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MONEY AND PRODUCTION, AND
LIQUIDITY TRAP

Pradeep Dubey and John Geanakoplos

May 8, 2006

Abstract

We prove the existence of monetary equilibrium in a finite horizon economy
with production. We also show that if agents expect the monetary authority to
significantly decrease the supply of bank money available for short term loans in
the future, then the economy will fall into a liquidity trap today.

1 Introduction

Jean-Michel Grandmont combined a deep interest in monetary theory with a total
mastery of the techniques of Walrasian general equilibrium theory. In his famous
monograph, Money and Value, he began by asking whether monetary equilibrium
(entailing a positive value for fiat money) would always exist if prices were flexible.
He ended his book by asking whether the central bank would necessarily put the
economy into a liquidity trap if it tried to force the nominal rate of interest down to
zero.

In this paper we investigate exactly these two questions. We propose a different
kind of monetary model, based on rational expectations equilibrium instead of the
temporary equilibrium envisaged by Grandmont, and we work with a different def-
inition of liquidity trap. As a result we reach different conclusions. In our model,
monetary equilibrium always exists. On the other hand, we show that the liquidity
trap springs shut when the public comes to believe that the supply of bank money
will grow too slowly. For example, if the central bank increases the supply of money
for short term loans today but is expected to restore the normal supply in the future,
the public will be anticipating a decrease in the supply of money which, if sufficiently
extreme, will inevitably render further monetary injections today powerless.

We introduce a two-period general equilibrium model with households and pro-
ducers and an incomplete set of financial assets called derivatives. Production plays
a central role in giving money value in our model because the only way for the firms
to distribute profits to their shareholders is by selling their goods for money and then
paying the revenue out as dividends. We also assume that firms have endowments of
goods, so that they are bound to be selling something valuable for money.
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We introduce a monetary authority that can give loans of varying maturities.
This money is called inside money by Grandmont in Money and Value. In addition,
agents have private endowments of money called outside money.

We show that under very mild concavity assumptions, monetary equilibrium must
always exist, no matter what the stocks of central bank money M0,M0̄,M1 put up
for short loans at period 0, long loans at period 0, and short loans at period 1. By
contrast, Grandmont found that equilibrium existed only for a narrow range of money
stocks, depending on the elasticity of expectations.

We proved a similar universal existence theorem for pure exchange economies with
incomplete markets and rational expectations in [2003b]. But there it was necessary
that the ratio of outside money to inside money be no higher than the gains to trade
at the initial endowment point. In our current model no assumption need be made
about gains to trade, because the sales by the firms of goods will give money value.

Lucas [1980], and Lucas-Stokey [1987] studied equilibrium for economies in which
every agent was forced to sell his endowments (to himself). But those papers were set
in an infinite horizon economy. We are able to prove the existence of equilibrium in
a finite horizon economy, in which only the firms are obliged to sell goods for money.
Needless to say, finite horizon economies are computationally more tractable than
infinite horizon economies.

As for the liquidity trap, Grandmont showed quite generally in his model that
as the monetary authority drove the interest rate to zero in the first period it would
necessarily be led to increase the stock of bank money (M0 in our model) to infinity.
We reach the opposite conclusion. We show that if the central bank increases M0,
but agents all assume that it will not increase future stocks of bank money M1 (or
long term loans M0̄), then the interest rate r0 will necessarily hit zero while M0

is still finite. Further increases in M0 will induce agents to hold larger and larger
real balances in their portfolios, as they borrow the money and hoard it, returning
it unspent at the end of the loan. Tobin [1980] defined the liquidity trap as the
accumulation of ever larger stocks of real money balances in private portfolios, and
that is what necessarily occurs in our model.

If, on the other hand, the bank could commit to increasing all the loansM0,M0̄,M1

in the same proportion, then all interest rates would gradually be driven toward zero
as the bank money inexorably increased toward infinity. But then prices would also
increase toward infinity, and the holdings of real money balances would stay bounded.

Krugman [1998] proposed a similar explanation for the liquidity trap, based on
expectations of insufficient future money growth. His model consisted of an infinite
horizon, single commodity, single agent economy, and the liquidity trap arose when
the expected rate of money growth became less than the real rate of interest. In
an economy with multiple goods, there is no well-defined real rate of interest. Nev-
ertheless, our liquidity trap theorem can be taken to be the natural extension of
Krugman’s idea to more general economies. We also developed the same theory of
the liquidity trap in a pure exchange economy in [2006]. The liquidity trap becomes
a more serious welfare problem when there is production.

We describe the model in Section 2, and state the Equilibrium Existence Theorem

2



in Section 3. In Section 4 we state and prove the Liquidity Trap Theorem. In Section
5 we comment on our assumption that the goals of each firm can be represented by
a utility function depending on all the macro variables and, in a concave way, on the
choices of the firm. One special case is when each firm has a single owner who is
not allowed to default on firm promises (bonds and bank loans). By exploiting the
dependence of the utility on the macro variables we show that the model can also
encompass various cases with multiple owners and firm default. The paper concludes
with an appendix containing the proof of the Equilibrium Existence Theorem.

2 The Monetary Economy

2.1 The Underlying Economy

The set of states of nature is S∗ = {0, 1, ..., S}. State 0 occurs in period 0, and then
nature moves and selects one of the states in S = {1, ..., S} which occur in period 1.

The set1 of commodities is L = {1, ..., L}. Thus the commodity space may be
viewed as RS∗×L

+ . The pair sc denotes commodity c in state s.
The set of households is H = {1, ...,H}. Household h has initial endowment

eh ∈ RS∗×L
+ and utility function uh : RS∗×L

+ → R. We assume that no household has
the null endowment of commodities in any state, i.e., for s ∈ S∗ and h ∈ H:

eh = (ehs1, ..., e
h
sL) 6= 0

and each commodity is present in the aggregate:X
h∈H

eh À 0.

We further assume that each uh is concave and smooth, and

∂uh

∂xsc
> 0 for all h ∈ H, s ∈ S∗, c ∈ L.

The set of firms is J = {1, ..., J}. Each firm j has a production set Y j ⊂ RL
+ ×

RL×S
+ , where (x0, ȳ) ∈ RL

+×RL×S
+ specifies inputs x0 in period 0 and outputs ȳs ∈ RL

+

in each state s in period 1. Note that there are no outputs in period 0; production,
in our model, takes time. We impose the standard restrictions

(i) Y j is convex and closed

(ii) 0 ∈ Y j

(iii) For any A > 0, there exists B > 0 such that if (x0, ȳ) ∈ Y j , and ||x0|| ≤ A,
then ||y|| < B, where || || denotes the max norm.

1For X = {1, ..., x, ...,X} it will be clear from the context whether X refers to the set or to its
last element.
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Firm j, in addition, has endowments ej ∈ RL×S
+ , with ejs ≡ (ejs1, ..., ejsL) 6= 0 for

each s ∈ S. This completes the description of the physical structure of the firm.2

2.2 Money

Money plays a crucial role in the economy because we assume that it is the sole
medium of exchange and hence all purchases are out of cash (the so-called Clower
cash-in-advance constraint).

Money is fiat and enters the economy in two ways. Each agent t ∈ H ∪ J
has endowments of money mt

s ≥ 0 in each state s ∈ S∗, with
P

h∈H mh
0 > 0 andP

j∈J m
j
0 = 0. We call this outside money. There is also a central bank that stands

ready to make short loans totalling Ms > 0 dollars for one period in each state
s ∈ S∗ and also to make long loans totalling M0̄ > 0 for two periods starting at date
0. Unlike the commodities, money is perfectly durable.

Agents borrow money from the bank by promising to pay back the loan with
interest. If the interest rate on loan n ∈ N ≡ {0̄, 0, 1, ..., S} is rn, then anyone can
borrow μn/(1 + rn) dollars by promising to repay μn dollars at the time the loan
comes due.

2.3 Fundamental Macro Variables

The fundamental macro variables are

η̄ = (r, ρ, p, δ̄,∆,W, V )

where

r ∈ RN∪J
+ ≡ interest rates on bank loans n ∈ N ≡ {0̄, 0, 1, ..., S} and

firm bonds j ∈ J

ρ ∈ RJ
++ ≡ prices of shares of the J firms

p ∈ RS∗L
++ ≡ commodity prices

δ̄,∆ ∈ RHJ
+ ≡ initial, final shares held by households h ∈ H of firm j ∈ J

W ∈ RSJ
+ ≡ payoffs in states s ∈ S of firm bonds j ∈ J

V ∈ RSJ
+ ≡ dividend payoffs per share of firms j ∈ J in states s ∈ S

Sometimes we write

η̄ = (η̄0, (η̄s)s∈S) = ((r0, r0̄, (rj)j∈J , ρ, p0, δ̄,∆), (rs, ps,Ws, Vs)s∈S)

breaking η̄ into its state components.

2For simplicity of notation we assume that the firm has no endowment of goods (or money) in
period zero, though this could be easily included. Thus we have the inputs of the firm in period zero
precisely equal to its purchases of commodities, and no bank deposits by firms.
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2.4 Financial Structure of the Firm

There are initial shareholders; δ̄hj denotes the shares of firm j held by agent h (we

normalize the total initial shares in each firm to be 1, so
PH

h=1 δ̄
h
j = 1). The firm can

issue f j new shares, diluting the original shareholdings to a fraction 1/(1 + f j). Let
the price of the firm’s share be ρj . Then ρjf

j is the money raised by the new issue.
Two other sources of finance are available. The firm can issue bonds βj , as well

as borrow money μj
0̄
/(1 + r0̄) from the bank. (Since production takes time, there is

no point in the firm borrowing on the short loan markets; and, since mj
0 = 0, the firm

has no money to lend). A bond of firm j is a promise by j to deliver one dollar in
every state s = 1, ..., S in period 1. If its bond price is assumed positive we can write
it as 1/(1+ rj) where rj is the implicit interest promised by the bond. The firm thus
raises in total ρjf

j + μj
0̄
/(1 + r0̄) + βj/(1 + rj) from the “capital markets” (shares,

bank, bonds). Hence [μj
0̄
/(1+ r0̄)+βj/(1+ rj)]/ρj(1+ f j) is the “debt—equity” ratio

of firm j.
We wish to imagine perfectly competitive firms. We shall therefore suppose the

firms treat their own prices ρj as fixed when they raise money on capital markets.
Since ρj is influenced by the willingness of households to buy shares in the firm, which
in turn depends on their expectations about firm bond payments and dividends, we
also fix those expectations Wsj and Vsj , like ρj , as part of the macro variables. The
firm is, however, choosing how much to issue, and its dividends, itself. In equilibrium
these choices will match the expectations.

Is it reasonable for households to assume that ρj , Wsj and Vsj are fixed when the
firm issues more shares? We say yes, if the new issue size is infinitesimal compared
to the scale of the firm. The household thinks that the new money will be used by
the firm to produce the same returns as the old equity (or bond) was yielding.

A concrete way of interpreting our assumption of fixed ρj , Wsj , and Vsj is that
the firm is really the sum of a continuum of small “divisions.” Each division can issue
its own shares, but they get pooled with the shares of the other divisions, giving any
shareholder equal ownership of all the divisions, in proportion to the fraction of all
shares he bought. General Electric, for example, includes a dishwasher division, an
engine division, a financial services division, and so on. When the firm issues shares
to raise money for one division, it sells ownership of all its divisions.

In short, the firm chooses σj ≡ (f j , μj
0̄
, βj , yj) ≥ 0 satisfying

p0 · xj0 ≤ ρjf
j +

1

1 + r0̄
μj
0̄
+

1

1 + rj
βj and (xj0, ȳ

j) ≡ yj ∈ Y j

i.e., that its purchase of inputs be financed out of the money on hand, and that
production be feasible. The set of all such σj is denoted by Σjη̄.

The dividend paid to each share of firm j in state s ∈ S is

vsj = vsj(η̄, σ
j) =

µ³
ps · (ȳjs + ejs)− μj

0̄

´+ − βj
¶+

/(1 + f j)
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where c+ = max{0, c} for any real number c. This is so because the firm is required to
first repay μj

0̄
to the bank. Then, if it has money left, βj is paid to the bondholders.3

Each bond of firm j thus pays

wsj = wsj(η̄, σ
j) = min

½
1

βj
[ps · (ȳjs + ejs)− μj

0̄
]+, 1

¾
.

in state s ∈ S, if βj > 0. What remains, after all creditors have been reimbursed, is
finally passed on to the shareholders.

Note that bondholders and shareholders are not held liable for the bankruptcy
of the firm when it is unable to repay the bank. Shareholders, in addition, are not
liable for the bondruptcy incurred by the firm when it cannot payoff its bonds. This
is in keeping with the “limited liability clause” for corporations.

We could have required some (“unincorporated” small business) firms to have
unlimited liability, i.e., to pass along all their debts to their shareholders, who would
then be obligated to pay or else face penalties. This would leave intact all our results
on the existence of monetary equilibrium and the liquidity trap.

2.5 Derivatives

In modern economies, agents can trade derivative assets, as well as the old-fashioned
stocks and bonds. Derivatives have payoffs that depend on the fundamental macro
variables. For example, a call option on firm j, with strike price λj , pays offmax(Vsj−
λj , 0) in each state s ∈ S. The strike price λj ∈ R is usually chosen with the current
or past fundamental macro variables in mind. One natural choice is to set λj = ρj ,
or (say) .9ρj . Another example of a derivative asset is an inflation-indexed promise,
which delivers ps · Λs in state s ∈ S, where Λs ∈ RL

+ is a fixed basket of goods.
Thus we suppose that derivative k ∈ K ≡ {1, ...K} promises payoffs

Ask(η̄0, η̄s)

dollars in each state s ∈ S, where each Ask varies continuously with η̄0 and η̄s. Any
household h ∈ H is free to buy or sell arbitrary amounts of derivative k at the price
πk.4 Since there are no a priori endowments of derivatives, such sales are called “short
sales.”

We encompass many derivatives in our model. But we need one assumption to
make sure equilibrium exists. Let the set of fundamental macro variables on which
there is no obvious capital market arbitrage be given by

Ω =

½
η̄ : ρÀ 0, pÀ 0, r0̄ ≥ 0 and

1

1 + r0̄
min
s∈S

Vsj ≤ ρj ≤ max
s∈S

Vsj

¾
.

3We could interchange this order without affecting our results, i.e., firms pay out bondholders
first, and then the bank. What is important is that the total debt must be cleared before profits can
be distributed as dividends to the shareholders.

4For simplicity, we keep each firms out of the derivative asset markets and the capital markets of
other firms.
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We make a derivative delivery hypothesis (DDH): there is a number γ > 0 such
that, for every derivative k ∈ K and η̄ ∈ Ω, there is a state s ∈ S with

Ask(η̄0, η̄s) ≥ γ min
j∈J,c∈L

{ρj , psc}.

Thus we assume that the economy will not bother to trade a derivative which, given
η̄ ∈ Ω, will be close to worthless in every state. Our formalism includes many call
and put options on firm shares, as well as inflation indexed promises. For example, a
call option with strike price equal to 90% of today’s stock price ρj will, for any η̄ ∈ Ω,
pay off at least .10ρj in some state s. Similarly a promise to deliver a nonzero vector
of real goods Λ ∈ RSL

+ \{0} also trivially satisfies our assumption.

2.6 Macro Variables

If we add the prices π = (π1, ..., πK) of derivatives to the fundamental macro variables,
we get the (full) macro variables

η = (r, ρ, π, p, δ̄,∆,W, V ).

2.7 Payoff of the Firm

When markets are incomplete, there are competing views5 of how the firm behaves.
We wish to adopt a formalism which will accommodate many of them. To this end
we postulate a payoff function uj(η, σj) for firm j such that uj(η, σj) is continuous
(in all its variables), and concave in σj ∈ Σjη for any fixed η.

The function uj cannot be arbitrary if equilibrium is to exist. We have not placed
any limits on firm borrowing, for example. If the manager were only interested in
getting the firm to purchase x0c (perhaps his relatives’ labor) he could borrow money
endlessly and buy endlessly, perhaps defaulting on the bonds. This would ultimately
destroy the bank or bond loan market, not to mention the labor market, and thus
destroy the existence of equilibrium. Such behavior would of course be contrary to
the desires of the shareholders, who by assumption cannot pull any resources out of
the firm except as dividends vsj paid out in the last period. If the bank and bond
holders are not repaid, the dividends must be zero.

We could restore equilibrium by imagining that the manager suffers a penalty if
the firm defaults. Indeed, we shall later take this as one special case. But it turns
out that equilibrium exists under much weaker hypotheses. It suffices that uj should
reflect the interests of its shareholders, at least to some extent. With this in mind,
we introduce the shareholder control hypothesis (SCH):

uj(η, σj) < uj(η, 0)

whenever
vsj(η, σ

j) < ps · ejs ≡ vsj(η, 0) for every s = 1, ..., S.

5See Section 5.
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Otherwise the firm could choose σj = 0 (i.e., yj = 0 and f j = βj = μj
0̄
= 0) and

improve the dividend on its share in every state. Our hypothesis thus embodies the
idea that the shareholders have enough control of the firm to maintain at least this
weak form of optimality for themselves.

This will be enough to ensure that equilibrium exists and that the bank loans
and bonds pay something of value. In fact they will be fully redeemed in at least
one state. Their prices will adjust to compensate for defaults, if defaults occur in the
other states, so as to maintain market clearing at the issuance date.

2.8 Liquidity Constraints for the Households

The sequence of events, in our monetary economy, is as follows. There are two time
periods. In period zero agents borrow fixed stocks of moneyM0,M0̄ from the bank at
interest rates r0, r0̄ respectively; agents may also deposit money, that is, loan at the
same interest rates r0 or r0̄. Next the capital markets meet (for the trade of shares,
bonds, and derivatives) followed by commodity markets. After this there is a move
of chance and we enter one of the states s = 1, ..., S in period one. During this time
firms complete production. (Note that inputs in period 0 yield outputs in period 1.)
In any state s ∈ S there is a fresh dispersal of bank money Ms at interest rate rs,
followed by another round of trade in commodities.6 Then all deliveries take place
simultaneously: households deliver on their derivatives and firms repay the bank, the
bondholders and the shareholders in that order of seniority (as discussed earlier).
Finally agents settle their debts with the bank.

In our model every transaction that an agent undertakes requires the physical
transfer of money out of what he has on hand at the time. This amounts to what
we have called the liquidity constraint. The upshot is that we have a well defined
physical process in which effect follows cause in a time sequence. By contrast, general
equilibrium analysis steers clear of liquidity constraints because all transactions are
imagined to occur simultaneously. The point of our paper is to go beyond this and
to analyze the effects of liquidity constraints, when defaults and bankruptcies are
permitted to occur.

For any fixed choice of macrovariables η, we now describe the set Σhη of feasible
choices of h ∈ H, as well as the outcome that accrues to h as a function of η and of
his choice σh ∈ Σhη .

First denote

μhn ≡ bank bonds n ∈ N sold by h
fhj ≡ shares of firm j ∈ J sold by h
αhk ≡ derivatives k ∈ K sold by h ∈ H
qhsc ≡ commodity c ∈ L sold by t ∈ H ∪ J in state s ∈ S∗

Also, a tilda on any variable will denote money spent on it. Thus μ̃hn ≡ money
deposited (i.e. money spent on bank bonds of type n) by h, f̃hj ≡ money spent by

6To fix ideas we have chosen a particular sequence of events, but this can be permuted quite freely
without affecting any of our qualitative results. For instancee, the loan onM0̄ could come due before
the move of chance, or after the conclusion of trade in commodities in period one, or even later.
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h ∈ H on shares of firm j ∈ J , β̃
h
j ≡ money spent by h on bond j ∈ J, α̃hk ≡ money

spent by h on derivative k, q̃hsc ≡ money spent by h on c ∈ L in state s ∈ S∗, etc.
The choice σh ≡ ((μhn, μ̃hn)n∈N , (fhj , f̃hj , β̃

h
j )j∈J , (αhk , α̃

h
k)k∈K , (q

h
sc, q̃

h
sc)s∈S∗,c∈L) ≥ 0

must satisfy fhj ≤ δ̄
h
j for j ∈ J and qhsc ≤ ehsc for sc ∈ S∗L; as well as the following

liquidity constraints (where ∆(ν) ≡ difference between RHS and LHS of inequality
ν):
(1) Bank deposits in period 0 ≤ money endowed

μ̃h0 + μ̃h0̄ ≤ mh
0 .

(2) Expenditures on shares, bonds, derivatives ≤ money left in (1) + money borrowed
X
j∈J

f̃hj +
X
j∈J

β̃
h
j +

X
k∈K

α̃hk ≤ ∆(1) +
μh0

1 + r0
+

μh
0̄

1 + r0̄
.

(3) Expenditures on commodities ≤ money left in (2) + money obtained from sales
of stocks and derivativesX

c∈L
q̃h0c ≤ ∆(2) +

X
j∈J

ρjf
h
j +

X
k∈K

πkα
h
k.

(4) Money owed and repaid on loan 0 ≤ money left in (3) + money from commodity
sales

μh0 ≤ ∆(3) +
X
c∈L

p0cq
h
0c.

Furthermore, in each state s ∈ S in period 1, we must have
(5)s Money deposited on loan s ≤money inventoried from period 0 + money endowed

μ̃hs ≤ ∆(4) +mh
s .

(6)s Expenditures on commodities ≤ money left in (5)s + money borrowed on bank
loan s X

c∈L
q̃hsc ≤ ∆(5)s +

μhs
1 + rs

.

(7)s Money delivered on derivatives ≤ money left in (6)s + money obtained from
commodity sales: X

k∈K
Ask(η̄0, η̄s)α

h
k ≤ ∆(6)s +

X
c∈L

pscq
h
sc.

(8)s Money owed and repaid on loan 0 and loan 0̄ ≤ money left in (7)s + money
obtained from stock dividends, bond deliveries, and derivative deliveries

μh0 + μh0̄ ≤ ∆(7)s +
X
j∈J

δhj Vsj +
X
j∈J

Wsj

β̃
h
j

(1 + rj)
+
X
k∈K

Ask(η̄0, η̄s)
α̃hk
πk

,
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where

δhj =
f̃hj
ρj
+ (δ̄

h
j − fhj ).

These constraints define the feasible set
Ph

η . Since the macrovariables η are
viewed as fixed (unaffected by σh) and all the inequalities are linear in σh, we see
that Σhη is convex.

The consumption that accrues to h ∈ H on account of σh ∈ Σhη and η is xh,
where:

xhsc = xhsc(η, σ
h) = ehsc − qhsc +

q̃hsc
psc

for all sc ∈ S∗L; and it yields utility uh(xh) to h.

3 Monetary Equilibrium

We say that hη, (σt)t∈H∪Ji constitutes a monetary-equilibrium (ME) for the monetary
economy E = h(uh, eh,mh)h∈H , (uj , ej ,mj , Y j)j∈J , A, (M0,M0̄, (Ms)s∈S)i if

(i) All agents maximize, i.e.,

σh ∈ argmax
σ̃h∈Σhη

(uh(xh(η, σ̃h)), for h ∈ H

and
σj ∈ argmax

σ̃j∈Σjη̄
(uj(η, σ̃j)), for j ∈ J.

(ii) All markets clear

(a) Loans (n ∈ N)
1

1 + rn

X
t∈H∪J

μtn =Mn +
X
h∈H

μ̃hn

(where, recall, μjn ≡ 0 if j ∈ J and n ∈ N\{0̄}).
(b) Shares (j ∈ J)

ρj

Ã
f j +

X
h∈H

fhj

!
=
X
h∈H

f̃hj

(c) Bonds (j ∈ J)
1

1 + rj
βj =

X
h∈H

β̃
h
j

(d) Derivatives (k ∈ K)

πk
X
h∈H

αhk =
X
h∈H

α̃hk
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(e) Commodities (sc ∈ S∗L)

psc
X

t∈H∪J
qtsc =

X
t∈H∪J

q̃tsc

(where, recall, qj0c = 0, and q̃jsc = 0 and qjsc = ejsc + ȳjsc for all c ∈ L, s ∈
S, j ∈ J)

(iii) Expectations of final share-holdings, and of the value of the firm and its bonds
are fulfilled: (∀h�H, j�J, s�S):

(a) ∆h
j = δhj = δ̄

h
j − fhj + (f̃

h
j /ρj)

(b) Wsj =

½
wsj(η, σ

j), if βj > 0
arbitrary except that Wsj = 1 if Vsj > 0, if βj = 0

(c) Vsj = vsj(η, σ
j)

Note that in keeping with rational expectations, the expected payoffsW and V are
forced to be equal to actual payoffs w and v. But if βj = 0 there are no actual bond
payoffs to prevent expectations from becoming absurdly pessimistic. We impose some
rationality by forcing households to assume that a small bond issue would indeed fully
deliver Wsj = 1 to them in those states where the firm is flush with cash Vsj > 0. (It
follows from our shareholder control hypothesis and our hypothesis that firms begin
with positive endowments, that there will be such states.)

Existence Theorem: Any monetary economy with positive firm endowments and
concave firm utilities, satisfying the shareholder control hypothesis and the derivatives
delivery hypothesis, has a monetary equilibrium (in which money has positive value).

The theorem shows that fiat money has value in our finite horizon, incomplete
markets economy. Its proof is in the appendix. We proved similar theorems for
pure exchange economies in [1992], [2003a], and [2003b], but there we needed to
assume that there were sufficient gains to trade at the initial endowments. Here with
production we make no such assumption. Money is essential because the firms have
no way to deliver anything to their shareholders except by selling goods for money
and distributing the money revenue as dividends. The separation of firm ownership
from control thus helps to explain why money has value.

The existence theorem holds even though there is almost no impediment or limit to
firm defaults. The shareholder control hypothesis ensures that at least in one state
firm dividends on the original share must not be less than the value of the firm’s
initial endowment in that state. Since bonds and bank loans have higher seniority
than equity, this guarantees that bank loans and firm bonds completely pay in at
least one state, giving them some value. Their prices (i.e. their interest rates) adjust
in equilibrium to reflect the potential defaults in the other states.

If we wish to focus on a model without default, we could simply add a constraint
to the firm’s choices σj prohibiting default. Equivalently, we could simply assume a
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sufficiently harsh penalty for defaulting in the firm utilities uj , as we show in Section
5.

The upshot is that in our general equilibrium model with money and production,
equilibrium exists for every monetary policy choice (M0,M0̄, (Ms)s∈S).

Quite robustly the monetary authority will be able to improve the efficiency of
trade, and thus total real output, by increasing supplies of bank money, and thus
lowering interest rates. This will have the additional side benefit (or cost) of increasing
price levels and thus reducing the real wealth of those who begin with high initial
stocks of money mh

s > 0. But there is a situation in which the monetary authority
will eventually be stymied in its efforts to increase output and the price levels by
increasing M0. This we call the liquidity trap.

4 Robust Liquidity Trap

The liquidity trap is one of the most famous, and most mystifying, monetary phe-
nomena. According to Keynes, the introduction of more money into the system via
government monetary policy generally lowers interest rates and stimulates output.
But when interest rates get too low, the monetary authority loses its power, and
further injections of money fail to move interest rates or prices or any real variables
for that matter. Households simply hold larger and larger real money balances in
their portfolios.

A number of writers challenged Keynes’ story, because he did not adequately
explain how it could be that households would hold more and more money in their
portfolios without any inducement from changing prices (which are fixed in the liq-
uidity trap). In what follows we show that this phenomenon not only can happen,
but always will happen if the government cannot commit to increasing future stocks
of bank money when it increases current stocks of bank money.

Our proof that the liquidity trap is inevitable is a simple application of our exis-
tence proof. It does not require any special assumptions about utility of consumption.
We shall show under the same assumptions used to prove the existence of equilib-
rium, that as the central bank increasesM0, holdingM0̄ and (Ms)s∈S fixed, the short
interest rate r0 will eventually hit zero while M0 is still finite. Further increases in
M0 will have no effect on prices, but simply induce the private sector to hold larger
real money balances. Households will borrow the extra money at zero interest, hoard
it in their pockets, and then return it unused at the end of period 0. Furthermore, if
there is no default in any equilibrium, then by the time r0 is forced down to zero, at
least one of (and perhaps all of) r0̄, (rs)s∈S will be forced higher than it was to begin
with! Initially, as M0 is increased, there will be downward pressure on all interest
rates, perhaps even lowering the entire yield curve. Eventually, however, the short
end will be forced to zero while the long end will if anything be higher than before.

To see why the liquidity trap is important, recall that a positive money rate of
interest has obvious economic disadvantages in our liquidity-constrained world. It
drives a wedge between buying and selling prices, and thus prevents full efficiency
both in exchange and production. When there is production, interest rates from
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different periods come into play, so that if any one of r0, r0̄, (rs)s∈S is high, production
may be curtailed. The firm might have to borrow money at the long interest rate r0̄
to buy the inputs at time 0: if the long interest rate is too high, the firm may be
discouraged from producing. Similarly, a household selling labor to the firm at time
0 might be discouraged from doing so because in order to use its labor income at time
0 to consume at time 0 it will have to take out a short term loan. If the short interest
rate r0 is high, the household might be discouraged from selling its labor to the firm,
pushing up the price of labor and reducing output of the firm. In the same vein, if
the short interest rate in period 1 is high, consumers might be loath to borrow the
money needed to buy the firm’s output at time 1, reducing demand and therefore
reducing the firm’s price of output and again reducing production.

Interest rates will generally be high when there is a large amount of outside
money (

P
t∈H∪J m

h
s )s∈S∗ relative to the available inside money (Mn)n∈N . Increasing

the stocks of bank money thus generally helps to reduce interest rates. But if these
stocks are increased in too unbalanced a way, then paradoxical effects like the liquidity
trap are bound to crop up. The central bank must act intelligently, and have a
reputation for acting intelligently (since it cannot credibly commit to raising bank
money tomorrow except through its reputation).

The key insight is that in equilibrium the following monetary inequality must hold

r0M0 + r0̄M0̄ + rsMs ≥
X

t∈H∪J
(mt

0 +mt
s) ∀s ∈ S

(with equality if there is no bankruptcy). This is so because nobody will hold worth-
less fiat money at the end of any state s in period 1. (Anybody who does could have
increased his utility by spending more on goods in state s, either by spending idle
balances or borrowing more, without violating any budget constraint). Hence across
any time path (0, s), all the money M0 +M0̄ +Ms +

P
t∈H∪J(m

t
0 + mt

s) must be
repaid to the banks, and since nobody will repay more than he owes, all of it (at
least) must be owed to the banks, either as principal M0 +M0̄ +Ms, or as interest
payments r0M0+ r0̄M0̄+ rsMs. If there is no default, then exactly what is owed will
be repaid, and the monetary inequality becomes an equality.

From our existence theorem, we know that there must be a monetary equilibrium
no matter what the values of

(M,m) =

Ã
M0,M0̄, (Ms)s∈S ,m0 =

X
t∈H∪J

mt
0, (ms =

X
t∈H∪J

mt
s)s∈S

!
À 0.

So let us begin with (M,m) and an equilibrium in which r0 > 0. Suppose the
monetary authority increases M0 in order to lower the current short term interest
rate r0, perhaps also hoping thereby that all interest rates will decline, and production
will subsequently be boosted.7

7Our model took the bank stocks Mn exogenous, and the interest rates rn endogenous. We could
have instead reversed this without disturbing the ME.
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But suppose the households and firms refuse to believe that the monetary author-
ity will increase future bank money either via long loansM0̄ or future money supplies
(Ms)s∈S. What will happen?

Eventually the monetary authority will hit a liquidity trap. The reason for this
is as follows. Prices at every state s ∈ S at time 1 are bounded above, independent
of M0, since the total stock of money available to be spent there is no more than

M0̄ +Ms +m0 +ms

whereas at least the firm endowmentsX
j∈J

ejs > 0

are put up for sale. If period 1 prices are bounded above, then period 0 prices cannot
become too large, for otherwise any household could sell a sliver in period 0 and
buy up the whole economy in every state in period 1. This observation leads us to
conclude that for large M0, equilibrium r0 = 0, as we now argue.

If r0 > 0, then all of M0 must be borrowed (since the loan market 0 clears)
and spent in time 0 on something (nobody would borrow money at positive interest
unless he was going to spend it). Since payments on firm bonds, firm dividends,
and derivatives are each bounded above by the stock of money available in state s,
the payments by any one of these securities is bounded above, independent of M0.
Nobody would buy a security for more than the maximum money it delivers across
future states, hence there is an upper bound, independent ofM0, on how much money
is being spent on securities at time 0. The rest must be spent on goods. Since no more
than

P
h∈H eh0 goods can be put up for sale, prices p0 would then become arbitrarily

large for all largeM0, contradicting the boundedness of period 0 prices. Hence, asM0

rises, eventually r0 = 0, and the hoarding of real money balances thereafter increases
proportionately with M0.

The argument just given proves

Liquidity Trap Theorem: Fix E\M0 = h(M0̄, (Ms)s∈S), (uh, eh,mh)h∈H , (uj , ej ,mj , Y j)j∈J , Ai.
Then there is a level of bank money M∗

0 at time 0, and commodity price levels p∗0,
such that for every monetary economy E = (M0, E\M0) with M0 ≥ M∗

0 and every
monetary equilibrium(η, (σj)j∈J) for E, r0 = 0, p0 ≤ p∗0, and households horde at
least M0 −M∗

0 as unspent money balances during period 0.
Note that if we also assumed that no default occurs in equilibrium, then the

monetary inequality must be an equality. Once the short rate r0 drops to 0, the
monetary equality can be maintained only if some other rate increases.

5 Motivation of the Firm

The separation of firm ownership and control guarantees that money has value: firms
are forced to sell their goods for money in order to pay their shareholders. These
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sales alone give money value (and encourage other sales for money), provided that
the usual concavity hypotheses hold, as we saw in the Existence Theorem.

Unfortunately, this separation of ownership from control makes it problematic to
interpret concave utility maximization for the firm. In the case of a single consumer,
concave utility maximization is tantamount to assuming rational choices, diminishing
marginal utility, and unlimited liability for breaking promises. A special case of our
model, which may satisfy the reader, restricts each firm to a single owner who is
not allowed to trade shares or to let the firm default. But in reality a firm may
have multiple owners, whose negotiated decisions will not likely correspond to the
decisions of a single utility maximizer. And the limited liability of the firm gives a
payoff to shareholders that is convex instead of concave. These difficulties have been
pointed out before. Here we show how far we can go in interpreting the concave
maximization framework for the firm. The key idea is that the dependence of uj on
the macro variables η, as well as on the firm choices σj , permits us to represent some
of these possibilities.

5.1 The single manager firm with default penalties

Let us start with the simplest example, in which the firm is managed by one agent,
not necessarily a shareholder, who will keep control and will not sell new equity.
Simplifying further, suppose his utility is simply a weighted average of money payoffs
across the states. Denote by zs the revenue minus debt of the firm in state s, i.e.,
denote the linear revenue function by

zs(η, σ
j) ≡ ps · (ȳjs + ejs)− μj

0̄
− βj .

Let {γs}s∈S be a probability distribution on states s ∈ S. Then γs will represent
the weight put on a dollar of dividends in state s. But that still leaves us with the
question of how to evaluate money defaults. Let λs ≥ 0 be a “default penalty rate,”
so that λsγs represents the utility loss of a dollar default in state s. Then we could
define

uj(η, σj) ≡
X
s∈S

γs((zs(η, σ
j))+ − λs(−zs(η, σj))+).

When the firm is controlled by such a manager, and distributing money to its
shareholders, it values a marginal dollar by γs. When the firm is in default, it values
a marginal dollar according to λsγs. As long as λs ≥ 1, this induces a concave utility
on the actions σj of the firm. If λs is high enough there will be no default at all.

According to this utility, the manager is balancing a weighted average of the
dividends that his shareholders might receiveX

s∈S
γs(zs(η, σ

j))+

against the embarrassment he might personally feel if the firm goes bankrupt

−
X
s∈S

λsγs(−zs(η, σj))+.
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So far there is no explanation of where the γs come from. This brings us to the
next simplest example satisfying the firm’s concave utility hypothesis. Suppose the
manager is actually one of the household types h, and also a shareholder who cannot
sell any of his shares, or issue new shares. There is now reason for him to care directly
about the dividends of the firm, since he gets a nonzero share of them. It is well-
known that maximizing a concave function with maximum at a value y is equivalent
to maximizing a linear function given by the supporting hyperplane to the concave
function at y. Therefore we use the marginal utilities of income of the manager as
the weights γ.

More precisely, let η be a vector of macro variables, as before. Suppose the uh

are strictly concave and smooth. Then for given η, we can define the (unique) utility
maximizing consumption vector xh(η) for each agent h. Let γh(η) ∈ RS

+ be the vector
of marginal utilities of an extra dollar given to h in states s = 1, ..., S at the moment
dividends are distributed. (e.g. if agent h is selling c in state s, and still consuming
some sc,then γhs (η) = (1/psc)[∂u

h(x)/∂xsc].) Fix an agent h who controls the firm.
Consider the utility given by

uj(η, σj) ≡
X
s∈S

γhs (η)((zs(η, σ
j))+ − λhs (−zs(η, σj))+).

For λhs ≥ 1 this is again concave in σj , and for λh large enough, there will be no
default.

For λhs large enough to eliminate default, the second term is zero and the manager
is effectively maximizing the performance of the firm in terms of the dividends he as
an owner (with a fixed share, not necessarily 1) is being paid, subject to the constraint
that the firm does not default. If λh is lower, so default occurs, then the manager is
balancing the dividends he receives as an owner against the embarrassment he incurs
as manager for a defaulting enterprise.

5.1.1 Funding investment

If the manager were the sole owner, he could directly invest money himself in buying
inputs. Let zj0 be the money contributed by the owner-manager of firm j towards the
purchase of inputs. Let γh0(η) ∈ R be the marginal utility of an extra dollar to h in
state s = 0 at the moment h would have to buy inputs for the firm. If h is buying
good c for consumption, then γh0(η) = (1/psc)∂u

h(x)/∂xsc. Then with the default
penalties above, the owner-manager h would maximize

uj(η, σj , zj0) ≡ −γh0(η)zj0 +
X
s∈S

γhs (η)((zs(η, σ
j))+ − λhs (−zs(η, σj))+)

which is again concave.
Now let the owner-manager contemplate issuing shares to raise additional money

for inputs, instead of contributing zj0. His utility should then be

uj(η, σj) =
X
s∈S

γhs (η)(
1

1 + f j
(zs(η, σ

j))+ − λhs (−zs(η, σj))+).
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This appears to be a completely different expression, since the cost of issuing shares
shows up as a dilution, and not as a direct cost. It is also not concave in f j . However,
if the default penalties are high enough so that there is no default by the firm, then
these two expressions induce the same behavior by the firm, provided that only the
owner is allowed to buy the new equity.

The first expression becomes

uj(η, σj) ≡ −γh0(η)ρjf j +
X
s∈S

γhs (η)zs(η, σ
j)

which must be maximized subject to the constraint that the firm does not default.
The second expression becomes

uj(η, σj) ≡
X
s∈S

γhs (η)
1

1 + f j
zs(η, σ

j)

which again must be maximized subject to no default. If only h is buying the new
equity, and there is no default, the first-order conditions for maximization imply

γh0(η)ρj =
X
s∈S

γhs (η)
1

1 + f j
zs(η, σ

j).

A change in f j and a corresponding change in the zs(η, σj) increases the second
expression if and only if the first expression also increases.

5.2 Multiple Owners

Everything we said about a single owner can be extended to multiple owners according
to the Dreze criterion [1974] We no longer need worry that the original shareholders
remain the final shareholders, or that the same households who buy the original
shares also buy the new equity.

Let δhj (η) ≥ 0 be the final ownership shares of firm j at η. Let ωhj (η) = δhj (η)/
PH

i=1 δ
h
i (η).

Now define the goals of firm j by

uj(η, σj) ≡
HX
h=1

ωhj (η)

(
−γh0(η)ρjf j +

X
s∈S

γhs (η)((zs(η, σ
j))+ − λhs (−zs(η, σj))+)

)
.

This is a concave function of the choice variables of the firm, if each λhs ≥ 1. If the
λhs are sufficiently high to choke off all default, then maximizing this criterion is, by
the same argument given above, equivalent to maximizing

uj(η, σj) ≡
HX
h=1

ωhj (η)
X
s∈S

γhs (η)
1

1 + f j
zs(η, σ

j).

Dreze [1974] proposed the function uj obtained by setting ωh(η) = δh. The firm,
he argued, ought to act in the interest of the final shareholders.

Grossman—Hart [1979] proposed setting ωh(η) = δ̄
h, with the idea in mind that

the firm would act in the interest of the original shareholders.
Alternatively, one could consider other arbitrary weighted sums of firms’ incomes

[ps · (ȳs + ejs)] in state s (s = 1, ..., S), and −p0 · xj0 in state 0.
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5.3 Shameless Default or Limited Liability

So far we have guaranteed concavity of the utility functions of dividend-driven com-
pensation by assuming that there was some cost or shame in defaulting. If limited
liability is taken to heart, so that defaulting is truly cost-free, then there is an essen-
tial nonconcavity. We can retain our formalism only by accepting the idea of “local
optimization.”

Given η, define λs(η) = 1 if Vs(η) > 0, and λs(η) = 0 if Ws(η) < 1 and λs(η) ∈
[0, 1] if Ws(η) = 1 and Vs(η) = 0. Define

uj(η, σj) ≡
HX
h=1

ωhj (η)

(
−γh0(η)ρjf j +

X
s∈S

λs(η)γ
h
s (η)zs(η, σ

j)

)
.

If the firm is paying dividends, then the owners value an extra dollar in state s by the
entire marginal utility of money λs(η)γ

h
s (η) = γhs (η). If the firm is defaulting then

an extra dollar will not matter to dividends, so it is valued at zero, λs(η)γhs (η) = 0.
If the firm is on the brink of defaulting, then a marginal dollar is valued somewhere
in between.

This is again a concave function, and maximizing it is equivalent to maximizing

HX
h=1

ωhj (η)
X
s∈S

λs(η)γ
h
s (η)

1

1 + f j
zs(η, σ

j).

When the firm is on the brink of default in some state s, the weight λs(η) is meant
to be determined by the monetary equilibrium, not a priori.

But this criterion only makes sense locally. If a firm is defaulting in some state s,
and discovers a technology that produces money in that state for free, the firm will
not use it, since for local changes the extra money will go to bondholders and not
to dividends. But for a big increase, the bondholder can be paid off and the extra
output will go to shareholders, and that gets lost in this formalism.
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APPENDIX

Proof of the Existence Theorem It might help to first outline the idea of the
proof. For any ε > 0, we define a generalized game Γε on a continuum player-set with
types T = H ∪J . Each type t ∈ T , household or firm, corresponds to a continuum of
identical players of measure one. There is also an “external player” who is a strategic
dummy. He puts up ε units for sale of every instrument except for derivatives, of
which he puts up only ε2; furthermore, he puts up ε units of money for purchase at
every market. He then fully delivers on his bond promises. However, on his ε2 sale of
each derivative he delivers only up to a cap of ε dollars, i.e., he delivers min{what he
owes, ε} in each state s ∈ S. (The external agent is allowed to create money to do all
this, just as he creates the instruments he sells.) The other (real) players choose how
much of each instrument to sell, and how much money to spend on each instrument,
as described in Section 2 before.

At any market, prices form as the ratio of total money spent to the total sales.
Thus markets always clear (taking the external player into account), though the real
players optimize on their feasible choice sets only at Nash equilibria (NE) of Γε. A
type-symmetric NE of Γε will be called an “ε-ME” and a limit of ε-ME, as ε → 0,
will be shown to be a bona-fide ME.

We now begin the proof formally. Throughout we confine ourselves to type-
symmetric choices so that σt will sometimes mean the aggregate action of all players
of type t, and at other times it will denote the choice of a single (infinitesimal) player
of type t; the meaning will always be clear from the context.

For any ε > 0 and t ∈ T , define Σtε ≡ {σt : 0 ≤ σt ≤ 1/ε} ≡ ambient strategy
space of an agent of type t (where the vectors σt are as described in Section 2). These
spaces are clearly convex and compact. Given choices σ ≡ (σt)t∈T ∈ X

t∈T
Σtε, define

macrovariables ηε(σ) ≡ (r, ρ, π, p, δ̄,∆,W, V ) recursively as follows (note σt refers to
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aggregates here):

1

1 + rn
=

ε+Mn +
P
h∈H

μ̃hn

ε+
P

t∈H∪J
μtn

1

1 + rj
=

ε+
P
h∈H

β̃
h
j

ε+ βj

ρj =

ε+
P
h∈H

f̃hj

ε+ f j +
P
h∈H

fhj

πk =

ε+
P
h∈H

α̃hk

ε+
P
h∈H

αhk

psc =

ε+
P

t∈H∪J
q̃tsc

ε+
P

t∈H∪J
qtsc

δ̄
h
j = exogenous

∆h
j =

f̃hj
ρj
+ δ̄

h
j − fhj

Wsj =
βj

ε+ βj
min

½
1

βj
[ps · (ȳjs + ejs)− μj

0̄
]+, 1

¾
+

ε

ε+ βj

Vsj = [ps · (ȳjs + ejs)− μj
0̄
− βj ]+/(ε+ 1 + f j)

Further define

Aε,σ
sk (η̄0, η̄s) =

⎛⎜⎝ ε2

ε2 +
P
h∈H

αhk

⎞⎟⎠min{Ask(η̄0, η̄s), 1/ε}

+

⎛⎜⎝
P
h∈H

αhk

ε2 +
P
h∈H

αhk

⎞⎟⎠Ask(η̄0, η̄s).

This is the effective delivery of a unit of derivative k in state s, since the external
player reneges on deliveries beyond ε on his sale of ε2 (putting a cap of 1/ε on his
delivery rate).

The payoff to any player of type t (and here σt denotes the infinitesimal choice,
while σ denotes the aggregate choice) is given by:

Πt(σ, σt) =

(
uh
³³

ehsc − qhsc +
q̃hsc
psc

´
sc∈S∗L

´
if t ≡ h ∈ H

uj(ηε(σ), σ
j) if t ≡ j ∈ J

.
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Finally the subset of Σtε that is feasible for (infinitesimal) t, given aggregate choices
σ by the continuum, is

Σ̃tηε(σ) ∩ Σ
t
ε

where Σ̃tηε(σ) is defined in exactly the same manner as Σ
t
ηε(σ)

, but replacing Ask(η̄0, η̄s)

with Aε,σ
sk (η̄0, η̄s) for all s, k. This completes the description of the generalized game

Γε. Since all the standard convexity/concavity and continuity assumptions are clearly
satisfied, we have

Step 1. An ε-ME (i.e., type-symmetric NE of Γε) exists for every ε > 0.

In the steps below, we examine, a sequence (ηε(σ(ε)), σ(ε)) of ε-ME as ε → 0.8

(For notional simplicity, we suppress ε in σ(ε).)

Step 2. μtn, β
j are bounded above (and, thus, so are the rn for n ∈ N).

Proof. Notice that the external player creates ε units of commodities and ε units
of money at finitely many markets, and further creates at most (J +K)ε more units
of money to deliver on his sale of the J bonds and the K derivatives. So the total
amount of money or commodities at any juncture is bounded by some constant D
for all small enough ε (recalling condition (iii) on Y j , which bounds production).
Thus μhn ≤ D for h ∈ H, otherwise h cannot repay loan n (at the ε-ME under
consideration). Next, if μj

0̄
> D for any j, then j will go bankrupt in every state

s ∈ S, so that vsj = 0 for all s ∈ S; but clearly psc > 0 on account of the external
ε-player, so ps · ejs > 0 for all s ∈ S, contradicting the shareholder control hypothesis
(SCH). We conclude that μj

0̄
≤ D for all j ∈ J ; and, for the same reason, βj ≤ D for

all j ∈ J .

Step 3. All rn ≥ 0.
Proof. If some rn < 0, a household can borrow φ more of money on loan n for
small enough φ and � (since by step 2, μhn < 1/ε for small ε), return (1 + rn)φ and
have −rnφ > 0 money left over for purchasing commodities, contradicting that he
has maximized.

Step 4. Commodity prices psc are bounded away from 0.

Proof. Suppose psc −→ 0 as ε → 0 for some sc. Then a household h with mh
0 > 0

can buy arbitrarily large amounts of sc with his mh
o (inventorying the money into

period 1 if s ∈ S), obtaining utility more than9 uh(D, ...,D), contradicting that σh

has maximized uh on Σ̃hηε(σ) ∩ Σ
h
ε .

Step 5. Commodity prices psc are bounded from above.

8Here the first σ(ε) denotes aggregate choices and the second σ(ε) denotes individual choices!
(We shall, from now on, stop tracking the difference, which will be clear from the context.)

9To see this, note that – since uh is concave – we may replace it by ũh(x) ≡
min{uh(x), {Hy(x)}y∈¤ }, where Hy : RS

∗L → R is the supporting hyperplane to uh at y and ¤
is the cube {z ∈ RS∗L+ : kzk ≤ D}. Then uh = ũh on ¤ and ε-ME are unaffected if we replace uh by
ũh. But ũh(0, ..., 0, zsc, 0, ..., 0)→∞ as zsc →∞.
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Proof. First suppose s ∈ S and some psc −→ ∞ as ε → 0 Take k ∈ L such that
ejsk > 0 for some j ∈ J (such a k exists since ejs 6= 0 for all s, j). Then qjsk ≥ ejsk since
j sells all the goods at hand in period 1. But the money in the system is bounded by
D (see proof of step 1). It follows that psk is bounded above as ε→ 0.

Consider a household h with final consumption xhsc > 0. Let him cut back xhsc
by ω (either by buying less or selling more of sc), releasing at least ωpsc money after
commodity trade in state s. Against this let him borrow ωpsc/(1 + rs) more on Ms

(which is feasible for small enough ε and ω since, by step 2, μhs is bounded above while
the constraint of 1/ε on his actions is going to infinity) and use the extra borrowed
money to buy ωpsc/(1 + rs)psk units of sk. Since rs is bounded above by Step 2,
and psc/psk →∞ as ε→ 0, it follows that h can improve his payoff, a contradiction.
Thus all prices are bounded above in period 1.

If any price p0c →∞, then a household h ∈ H with eh0c > 0 can buy an arbitrarily
large amount p0ceh0c/psk of any sk in period 1 (by selling e

h
0c and inventorying money

into period 1), thus obtaining more utility than uh(D, ...,D), a contradiction.

Step 6. For each firm j, there is some state s such that vsj ≥ ps · ejs.
Proof. Otherwise, by the shareholder control hypothesis (SCH), j would do better
to choose σj = 0 and simply earn (using Step 4) ps · ejs in each state s.
Step 7. All rj are bounded above for bonds.

Proof. Suppose rj →∞ as ε→ 0 for some bond j. Then a household h with mh
0 > 0

can lend mh
0 to firm j and receive (by Step 6, according to which j is fully redeeming

all its debts in some s ∈ S) (1 + rj)m
h
0 →∞ in some state s ∈ S. Since commodity

prices are bounded above (by Step 5), he can consume arbitrarily large amounts of
goods in state s, obtaining utility exceeding uh(D, ...,D), a contradiction.

Step 8. All f j are bounded above.

Proof. Suppose some f j → ∞. Then since ps · (ȳs + ejs) ≤ D for each s ∈ S (see
proof of Step 2), we have vsj → 0 as ε→ 0 for all s ∈ S. But ps · ejs is bounded away
from 0 (by Step 4 and the assumption that ejs 6= 0 for all s ∈ S and j ∈ J). Hence
vsj < ps · ejs for all s ∈ S for small enough ε. Then SCH implies that j would do
better to choose σj = 0, a contradiction.

Step 9. ρj is bounded away from 0, and bounded above.

Proof. Suppose some ρj −→ 0. Let h withmh
0 > 0 buym

h
0/ρj shares of firm j. Then

h will receive (see Step 6) at least (mh
0/ρj)(ps·ejs) units of money in some state s, which

goes to∞ since, by Step 4, ps is bounded away from 0. But also (Steps 2, 5) ps and rs
are both bounded above, so h can borrow hugely onMs (anticipating the forthcoming
dividends of firm j) and consume arbitrarily large amounts of commodities in state
s, obtaining utility above uh(D, ...,D), a contradiction.

On the other hand if ρj →∞, any h with δ̄
h
j > 0 can sell δ̄

h
j to obtain ρj δ̄

h
j units

of money, and inventory it into states s ∈ S to consume ρj δ̄
h
j /psc of commodities sc.
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Since the psc are bounded above, he can consume arbitrarily high amounts obtaining
utility above uh(D, ...,D), again a contradiction.

Step 10. (1/(1 + r0̄))mins∈S vsj ≤ ρj ≤ maxs∈S vsj , for sufficiently small ε.
Proof. Suppose LHS > ρj . Then let h borrow φ more on M0̄ (which by Step 2 is
feasible for small ε) and buy φ/ρj more shares of j. This will give him (φ/ρj)vsj >
φ(1 + r0̄) by way of dividend in each state, enabling h to return the extra loan, and
have money left over for consumption, a contradiction.

Next suppose ρj > RHS. Then f̃hj = 0 for all h ∈ H, or else h would do better to

inventory the money than spend it on buying shares of j. Also fhj = δ̄
h
j for essentially

the same reason: if fhj < δ̄
h
j , let h sell ω more of the shares, and inventory the sales

revenue ωρj into every state s, losing ωvsj by way of dividend, but gaining ωρj which
is strictly more for all s ∈ S. But then ρj = ε/(ε+1+f j)→ 0 as ε→ 0, contradicting
Step 9.

Step 11. Aε,σ
sk (η̄0, η̄s) = Ask(η̄0, η̄s) for sufficiently small ε.

Proof. By the above steps, and in conjunction with the obvious facts that Vsj ≤ D
and Wsj ≤ 1, we see that η̄0, (η̄s)s∈S , lie in a compact set as ε→ 0. Since Ask(η̄0, η̄s)
is continuous, there exists Ā such that Ask(η̄0, η̄s) ≤ Ā for all small ε. But ε2Ā < ε
for small ε, hence min{Ask(η̄0, η̄s), 1/ε} = Ask(η̄0, η̄s) for small ε, which proves Step
11.

Step 12. πk are bounded away from 0.

Proof. By Steps 3, 4, 9, 10 we have η̄ ∈ Ω for small enough ε. So, by our hypothesis
(DDH) on derivative deliveries and by Steps 4 and 9, it follows that a unit of each
derivative k delivers at least C dollars (for some C > 0 and all small ε) in at least
one state s ∈ S. Suppose πk → 0 for some k. Any h with mh

0 > 0 could buy
mh
0/πk of k and obtain (m

h
0/πk)C dollars in state s. Against this, he could borrow

((mh
0/πk)C)/(1 + rs) → ∞ on Ms (recalling that rs is bounded from Step 2) and

consume arbitrarily large amounts of goods sc at bounded (see Step 5) prices psc,
obtaining more than uh(D, ...,D), a contradiction. Thus πk is bounded away from 0.

Step 13. αhk is bounded above.
Proof. If αhk →∞, then πk → 0 since (see proof of Step 2) the expenditure on k is
bounded above by D. This contradicts Step 12.

Step 14. πk are bounded above.

Proof. Suppose some πk → ∞. By Step 13, the bound of 1/ε is not binding on
derivative sales for small ε. Let any h sell ω more of k to obtain (and inventory)
ωπk dollars. Anticipating this revenue, let him borrow ωπk/2(1 + r0̄) → ∞ on M0̄

and consume arbitrarily large amounts of 0-period goods at the bounded prices p0,
obtaining utility above uh(D, ...,D). To complete the contradiction, we must show
that he can deliver on his sale of ω and repay the incremental loan on M0̄. Clearly
half the revenue (i.e., ωπk/2) from his sale of k repays the bank loan. But, as shown

23



in the proof of Step 11, only ωĀ is due (at most) on derivative deliveries in any state
(for small ε). This is more than covered by the other half, since πk →∞.
Step 15. σt maximizes ut on Σtη(ε), not just on Σ̃

t
η(ε) ∩ Σtε.

Proof. By Step 11, Σ̃tη(ε) = Σ
t
η(ε) for small ε. But, since the upper bound of 1/ε is

not binding on any component of σt by the preceding steps, and since ut is concave
in σt, the step immediately follows.

Step 16. Choose a convergent subsequence of ε-ME: (ηε(σ(ε)), σ(ε))→ (η, σ). Then
(η, σ) is an ME.

Proof. This is obvious in the light of our preceding steps.
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