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Abstract

This paper discusses the problem of invertibility between

the economic shocks in a dynamic equilibrium model and the

corresponding VAR innovations. We present an algebraic check

of invertibility based on the model fundamentals and we find the

identification scheme that recovers the economic shocks from

the VAR innovations when the model is invertible. We illustrate
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our results with a model of the Great Depression proposed by

Christiano, Motto, and Rostagno (2005).

JEL Codes: E00, E32, C32.

1. Introduction

An equilibrium of a dynamic economic model maps the history of a vector

of k economic shocks wt into a vector of n observables yt, yt = d
¡
wt
¢
,

where wt represents the whole history of shocks wt up to period t. The

economic shocks affect the fundamental elements of the theory: preferences,

technology, informational sets, government policy, measurement errors, etc.

The observables are all variables that the researcher has access to. The

mapping d (·) is the outcome of the equilibrium behavior of the agents in

the model, captured by their optimal decision rules and the consistency

conditions like resource constraints and market clearing. Via the mapping

d (·), an economic theory tightly relates shocks and observables.

Often, we are interested in dynamic models such that d (·) has a linear

form, yt = d (L)wt, where L is the lag operator. For simplicity of expo-

sition, wt will be an i.i.d. normal random variable, wt ∼ N (0, I) , and yt

will have a zero mean. We call this representation of yt the MA represen-

tation with respect to the economic shocks. There are two ways to obtain
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equilibrium representations of this form. One is to compute a first-order

approximation of a nonlinear model around the deterministic steady state.

A second possibility is to derive yt = d (L)wt as the representation of a class

of dynamic models with linear transition laws and quadratic preferences.

Since yt is a linear function of the history of wt, yt always “reflects” wt.

Does the history of observables “reveal” the history of economic shocks?

A way to answer to the query is to check the zeros of det (d (L)). If the

zeros are outside the unit circle, we say that d (L) has an inverse that is

“one-sided” in the past and present values of yt, which implies that the

Hilbert space spanned by the history of yt, H(yt), equals the Hilbert Space

spanned by the history of wt, H(wt).1

There is alternative approach to answer our question. Consider the

VAR representation of the observables, A (L) yt = at, with at = yt −

bE ¡yt|yt−1¢ being the VAR innovations. We can check whether the Hilbert
space spanned by the history of at, H(at), equals H(wt). Since at is con-

strued such that H
¡
at
¢
= H

¡
yt
¢
, this approach and the one based on

checking the zeros of det (d (L)) are equivalent. If H
¡
at
¢
= H

¡
wt
¢
, there

exists a procedure to make the impulse-response of the VAR to match

1H(xt) is the Hilbert space spanned by the completion of the square

summable linear combinations of current and past values of xt.
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up the impulse response function of d (L). If H
¡
at
¢ 6= H

¡
wt
¢
, it is not

possible to replicate d (L) with the impulses responses of a VAR.

To fix ideas, consider a simple, unidimensional example. Assume that

our economic model implies the following d (L):

yt = wt + 2wt−1, wt ∼ iid N (0, 1) .

An AR(∞) of this yt process has a MA representation of yt in terms of the

AR innovations:

yt = 2

µ
at +

1

2
at−1

¶
, at ∼ iid N (0, 1) .

The impulse-response function implied by the economic model, (1, 2, 0, 0, ...) ,

is different from the impulse-response function associated with the AR rep-

resentation, (2, 1, 0, 0, ...).

Why are the two impulse-response functions so different? First, note

that at belongs to the Hilbert space spanned by the history of yt:

at =
1

2

∞X
j=0

µ
−1
2

¶j
yt−j .

But, d(L) is not invertible. In fact, wt belongs to the Hilbert space spanned
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by the future of yt:

wt =
1

2

∞X
j=0

µ
−1
2

¶j
yt+j+1.

In this simple example, invertibility is determined by whether the co-

efficient in front of wt−1 is bigger or smaller than one in absolute value. In

general, however, dynamic models have more than one observable, more

than one economic shock, and more lags. These complications expand the

ways in that the observables may partially conceal the economic shocks.

At the same time, more observables mean more information and more pos-

sibilities to recover the economic shocks.

To analyze the multidimensional case, we consider two recursive rep-

resentations of the observables. One representation links observables to

economic shocks:

xt+1 = Axt +Bwt,

yt = Cxt +Dwt

where xt are the states of the model and A, B, C, and D are functions

of the deep structural parameters of our model. A second representation
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links observables to VAR innovations:

bxt+1 = Abxt +Kat,
yt = Cbxt + at

where bxt = bE ¡xt|yt−1¢ is the best linear predictor of xt and K is steady-

state Kalman filter gain.

Is it possible to recover the history of economic shocks wt from the

history of VAR innovations at? The answer depends on A, B, C, andD, i.e.,

on the structural parameters and the cross-equation restrictions implied by

our economic theory. If the answer is affirmative, we haveH
¡
wt
¢
= H

¡
at
¢
.

Then, since H
¡
at
¢
= H

¡
yt
¢
, we also have H

¡
wt
¢
= H

¡
yt
¢
.

Stacking both recursive representations together:

 xt+1bxt+1
 =

 A 0

KC A−KC


 xtbxt

+
 B

KD

wt,

at =

·
C −C

¸ xtbxt
+Dwt.

When D−1 exists,2 by substituting
·
xt bxt ¸0 into the second equation,

2What does it mean D−1 exist? Basically, two things. First, that we
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we get the following relationship between at and wt:

G²t =

(
I +

·
C −C

¸ ·
I −A∗L

¸−1 ·
BD−1 K

¸0
L

)
Dwt,

where at = G²t for any G matrix such that GG0 = Eata0t and

A∗ =

 A 0

KC A−KC

 .

Therefore, the question: “Is it possible to recover the history of eco-

nomic shocks wt from the history of VAR innovations at?” asks to check

whether the zeros of

det

Ã
I +

·
C −C

¸ ·
zI −A∗L

¸−1 ·
BD−1 K

¸0
L

!

are inside the unit circle.

The next theorem (whose proof, like the proof of theorem 2, can be

found in Fernández-Villaverde, Rubio-Ramírez, and Sargent, 2005) presents

a simple algebraic check for the value of those zeros for the “square” case

have the same number of shocks and observables. Second, that the contem-

poraneous effects of any two economic shocks on observables are different,

i.e., we do not have redundant economic shocks.
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that D−1 exists.

Theorem 1. If D−1 exists, the zeros of

det

Ã
I +

·
C −C

¸ ·
zI −A∗L

¸−1 ·
BD−1 K

¸0
L

!

equal the eigenvalues of A−BD−1C and A.

Theorem 1 tells us that to check if the model is invertible, we only need

to compute the eigenvalues of A − BD−1C (since we only consider stable

systems, the eigenvalues of A are always less than one).

Now, let us assume that the model is invertible, i.e. the eigenvalues of

A−BD−1C are all less than one in absolute value. How do we recover wt

from at? Theorem 2 provides us with the answer.

Theorem 2. Suppose that D−1 exists and that A − BD−1C is a stable

matrix. Then in the steady state Kalman filter, K = BD−1 and Σ =

E (xt − bxt) (xt − bxt)0 = 0 and bxt = E ¡xt|yt−1¢.
Theorem 2 says that for a particular subset of invertible models, those

with the eigenvalues of A−BD−1C are strictly less than one, we have that

Σ = 0, i.e., we can perfectly forecast the states of the model, and we can

calculate the Kalman gain immediately from K = BD−1.
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How can we use Theorem 2 to recover wt from at? If K = BD−1, then:

G²t =

(
I +

·
C −C

¸ ·
I −A∗L

¸−1 ·
K K

¸0
L

)
Dwt = Dwt

Therefore, we need only to set G = D to find wt using only contempo-

raneous at. The choice of G is unique only up to postmultiplication by

an orthogonal matrix. Also, with this identification, the impulse-response

function of the VAR will match those of the economic model.

2. A Model of the Great Depression

To illustrate our results, we use an economy proposed by Christiano, Motto,

and Rostagno (2003) (CMR hereafter). CMR present a model of the U.S.

economy to analyze the role of monetary policy during the Great Depres-

sion. Because of space constraints, we only present a summary of the

economy and refer the reader to the original paper for details.

A representative, perfectly competitive, firm produces a final good Yt

at price Pt by combining intermediate goods Yjt as Yt =
³R 1
0 Y

1/λf,t
jt dj

´λf,t
where 1 ≤ λf,t < ∞ is a stochastic process that controls the elasticity of

substitution among intermediate goods.

Intermediate goods are produced by competitive monopolists using cap-
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ital Kjt and labor ljt according to the production function:

Yjt =


εtK

α
jt (ztljt)

1−α − Φzt if εtKα
jt (ztljt)

1−α > Φzt

0 otherwise

where Φ is a fixed cost, εt is a stationary technology shock, and zt = µzt−1

is the trend growth rate in technology. The intermediate good producers

fix their prices Pjt subject to Calvo pricing frictions. In each period, a

fraction 1 − ξp of intermediate good producers reoptimize its price, while

the fraction ξp keeps the prices of the last period, indexed by past inflation,

πt−1. The rental price of capital is Prkt and the wage Wt. The firm must

finance a fraction ψk of the capital payments and a fraction ψl of the labor

payments in advance through a working-capital loan with interest rate Rt.

Capital is produced by competitive firms that buy old capital xt at price

Q
K
0
,t
and investment goods It at price Pt to produce new capital xt+1, with

a technology xt+1 = xt + F (It, It−1) that reflects the adjustment costs of

investment. Because the rate of transformation between xt+1 and xt is

1, the selling price of new capital is also Q
K
0
,t
. Aggregate capital evolves

according to Kt+1 = (1− δ)Kt + F (It, It−1) , where δ is the depreciation

factor.

Capital services are provided by entrepreneurs. At the end of period
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t, an entrepreneur has a net worth Nt. With Nt and a bank loan, the

entrepreneur buys an amount of capital Kt+1. After the purchase, the

capital becomes ωKt+1, where logω is an i.i.d. normal random variable

with zero mean and (stochastic) standard deviation σt. The value of ω is

known after the purchase of capital while the value σt is known before.

After observing the shock, the entrepreneur rents its capital at the level of

utilization, ut+1, to maximize its profit,
£
ut+1r

k
t+1 − a (ut+1)

¤
ωPt+1Kt+1,

where a (ut+1)ωKt+1 is the convex cost of utilizing capital at rate ut+1.

After production, the entrepreneur sells undepreciated capital to capital

producers, pays off debt to banks, and receives a transfer W e
t . These three

elements determine its new net worth Nt+1. At the end of the period, a

fraction 1 − γt of entrepreneurs dies, their net worth distributed among

households, and a fraction 1− γt of new entrepreneurs is born. Mortality

ensures that the credit market restrictions remain binding by bounding

(almost surely) the distribution of capital.

A representative, perfectly competitive bank engages in two activities.

First, it borrows an amount Bt from households at a nominal rate of return

Ret+1 to lend it to the entrepreneurs at rate Zt+1. The parameters of the

entrepreneur’s loan are chosen to maximize its utility, subject to zero profits

for the bank in each state of nature and to the requirement that Ret+1 is
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uncontingent in time t + 1 shocks. If the borrower cannot pay because

of a low shock ω, he is declared bankrupt and all his wealth is seized by

the bank. For simplicity, CMR assume that there are no cost for the first

activity. Second, the bank issues deposit liabilities Dht to households. Some

of these are kept as reserves while the rest are loaned as working-capital in

the form of deposits Dft . The management of total deposits Dt = D
h
t +D

f
t

requires capital, Kb
t , labor, l

b
t , and excess reserves, E

r
t according to the

technology:

Dt
Pt
= xb

µ³
Kb
t

´α ³
ztl

b
t

´1−α¶ξt
µ
Ert
Pt

¶1−ξt
where xb is a constant. Demand deposits pay an interest rate Rat. Finally,

even if there is a representative bank, we can define an interbank interest

rate Rbt at which, otherwise identical banks would lend to each other.

There is a continuum of households indexed by i ∈ [0, 1] which consume

Ct, allocate their wealth between currency Mt, demand deposits, and time

deposits, and supply specialized labor hi,t to maximize its utility:

Et

∞X
l=0

βl
½
log (Ct+l − bCt+l−1)− ζt+1

ψL
2
h2i,t+l −Θt

¾
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where b generates habit persistence , ζt+1 is a unit-mean leisure shock,

Θt = υt

h
(Pt+lCt+l/Mt+l)

θt+l
¡
Pt+lCt+l/D

h
t+l

¢1−θt+li1−σq
1− σq

is the utility from money and deposits, υt is a unit-mean liquidity shocks,

and θt is a stochastic parameter that controls preferences for deposits.

At the beginning of each period, households split their money, M b
t , be-

tween currency and bank depositsAt, such that M b
t = Mt + A

h
t+l. Since

the central bank credits bank deposits with Xt units of money, we have

Dht = At +Xt. As income, households get wages, the interest payments in

various form of loans, profits from firms, and net worth of deceased entre-

preneurs. They use the resources for consumption, money accumulation,

saving, and to pay a lump sum to balance the government budget.

Since the household is a monopolistic supplier of its labor, it will op-

timally set its wage W t given Calvo’s frictions, adjusting with probability

1− ξw. Otherwise, they index the wage by past inflation and technological

progress Wj,t = πt−1µWj,t−1. The different types of labor are aggregated

in a labor composite by a representative, perfectly competitive firm with

technology ls =
³R 1
0 h

1/λw
j dj

´λw
where 1 ≤ λw < ∞. Finally, there is

government consumption Gt = ztg where g is a constant and a monetary

authority that sets M b
t+1 =M

b
t (1 + xt) .13



There are eight exogenous shocks in the model: the monopoly power

degree, λf,t; productivity of bank reserves, ξt; leisure shock, ζt; liquidity

shocks, υt; preferences for deposits, θt; productivity shock, εt; riskiness for

entrepreneurs, σt; and mortality rate, γt. The shocks (some in levels, some

transformed) follow an ARMA(1,1) process. The variable xt depends on

the eight exogenous shocks through a linear feedback rule.

An equilibrium of the economy can be defined in a standard way and

approximated by linearization.

3. Results

CMR estimate their model using 13 variables:

Xt =

 log Nt+1PtYt
log πt log lt Rbt ∆ log Yt log Wt

PtYt
log ItYt

log V 1t log CtYt P et log dct log V bt log dγt


0

where dct and d
γ
t are currency-to-demand deposit ratio and the bank reserves-

to-demand deposits ratio, V 1t and V
b
t are the velocity of M1 and the mon-

etary base and P et , the external finance premium, defined as the difference

between the expected cost of borrowing for an entrepreneur and the pay-

ment of the bank to households for time deposits. CMR assume that these

13 variables are measured with some, linear, normal errors.
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The combination of 8 economic shocks and 13 measurement errors,

results in a model with 21 shocks. Our results of invertibility are interesting

for the case where we have a ‘square’ system. With too many shocks,

we know that the system is non-invertible, with too few, we suffer from

stochastic singularity.

To achieve a square system, we can proceed in three ways. One is to

increase the number of observables. Since we want to use CMR’s data set,

we do not follow this route. Second, we can eliminate 8 of the measurement

errors and keep 5 of them. This alternative seems arbitrary to us. There

is no compelling reason to think that some variables are observed with

measurement error and some are not. Finally, the third alternative is to

drop 5 of the observables and keep only 8 of them. This strategy seems

the most natural for our purposes.

But then, we face a second choice: which 8 variables to keep? One

approach is to compute all different combinations of 8 variables out of 13

and study, for each and one of them, whether the resulting VAR is invertible

or not. For completeness, we undertook this exercise. However, because

of space considerations, we report only a summary of the results for two

different VARs, an exercise that is sufficient to exemplify the method.
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First, we select:

X1
t =

·
log πt log lt Rbt log ItYt logV 1t log CtYt log dct log dγt

¸0
.

Second, we select:

X2
t =

·
log πt log lt Rbt log ItYt log V 1t log CtYt P et log dγt

¸0
.

Note how the only difference between the two sets of variables is the sub-

stitution of the (log of) currency-to-demand deposit ratio, log dct , a vari-

able recording a quantity, for the external finance premium, P et , a variable

recording a price.

We take our structural parameter values from CMR’s estimates, which

are a combination of maximum likelihood and calibration. With those val-

ues, we run the code kindly lend to us by Larry Christiano to compute the

solution of the model and, with that solution, generate the corresponding

A,B,C, andD’s. The A and B will be the same for both sets of observables

while the C and D will differ in one row.

What happens if we apply our simple check of invertibility to those

two sets of matrices? For X1
t , we find that the model is invertible: the

biggest eigenvalue is 0.976. However, for X2
t , the model is not invertible:
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the biggest eigenvalue is 1.030.

What are the consequences of this lack of invertibility? First, the re-

searcher cannot obtain the exact value of the states even with a time series

for observables of infinite length, i.e., Σ is different from zero. Second, the

variance-covariance matrix of the one-step ahead forecast from the VAR is

bigger than the one from the true model. The covariance matrix of the in-

novations at is Eata0t = CΣC 0+DD0, while the variance-covariance matrix

of one-step ahead errors from the true model is DD0. In the non-invertible

case, since Σ is different from zero, we have the extra quadratic term CΣC 0.

Third, the impulse response functions obtained from the model and from

the VAR are different.

We finish by emphasizing two points. First, Watson (1994) explains

how a researcher is most vulnerable to non-invertibility when her VAR ex-

cludes measures of important endogenous variables that depend on streams

of expected future values of other variables. This is the situation in our

example with the currency-to-demand deposit ratio: it offers information

about quantities that help to reveal the true value of the states, something

that the external finance premium, a price, does not do. Second, this ex-

ample illustrates how difficult it can be to guess the invertibility result ex

ante. It does not seem obvious or intuitive which of the two specifications
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of the VAR is invertible. Consequently, this example justifies the poten-

tial importance of our theoretical results in section 2 as a device to help

researchers to check for invertibility.

References

[1] Christiano, Larry, Roberto Motto, and Massimo Rostagno (2003). “The

Great Depression and the Friedman-Schwartz Hypothesis.” Journal of

Money, Credit, and Banking, 35, 1119-1197.

[2] Fernández-Villaverde, Jesús, Juan F. Rubio-Ramírez, and Thomas J.

Sargent (2005). “A,B,C’s (and D)’s for Understanding VARs.” mimeo,

NYU University.

[3] Watson, Mark W. (1994). “Vector Autoregressions and Cointegration.”

In Handbook of Econometrics, edited by Daniel L. McFadden, and

Robert F. Engle. Vol. IV. Elsevier Science, Amsterdam.

18


