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Abstract

We report experimental results from long sequences of decisions in environments that are theo-
retically prone to severe information cascades. Observed behavior is much different—information
cascades are ephemeral. We study the implications of a model based on quantal response equi-
librium, in which the observed cascade formation/collapse/formation cycles arise as equilib-
rium phenomena. Consecutive cascades may reverse states and usually such a reversal is self-
correcting: the cascade switches to the correct state. We extend the model to allow for base
rate neglect and find strong evidence for over-weighting of private information. The estimated
belief trajectories indicate fast and efficient learning dynamics.
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1. Introduction

An information cascade arises when a sequence of imperfectly informed decision makers,

each of whom observes all previous decisions, has reached a point after which all future decision

makers will rationally ignore their private information. Hence, learning ceases as subsequent

decision makers infer nothing new from observing any of the actions. Information cascades

are predicted to occur, possibly after very few decisions, despite the wealth of information

available and despite the common interest of all decision makers (Banerjee 1992, Bikhchandani

et al. 1992). This result, if robust to variations in the basic model, has obvious and pernicious

implications for economic welfare, and raises problematic issues for various applications of mass

information aggregation, such as bank runs, technology adoption, mass hysteria, and political

campaigns.

We conducted laboratory experiments with very long sequences of decision makers in canoni-

cal social learning environments. The data is examined and analyzed through the lens of quantal

response equilibrium (QRE), which makes systematic predictions about the long run dynamics of

choice behavior, beliefs, and efficiency. Some of these predictions are essentially the opposite of

Nash equilibrium. Because of the complicated dynamics implied by QRE, a careful test of many

of these properties of QRE demands the observation of long sequences. In addition, we vary the

informativeness of individuals’ signals, which systematically affects the observable properties of

QRE dynamics.

The QRE approach to the analysis of data enables two additional innovations. First, using

a Logit equilibrium error structure we are able to structurally estimate a parametric model of

base rate neglect and a cognitive hierarchy model of strategic sophistication. The existence and

magnitude of judgement fallacies in these environments has important systematic implications

about efficiency and dynamics. Second, this structural estimation approach yields estimates of

the entire trajectory of public beliefs, for each sequence in the experiment. That is, the belief

dynamics can be estimated indirectly without eliciting beliefs from the decision makers.

We use the simplest possible social learning environment in our experiment because QRE

makes especially crisp predictions in these environments, enabling relatively straightforward

tests of the predictions while at the same time simplifying the structural estimation procedure.

There are two equally likely states of nature, two signals, two actions, and T decision makers.

Nature moves first and chooses a state, and then reveals to each decision maker a private signal

about the state. The probability a decision maker receives a correct signal is q > 1/2 in both

states of the world. Decision makers choose sequentially, with each decision maker observing all

previous actions (and her private signal). A decision maker receives a payoff of 1 if she chooses
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q = 5/9 q = 5/9 q = 6/9 q = 6/9

T = 20 T = 40 T = 20 T = 40

# sequences 116 56 90 60

# sequences with pure cascades 5 0 12 8

# sequences without cascades 0 0 0 0

# sequences with broken cascades 111 56 78 52

Table 1. Percentages of (broken) cascades in our data.

the correct action and 0 otherwise. In this environment, learning never progresses very far in

a Nash equilibrium. In fact, regardless of T , the equilibrium beliefs of all decision makers are

confined to an interval centered around 1/2.

The need for an alternative theory of behavior in these environments is obvious from looking

at data from short decision sequences, such as those reported in Anderson and Holt (AH) (1997).1

In that experiment, cascades are observed, however some action choices are inconsistent with

Nash equilibrium given the realized signals, and many subjects exhibit such behavior. For

example, Anderson and Holt (1997) observe that in their experiment with q = 2/3 and T =

6, more than 25% of the time subjects make a choice against the cascade after receiving a

contradictory signal. And nearly 5% of subjects who receive a signal consistent with the cascade

choose the opposite action. Such deviations become even more pronounced in the experiments

reported below where we vary the signal precision, q = 5/9 and q = 6/9, and the number of

decision makers, T = 20 and T = 40. With this many decision makers we should observe

cascades arising in 100% of the sequences according to the theoretical model of Bikhchandani

et al. (1992). However, with T = 40, for instance, a cascade arises and persists in only 8 out of

116 sequences (< 7%).

Table 1 gives an illustration of a few ways that the standard theory fares badly. At a

minimum, a plausible theory should explain two systematic features of the data. First, off-the-

Nash-equilibrium-path actions occur with significant probability. The theory as it stands does

not place adequate restrictions off the equilibrium path. Second, deviations from equilibrium are

systematic, indicating that such behavior is informative! Why? Because going off the equilibrium

path (i.e., choosing an action opposite to the cascade) happens much more frequently if the player

received a signal contradicting the cascade choices, see Table 2. Indeed, when a break occurs,

1Indeed AH use a recursive version of Logit equilibrium to describe their data.
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Table 2. Frequency of confirmatory/contrary signals when cascades are (not) broken.

the observed frequency with which the received signal was contradictory is 83%.2 This should

come as no surprise as a deviation following a confirmatory signal is a worse deviation (e.g., in

terms of expected payoffs, and also intuitively) than a deviation following a contradictory signal.

The introduction of a random component in QRE ensures that all paths can be reached with

positive probability, so Bayes’ rule places restrictions on future rational inferences and behavior

when a deviation from a cascade occurs. Deviations from optimal play occur according to a

statistical process and players take these deviations into account when making inferences and

decisions. Moreover, deviations or mistakes are payoff dependent in the sense that the likelihood

of a mistake is inversely related to its cost.3

In this paper, we demonstrate that QRE predicts the temporary and self-correcting nature

of cascades and also predicts several features of the long run dynamics, as a function of signal

informativeness. QRE predicts that with an infinite horizon the true state will be revealed

with probability one, i.e. learning is complete. While no finite experiment can formally test

this prediction, our ability to structurally estimate public beliefs with QRE allows us to draw

inferences about the rate at which beliefs are converging to full revelation.4

Following the pioneering paper of Anderson and Holt (1997), there have been a number of

studies exploring different questions related to information cascades. Hung and Plott (2001)

replicate the original findings and also explore information aggregation in a voting mecha-

2When averaged over the four treatments. In the (q = 5
9 , T = 20), (q = 5

9 , T = 40), (q = 6
9 , T = 20), and

(q = 6
9 , T = 40) treatments the numbers are 87%, 78%, 87%, and 82% respectively.

3We only consider monotone quantal response equilibrium, where choice probabilities are monotone in ex-
pected utilities, see McKelvey and Palfrey (1995, 1998) and Goeree, Holt, and Palfrey (2005).

4Longer sequences of decisions could possibly be obtained from an Internet experiment where agents are
successively invited to participate (see Drehmann, Oechsler, and Roider, 2005).
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nism. Çelen and Kariv (2004) differentiate between information cascades and herds. Huck

and Oechssler (2000), Dominitz and Hung (2004), Nöth and Weber (2003), and Oberhammer

and Stiehler (2003) explore whether decision makers are following Bayes’ rule in their updating

process, and find evidence that Bayes’ rule is systematically violated. Some of the other exten-

sions involve cascades in networks (Choi et al., 2005), the effect of advice (Çelen et al., 2005),

costly signals (Kübler and Weizsäcker, 2004), and herd behavior in stock markets (Cipriani and

Guarino, 2005; Drehmann et al., 2005). The negative relationship between the duration of a

cascade and the probability of collapse is demonstrated in Kübler and Weizsäcker (2005) across

several different studies, and is consistent with our own findings and with the predictions of the

QRE model.

The remainder of the paper is organized as follows. Section 2 describes the basic model and

presents the main theoretical properties of QRE dynamics, which deliver hypotheses that are

directly testable with data from our experiment. Section 3 explains the experimental design.

Section 4 contains a descriptive analysis of the data, focusing on cascade dynamics and choice

behavior. Section 5 presents an econometric analysis of the basic model and extensions that

better explain the data. Section 6 discusses the belief dynamics implied by the structural es-

timation and the resulting efficiency properties of the data. Appendix A contains proofs and

Appendix B contains the estimation program.

2. The Basic Model

There is a finite set T = {1, 2, . . . , T} of agents who sequentially choose between one of two

alternatives, A and B. Agent t chooses at time t, and let ct ∈ {A,B} denote agent t’s choice.

One of the alternatives is selected by nature as “correct,” and an agent receives a payoff of 1 only

when she selects this alternative, otherwise she gets 0. The correct alternative (or state of the

world), denoted by ω ∈ {A,B}, is unknown to the agents who have common prior beliefs that

ω = A or ω = B with probability 1
2
. Further, they receive conditionally independent private

signals st regarding the better alternative. If ω = A then st = a with probability q ∈ (1
2
, 1) and

st = b with probability 1− q. Likewise, when ω = B, st = b with probability q and st = a with

probability 1− q.

We will be concerned with the evolution of agents’ beliefs, and how these beliefs co-evolve

with actions. Agent t observes the actions of all her predecessors, but not their signals. Thus a

history Ht for agent t is simply a sequence {c1, . . . , ct−1} of choices by agents 1, · · · , t− 1, with
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H1 = ∅. Agents care about the history only to the extent that it is informative about which

alternative is correct. So let pt ≡ P (ω = A|Ht) denote the (common knowledge) posterior belief

that A is correct given the choice history Ht, with p1 ≡ 1
2
, the initial prior. We first determine

agent t’s private posterior beliefs given the public beliefs pt and given her signal st. Applying

Bayes’ rule shows that if st = a, agent t believes that alternative A is correct with probability

πa
t (pt) ≡ P (ω = A|Ht, st = a) =

q pt

q pt + (1− q)(1− pt)
. (2.1)

Likewise,

πb
t (pt) ≡ P (ω = A|Ht, st = b) =

(1− q)pt

(1− q)pt + q(1− pt)
(2.2)

is the probability with which agent t believes that A is correct if her private signal is st = b.

A direct computation verifies that πa
t (pt) > pt > πb

t (pt) for all 0 < pt < 1. In other words, for

any interior public belief an agent believes more strongly that ω = A after observing an a signal

than after observing a b signal.

2.1. Nash Equilibrium

We first discuss the dynamics of beliefs and choice behavior in a Bayesian Nash equilibrium.

The unique trembling hand perfect equilibrium of the game, identified by Bikhchandani et al.

(1992), involves rapid convergence to an information cascade.

This pure cascade Nash equilibrium works as follows.5 The first agent chooses A if s1 = a,

and chooses B if s1 = b, so that her choice perfectly reveals her signal. If the second agent’s

signal agrees with the first agent’s choice, the second agent chooses the same alternative, which

is strictly optimal. On the other hand, if the second agent’s signal disagrees with the first agent’s

choice, the second agent is indifferent, as she effectively has a sample of one a and one b. For

comparison to the Quantal Response Equilibrium discussed next, we assume that the second

agent randomizes uniformly when indifferent.6 The third agent faces two possible situations:

(i) the choices of the first two agents coincide, or (ii) the first two choices differ. In case (i), it

is strictly optimal for the third agent to make the same choice as her predecessors, even if her

5As we will see, almost all choice sequences in our laboratory data are inconsistent with the behavior implied
by this Nash equilibrium.

6This randomization holds in any Logit QRE. There are other Nash equilibria where players randomize with
different probabilities when indifferent, but none of these equilibria are trembling hand perfect. In the unique
trembling-hand perfect equilibrium indifferent players follow their signal with probability 1. For details see Goeree
et al. (2006).
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signal is contrary. Thus her choice imparts no information to her successors, resulting in the

onset of a cascade. The fourth agent is then in the same situation as the third, and so also makes

the same choice, a process which continues indefinitely. In case (ii), however, the choices of the

first two agents reveal that they have received one a signal and one b signal, leaving the third

agent in effectively the same position as the first. Her posterior (before considering her private

information) is p3 = 1
2
, so that her signal completely determines her choice. The fourth agent

would then be in the same situation as the second agent described above, and so forth. Thus a

cascade begins after some even number of agents have chosen and |#A −#B| = 2, where #A

is the number of decision makers who have chosen A and #B is the number of decision makers

who have chosen B.

One quantity of interest is the probability that “correct” and “incorrect” cascades will form

in equilibrium. First, the probability of being in neither cascade vanishes rapidly as t grows. The

probability of eventually reaching a correct cascade is q(1+q)
2−2q(1−q)

, and the complementary proba-

bility of eventually reaching an incorrect cascade is (q−2)(q−1)
2−2q(1−q)

.7,8 Once a cascade has formed, all

choices occur independently of private information, and hence public beliefs remain unchanged.

The points at which public beliefs settle are the posteriors that obtain after two consecutive

choices for the same alternative, beginning with uninformative prior.

2.2. Quantal Response Equilibrium

We now describe the logit quantal response equilibrium (QRE) of the model described above.

In the logit QRE, each individual t privately observes a payoff disturbance for each choice,

denoted εA
t and εB

t . The payoff-relevant information for agent t is summarized by the difference

εt ≡ εA
t − εB

t . Denote agent t’s type by θt = (st, εt). The logit specification assumes that the

εt are independent and obey a logistic distribution with parameter λ.9,10 The disturbance, εt,

can be interpreted in several different ways. For example, it could represent a stochastic part

of decision making due to bounded rationality, or it could be an individual-specific preference

7After the first two choices, the probabilities of the three regimes, correct cascade, no cascade yet, or incorrect
cascade, are: 1

2q(1 + q), q(1 − q), and 1
2 (q − 2)(q − 1), respectively. More generally, after 2t choices, these

probabilities are 1
2q(1 + q)

(
1−(q(1−q))t

1−q(1−q)

)
, (q(1− q))t, 1

2 (q − 2)(q − 1)
(

1−(q(1−q))t

1−q(1−q)

)
. Taking limits as t approaches

infinity yields the long run probabilities of the three regimes.
8Thus as q increases from 1

2 to 1, the probability of landing in a good cascade grows from 1
2 to 1.

9This arises when εA
t and εB

t are i.i.d. extreme-value distributed.
10The properties derived in this section hold for all atomless error distributions that have full support over the

interval [−1, 1]. The logit specification is convenient because its behavior is determined by a single parameter
with a natural “rationality” interpretation.
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shock that occurs for other reasons. Irrespective of the interpretation of the noise, the resulting

logit choice model implies that the stronger the belief that A is correct, the more likely action

A is chosen. The logit QRE model assumes that the distribution of the payoff disturbances is

common knowledge.11 The logit QRE is calculated as the sequential equilibrium of the resulting

game of incomplete information, where each player observes only her own type θt.

It is straightforward to characterize the optimal decision of agent t given her type θt and the

history Ht (which determines public beliefs pt). The expected payoff of choosing A is πst
t (pt)+εt,

and that of selecting alternative B is 1− πst
t (pt). Thus given agent t’s signal, the probability of

choosing A is given by12

P (ct = A|Ht, st) = P (εt > 1− 2πst
t (pt))) =

1

1 + exp(λ(1− 2πst
t (pt)))

, (2.3)

and B is chosen with complementary probability P (ct = B|Ht, st) = 1−P (ct = A|Ht, st). When

λ →∞ choices are fully rational in the sense that they do not depend on the private realizations

εt and are determined solely by beliefs about the correct alternative. It is easy to show that

the logit QRE converges to the pure cascade Nash equilibrium in which indifferent subjects

randomize uniformly.13 On the other hand, as λ approaches 0 choices are independent of beliefs

and become purely random.

The belief dynamics also depend on λ. To derive the evolution of the public belief that A

is correct, note that given pt there are exactly two values that pt+1 = P (ω = A|Ht, ct) can take

depending on whether ct is A or B. These are denoted p+
t and p−t respectively. The computation

of the posterior probabilities p+
t and p−t given pt is carried out by agents who do not know the true

state, and so cannot condition their beliefs on that event. In contrast, the transition probabilities

of going from pt to p+
t or p−t (i.e., of a choice for A or B) depend on the objective probabilities of a

and b signals as dictated by the true state. Thus when computing these transition probabilities,

it is necessary to condition on the true state. Conditional on ω = A, the transition probabilities

are:

T ω = A
t = P (ct = A|Ht, ω = A)

= P (ct = A|Ht, st = a)P (st = a|ω = A) + P (ct = A|Ht, st = b)P (st = b|ω = A)

=
q

1 + exp(λ(1− 2πa
t (pt)))

+
1− q

1 + exp(λ(1− 2πb
t (pt)))

,

11In general, the distributions of payoff disturbances in a logit QRE need not be the same for every decision
maker, but these distributional differences would be assumed to be common knowledge.

12Note that indifference occurs with probability zero under the logit specification, and hence plays no role.
13This is because for any λ ∈ (0,∞), an agent chooses equi-probably when indifferent.
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with the probability of a B choice given by 1 − T ω = A
t . Similarly, conditional on ω = B, the

probability agent t chooses A is

T ω = B
t =

1− q

1 + exp(λ(1− 2πa
t (pt)))

+
q

1 + exp(λ(1− 2πb
t (pt)))

.

Using Bayes’ rule, we now obtain the two values that pt+1 may take as

p+
t ≡ P (ω = A|Ht, ct = A) =

ptT
ω = A

t

ptT ω = A
t + (1− pt)T ω = B

t

, (2.4)

and

p−t ≡ P (ω = A|Ht, ct = B) =
pt(1− T ω = A

t )

pt(1− T ω = A
t ) + (1− pt)(1− T ω = B

t )
. (2.5)

These expressions can be used to derive the following properties of the belief dynamics (see

Appendix A for proofs), where without loss of generality we assume the true state is ω = A.

Proposition 1. For all λ > 0 there is a unique logit QRE with the following properties:

(i) Beliefs are interior: pt ∈ (0, 1) for all t ∈ T .

(ii) Actions are informative: p−t < pt < p+
t for all t ∈ T .

(iii) Beliefs about the true state rise on average: E(pt+1|pt, ω = A) > pt for all t, t + 1 ∈ T .

(iv) Beliefs converge to the truth: conditional on ω = A, limt→∞ pt = 1 almost surely.

2.3. Classification of Cascades Observed in the Laboratory

We distinguish several kinds of cascade-like behavior.14 A pure A (B) cascade is said to form

at time t ≤ T if after period t − 1 the number of A (B) choices exceed the number of B (A)

choices by 2 for the first time, and all choices from t to T are A (B) choices. Thus, for example,

if T = 6 and the sequence of choices is {A,B, A, A,A, A}, then we say a pure A cascade forms

at t = 5. In periods 5 and 6, we say the decision makers are in a pure A cascade. Note that any

pure cascade beginning at time t, will have length T − t + 1.

14One might argue for using the term “herd” instead of cascade, since cascade refers to belief dynamics, while
“herds” refer to choice dynamics. In the context of quantal response equilibrium, this distinction is artificial,
since neither herds nor cascades can last forever. All choices occur with positive probability at every point in
time, and learning never ceases.
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A temporary A (B) cascade or A (B) craze15 is said to form at time t ≤ T if after period

t− 1 (but not after period t− 2) the number of theoretically informative A (B) choices16 exceed

the number of theoretically informative B (A) choices by 2 and some decision maker τ , with

t ≤ τ ≤ T , makes a contrary choice.17 The number of periods decision makers follow the cascade,

τ − t, defines its length. Thus in the sequence of decisions {A,A, B} we say that an A cascade

of length zero occurs at t = 3.

Temporary cascades are particularly interesting because subsequent play of the game is off

the Nash equilibrium path. Moreover, if the sequence is long enough it is possible for a new

cascade to form after a temporary cascade has broken. Following AH, we define a simple counting

procedure to classify sequences of decisions and determine whether a new cascade has formed.

This ad hoc counting rule roughly corresponds to Bayesian updating when the probability that

indifferent subjects follow their signals equals the probability that subjects who break cascades

hold contrary signals.18 Under the counting rule, every A decision when not in a cascade

increases the count by 1 and every B decision when not in a cascade decreases the count by 1.

Recall that we enter the first cascade of a sequence when the count reaches 2 or −2. Then the

decisions during the cascade do not change the count, until there is an action that goes against

the cascade, which decreases the count to 1 if it was an A cascade or increases the count to −1

if it was a B cascade. The count continues to change in this way, until the count reaches either

2 or −2 again, and then we are in a new cascade, which we call a secondary cascade.

We distinguish three different kinds of secondary cascades. One possibility is that actions

cascade on the same state as the previous cascade: a repeat cascade. The other possibility is

that the actions cascade on a different state: a reverse cascade. A self-correcting cascade is a

cascade that reverses from the incorrect state to the correct state.

2.4. Hypotheses

A wide range of observable implications follow from the theoretical results about the logit

equilibrium in these dynamic games of incomplete information. We distinguish four categories of

hypotheses depending on their object: cascade length and frequency, self-correction of cascades,

15According to the Oxford English Dictionary (1980), a craze is defined as a “great but often short-lived
enthusiasm for something.”

16Choices made during a (temporary) cascade are called theoretically uninformative.
17These definitions extend in a natural way to more complex environments.
18These conditions are closely approximated in our data, where we find 85% of indifferent subjects go with

their signals and 84% of cascade breakers received contrary signals.

9



efficiency of decisions, and belief dynamics. Most of these hypotheses are in the form of the

comparative statics with respect to the two main treatment parameters, q and T .

Testable implications of the logit QRE. For all λ > 0 observed behavior in the unique logit

QRE will have the following properties:

1. Cascades: Frequency and length19

(C1) For any q and sufficiently large T , the probability of observing a pure cascade is decreasing

in T , converging to 0 in the limit. For any q and T > 2, the probability of observing a

temporary cascade is increasing in T , converging to 1 in the limit.

(C2) For any T , the probability of a pure cascade is increasing in q.

(C3) For any q, the expected number of cascades is increasing in T .

(C4) For sufficiently large T , the expected number of cascades is decreasing in q.

(C5) The probability that a cascade, which has already lasted k periods, will break in the next

period is decreasing in k.

(C6) For any q, the average length of cascades is increasing in T .

(C7) For any T , the average length of cascades is increasing q.

2. Self-Correction

(SC1) Incorrect cascades are shorter on average than correct cascades.

(SC2) Incorrect cascades are more likely to reverse than correct cascades (self-correction).

(SC3) Correct cascades are more likely to repeat than incorrect cascades.

(SC4) Later cascades are more likely to be correct than earlier ones.

(SC5) A decision maker with a contradictory signal is more likely to break a cascade than a

decision maker with a confirmatory signal.

19Several of these hypotheses are only sensible if T is sufficiently large. At least 2 periods are required for
any cascade to form, and at least 6 periods are required to observe a cascade and its reversal. For exam-
ple, {A,A, B,B,B, B} is the shortest possible sequence for a reverse from an A cascade to a B cascade, and
{A,A,B,A} is the shortest possible sequence for a repeated A cascade.
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3. Efficiency: The probability of correct decisions

(E1) The ex ante (i.e., before decision maker t has drawn a private signal) probability of a

correct decision is increasing in t. An interim version of this statement is true, but only

conditional on receiving an incorrect signal.20

(E2) The probability of a correct decision is higher for a correct than for an incorrect signal.

(E3) The probability of a correct choice is increasing in q.

4. Beliefs: Informational Efficiency

(B1) For each q, on average the public belief on the true state is closer to 1 in the final period

of the T = 40 treatments than in the T = 20 treatments.

(B2) For each t, on average the public belief on the true state is closer to 1 in the q = 6/9

treatments than in the q = 5/9 treatments.

(B3) For all treatments, on average the public belief on the true state is increasing in t.

These hypotheses follow from a few basic properties implied either by QRE or by the informative

signal process itself. We list them below,21 and refer to them in the ensuing discussion that

explains the intuiton of the hypotheses. For any positive value of λ:

1. There is a (positive) lower bound on the probability a decision maker chooses either deci-

sion, because payoffs are bounded. This lower bound is independent of beliefs.

2. The higher the public belief on a state, the greater the probability the decision maker will

choose the optimal action for that state.

3. If a decision maker breaks a cascade, he is much more likely to have a contradictory signal

than a confirmatory signal.

4. The higher is q, the more likely it is that any given cascade to be correct.

5. In a correct cascade, confirmatory signals are more likely than contradictory signals.

6. In an incorrect cascade, confirmatory signals are less likely than contradictory signals.

20It is not true conditional on receiving a correct signal. To see this, note that the interim probability of a
correct decision at time t = 1 with a correct signal approaches 1 as λ diverges as it is optimal to follow one’s
signal. In later periods it is bounded away from 1 because of the probability of a cascade on the wrong state.

21The proofs are straightforward and are omitted.
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7. When an action is taken at time t, the public belief on the corresponding state increases.

That change in public belief is an increasing function of q.

8. The higher the public belief on the true state, the higher the probability the decision maker

receives a signal favoring that state.

9. The expected change in beliefs in the true state from t to t + 1 is always positive.

Hypothesis (C1) (which applies to T > 2) follows from (1) which implies that the probability

a cascade breaks in any round is strictly positive. Hypothesis (C2) follows from (3),(4), and (5).

Hypothesis (C3) follows because the probability a first cascade has formed is increasing in T ,

the probability a cascade has formed and broken is increasing in T , the probability a cascade

has formed and broken, and then another one has formed is increasing in T and so forth.

Hypothesis (C4) is more complicated, and can only be proved for T sufficiently large. For

example, if T = 2, then the expected number of cascades is simply the probability that exactly

one cascade occurs, which is the probability of two either correct or two incorrect signals, which

is q2 + (1− q)2. This expression is increasing in q. The difficulty is that there are two opposing

effects of increasing q. The probability of a cascade forming is increasing in q but the probability

of a cascade breaking is decreasing in q. For sufficiently large T the latter effect dominates

because decisions are more frequently in a cascade than not in a cascade. The higher is λ, the

greater must be T for this to be true.

Hypothesis (C5) follows from (2) and (6). Hypotheses (C6) and (C7) follow from (2), (6),

and (8) and the fact that the probability of a cascade breaking once you are in a cascade is

decreasing in q. Hypothesis (SC1) follows from (3), (4) and (5). The logic behind the next two

hypotheses about self-correction, (SC2) and (SC3), is fairly obvious. They follow from (7) and

the fact that decision makers are more likely to receive correct than incorrect signals. Hypothesis

(SC4) is a consequence of the self-correction process, and follows from (2) and (8). Hypothesis

(SC5) is equivalent to (3).

The efficiency hypotheses address the frequency of correct decisions. First, on average,

efficiency will increase over time because expected public belief converges monotonically to the

true state (the ex ante part of E1). Second, decision makers who receive a correct signal are

obviously more likely to make the correct decision than decision makers with incorrect signals

(E2), but this difference will decline over time, because the public belief on the true state

converges to 1 (interim part of E1). Third, efficiency should be positively affected by signal

informativeness in three ways. There is the direct effect that more good signals are received

12



with a higher q, but there are two indirect effects as well: with more informative signals, social

learning is faster because actions are more informative, and conditional on being in a cascade,

the cascade is more likely to be correct.22 Because these three effects all go in the same direction,

there should be a difference in efficiency in the different q treatments.

All the C, SC, and E hypotheses are tested with simple direct tests on sample means. How-

ever, (C3), (C4), (C6), and (C7) can be strengthened because the comparative statics results on

length and frequency of cascades holds for the entire distribution of lengths and frequencies, not

just the means.

Because beliefs, unlike actions, are not directly observable, we test the B hypotheses by

estimating beliefs using our QRE structural estimation approach. Because the analysis of beliefs

in our data quite different and depend on the estimation, we discuss the results about beliefs

later, after presenting the QRE estimates of the underlying parameters of the model.

While some of these properties are also true for the initial few decisions in the pure cascade

Nash equilibrium, the effects vanish quickly with longer sequences. An exception is (E3). In

the perfect Nash equilibrium, the probability of a correct decision is approximately equal to the

probability of ending up in a correct cascade, which quickly approaches q2/(q2 + (1 − q)2) and

rises with q.

3. Experimental Design

The two innovations of our experimental design are the use of much longer choice sequences

and the use of different signal precisions. These innovations allow us to assess the predictions of

the logit QRE model in ways that are not possible with past designs, and to gain insights into

how the basic models might be improved.

The experiments reported here were conducted at the Social Sciences Experimental Labora-

tory (SSEL) at Caltech and the California Social Sciences Experimental Laboratory (CASSEL)

at UCLA between September 2002 and May 2003. The subjects included students from these

two institutions who had not previously participated in a cascade experiment.23

The experiments employ a 2× 2 design, where we use two values of both the signal quality q

and the number of individuals T . Specifically, q takes values 5/9 and 6/9, and T takes values 20

22Another minor effect going in the same direction is that with a higher q the posterior beliefs are, on average,
further from 1

2 , so the expected payoff difference between a correct and incorrect action is generally increasing
in q.

23There was one subject who had previously participated in a related pilot experiment.
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Session T q M Subject Pool

03/14/03A 20 5/9 30 Caltech

09/26/02B 20 5/9 30 Caltech

09/19/02A 20 5/9 26 Caltech

04/03/03AB 20 5/9 30 UCLA

04/14/03A 20 6/9 30 UCLA

04/14/03C 20 6/9 30 UCLA

04/14/03E 20 6/9 30 UCLA

05/05/03D 40 5/9 17 UCLA

05/05/03F 40 5/9 19 UCLA

05/05/03G 40 5/9 20 UCLA

04/16/03B 40 6/9 20 UCLA

04/21/03C 40 6/9 20 UCLA

04/21/03E 40 6/9 20 UCLA

Table 3. Experimental sessions.

and 40. The number of games in each experimental session is denoted M . Table 3 summarizes

the design.24

In each session, a randomly chosen subject was selected to be the “monitor” and the remaining

subjects were randomly assigned to computer terminals in the laboratory. All interaction among

subjects took place through the computers; no other communication was permitted. Instructions

were given with a voiced-over Powerpoint presentation in order to minimize variations across

sessions.25 After logging in, the subjects were taken slowly through a practice match (for which

they were not paid) in order to illustrate how the software worked, and to give them a chance

to become familiar with the process before the paid portion of the experiment commenced.

Before each match, the computer screen displayed two urns. For the q = 5/9 treatment,

one urn contained 5 blue balls and 4 red balls and the other contained 4 blue balls and 5 red

balls. For the q = 6/9 treatment, one urn contained 6 blue balls and 3 red balls and the

other contained 3 blue balls and 6 red balls. The monitor was responsible for rolling a die

at the beginning of each game to randomly choose one of the urns with equal probabilities.

24The design is not balanced with respect to subject pool because Caltech’s laboratory has a maximum capacity
of 32 subjects. In the estimations reported below we checked for subject pool effects but found no major differences
in parameter estimates.

25See www.hss.caltech.edu/̃ rogers/exp/ for the instructions.
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This process, and the instructions to the monitor (but not the outcome of the roll) were done

publicly. At this point, the subjects saw only one urn on the computer screen, with all nine

balls colored gray, so that they could not tell which urn had been selected. Each subject then

independently selected one ball from the urn on their screen to have its color revealed. Then, in

a random sequence, subjects sequentially guessed an urn. During this process, each guess was

displayed on all subjects’ screens in real time as it was made, so each subject knew the exact

sequence of guesses of all previous subjects. After all subjects had made a choice, the correct

urn was revealed and subjects recorded their payoffs accordingly. Subjects were paid $1.00 for

each correct choice and $0.10 for each incorrect choice. Subjects were required to record all

this information on a record sheet, as it appeared on their screen. Due to time constraints, the

number of matches (sequences of T decisions) was M = 30 in each T = 20 session and M = 20 in

each T = 40 session.26 After the final game, payoffs from all games were summed and added to

a show-up payment, and subjects were then paid privately in cash before leaving the laboratory.

4. Results I: Cascades, Self-Correction, and Efficiency

In this section, we examine the aggregate properties of our data. The analysis is focused

by the hypotheses in the previous section about cascade frequency and length, self-correction of

cascades, and efficiency of decisions.

4.1. Infrequency of Pure Cascades; Frequency of Temporary Cascades

In AH’s experiment with only T = 6 decision makers, all cascades were necessarily very short.

In contrast, our experiments investigated sequences of T = 20 and T = 40 decision makers,

allowing for the first time an opportunity to observe long cascades, the length distribution of

temporary cascades, and the self-correcting property. As Table 4 clearly demonstrates, pure

cascades essentially do not happen in the longer matches. The cascades that persisted in the

AH experiments simply appear to be pure cascades, a likely artifact of the short horizon. Our

numbers are comparable to those of AH when we consider only the first six decision makers in

our sequences. These numbers are given in the row marked “First 6” in Table 4. In contrast, we

observe pure cascades in only 17 our of 206 sequences with T = 20 decision makers, and only 8

of 116 sequences with T = 40 decision makers.

26A few sessions contained fewer sequences due to technical problems, see Table 3.
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Table 4. Percentages of pure cascades by treatment.

Table 5. Percentages of temporary cascades by treatment.

The final columns of Table 4 give the predicted frequency of pure cascades according to the

Nash equilibrium (and out of sample predictions from the QRE-BRF model, which we explain

and discuss in a later section). The Nash equilibrium probability of a pure cascade with T

decision makers is 1− (q(1− q))T/2.

The data contradict the Nash predictions in three ways. First, there are far fewer pure cas-

cades than theory predicts. Second, there were far fewer than were observed in past experiments

with very short decision sequences. According to theory, the frequency of pure cascades should

increase with T but in fact the data show the opposite. Third, the frequency of pure cascades

in the data is steeply increasing in q, while the Nash equilibrium predicts almost no effect. In

our data, pure cascades occurred nearly five times as often in the q = 6/9 treatment than when

q = 5/9 (20/150 compared to 5/172).27

In contrast to pure cascades, temporary cascades are common in all treatments. Table 5

27Further evidence indicates this continues to increase with q. In a single additional session with q = 3/4 and
T = 20, we observed pure cascades in 28/30 sequences.
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Table 6. Number and lengths of cascades by treatment.

shows the frequency of temporary cascades in our data. The rows and columns mirror Table

4, but the entries now indicate the proportion of sequences in a given treatment that exhibit

at least one temporary cascade that falls apart. Clearly, for large T , essentially all cascades we

observe are temporary. With the short horizon of the AH experiment, temporary cascades occur

only in about one-fourth of the sequences.

4.2. Number and Lengths of Temporary cascades

With larger T , we almost always observe multiple temporary cascades along a single se-

quence. Table 6 (top) displays the average number of cascades in each treatment. The number

of temporary cascades rises with the sequence length, T , and falls with the signal precision,

q, not only on average, but also in the sense of first order stochastic dominance, see the top

panel of Figure 1. This evidence supports hypotheses (C3) and (C4). The table and the figure

also show the Nash prediction of exactly 1 cascade per sequence, independent of q and T , and

out-of-sample predictions generated by the QRE-BRF model (discussed later).

Figure ?? graphs separately for each treatment, the empirical probability of collapse as a

function of the duration of the cascade: i.e., the probability of a collapse in period t + s, given

the cascade started in period t. This probability is sharply decreasing in s. In other words,

longer cascades are more stable (Kübler and Weizsäcker, 2005), which is predicted by QRE but

is not true in the Nash equilibrium. This finding supports hypothesis (C5).

The average length of temporary cascades for each treatment is displayed in Table 6 (bottom),

and the complete distributions of length are shown in Figure 1 (bottom).28 Average length of

28To compute the Nash predictions for cascade lengths, recall that a cascade can only begin after an even
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Figure 1: The left panels depict the observed distributions of the number of cascades
(top) and of cascade lengths (bottom), color coded by treatment: dark (light) gray
lines correspond to q = 5/9 (q = 6/9) and they are solid (broken) for T = 40
(T = 20). The right panels show predictions of the Nash and QRE-BRF models.
In the top right panel, the solid line that jumps to 100% at 1 corresponds to Nash
predictions and the other lines the QRE-BRF predictions. In the bottom right panel,
the lines that jump to 100% at T − 2 correspond to Nash predictions and the others
to QRE-BRF predictions.

18



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 6 11 16 21 26 31 36

Cascade Length

Ch
an
ce
 C
as
ca
de
 B
re
ak
s

Figure 2: Chance of cascade breaking as a function of cascade length.
The lines show 5-period moving averages of the probability of a break
in each of the treatments (color coded as in Figure 1).

temporary cascades rises with the sequence length, T when q = 6/9 but not when q = 5/9,

with the difference insignificant at the 5% level in the latter case. Average length also rises with

the signal precision, q, for both T = 20 and T = 40. Thus we find strong support for (C7)

but only weak support for (C6). A comparison of the entire distribution of lengths is given in

the top panel of Figure 1. The table and the figure also show the Nash prediction of exactly 1

cascade per sequence, independent of q and T , and out-of-sample predictions generated by the

QRE-BRF model (discussed later).

4.3. Off-the-Equilibrium-Path Behavior

Given that the vast majority (92%) of cascades are temporary and short in duration, and

nearly all (90%) sequences in our data exhibit multiple cascades, an immediate conclusion is that

number of choices. For t even, the probability a cascade forms after t + 2 choices conditional on one not having
yet formed after t choices is 1−2βq(1− q), where β is the probability an indifferent subject follows her signal. In
the data, β = 0.85. Since upon forming, a cascade persists through period T , the predicted length distributions
of temporary cascades can be calculated easily.
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there are many choices off the (Nash) equilibrium path. Table 2 in the Introduction characterizes

a subset of these choices for the different treatments as a function of the deviating decision

maker’s signal. The table shows the behavior of what we call cascade breakers, since these are

all terminal decisions of a temporary cascade.

Over all treatments, cascades were broken a total of 1081 times. These contrary actions were

five times more likely to be taken by subjects with contradictory signals than with confirmatory

signals (898 compared with 183). In fact, if we compare the rates of breaking cascades for

decision makers with contradictory versus confirmatory signals, there difference is even starker

(37% compared to 6%). This supports hypothesis (SC5).

The behavior of decision makers immediately following a cascade breaker also plays a critical

role in the dynamics. Because the first break is so informative, a second break moves beliefs

close to .5, essentially eliminating the trend in beliefs that had developed during the cascade.

As expected, the probability of a second break by the next decision maker is sharply increased.

Approximately 75% of the decision makers immediately following a cascade break follow their

signals. A player who observes a signal consistent with the recent cascade of course should

rationally follow the cascade, a prediction that is borne out by our data: 90% of these decision

makers follow the action corresponding to the recently broken cascade. Only 10% are secondary

deviators who follow the recent break. Thus, they behave roughly the same as they would

have if the cascade had never been broken. Those who received contradictory signals behaved

much differently. Well over half (56%) of the decision makers with contradictory signals are

secondary deviators. Pooling over all treatments, they outnumber the secondary deviators with

confirmatory signals by a factor of five to one (277 compared to 58). Table 7 gives a complete

breakdown of the choices directly following a cascade break, by treatment.

The two key conclusions of this subsection are that play off the equilibrium path occurs

frequently and is highly informative, setting the stage for self-correction. As a result, we will find

that the long run implications of the standard theory are completely contradicted by the data.

4.4. Repeated and Reversed Cascades: Self Correction

Since this off-path behavior is central to the dynamic properties of QRE (where such behavior

is actually not off-path) and to the resulting convergence of beliefs, our experimental design with

much longer sequences allows us to better observe the kinds of complex dynamics predicted by

the theory, in particular the phenomenon of self correction.
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T=20 T=40

Decision \ Signal Confirming Contrary Decision \ Signal Confirming Contrary

q=5/9 Confirming 42.8% 20.9% Confirming 45.4% 20.3%

Contrary 3.3% 33.0% Contrary 8.4% 25.9%

# obs = 306 # obs = 379

Decision \ Signal Confirming Contrary Decision \ Signal Confirming Contrary

q=6/9 Confirming 48.4% 14.7% Confirming 58.2% 26.7%

Contrary 6.3% 30.5% Contrary 2.4% 12.7%

# obs = 190 # obs = 165

Table 7. Percentages of choices confirming/contradicting the recent cascade after a break.

Table 8. Frequency of repeated and reversed cascades by treatment.

Table 8 shows the average number of repeated and reversed cascades per sequence, by treat-

ment, and also gives theoretical expectations according to the Nash and out-of-sample QRE-BRF

predictions (explained later). While such cascades are not possible in the Nash equilibrium, the

latter model predicts the observed number of reversed and repeated cascades remarkably well.

Table 9 shows how frequently correct and incorrect cascades repeat or reverse themselves.29

The number of repeat cascades is increasing in T and decreasing in q, which is consistent with

the QRE model.

Averaging over the four treatments shows that when a correct cascade breaks, it reverses to

an incorrect one in approximately 6% of all cases (39/637). In contrast, an incorrect cascade that

breaks leads to a self-corrected cascade in more than 21% of all cases (66/369). This confirms

29The percentages listed ignore terminal cascades, since they can neither repeat nor reverse, by definition.
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T = 20 T = 40

From\To Correct Incorrect From\To Correct Incorrect

q = 5/9 Correct 92.7% 7.3% Correct 93.6% 6.4%

Incorrect 22.7% 77.3% Incorrect 11.0% 89.0%

# obs = # obs =

From\To Correct Incorrect From\To Correct Incorrect

q = 6/9 Correct 91.4% 8.6% Correct 98.7% 1.3%

Incorrect 30.5% 69.5% Incorrect 20.0% 80.0%

# obs = # obs =

Table 9. Transitions between correct and incorrect cascades in our data.

hypotheses (SC2) and (SC3).

Table 9 also lists the initial, final, and total number of correct and incorrect cascades by

treatment. In all four treatments, the fraction of incorrect cascades is always lower among the

final cascades compared with the initial cascades. Overall, initial cascades were incorrect nearly

35% of the time (114/322) and final cascades were incorrect only 27% of the time (87/322). This

supports hypothesis (SC4).

4.5. Efficiency

How frequently are actions correct? How does this change over time? And how does this

change as a function of signal informativeness? These questions can be directly answered in our

data by checking the proportion of correct decisions, since both the state and the action of each

individual is observed in the data.

There are two important observations to note before delving into the analysis of the efficiency

results. First, the probability of a correct decision, and the way that probability changes over

time, will be much different for decision makers who received correct versus incorrect signals.

Decision makers with incorrect signals will do badly at the beginning, but will do increasingly

well over time. Decision makers with correct signals will do very well at the beginning (perfectly

in the Nash equilibrium), but will do worse for a while until the public belief gets close enough

to 1. Second, overall efficiency is extremely sensitive to the specific sequence of signals indi-

viduals receive, and also (in a quantal response equilibrium) the specific action choices. Since
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in 20 rounds there are over one million possible signal sequences (and many more signal-action

sequences), our experimental data represent only a small fraction of the possible sequences.

Therefore, there is a lot of sample variation.

Figure ?? shows the time-dependence of decision accuracy, by treatment. The middle column

displays the actual data, averaged across all experimental sequences, with the four rows each

corresponding to a treatment: (q = 6/9, T = 20) top row, (q = 6/9, T = 40) second row,

(q = 5/9, T = 20) third row, and (q = 5/9, T = 40) bottom row. In each graph, the thick solid

black line shows the fraction of correct choices for all signals; the dashed (upper) and thinner

(lower) lines display the fraction of correct choices for correct and incorrect signals, respectively.

It is useful to contrast the data with the efficiency predictions of Nash equilibrium, which

are displayed in the left column of the same graph, again based on the actual signal draws in the

experiment. In the Nash equilibrium, decision accuracy quickly becomes independent of signals,

reflecting the formation of pure cascades where all learning stops and all future decisions are the

same.30 The decision accuracy for (in)correct signals (rises) falls for a few rounds and then levels

off. As a result, the unconditional decision accuracy increases for only a short amount of time as

nearly all cascades are formed in the first five periods and never break. This contrasts sharply

with the dynamics in the actual data, where unconditional decision accuracy continues to rise

as the sequence of decision makers passes through cycles of temporary cascades that break and

re-form.

There is a strong signal dependence that persists throughout the experiment. The decision

accuracy for incorrect signals is always less than for correct signals in the actual data in every

round t, providing strong support for (E2). For incorrect signals, there is a clear and persistent

upward trend in decision accuracy (due to information aggregation)and there is a small, early

downward trend for decision makers with correct signals, as hypothesized (the interim part of

E1). For decision makers with correct signals this levels off and even reverses sign later, because

later cascades are more likely to be correct due to the phenomenon of self-correction.

For a more formal statistical test of hypotheses E1-E3, Table 11 shows the results of a Probit

regression with six independent explanatory variables: t, q, q ∗ t, signal, signal ∗ t, match. Signal

is a dummy variable that takes on the value of 1 if the signal is correct. The variable q ∗ t is

an interaction of signal informativeness and time period,31 which, according to hypothesis H4,

30As an illustration of the sample variation induced by the specific sequence of signal draws, decision makers in
the q = 5/9, T = 20 treatment by chance drew many more correct signals in the early rounds than did decision
makers in the q = 5/9, T = 40 treatment. This is most easily seen by comparing the Nash predictions of decision
accuracy for the two treatments.

31Here q ∗ t equals 0 if q = 5/9 and q ∗ t equals t if q = 6/9.
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Figure 3: Decision accuracy along the sequence of decision makers by treatment: (q = 6/9,
T = 20) top row, (q = 6/9, T = 40) second row, (q = 5/9, T = 20) third row, and
(q = 5/9, T = 40) bottom row. In each graph, the thick solid black line shows the fraction of
correct choices for all signals, the dashed red line for correct signals, and the thin blue line
for incorrect signals. The lines show moving averages: a point at time t represents average
decision accuracy between t − 2 and t + 2 for 3 ≤ t ≤ T − 2. The left column gives Nash
predictions, the middle column data, and the right column QRE-BRF simulations, all based
on the actual signals used in the experiment.
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Constant -1.57 (0.30) -2.58 (0.33) -3.27 (0.32)

q 1.26 (0.51) 2.52 (0.55) 4.51 (0.53)

t 0.021 (0.0025) 0.033 (0.0026) 0.019 (0.0025)

q * t 0.017 (0.0029) 0.016 (0.0031) 0.012 (0.0031)

signal * t -0.037 (0.0029) -0.049 (0.0031) -0.027 (0.0030)

signal 1.76 (0.055) 2.23 (0.059) 1.71 (0.057)

match 0.0047 (0.0021) 0.0077 (0.0022) -0.0015 (0.0006)

# obs 8760 8760 8760

logL -4620 -4021 -4178

Dependent Variable 

Correct Choice
Data Simulation 1 Simulation 2

Table 10. Probit estimation of the effects of q and t on efficiency.

should be positive. The variable (signal ∗ t) is an interaction between time and signal correctness.

From hypothesis H1, the effect of t on decision accuracy should be positive only for incorrect

signals, with a possible small negative effect for correct signals. Match is a variable that is

included to control for possible experience effects.32 Notice that we do not include T in the

regression, because the theory does not predict any effect except through the variable t.

The second column of Table 11 shows the estimated coefficients with standard errors in

parentheses. All coefficients have the expected sign and are statistically significant. These

results deserve closer inspection for at least two reasons. First, the regression is not based on

any kind of structural model of decision making. Second, there are obvious dependencies in the

data, and un-modelled sources of error, including quantal response errors and variation in signal

sequences. (The third and fourth columns of the table are discussed later.)

Finally, it is natural to ask whether efficiency is higher under the QRE-BRF model than

it is under the standard Nash model. Information is aggregated better under QRE-BRF (see

Proposition 1) but decision-making is worse in this case as subjects are prone to errors. Figure

5 shows that efficiency levels are increasing with time under the QRE-BRF model throughout

the duration of the experiment. In fact, in the long run as T grows large, beliefs in the QRE-

BRF model converge to the true state so that private beliefs and public coincide, independent

of signals. Using the pooled data to estimate the parameters of the QRE-BRF model, we can

compute the asymptotic decision accuracy: 0.99, i.e. almost full allocative efficiency is achieved

32Match=1 corresponds to the first sequence in a session, and ranges up to 20 or 30 depending on whether T
equals 40 or 20, respectively.
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in this limit.

4.6. Summary of Results

Here we summarize our findings by relating them to the properties of the logit QRE discussed

in section 2.3.

• (C1) and (C2): The occurrence of pure cascades decreases with T and increases with q. The

effect of T is obvious from comparing the different rows in Table 4. Both for q = 5/9 and

q = 6/9, the percentages of pure cascades fall quickly with each successive row. Comparing

columns 1 and 3 and columns 2 and 4 in Table 4 shows the effect of signal informativeness.

• (C3 and C4): The number of cascades increases with T and decreases with q. See Table

6 and Figure 1. Longer sequences have more cascades because they allow for more cycles

of formation and collapse. These effects are barely noticeable in short sequences: AH’s

experiment averaged slightly more than 1 cascade per sequence.

• (C5): The probability of collapse sharply decreases as a function of the duration of the

cascade. See Figure ??.

• (C6 and C7): Cascades lengths increase with T for q = 6/9 and increase with q. The

effect of T can be decomposed as follows. First, and most obvious, if T is short then

some cascades that would have lasted longer are interrupted at T . Second, by (C5) longer

cascades are less likely to break. The two effects combined result in a fat tail of the length

distribution and in a mass of cascades at T − 2, see Table 6 and Figure 1. The effect of T

is observed in the q = 5/9 data, where the distributions of cascade lengths are very similar

for the T = 20 and T = 40 treatments.

• (SC1): Correct cascades last longer on average. The observed average lengths of (correct,

incorrect) cascades in the different treatments are: (2.55, 2.24) for q = 5/9 and T = 20,

(2.08, 1.91) for q = 5/9 and T = 40 , (3.42, 2.85) for q = 6/9 and T = 20, and (8.31, 5.50)

for q = 6/9 and T = 40.

• (SC2) and (SC3): Reverse cascades are usually self-correcting, and repeat cascades are

usually correct. See Table 9. Across the four treatments, the probability that a reversed

cascade is self-correcting is 63% (even though there are many more correct than incor-

rect cascades to reverse from). It is this feature of the dynamics that produces the full

information aggregation result of Proposition 1.
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• (SC4): Later cascades are correct more frequently than earlier ones. See Table 9, which

lists the number of (in)correct cascades among initial and final cascades.

• (SC5): Cascades are almost always broken by decision makers with contradictory signals.

See Table 2.

• (E1): Ex ante efficiency is increasing in t. Efficiency is increasing in t, conditional on an

incorrect signal. Efficiency is initially decreasing in t conditional on a correct signal, but

this eventually reverses (see Figure 3).

• (E2): Correct signals lead to more efficient decisions than do incorrect signals. Again, see

Figure 3.

• (E3): More informative signals lead to more efficient decisions. See Figure 2 and Table

10.

The final three hypotheses, (B1)-(B3) address the evolution of beliefs during a sequence and are

discussed in section 6. The next section describes the QRE estimation and our base rate fallacy

model.

5. Results II: Estimation

We start by describing the estimation procedure for the basic logit QRE model. The only

parameter is the slope of the logit response curve, which in the context of these games can be

interpreted as a proxy for rationality, experience, and task performance skill. In subsequent

subsections, we jointly estimate logit and other parameters, using standard maximum likelihood

estimation. For comparability, we choose to normalize payoffs in all experiments to equal 1 if a

subject guesses the state correctly and 0 otherwise.33

Since subjects’ choice behavior depends on λ, public beliefs follows a stochastic process that

depends on λ. The evolution of the public belief can be solved recursively (see equations (??) and

(??)), so implicitly we can write pt(c1, · · · , ct−1|λ). Given {λ, st, (c1, · · · , ct−1)}, the probability

of observing player t choose A is:

P (ct = A|λ, st, c1, · · · , ct−1) =
1

1 + exp(λ(1− 2πst
t (pt(c1, · · · , ct−1|λ))))

,

33Recall that in the experiment subjects received $1 for a correct choice and $0.10 for an incorrect choice. The
difference of $0.9 is normalized to 1 unit in the estimations. Without this normalization the estimates reported
below would be multiplied by a factor of 1/.9.
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and P (ct = B|λ, st, c1, · · · , ct−1) = 1−P (ct = A|λ, st, c1, · · · , ct−1). Therefore, the likelihood of a

particular sequence of choices, c = (c1, · · · , cT ), given the sequence of signals is simply:

l(c|λ) =
T∏

t=1

P (ct|λ, st, c1, · · · , ct−1).

Finally, assuming independence across sequences, the likelihood of observing a set of M sequences

{c1, · · · , cM} is just:

L(c1, · · · , cM |λ) =
M∏

m=1

l(cm|λ).

The estimation results for the logit QRE model are given in Table 11 of Appendix B, which

also contains a detailed estimation program written in GAUSS. The λ estimates for the four

treatments are quite stable and the pooled estimate is close to that estimated from the AH data.

Notice that the estimated value of λ for the (q = 5/9, T = 20) treatment is somewhat greater

than the other three treatments. This may reflect a subject pool effect, since that treatment

was the only one that used mostly Caltech students.

Since comparison with Nash equilibium does not provide a particularly informative bench-

mark for the logit QRE, the following three subsections consider extensions and alternatives to

the basic model. This allows us to access the extent to which the choice behavior in our data

is explained by quantal response type decision errors as opposed to other sources, such as non-

Bayesian updating and non-rational expectations.34 Using parametric specifications we measure

the extent of certain types of these biases in the data.

5.1. Incorporating the Base Rate Fallacy

In their seminal article, Kahneman and Tversky (1973) present experimental evidence show-

ing that individuals’ behavior is often at odds with Bayesian updating. As noted in the intro-

duction, there is considerable evidence in the literature on cascade experiments that players are

non-Bayesian. We explore two of these here. First, a particularly prevalent judgement bias is

the Base Rate Fallacy (BRF), or as Camerer (1995, pp. 597-601) more accurately calls it, “base

rate neglect.” In the context of our social learning model, the base rate fallacy would imply that

agents weight the public prior too little relative to their own signal. Because past experiments

have been suggestive of these effects, we construct an analytical model of this and estimate it

34Huck and Oechssler (2000) find strong evidence of violationg of Bayesian updating in a similar context.
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using the error structure of the Logit equilbrium.35 We formalize this idea as a non-Bayesian

updating process in which the private signal is counted by the decision maker as α signals, where

α ∈ (0,∞).36 Rational agents correspond to α = 1, while agents have progressively more severe

base-rate fallacies as α increases above 1.37

While agents over-weight their private signals we retain the assumption that they have ratio-

nal expectations about others’ behavior. This implicitly assumes that α is common knowledge

(as well as λ). The updating rules in (??) and (??) now become

πa
t (pt|α) =

qα pt

qα pt + (1− q)α(1− pt)
. (5.1)

and

πb
t (pt|α) =

(1− q)α pt

(1− q)α pt + qα(1− pt)
(5.2)

respectively.38

The public belief, pt, in equations (5.1) and (5.2) is derived recursively using (2.3)-(2.5). In

particular, this means that subjects not only overweight signals, but also take into account that

other subjects overweight signals too, and the public belief is updated accordingly. Thus, for

α > 1, the public belief is updated more quickly than in the pure Bayesian model.

There is good reason to think this model may better describe some features of the data.

First, when α = 1 QRE predicts that indifferent agents randomize uniformly. However in the

data 85% of indifferent subjects follow their signals, which is consistent with α > 1.39 Second,

when α > 1, cascades take longer to start.40 The base rate fallacy therefore provides one possible

explanation for the prevalence of length zero temporary cascades in our data set (see Figure 1).

The estimation results for the QRE-BRF model are reported in the second panel of Table

11. For all treatments, the BRF parameter, α, is significantly greater than 1.41 To test for

35Some error structure is required for the estimation because the α -BRF model is deterministic.
36This could also be loosely interpreted as a parametric model of “overconfidence” bias in the sense of Griffin

and Tversky (1992). Kariv (2005) and Nöth and Weber (2003) use this terminology.
37Values of α < 1 correspond to under-weighting the signal, or “conservatism” bias, as discussed in Edwards

(1968) and Camerer (1995, pp. 601-2). Although this latter kind of bias has less support in the experimental
literature, it is sufficiently plausible that we choose not to assume it away.

38From these equations, it is easy to see that for α > 1 the learning process is faster as agents’ choices depend
more on their own signals, in the sense that the expected change in posterior is greater.

39A subject is indifferent when the counting rule applied to previous decisions and the subject’s private signal
balances to zero.

40For example, after two A choices the third decision maker need not choose A if she sufficiently overweighs
her b signal.

41Similar results are reported by Çelen and Kariv (2004).

29



significance we can simply compare the loglikelihood of the QRE-BRF model to that of the

constrained model (with α = 1) in the top panel. Obviously, the BRF parameter is highly

significant.42 Furthermore, the constrained model yields a significantly (at the 0.01 level) higher

estimate of λ for all treatments.

There is at least one alternative interpretation to the finding that subjects respond too

strongly to their signal. By doing so, they are giving better information to later decision mak-

ers, which increases efficiency and raises the expected utility of the other players in the game.

Evidence from experiments on public goods and some game theory experiments suggest some

degree of altruism by subjects. Conceivably, what we are calling a base rate neglect (or over-

weighting of signals) may simply be a manifestation of altruistic behavior. However, there is

some counter evidence that suggests this is probably not the case. First, if altruism is the mo-

tivating force, one would expect higher estimates of α for T = 40 than for T = 20. This is not

the case. Second, once would expect less overweighting of signals in later periods than in earlier

periods. We tested for this and found no significant effect. Therefore, our interpretation is not

that subjects are behaving altruistically, but rather the source of the distortion is a probability

judgement fallacy.

5.2. Incorporating Non-Rational Expectations

Rather than simply over-weighting private information relative to the base rate (public be-

lief), it is possible that players update incorrectly because they do not have rational expectations

about the driving parameters of the model. The QRE model implicitly assumes that λ is con-

stant across the population and common knowledge. In particular, if players believed other

players’ λ were lower than it truly was, then beliefs, and hence choice dynamics, would be quali-

tatively similar to those under a base rate neglect. The reason is that when choices are believed

to be generated by a noisier process, players draw weaker inferences about predecessors’ signals

from observing their choices. Accordingly, we consider a model that allows for separate belief

and action precision parameters, as proposed by Weizsäcker (2003). These different parameters

are labelled λa (action lambda) and λb (belief lambda). That is, players choice probabilities

follow the logit choice function with parameter λa but they believe that other players’ choice

probabilities follow a logit choice function with parameter λb.
43 We call this the non-rational

42For the pooled data the difference in loglikelihoods is nearly 200. A simple t-test also rejects the hypothesis
that α = 1, with a t -statistic of 14.6. Tests conducted for the AH data also reject the constrained model, with
a slightly lower estimate of α.

43See Kübler and Weizsäcker (2004) for a more extensive discussion of this model.
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expectations model, or QRNE model.

The estimation results for the QRNE model are also given in Table 11. While this two-

parameter model performs significantly better than the QRE model, the increase in likelihood

is smaller in magnitude than the increase of QRE-BRF relative to the simple QRE.

An advantage of using the QRE model is that we can explore the relative importance of

different biases, by nesting them in the same model. In this case we can see whether the

BRF bias is more or less important in our data compared to updating failures due to irrational

expectations about other players’ error probabilities. When BRF and QRNE are combined so

that the model includes both sources of bias, the action and belief λ are virtually identical when

estimated from the pooled data, and the increase in likelihood from the QRE-BRF model is

barely significant. A similar conclusion holds for the AH data, indicating that the assumption of

rational expectations (λa = λb) is (approximately) valid in both data sets, while α > 1 indicates

a robust effect of base rate neglect.

5.3. An Alternative Model: Cognitive Heterogeneity

It is instructive to consider other models with non-quantal response sources of noise which

could also potentially explain our data. This helps to check the validity of our basic story for

choice behavior, in light of the observation that the Nash equilibrium does not provide a way

to challenge any of the predictions of QRE. One natural question to ask is where the source

of scatter (error) in our data is really coming from. In QRE, it is assume to come entirely

from payoff-monotone choice errors, and this behavior is assumed to be homogeneous across the

population. An alternative possibility is that this apparent noise in the data is due to some kind

of underlying heterogeneity. We explore one possible model of heterogeneity in this section.

Although there are many options, a natural first step is to suppose that some players behave

completely randomly, while other players optimize against such behavior. Camerer, Ho, and

Chong (2003) extend this idea to allow for multiple levels of sophistication.44 Specifically, level

0 players are random, and all other players use optimal strategies given their beliefs. Level 1

players believe all the other players are level 0, level 2 players believe all others are a mixture

of level 0 and level 1, and so forth. The proportion of level k players in the population is given

by a Poisson distribution with parameter τ . That is, the probability of a level k player in the

44Stahl and Wilson (1995) explored a related but different model with levels of sophistication to study behavior
in experimental games. See Camerer, Ho, and Chong (2003) for a discussion of the differences between the two
models.
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population, given the Poisson parameter τ is equal to τkeτ

k!
. Thus, for example, if τ = 1.5 then the

distribution of types 0, 1, 2, 3, ... is equal to (0.22, 0.33, 0.25, 0.125, ...). Players are assumed to

have truncated rational expectations, i.e. level k players believe all other players are a mixture

of levels less than k, with their relative probabilities given by the true Poisson distribution.

Thus, again using the example of τ = 1.5, 22% of the players are simply randomizing, 33% are

optimizing assuming they face only rational players, 25% are optimizing assuming they face a

mixture of level 0 and level 1 in proportions equal to 2
5

and 3
5
, and so forth. Therefore, assuming

the model is correct, very high level types have very accurate beliefs about the distribution of

types. This implies they also have accurate beliefs about the distribution of strategies in the

population, and therefore they are almost optimizing. This is called the cognitive hierarchy (CH)

model.

The presence of randomizing level 0 players will lead higher-level players to implicitly discount

the information contained in the choices of their predecessors. In this way the CH model can

pick up some of the same features of the data as QRE. To see this, it is instructive to look at

exactly what the behavior of the lowest three types are. Level 0’s of course are just random.

Level 1’s simply follow their own signal, since they assume there is no useful information in the

observations of previous decision makers (they are believed to be totally random). Level 2’s

optimize against a mixture of such players, so they simply act as if each previous decision is a

noisy (but informative) signal about the signals of earlier decision makmers. Again using the

example of τ = 1.5, if the second mover is a level 2 player and observed the first player choose

A choices, they believe that the first mover received an A signal with probability 4
5

and a B

signal with probability 1
5
. Thus, such a player’s posterior on state A will be less than q. That is,

level 2’s have dampened updating, but also note that level 2’s will reach a point quickly where

they no longer follow their own signal. In the example above, they will act exactly like a player

following the Nash equilibrium, and will herd after one of the decisions has been chosen two

more times than the other decision. (This is independent of q.) Furthermore, like QRE, CH is

“complete” in the sense that it is consistent with any sequence of choices and signals. Hence we

can obtain maximum likelihood estimates of the parameter τ via the same methodology, without

using QRE, see Table 11.

We also estimate CH together with QRE to allow for further comparison with QRE. To do

so, we suppose that each agent is assigned a level k in the hierarchy, as in CH, but quantal

responds to her beliefs, as in QRE. Thus CH-QRE is a model parameterized by (τ, λ), which

are assumed to be common knowledge. All three models (CH, QRE, and CH-QRE) are then

re-estimated with the inclusion of the BRF parameter α, to allow for the possibility of over-
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or under-weighting of private information in each case, see Table 11. Note that the estimates

for the combined QRE-BRF-CH model are stable across data sets and generally result in the

highest likelihood. All three are significant factors, based on likelihood ratio tests, and leaving

out any one of these factors changes the magnitudes of the other estimates.

A surprising finding is that the estimate for τ is larger in magnitude than has been typically

found in other settings. Camerer, Ho, and Chong (2004) report estimates in the range of 1.5

to 2.5, while our estimate in the combined model is 2.9 (with a standard error of 0.10). This

appears to be due to an interaction between τ , λ, and α. The estimate of τ in the pure CH

model is 1.9, and its estimate in the CH-QRE model (without BRF) is 2.5. Combining QRE

and CH also leads to substantially larger estimates of λ. The reason for this is that both are

rationality parameters that substitute for each other. The 0 types in the CH model absorb a lot

of the randomness in the QRE model. In other words, the random behavior that can only be

explained by 0 types in the CH model is also explained by quantal response randomness. Hence

we find relatively low values of either parameter if the models are estimated separately, but both

increase significantly when the models are combined.

5.4. Implications of Estimates for the Data

The QRE-BRF model is simple and intuitively appealing and we use it to create simulated

data for comparisons with the actual data.45 For each of the four treatments, we used the data

from the other three treatments to obtain out-of-sample estimates for λ and α. We then ap-

plied the out-of-sample estimates to the signals realized in the experiment to obtain simulated

choices for the treatment. Based on this simulated data set we computed descriptive statistics

about the numbers, lengths and types of cascades: pure and temporary, repeated and reversed,

self-correcting, etc. These are reported in the right two columns of Tables 4 and 5 (pure and tem-

porary cascades, respectively), and the second and fifth rows of Tables 6 and 8 (numbers/lengths

of cascades and reversals, respectively). Because the simulations were constructed using out-

of-sample estimates of λ and α, they represent out of sample predictions of the properties of

cascades in our data, which makes a comparison to the actual data meaningful. Indeed, the

match with the actual data is quite remarkable.

We are also able to construct out-of-sample simulated efficiency dynamics in the the same

way for each of the four treatments, again using the actual sample draws. These are displayed

45The QRE-CH-BRF model would have been an alternative model for simulation, but the additional random-
ness of 0-level types would have necessitated many more simulated sequences. Because the fit improvement over
QRE-BRF is negligible, we decided to use the simpler QRE-BRF model for our simulations.
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Our Data AH Data

p = 5/9 p = 6/9 p = 6/9

T = 20 T = 40 T = 20 T = 40 T = 6

# obs 2320 2240 1800 2400 8760 270

QRE

λ 11.36 (0.42) 7.19 (0.32) 4.38 (0.18) 4.69 (0.19) 6.12 (0.14) 6.62 (0.72)

logL -981.0 -1181.4 -682.0 -634.0 -3650.3 -79.0

QRE-BRF

α 2.33 (0.18) 2.97 (0.36) 2.01 (0.16) 1.67 (0.16) 2.46 (0.10) 1.51 (0.19)

λ 7.07 (0.45) 3.68 (0.32) 3.47 (0.16) 4.09 (0.18) 4.23 (0.11) 5.90 (0.76)

logL -930.7 -1147.6 -653.0 -622.5 -3466.0 -74.5

QRNE

λA 14.45 (0.62) 9.82 (0.49) 5.16 (0.23) 4.74 (0.18) 6.32 (0.14) 7.93 (0.92)

λB 4.07 (0.37) 1.86 (0.18) 1.86 (0.18) 3.45 (0.33) 4.48 (0.28) 3.78 (0.66)

logL -947.7 -1156.3 -660.8 -627.9 -3636.6 -74.7

QRNE-BRF

α 3.24 (0.34) 2.64 (0.41) 1.82 (0.24) 1.54 (0.16) 2.59 (0.12) 1.75 (0.23)

λA 5.43 (0.44) 4.06 (0.51) 3.65 (0.27) 4.19 (0.20) 4.09 (0.12) 5.35 (0.83)

λB 12.56 (1.87) 3.25 (0.47) 2.93 (0.52) 3.40 (0.34) 4.92 (0.33) 15.68 (10.58)

logL -925.6 -1147.1 -652.5 -620.5 -3462.8 -73.3

CH

τ 1.67 (0.06) 1.24 (0.04) 1.96 (0.04) 2.82 (0.03) 1.91 (0.02) 2.20 (0.22)

logL -964.0 -1180.4 -694.3 -656.6 -3648.1 -77.1

QRE-CH

τ 2.00 (0.11) 1.67 (0.14) 2.52 (0.20) 3.63 (0.23) 2.54 (0.08) 2.44 (0.25)

λ 26.45 (3.31) 16.99 (2.33) 7.07 (0.86) 6.23 (0.51) 13.12 (0.75) 28.34 (14.16)

logL -940.7 -1162.1 -672.3 -632.2 -3486.3 -74.3

QRE-CH-BRF

α 1.91 (0.16) 2.67 (0.27) 1.90 (0.16) 1.50 (0.15) 1.81 (0.08) 1.36 (0.32)

τ 2.56 (0.23) 3.23 (0.73) 3.70 (0.73) 3.80 (0.28) 2.90 (0.10) 3.54 (2.28)

λ 12.77 (1.80) 4.50 (0.73) 3.97 (0.47) 5.21 (0.45) 7.69 (0.50) 7.47 (3.96)

logL -911.9 -1144.3 -652.0 -616.1 -3411.3 -73.9

Pooled

Table 11. Parameter estimates for the different models with standard errors in parentheses.
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in the four charts in the right hand column of Figure ??. Again, it reproduced the patterns

observed in the data.

To check the robustness of our findings and to check it against the theoretical model, we

generated two simulated data sets based on the QRE-BRF model, using the pooled estimates

λ = 4.23 and α = 2.46. The first of these simulations uses the same signal sequences as in

the laboratory experiment but decisions are generated by the QRE-BRF model. The second

simulation uses a completely new draw of signal sequences. The Probit estimations based on the

simulated data sets are reported in columns 3 and 4 of Table 11. While there are some small

differences in magnitude, all coefficients of theoretical interest are significant with the correct

sign.46 Note that the log-likelihoods for the simulated data are higher than for the real data.

This is likely caused by the fact that the simulations assume homogeneous agents, while we

would expect some heterogeneity to be present in the laboratory data.

6. Results III: Estimated Belief Trajectories

We use belief estimates generated from the QRE-BRF model to examine both the the infor-

mational efficiency and to address hypotheses about the evolution of beliefs (B1-B3). How well

is the information from private signals aggregated? How high is the public belief on the correct

alternative after a sequence of decisions? How does this vary with our treatment variables, q

and T?

6.1. Informational Efficiency

As shown in Proposition 1, in a QRE the public belief about the correct alternative increases

on average with t, and converges to 1 as T approaches infinity. The convergence is slower for

the q = 5/9 treatments than for the q = 6/9 treatments. Of course, in any finite sequence,

information cannot possibly reveal the correct alternative, because of a combination of noise in

the signal generation process and noise in the decision making process. Moreover, this noise

in signal generation is compounded by strategic considerations that affect the social learning

process.

46The only notable difference is the experience variable, which is not significant in the simulation using a
new batch of signal sequences, suggesting that its significance was spurious, due to more favorable order of
signals in later matches. (Indeed, there is no reason that experience should have had a significant effect in the
first simulation.) In any case, the magnitude of the experience effects, to the extent they may possibly not be
spurious, is negligible.
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Figure 4: Estimated beliefs using the QRE-BRF model for all
sequences in one of the (q = 5/9, T = 20) sessions.

Although we do not observe beliefs directly, we can use the theoretical QRE-BRF model

together with the observed choice data to obtain estimated public belief paths.47 This is done

for every sequence in the experiment. Using the pooled estimates λ = 4.23 and α = 2.46, each

sequence of action choices implies a unique public belief. This is illustrated in Figure 4, which

shows the belief paths for all sequences in one of the q = 6/9 and T = 20 sessions. The belief

trajectories for other sessions exhibit similar features. Here the horizontal axis represents the

sequence of decisions, and the vertical axis the belief about the correct alternative. Each upward

tick in the belief paths corresponds to a correct choice and each downward tick to an incorrect

choice. Theoretically, for long enough sequences, the belief paths for almost all sequences should

converge to 1.

The simplest way to test Hypotheses (B1)-(B3) is to average the public belief about the

correct alternative across all sequences for a given treatment. This produces the four curves in

the left panel of Figure 5. The middle and right panels depict simulated average beliefs using

the QRE-BRF model and Nash model, respectively. The curves are obviously consistent with

the theoretical hypotheses.48

The comparison between the different q treatments is a weak test since the paths are con-

structed using the theoretical model. That is, even if the sequences of signals and decisions

were exactly the same for all sequences in q = 6/9 and q = 5/9 session, the q = 6/9 curves

necessarily would lie strictly above the q = 5/9 curves. That said, the ordering also reflects a

47Domowitz and Hung (2003) recently reported a social learning experiment using a belief elicitation procedure.
48The right most panel shows that the difference between the two q = 6/9 treatments is caused by the particular

signals drawn in these treatments.
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Figure 5: Estimated public beliefs about the true state by treatment (coded as in Figure 1).
In the left panel, estimated beliefs are based on observed signals and decisions. The middle
panel is based on the average of 100 QRE-BRF simulations of decisions, always using the
same sequence of signals as in the experiment. The right panel shows estimated beliefs
implied by Nash decisions based on the sequence of signals employed in the experiment.

salient difference between our q = 5/9 and q = 6/9 data, namely that cascades fall apart more

quickly, and are more often incorrect in the q = 5/9 data than in the q = 6/9 data (see Tables

5-8 of the previous section).

However, that the curves are increasing in t is not an artifact of the construction, but simply

reflects the fact that there are more good cascades and fewer bad cascades toward the end of

a session than toward the beginning. In summary, we find strong support for hypotheses (B1),

(B2), and (B3), and somewhat weaker support for hypothesis (B4).

7. Conclusion

This paper reports the results of an information cascade experiment with two novel features:

longer sequences of decisions and systematic variation of signal informativeness. According to

standard game theory, neither of these treatments should be interesting, and neither should

produce significantly different results. We find, however, that both of these treatment effects are

strong and significant, with important implications for social learning, information aggregation,

and efficiency.

The longer sequences have several interesting features. First, there is almost a complete

absence of pure cascades, a proliferation of temporary cascades, including many repeated, re-

versed, and self-correcting cascades. Standard theory predicts that longer sequences will have
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more permanent cascades, and that temporary, repeated, reversed, and self-corrected cascades

never occur. Relatively uninformative signals lead to less stable dynamics, in the sense that

cascades are much shorter, more frequent, and reverse more often. These subtle but important

features of the dynamics are impossible to detect in the short sequences employed in previous

experiments.

To explain the observed features of the dynamics and the dependence on signal informa-

tiveness, we consider the logit quantal response equilibrium (QRE). In addition, we apply QRE

as a structural model to estimate base rate neglect and to test for heterogeneity in levels of

rationality. We find both to be significant factors in observed behavior. In particular, subjects

tend to overweight their signals, or, alternatively, underweight the public prior generated by past

publicly-observed choices.

Our experimental results confirm a wide range of hypotheses about the number and frequency

of different kinds of cascades, efficiency, and belief dynamics. Most of these hypothesis follow

logically from the informativeness of signals and a basic property of the QRE: deviations from

rationality occur and their likelihood is inversely related to their cost. In the context of infor-

mation cascades, this property implies that cascade breakers more often than not hold contrary

signals, and, hence, that deviations from cascades are highly informative. Learning continues

in a QRE even after a cascade forms or breaks, and temporary, repeated, reversed, and self-

correcting cascades arise as equilibrium phenomena. While standard cascade theory predicts

that learning ceases after a few initial decisions, our data show that information is continuously

being aggregated, providing evidence for the QRE prediction that for long enough sequences

public beliefs would be approximately correct.
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A. Appendix: Proof of Proposition 1

Proofs of (i) and (ii): The proof of (i) is by induction. Recall that p1 = 1
2
, so we only need

to show that 0 < pt < 1 implies 0 < p−t < pt < p+
t < 1. Equation (??) can be expanded as

p+
t =

qpt(1− Fλ(1− 2πa
t )) + (1− q)pt(1− Fλ(1− 2πb

t ))

(qpt + (1− q)(1− pt))(1− Fλ(1− 2πa
t )) + ((1− q)pt + q(1− pt))(1− Fλ(1− 2πb

t ))
,

with 1 > πa
t > πb

t > 0 defined in (??) and (??), and Fλ(x) = 1/(1 + exp(−λx)) the logistic

distribution with parameter λ and support (−∞,∞). Since 1
2

< q < 1 and 0 < pt < 1 by

assumption, the denominator exceeds the numerator: p+
t < 1. A direct computation shows

p+
t − pt =

pt(1− pt)(2q − 1)(Fλ(1− 2πb
t )− Fλ(1− 2πa

t ))

(qpt + (1− q)(1− pt))(1− Fλ(1− 2πa
t )) + ((1− q)pt + q(1− pt))(1− Fλ(1− 2πb

t ))
,

which is strictly positive because πa
t > πb

t . The proof that 0 < p−t < pt is similar. Q.E.D.

Proofs of (iii) and (iv): Let `t = (1− pt)/pt denote the likelihood ratio that A is correct. For

all t ∈ T we have

E(`t+1 |ω = A, `t) = `t,

i.e. the likelihood ratio constitutes a martingale, a basic property of Bayesian updating. Note

that pt is a strictly convex transformation of the likelihood ratio (pt = (`t + 1)−1), so

E(pt+1 |ω = A, pt) = E((`t+1 + 1)−1 |ω = A, `t) > (E(`t+1 + 1 |ω = A, `t))
−1 = pt,

by Jensen’s inequality and the fact that `+
t 6= `−t , see (ii). We sketch the proof of (iv). See

Goeree et al. (2006) for proof details, and Smith and Sorensen (2000) for a similar argument if

there are continuous signals with unbounded beliefs. First, limit points of the stochastic belief

process {pt}t=1,2,··· have to be invariant under the belief updating process. But (ii) implies that

pt+1 6= pt when pt 6= {0, 1}, so the only invariant points are 0 and 1. Next, the Martingale

Convergence Theorem implies that `t converges almost surely to a limit random variable `∞
with finite expectation. Hence, `∞ < ∞ with probability one, which implies that p∞ > 0 with

probability one and pt thus converges to 1 almost surely. Q.E.D.
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B. Appendix: Estimation Program

In the GAUSS program below we assume the experimental data are stored in an MT × 2

matrix called ”data”; every T rows correspond to a single sequence, or run, with a total of M

runs, the first column contains subjects’ signals and the second column subjects’ choices. The

coding is as follows: A choices and a signals are labelled by a 1 and B choices and b signals by a 0.

The outcome of the procedure is the log-likelihood for a single treatment (i.e. with a fixed preci-

sion, q, and fixed length, T ) although it is easy to adapt the procedure to deal with pooled data.49

PROC loglikelihood(λ);
LOCAL logL,signal,choice,m,t,p,πa,πb,P(A|a),P(A|b),P(B|a),P(B|b),p+,p−;

logL=0; m=1;
DO WHILE m<=M;
p=1/2; t=1;
DO WHILE t<=T;

πa=qp/(qp+(1-q)(1-p));
πb=(1-q)p/((1-q)p+q(1-p));
P(A|a)=1/(1+exp(λ(1-2πa))); P(B|a)=1-P(A|a);
P(A|b)=1/(1+exp(λ(1-2πb))); P(B|b)=1-P(A|b);
p+=(pqP(A|a)+p(1-q)P(A|b))/((pq+(1-p)(1-q))P(A|a)+(p(1-q)+(1-p)q)P(A|b));
p−=(pqP(B|a)+p(1-q)P(B|b))/((pq+(1-p)(1-q))P(B|a)+(p(1-q)+(1-p)q)P(B|b));
signal=data[(m-1)T+t,1]; choice=data[(m-1)T+t,2];
IF signal==1 AND choice==1; p=p+; logL=logL+ln(P(A|a)); ENDIF;
IF signal==0 AND choice==1; p=p+; logL=logL+ln(P(A|b)); ENDIF;
IF signal==1 AND choice==0; p=p−; logL=logL+ln(P(B|a)); ENDIF;
IF signal==0 AND choice==0; p=p−; logL=logL+ln(P(B|b)); ENDIF;
t=t+1;

ENDO;
m=m+1;

ENDO;
RETP(logL);

ENDP;

49The procedure is simple because information cascade experiments concern individual decision-making envi-
ronments, not games, so there is no need to solve fixed-point equations to compute the QRE.
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