s*—where all players except one use strategies that are
coherent in G. Let the payoffs to all players be equal to –1 in the remaining
outcomes where all players except one use strategies that are coherent in G (of
which there is at least one); and let the payoffs to all players be equal to –k in
all outcomes (if any) where exactly k players use strategies that are incoherent
in G. Then C* is a simplex whose vertices assign probability 1 to the outcomes
where the payoffs are equal to 0 (including s*), and C is contained in a facet of
C*, namely the facet on which s* has probability zero, which is part of the

TL1 TR1 BL1 BR1 TL2 TR2 BL2 BR2 TL3 TR3 BL3 BR3 TL4 TR4 BL4 BR4

Vertex #1 1/4 1/4 1/4 1/4

Vertex #2 1/4 1/4 1/4 1/4

Vertex #3 1/4 1/4 1/4 1/4

Vertex #4 1/4 1/4 1/4 1/4

Vertex #5 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Vertex #6 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Nash #1 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Nash #2 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

8 Each 2·2 subgame induced by a pure strategy of the Matrix player has the same set of generic
payoffs for each player, and subgames 2 and 4 are 180-degree rotations of subgames 1 and 3,
respectively, while subgame 3 is obtained from subgame 2 by interchanging the payoffs of Row
and Column and rotating 90 degrees clockwise.
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relative boundary of C*. G* has no Nash equilibria that assign positive
probability to all its coherent strategies (because there is a least one outcome
in which all players use coherent strategies yet which is jointly incoherent),
hence by Proposition 2, part (i), the relative interior of C* contains no
independent distributions. Now consider case (b), in which all strategies of all
players are coherent. Because C has less than full dimension, G has non-trivial
incentive constraints, hence at least one player has two coherent strategies
with distinct payoffs. If there is a Nash equilibrium in the relative interior of
C, condition (i) of Proposition 2 requires it to be completely mixed, which
implies that no coherent strategy weakly dominates another coherent strat-
egy. Hence there is a player with two distinct coherent strategies that do not
weakly dominate each other—say, strategies 1 and 2 of player 1. (There may
be additional coherent strategies if |S1|>2.) It follows that u1(1, s-1) - u1(2, s-1)
has at least one strictly positive value and one strictly negative value as s-1
ranges over S-1. Now let the game G* with the same strategy space as G
but with payoff functions {ui*} be constructed as follows. For player 1, let
u1*(1, .) = u1(1, .) and u1*(k, .) = u1(2, .) for k ‡ 2. In other words, for player
1, strategies 1 and 2 have the same payoffs in G* as in G, while all strategies
k >2 (if any) in G* have the same payoffs as strategy 2 in G. For every other
player i > 1, let ui*(k, .) = u1(1, .) for k ‡ 2. In other words, for all players
other than player 1, all strategies in G* have the same payoffs as their strategy
1 in G. Then only player 1 has non-trivial incentive constraints in G*. In
particular, the incentive constraints of G* are:

X

s�12S�1

pð1; s�1Þðu1ð1; s�1Þ � u1ð2; s�1ÞÞ � 0; ð2aÞ

X

s�12S�1

pðk; s�1Þðu1ð2; s�1Þ � u1ð1; s�1ÞÞ � 0 for k ¼ 2; . . . ; jS1j: ð2bÞ

These constraints are linearly independent (because the kth constraint has
non-zero coefficients only in outcomes where player 1 chooses strategy k), and
each has at least one positive coefficient and one negative coefficient. The
polytope C* they determine has full dimension, so that (by Proposition 1) its
relative interior excludes Nash equilibria. It is straightforward to show
(invoking Proposition 2(ii)) that the elements of C satisfy (2ab) with equality,
hence C lies in a proper face of C*. j

Thus, when C has a Nash equilibrium in its relative interior, the set I of
independent distributions still touches C only from one ‘‘side,’’ namely from
the outside of the higher-dimensional polytope C* whose relative boundary
contains C.
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