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1 Introduction

One of the often-cited virtues of a decentralized economy is the ability of the mar-

ket mechanism to aggregate the private information of the individual economic

agents. Each economic agent has a window on the world. This window is a

partial vantage point for the underlying state of the economy. But when all the

individual perspectives are brought together, one can gain a much fuller picture

of the economy. If the pooling of information is effective, and economic agents

have precise information concerning their respective sectors or geographical re-

gions, the picture that emerges for the whole economy would be a very detailed

one. When can policy makers rely on the effective pooling of information from

individual decisions?

This question is a very pertinent one for the conduct of monetary policy.

Central banks that attempt to regulate aggregate demand by adjusting interest

rates rely on timely and accurate generation of information on any potential

inflationary forces operating in the economy. The role of the central bank in this

context is of a vigilant observer of events to detect any nascent signs of pricing

pressure. Such signs can be met by prompt central bank action to head off

any inflationary forces through the use of monetary policy instruments. More

generally, these actions can be codified in a more systematic framework for the

setting of nominal interest rates, for instance as part of an ‘inflation-forecast

targeting’ regime.

However, by the nature of its task, the central bank cannot confine its role

merely to be a vigilant, but detached observer. Its monetary policy role im-

plies that it must also engage in the active shaping and influencing of events

(see Blinder, Goodhart, Hildebrand, Lipton and Wyplosz (2001)). For economic

agents, who are all interested parties in the future course of action of the central

bank, the signals conveyed by the central bank in its deeds and words have a ma-

terial impact on how economic decisions are arrived at. For this reason, Svensson

(2002) and Svensson and Woodford (2003) have advocated the announcement of

the future path of the short term policy interest rate as part of a central bank’s

overall policy of inflation-forecast targeting.

Monetary policy thus entails a dual role. As well as being a vigilant observer

1



of outcomes, the central bank must also be able to shape the outcomes. In an

economy with dispersed information, the central bank’s actions and the infor-

mation it releases constitute a shared benchmark in the information processing

decisions of economic agents. In particular, the central bank’s disclosures – or,

in general, any type of credible public information – become a powerful focal

point for the coordination of expectations among such agents.

Against this backdrop, this paper assesses the implications of public infor-

mation in a small-scale monetary policy model in which agents have imperfect

common knowledge on the state of the economy. We employ a model that

is standard in most respects, but one that recognizes the importance of decen-

tralized information gathering and the resulting differential information in the

economy. In particular, building on recent work by Woodford (2003a), our focus

is on the pricing behaviour of monopolistically competitive firms with access to

both private and public information.

Our analysis proceeds in two steps. Beginning with a series of simplified

examples, we show how differentially informed firms follow pricing rules that

suppress their own information, but instead put disporportionately large weight

on commonly shared information; that is, firms suppress their private information

on the underlying demand and cost conditions far more than is justified than when

the estimates of fundamentals are common knowledge. For reasonable values for

the degree of strategic complementarity, price suffers substantial information loss

and ceases to be a good signal of the underlying demand and cost conditions.

We then proceed to develop a general equilibrium monetary policy model

with households, firms and the central bank. Such a model allows us to consider

the dynamic implications of the presence of both public and private information

under specific monetary policies. Our first objective is to solve for a rational

expectations equilibrium with a finite dimensional state vector. In addition,

we also wish to show whether equilibria exist under policies that follow simple

rules, as explored in the recent monetary policy literature. We then investigate

the equilibrium properties of the model. First, we examine how changes in the

degree of strategic complementarity and precision of public information affect the

sample paths of the price level. Second, we investigate the dynamic responses

of higher-order expectations to shocks in the underlying economic fundmentals,
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with particular emphasis on the role of public signals. Third, we trace out the

impact of the relative precision of public and private signals on the volatility of

macroeconomic aggregates.

We begin in the next section with a brief overview of related literature. Sec-

tion 3 provides a conceptual background in terms of simplified examples of pricing

under differential information. Section 4 introduces the macroeconomic model,

and equilibrium is solved for in section 5. Section 6 explores properties of the

equilibrium as revealed in numerical simulations. Section 7 concludes. An ap-

pendix contains further technical results.

2 Related Literature

From a theoretical perspective, we have good grounds to conjecture that the ‘cli-

mate of opinion’ as embodied in the commonly shared information in an economy

will play a disproportionate role in determining the outcome. A strand of the

macroeconomics literature begun by Townsend (1983) and Phelps (1983), and

recently developed and quantified by Woodford (2003a), examines the impact

of decentralized information processing by individual agents in an environment

where their interests are intertwined. Indeed, Phelps’s paper is explicitly couched

in terms of the importance of higher order beliefs – that is, beliefs about the

beliefs of others. For Woodford, the intertwining of interests arise from the

strategic complementarities in the pricing decisions of firms. In setting prices,

firms try to second-guess the pricing strategies of their potential competitors

for market share. Even when there are no nominal rigidities, the outcome of

navigating through the higher-order beliefs entailed by the second-guessing of

others leads firms to set prices that are far less sensitive to firms’ best estimates

of the underlying fundamentals. The implication is that average prices suffer

some impairment in serving as a barometer of the underlying cost and demand

conditions.

These results are bolstered by recent theoretical studies into the impact of

public and private information in a number of related contexts. They suggest that

there is potential for the aggregate outcome to be overly sensitive to commonly
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shared information relative to reactions that are justified when all the available

information is used in a socially efficient way. Morris and Shin (2002) note how

increased precision of public information may impair social welfare in a game of

second-guessing in the manner of Keynes’s ‘beauty contest’ that has close formal

similarities with the papers by Phelps and Woodford. Allen, Morris and Shin

(2002) note that an asset’s trading price may be a biased signal of its true value

in a rational expectations equilibrium with uncertain supply, where the bias is

toward the ex ante value of the asset.

A number of recent papers have revisited macroeconomic models with im-

perfect common knowledge by drawing on the recent modelling innovations for

dealing with differential information. In independent work, Hellwig (2002) analy-

ses the impact of public announcements in a semi-structural model with imperfect

competition. He shows that public announcements allow quicker adjustment to

fundamentals, but at the cost of greater noise. Ui (2003) shows the non-neutrality

of money in a Lucas island economy when agents have private information. Adam

(2003) considers optimal policy in a model with imperfect common knowledge,

invoking results from the literature on information processing capacity. Bac-

chetta and van Wincoop (2002) explore the impact of public information in an

asset pricing context. Pearlman and Sargent (2002) and Kasa (2000) extend the

analysis of the models developed by Townsend (1983).

There has also been growing interest in examining more deeply the underlying

rationale for imperfect common knowledge among agents. Is it possible that

agents observe only noisy signals of aggregate fundamentals? If so, why do

agents lack common knowledge? The latter question is easier to address, since

it is presumed to be self-evident that agents have access to (at least partially)

private information in the conduct of their own activities. One answer to the

first question is that data on macroeconomic aggregates are subject to persistent

measurement errors. Publicly available statistics rarely provide a completely

accurate measure of the true underlying aggregates of economic interest. Bomfim

(2001) has analysed the general equilibrium implications of measurement error

in a common knowledge rational expectations setting. A second answer is that

agents have limited information processing capabilities, along the lines of Sims

(2002). The story is as follows. Consider dividing agents’ activities into two
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parts: an information processing stage and a decision-making stage. Given the

vast quantity of information at their disposal, both private and public in nature,

it is conjectured that agents can only imperfectly filter this data into a set of

statistics upon which to base decisions. But conditional upon their information

sets, agents act optimally. A related argument is that a good deal of public

information that agents pay attention to is imperfectly filtered by public sources,

for example, newspaper reports or commentators on television.

The existence and likely use of both public and private information suggests

that models with disparately-informed agents should take both types of signals

into account. The strong likelihood that measurement errors in some key macro-

economic data series or that processing errors by agents persist indefinitely into

the future suggests that the true state of the economy is never revealed. Com-

bining these two features in a fully-fledged monetary policy model is a novel

contribution of this paper.

Finally on a methodological note, explanations involving higher order beliefs

have sometimes been criticised for their implausibility when taken at face value

− namely, that individuals engage in the kind of mental gymnastics that try to
second-guess the beliefs of others about beliefs of a further set of agents, etc. (see,

for instance, Svensson’s (2003a) comments on Woodford (2003a)). However,

equilibrium actions are based on basic principles of optimisation, and higher

order beliefs need not figure explicitly in this optimisation. Only in a possible

ex post rationalisation of the action do we need to refer to higher order beliefs

− much like the way that we can understand the number 17 without thinking

of it as the concatenation of 16 successor operators on the number 1. For our

purposes, we emphasize the distinction between the rationality of agents and the

information they have. Indeed, a differential information rational expectations

economy places less stringent requirements upon agents than full information

rational expectations models that are typical in the literature. The elegance of

these latter models can be misleading regarding the enormous demands placed

upon agents in both their rationality (which we also impose), and access to perfect

information (which we relax).
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3 Conceptual Background

Before developing our main arguments in a dynamic general equilibrium setting,

let us introduce our conceptual building blocks by means of two simplified ex-

amples in a static context – for the discrete case, and the Gaussian case. Our

focus is on the equilibrium consequences of the pricing rule for firms that takes

the form:

pi = Eip + ξEix (1)

where pi is the (log) price set by firm i, p is the (log) average price across firms, x

denotes the output gap (in real terms) – our “fundamental variable” – and ξ is

a constant between 0 and 1. A rigorous derivation of (1) is presented in section

4. The operator Ei denotes the conditional expectation with respect to firm i’s

information set. The pricing rule given by (1) arises in the classic treatment by

Phelps (1983), and has been developed more recently by Woodford (2003a) for

an economy with imperfectly competitive firms.

In a discussion that has subsequently proved to be influential, Phelps (1983)

compared this pricing rule to the ‘beauty contest’ game discussed in Keynes’s

General Theory (1936), in which the optimal action involves second-guessing the

choices of other players. Townsend (1983) also emphasized the importance of

higher order expectations – that of forecasting the forecasts of others. To see

this, rewrite (1) in terms of the nominal output gap, defined as q ≡ x+p, yielding
pi = (1− ξ)Eip+ ξEiq. Taking the average across firms,

p = (1− ξ) Ēp+ ξĒq (2)

where Ē(·) is the “average expectations operator”, defined as Ē(·) ≡ R
Ei(·)di.

By repeated substitution,

p =

∞X
k=1

ξ (1− ξ)k−1 Ēkq (3)

where Ēk is the k-fold iterated average expectations operator. With differential

information, the k-fold iterated average expectations do not collapse to the single

average expectation. Morris and Shin (2002) show how such a failure of the law

of iterated expectations affects the welfare consequences of decision rules of this
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form, and note that increased precision of public information may be detrimental

to welfare. The size of the parameter ξ proves to be crucial in determining

the impact of differential information. In a monopolistically competitive model,

ξ reflects, among other things, the degree of competition between firms. The

more intense is competition – that is, the larger is the elasticity of substitution

between firms’ goods – the smaller will be ξ, and hence the more important

higher-order expectations in determining prices.

3.1 Discrete State Space

Let us begin with the case when the underlying fundamental variable – the

nominal output gap q – takes on finitely many possible values. In addition, all

firms share common prior information and receive private signals of the funda-

mental during the period. More specifically, no firm observes q perfectly, but firm

i observes an imperfect signal zi of q, where zi takes on finitely many possible

values. Each firm observes the realization of its own signal, but not the signals

of other firms. Let us further suppose that the firms can be partitioned into

a finite number N of equally-sized subclasses, where firms in each subclass are

identical, and commonly known to be so. We define a state ω to be an ordered

tuple:

ω ≡ (q, z1, z2, · · · , zN )
that specifies the outcomes of all random variables of relevance. We will denote

by Ω the state space that consists of all possible states. The state space is finite

given our assumptions.

There is a known prior density φ over the state space Ω that is implied by

the joint density over q and the signals zi. The prior is known to all firms, and

represents the commonly shared assessment of the likelihood of various outcomes.

However, once the firm observes its own signal zi, it makes inferences on the

economy based on the realization of its own signal zi. Thus, in this example

of a static economy, all firms begin with common knowledge, but receive private

signals before making decisions. However, this model can also be interpreted

within the context of a dynamic economy, but one where all information is fully

revealed at the end of each period. Seen from this perspective, the examples

7



in this section are based on the extreme opposite assumption about information

revelation compared to the macro model developed in later sections, where it is

assumed that the true state is never revealed.

Firm i’s information partition over Ω is generated by the equivalence relation

∼i over Ω, where ω ∼i ω0 if and only if the realization of zi is the same at ω
and ω0. Some matrix notation is useful. Index the state space Ω by the set

{1, 2, · · · , |Ω|}. In this section we adopt the convention of denoting a random

variable f : Ω → R|Ω| as a column vector of length |Ω|, while denoting any
probability density over Ω as a row vector of the same dimension. Thus, the

prior density φ will be understood to be a row vector of length |Ω|. We will

denote by bi (k) the row vector that gives the posterior density for firm i at the

state indexed by k. By gathering together the conditional densities across all

states for a particular firm i, we can construct the matrix of posterior probabilities

for that firm. Define the matrix Bi as the matrix whose kth row is given by firm

i’s posterior density at the state indexed by k. That is

Bi ≡


− bi (1) −
− bi (2) −

...
− bi (|Ω|) −


We note one important general property of this matrix. We know that the

average of the rows of Bi weighted by the prior probability of each state must be

equal to the prior density itself. This is just the consequence of the consistency

between the prior density and the posterior densities. In our matrix notation,

this means that

φ = φBi (4)

for all firms i. In other words, φ is a fixed point of the mapping defined by

Bi. More specifically, note that Bi is a stochastic matrix – it is a matrix of

non-negative entries where each row sums to one. Hence, it is associated with

a Markov chain defined on the state space Ω. Then (4) implies that the prior

density φ is an invariant distribution over the states for this Markov chain. This

formalization of differential information environments in terms of Markov chains

follows Shin and Williamson (1996) and Samet (1998).
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For any random variable f : Ω→ R|Ω|, denote by Eif the conditional expec-
tation of f with respect to i’s information. Eif is itself a random variable, and

so we can denote it as a column vector whose kth component is the conditional

expectation of firm i at the state indexed by k. In terms of our matrix notation,

we have Eif = Bif . As well as the conditional expectation of any particular

firm, we will also be interested in the average expectation across all firms. Define

Ēfas

Ēf =
1

N

NX
i=1

Eif

Ēf is the random variable whose value at state ω gives the average expectation

of f at that state. The matrix that corresponds to the average expectations

operator Ē is simply the average of the conditional belief matrices {Bi}, namely
B ≡ 1

N

PN
i=1Bi. Then, for any random variable f , the average expectation

random variable Ēf is given by the product Bf . Since Bf is itself a random

variable, we can define B2f ≡ BBf as the average expectation of the average

expectation of f . Iterating further, we can define Bkf as the k -th order iterated

average expectation of f . Then, the equilibrium pricing rule (1) can be expressed

in matrix form as

pi = ξBiq + (1− ξ)Bip
where pi is now a column vector whose j -th element corresponds to firm i’s price

in state j, and with similar redefinitions for p and q respectively. Taking the

average across firms,

p = ξBq + (1− ξ)Bp (5)

By successive substitution, and from the fact that 0 < ξ < 1, we have

p = ξ

∞X
i=0

((1− ξ)B)k Bq

= ξ (I − (1− ξ)B)−1Bq (6)

= MBq

where M = ξ (I − (1− ξ)B)−1. Thus, equilibrium average price p is given by

(6).

Let us note some comparisons between (6) and the case where all firms observe

the same signal, and hence where the law of iterated expectations holds. When
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all firms observe the same signal, the k-fold iterated average expectation collapses

to the single average expectation, and we have the pricing rule:

p = Bq (7)

The difference between (6) and (7) lies in the role played by matrix M . Note

that M is a stochastic matrix since each row of the matrix ((1− ξ)B)k sums to
(1− ξ)k so that the matrix (I − (1− ξ)B)−1 =P∞

i=0 ((1− ξ)B)k has rows which
sum to 1 + (1− ξ) + (1− ξ)2 + · · · = 1/ξ. It serves the role of “adding noise”

(in the sense of Blackwell (1951)) to the average expectation of the fundamentals

q. The effect of the noise is to smooth out the variability of prices across states.

Thus, in going from (7) to (6) the average price becomes a less reliable signal of

the output gap.

The noise matrixM is a convex combination of the higher order beliefs
©
Bk
ª
,

and higher order expectations contain much less information than lower order

expectations in the following sense. For any random variable f , denote by

max f the highest realization of f , and define min f analogously as the smallest

realization of f . Then for any stochastic matrices C and D and any random

variable f ,

maxCDf ≤ maxDf

minCDf ≥ minDf

CD is a “smoother” version of D; or, equivalently, CDf is a “noisier” version of

Df . So, the higher is the order of the iterated expectation, the more rounded are

the peaks and troughs of the iterated expectation across states. The importance

of the parameter ξ is now apparent. The smaller is this parameter, the greater

is the weighting received by the higher order beliefs in the noise matrix M , so

that the prices are much less informative about the underlying fundamentals.

The limiting case for higher order beliefs Bk as k becomes large is especially

noteworthy. From (4), we know that

φ = φB (8)

so that the prior density φ is an invariant distribution for the Markov chain

defined by the average belief matrix B. By post-mulitiplying both sides by B,
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we have

φ = φB = φB2 = φB3 = · · ·
so that φ is an invariant density for Bk, for any kth order average belief operator.

Under certain regularity conditions (which we will discuss below), the sequence©
Bk
ª∞
k=1

converges to a matrix B∞ whose rows are identical, and given by the

unique stationary distribution over Ω. Since we know that the prior density φ is

an invariant distribution, we can conclude that under the regularity conditions,

all the rows of B∞ are given by φ. That is

B∞ =


− φ −
− φ −

...
− φ −

 (9)

In other words, the limiting case of higher order beliefs Bk as k becomes large is

so noisy that all information is lost, and the average beliefs converge to the prior

density φ at every state. For any random variable f , successively higher order

beliefs are so noisy that all peaks and troughs converge to a constant function,

where the constant is given by the prior expectation f̄ (i.e. the expectation of f

with respect to the prior density φ):

Bkf →


f̄
f̄
...
f̄

 as k →∞ (10)

The condition that guarantees (9) is the following.

Condition 1 For any two states j and k, there is a positive probability of making

a transition from j to k in finite time.

In our context, condition 1 ensures that the matrix B corresponds to a Markov

chain that is irreducible, persistent and aperiodic. It is irreducible since all states

are accessible from all other states. For finite chains, this also means that all

states are visited infinitely often, and hence persistent. Finally, the aperiodicity

is trivial, since all diagonal entries of B are non-zero irrespective of condition 1.

We then have lemma 2, which mirrors Samet’s (1998) analogous result for the

iteration of individual beliefs.
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Lemma 2 Suppose B satisfies condition 1. Then, the prior density φ is the

unique stationary distribution, and Bk → B∞, where B∞ is the matrix whose

rows are all identical and given by φ.

Condition 1 has an interpretation in terms of the degree of information shared

between the firms. It corresponds to the condition that\
i

Ii = ∅ (11)

In other words, the intersection of the information sets across all firms is empty;

there is no signal that figures in the information set of all the firms. Another

way to phrase this is to say that there is no non-trivial event that is common

knowledge among the firms. The only event that is common knowledge is the

trivial event Ω, which is the whole space itself.

When the intersection
T
i Ii is non-empty, then this means that there are

signals that are observed by every firm. Hence, the outcomes of signals in
T
i Ii

become common knowledge among all firms. One such example would be an

announcement by a central bank. Information contained in
T
i Ii is thus public.

The equilibrium pricing decision of firms can be analysed for this more general

case in which firms have access to public information, as well as their private

information.

In this case, the limiting results for the higher-order average belief matrices

Bk correspond to the beliefs conditional on public signals. In order to introduce

these ideas, let us recall the notion of an information partition for a firm. Let

firm i’s information partition be defined by the equivalence relation ∼i where
ω ∼i ω0 if firm i cannot distinguish between states ω and ω0. Denote firm i’s

information partition by Pi, and consider the set of all information partitions
{Pi} across firms. The meet of {Pi} is defined as the finest partition that is at
least as coarse as all of the parititions in {Pi}. The meet of {Pi} is thus the
greatest lower bound of all the individual partitions in the lattice over partitions

ordered by the relation “is finer than”. The meet of {Pi} is denoted by^
i

Pi
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The meet is the information partition that is generated by the public signals

– those signals that are in the information set of every firm, and hence in the

intersection
T
i Ii. The meet has the following property whose proof is given in

Shin and Williamson (1996).

Lemma 3 If two states ω and ω0 belong to the same element of the meet
V
iPi,

then there is positive probability of making a transition from ω to ω0 in finite time

in the Markov chain associated with B.

Lemma 3 extends condition 1. The idea is that the transition matrix of the

Markov chain defined by the average belief matrix B can be expressed in block

diagonal form:

B =


A1

A2
. . .

AJ


where each sub-matrix Aj defines an irreducible Markov chain that corresponds

to an element of the meet
V
iPi.1 Furthermore, we have φ = φB∞, so that for

any random variable f , the limit of the higher-order expectation is the conditional

expectation based on the public signals only. In other words, we have:

Theorem 4 As k →∞,

Bkf →


E (f | ∩i Ii) (ω1)
E (f | ∩i Ii) (ω2)

...

E (f | ∩i Ii) (ωN)


where E (f | ∩i Ii) (ω) is the conditional expectation of f at state ω based on public
information only.

1In the static examples considered here, there is a simple way to view the relation between the

model with private signals only and the model with both private and public signals. Consider

the prior φ over the state space Ω in an economy with private and public signals. This can be

transformed into an equivalent economy with only private signals where the prior is given by φ̃

and the state space is redefined to be Ω̃. The new state space Ω̃ is a subset of Ω, where Ω/Ω̃

is the set of states ruled out by the revelation of the public signal.
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In the appendix, we provide an alternative proof of this result that uses the

eigenvalues of the average belief matrix that bring out some additional features

of the problem. Theorem 4 implies that for small values of ξ, the dominant

influence in determining the average price level p is given by the set of public

signals. For example, suppose the central bank announces a forecast for the

price level, and this is a sufficient statistic for any public signals available to

firms. Then the equilibrium average price p will largely reflect the central bank’s

forecast regardless of the underlying cost conditions in the economy.

The argument so far has relied on a finite state space Ω, but it can be extended

to more general discrete spaces. Such an extension would be important for

embedding the pricing decisions in a dynamic economy. Let time be discrete,

indexed by the non-negative integers. There is a countable set of economic

variables {f1, f2, f3, · · · } that reflect the fundamentals of the economy such as
productivity, preferences and other exogenous shocks, together with all signals

observed by any economic agent of these variables. Each economic variable fk
can take on a countable number of realizations, drawn from the set Sk. The

outcome space is the product space S ≡Qk Sk. The outcome of the economy at

time t– given by a specified outcome for each of the economic variables fs – is

thus an element of S. Since each Sk is countable, so is the outcome space S.

The state space Ω is then defined to be set of all sequences drawn from the

set S. Thus, a typical state ω is given by the sequence

ω = (s0, s1, s2, · · · )

where each st is an element of the outcome space S. Thus, a state ω specifies the

outcome of all economic variables at every date, and so is a maximally specific

description of the world over the past, present and future.

Let Ω be endowed with a prior probability measure φ. Each economic variable

fs then defines a stochastic process in the usual way in terms of the sequence

(fs,0, fs,1, fs,2, · · · )

where fs,t is the random variable that maps each state ω to the outcome of the

economic variable fs at time t. The information set of agent i at date t is a

set of random variables whose outcomes are observed by firm i at date t. We
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denote by Ii,t the information set of firm i at date t. The information set Ii,t
defines the information partition of agent i at date t over the state space Ω. This

information partition is denoted by Pi,t. The meet of the individual partitions

at t is the finest partition of Ω that is at least as coarse as each of the partitions

in {Pi,t}. The meet at t is denote by Pt. It is the partition generated by the

intersection of all information sets at date t, as in our earlier discussion. The

meet Pt represents the set of events that are common knowledge at date t.
The analysis of pricing decisions by firms can then be generalized to this

new setting. By construction, the state space Ω is countable. Almost all of

the notation and apparatus developed above for the finite Ω can then be used

in our new setting, except that we should be mindful of those rules for matrix

manipulation that are not valid for infinite matrices. Kemeny, Snell and Knapp

(1966) is a textbook reference for how infinite matrices can be used in the context

of countable state spaces.

As before, any probability measure over Ω is denoted as a row vector, while a

random variable f is denoted as a column vector. For each date t, the average

belief matrix Bt is defined in the natural way. The s-th row of Bt is the proba-

bility measure over Ω that represents the mean across firms of their conditional

beliefs over Ω at date t. Then, the average price at date t satisfies

pt = ξBtqt + (1− ξ)Btpt (12)

where pt is the average price at t, and qt is the date t version of the random

variable q in the static case. By successive substitution, and from the fact that

0 < ξ < 1, we can solve for pt.

pt = ξ

∞X
i=0

((1− ξ)Bt)k Bqt (13)

For finite Ω, we wrote the sum
P∞

i=0 ((1− ξ)Bt)k as (I − (1− ξ)B)−1. However,
for infinite matrices, the notion of an inverse is not well defined, and we cannot

simplify (13) any further (see Kemeny, Snell and Knapp (1966, chapter 1)). There

is also a more substantial change to our results in this more general framework.

Condition 1 is no longer sufficient for the convergence of higher order beliefs to

the public expectation (that is, the analogue of lemma 2 fails). The Markov
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chain associated with Bt must also be recurrent in the sense of every state being

visited infinitely often by the Markov chain. With this additional strengthening,

we can then appeal to the standard result for Markov chains on the convergence

to stationary distributions (see Karlin and Taylor (1975, p.35)) to extend theorem

4 to our more general setting.

3.2 Gaussian Case

Having established the intuition for the importance of higher order beliefs, we

can now show how they can be translated into a Gaussian setting. The matrix

notation to be described below has independent interest in applications - see Ui

(2003), who shows non-neutrality of money in Phelps’s (1983) model. Thus,

let θ be a normally distributed random variable with mean µ and variance 1/β0
representing the fundamentals of the economy, and let agent i’s information set

Ii contain signals {x1, x2, · · · , xn}, where

xi = θ + εi

and εi is normal with mean 0 and variance 1/βi, and εi is independent of θ, as well

as other noise terms εj. Appealing to the formula for conditional expectations

for jointly normal random variables2, agent i’s conditional expectation of θ is:

Ei (θ) = µ + VθxV
−1
xx (x− µ) (14)

where Vθx is the row vector of covariances between θ and (x1, · · · , xn), Vxx is the
covariance matrix of (x1, · · · , xn), and (x− µ) is the column vector of deviations
of each xi from its mean µ. In our case, we have

Vθx =
1
β0
[1, 1, · · · , 1]

Vxx =


1
β0
+ 1

β1

1
β0

· · · 1
β0

1
β0

1
β0
+ 1

β2
· · · 1

β0

1
β0

1
β0

. . .
...

1
β0

1
β0

· · · 1
β0
+ 1

βn


2See, for example, Searle (1971, p. 47).
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Also, it can be verified by multiplication that the (i, j)-th entry of the inverse

matrix V −1xx is given by 
−βiβjPn
k=0 βk

if i 6= j
βi

³
1− βiPn

k=0 βk

´
if i = j

Thus,

VθxV
−1
xx =

1Pn
k=0 βk

[β1, β2, · · · , βn] (15)

so that (14) is given by:

Ei (θ) =
β0µ +

Pn
k=1 βkxkPn

k=0 βk
(16)

In other words, agent i’s conditional expectation of θ is a convex combination of

the signals in his information set Ii and the prior mean µ, where the weights are
given by the relative precision of each signal.

Now, let us consider the set of all random variables in the economy. Using

superscript notation, let y0 be a vector of all public signals about the fundamen-

tals θ. This vector includes all signals in the intersection ∩iIi. The prior mean
of θ is a public signal, and so belongs to y0. Let yi be a vector of non-public

signals in i’s information set (i.e. signals in Ii \ ∩jIj). Let z be the stacked

vector:

z ≡


y0

y1

...
yN

θ


Suppose that z is jointly normally distributed with covariance matrix V . In-

dividual i’s information set Ii consists of signals in y0 and yi, where y0 are the
signals that are shared by everyone, while yi consist of the remaining signals in

Ii. Let Eiz be i’s conditional expectation of z. From (16), and from the fact

that the noise terms εi all have mean zero, there is a stochastic matrix Ai such

that

Eiz = Aiz

The matrix Ai has entries that correspond to the weights in (15) and the weight

on the prior mean µ. The average expectation Ēz is the arithmetic average
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1
N

PN
i=1Eiz =

1
N

PN
i=1Aiz. We denote:

Ēz = Az

where A ≡ 1
N

PN
i=1Ai. Individual i’s expectation about the average expectation

is given by

EiĒz = AAiz

Note the order of the matrix operators. EiĒz must be a linear combination of

signals in i’s information set. The average expectation of the average expectation

is given by

ĒĒz = A

µ
1

N

NP
i=1

Ai

¶
z = A2z

In general, the kth order iterated average expectation of z is given by Akz. Let

us partition A so that

A =

·
I 0
R Q

¸
(17)

where I is the identity matrix whose order is the number of public signals. That

is, I is the same dimension as y0. The top right hand cell of the partitioned

matrix is the zero matrix, since the average expectation of y0 is y0 itself. In

other words, the average expectation of y0 places zero weight on any of the non-

public signals. On the other hand, note that R 6= 0, provided that the public
signals have some information value. Hence, Q is a matrix with norm strictly

less than 1, so that Qk → 0 as k →∞.
Higher order average expectations then have the following property. First,

as the order of expectation becomes higher, more and more weight is placed on

the public signals, and less weight is placed on the non-public signals. This is

so, since

Ak =

"
I 0³Pk−1

i=0 Q
i
´
R Qk

#
and

n³Pk−1
i=0 Q

i
´
R
o∞
k=0

is a sequence whose norm is increasing in k, while
©
Qk
ª

is a sequence whose norm is decreasing in k. In the limit where k →∞, we have

Ak →
·

I 0
(
P∞

i=0Q
i)R 0

¸
=

·
I 0

(I −Q)−1R 0

¸
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Thus, in the limit as k →∞, the higher order average expectation places weight
only on the public signals. The private signals receive zero weight. We therefore

have the analogue of theorem 4, but this time for the Gaussian world.

A Markov chain interpretation can also be given, although the Markov chain

in the Gaussian example is one over signals, rather than states of the world.

Each random variables in z is associated with a state in a Markov chain, whose

transition matrix is given by A. The fact that A can be partitioned as in (17)

means that the public signals correspond to the absorbing states of the Markov

chain – that is, once the system settles on such a state, it never emerges. The

private signals and the fundamentals θ correspond to all the transient states in

the chain. The long run probability of being in such a state is zero. The

weights on the public signals in the higher order expectations matrix Ak thus

gives the probability of having been absorbed at date k. As k becomes large,

the probability of being absorbed tends to 1.

4 A Monetary Policy Model

We now consider the general equilibrium implications of the presence of both

public and private information in monetary policy models. Our analysis is based

on a model with standard behavioural assumptions on households and firms. All

agents are rational, in the sense that they know the structure of the economy

and make optimal decisions based on their information sets. The only departure

we make from the benchmark full information rational expectations setting is the

absence of common knowledge of the state of the economy among agents. Specif-

ically, as in the partial equilibrium example studied above, we assume that firms

receive private and public signals of current shocks. By contrast, households and

the central bank are assumed to observe these shocks perfectly. This helps keep

the focus on the pricing decisions, where the presence of strategic complementar-

ities allows differential information to have important dynamic effects. We now

describe the behaviour and information sets of households, firms and the central

bank, respectively. In section 5 we characterise equilibrium, while in section 6 we

provide some simulation results illustrating the properties of the model.
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4.1 Households

Households maximize their discounted expected utility of consumption subject

to their budget constraint. One consequence of allowing households to have full

knowledge of the current state is that we can circumvent the issue of idiosyncratic

risk in incomes. Households make identical consumption choices and we avoid

having to keep track of the distribution of wealth. This greatly simplifies the

analysis. In addition, our assumption allows us to put aside asset pricing issues

in a rational expectations equilibrium under differential information. Thus,

both for the purpose of ensuring identical consumption decisions, and also for

the purpose of avoiding asset market complications with differential information,

we model households as having maximally-specific information sets with regard

to all economic variables that have been realized to date.

To be more specific, we will assume that at any date t, households’ information

sets are identical, and include the realizations of all current and past economic

variables {f1, f2, · · · }. Thus, at date t, all households have the information set
I∗t ≡ ∪s {fs,0, fs,1, · · · , fs,t}

Households’ conditional expectations operator at date t is given by

Et (·) ≡ E (·|I∗t )
At date t, households know at least as much as any other agent in the economy,

including Nature, who has chosen the latest realizations of the economic variables.

Each household z supplies labour services of one type, Ht(z, i), for firm i, and

seeks to maximise

E0

( ∞X
t=0

βt [u(Ct(z))− v(Ht(z, i))]
)

(18)

subject to the budget constraint

Et[δt,t+1Ξt+1] ≤ Ξt +Wt(i)Ht(z, i) + Φt − PtCt(z) (19)

The variables in (18) and (19) are defined below. Within each period, the

household derives utility, u(·), from consuming the Dixit-Stiglitz aggregate, Ct(z),
defined as

Ct(z) ≡
·Z 1

0

Ct(z, i)
²−1
² di

¸ ²
²−1

(20)
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where Ct(z, i) is household z’s consumption of product i and ² > 1 is the elasticity

of substitution between differentiated products. As ² increases, goods become ever

closer substitutes (i.e. firms have less market power), and hence the degree of

strategic complementarity increases. Supplying Ht(z, i) hours reduces welfare, as

indicated by the function v(·). We assume that labour markets are competitive
and a equal number of households supply labour of type i.

Households can insure against idiosyncratic risk in incomes (as mentioned

above) and therefore consume the identical amount given by Ct. In the budget

constraint, Pt denotes the price index corresponding to the aggregate Ct defined

as

Pt ≡
·Z 1

0

Pt(i)
1−²di

¸ 1
1−²

(21)

where Pt(i) is the price of product i; Ξt denotes the nominal value of the house-

hold’s holdings of financial assets at the beginning of period t;Wt(i) is the nominal

hourly wage for supplying labour of type i; Φt is the household’s share of firms’

profits, which we assume are distributed lump-sum to households, and δt,s is a

stochastic discount factor, pricing in period t assets whose payoffs are realised in

period s. We assume there exists a riskless one-period nominal bond, the gross

return on which is given by Rt ≡ (Etδt,t+1)−1. Finally, notice that we have not
assumed that housholds can insure against idiosyncratic variation in labour sup-

ply, although, in equilibrium, households who supply labour to firm i will work

the same amount, Ht(i).

Given the overall level of consumption, households allocate their expenditures

across goods according to

Ct(i) =

·
Pt(i)

Pt

¸−²
Ct (22)

The first-order condition for determining the optimal level of consumption, given

the allocation of consumption across goods expressed in (22), is Λt = uc(Ct),

where Λt is the marginal utility of real income, and the standard Euler equation

is given by

Λt/Pt = βRtEt[Λt+1/Pt+1] (23)

A log-linear approximation of (23) around Λt = Λ̄, Rt = R̄ and Pt+1/Pt = 1
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results in

λt = Etλt+1 + rt − Etπt+1 (24)

where πt+1 ≡ log(Pt+1/Pt) is the inflation rate and lower case represents percent
deviation of a variable from its steady state.

Market clearing requires that Ct = Yt − Gt, where Yt is the aggregate de-
mand for output and Gt is an exogenous component of demand (e.g. exogenous

government expenditures). Since Λt = uc(Yt −Gt), λt can be expressed as

λt = −σ (yt − gt) (25)

where σ ≡ ucc(C̄)C̄/uc(C̄) is the inverse of the intertemporal elasticity of substi-
tution. Substituting out for λt in (24) yields a “forward-looking IS equation”:

yt − gt = Et (yt+1 − gt+1)− σ−1 [rt − Etπt+1] (26)

It is convenient to write (26) in terms of the output gap, xt ≡ yt − ynt , where
ynt is the “natural rate of output”, the level of output that would be obtained in

a full information rational expectations equilibrium. The resulting expression is

xt = Etxt+1 − σ−1 [rt − Etπt+1 − rnt ] (27)

where rnt ≡ σEt
£¡
ynt+1 − gt+1

¢− (ynt − gt)¤ is the “natural rate of interest” (see
Woodford (2003b)). It will turn out that rnt is a sufficient summary measure

of all exogenous shocks in our model. As such, instead of specifying stochastic

processes for the more fundamental shocks, we specify a process for rnt directly.

In particular, rnt is assumed to follow a Markov process given by

rnt = ρr
n
t−1 + εt, εt

iid∼ N(0, σ2ε) (28)

Finally, the first-order condition for optimal labour supply is found by equat-

ing the marginal rate of substitution of consumption for leisure with the real

wage
Wt(i)

Pt
=
vh(Ht(i))

Λt
(29)
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4.2 Firms

Consider first the optimal pricing decisions of firms, taking as given each firm’s

information set. Each firm i faces a Cobb-Douglas production technology with

constant returms to scale

Yt(i) = Kt(i)
ζ(AtHt(i))

1−ζ (30)

where Kt(i) is the capital input of firm i, At denotes a labour-augmenting tech-

nology shock and 0 < ζ < 1. For simplicity, we assume that the level of the

capital stock is fixed and equal across firms (i.e. Kt(i) = K̄). This assumption

means that the demand for each good has the same form as (22), namely

Yt(i) =

·
Pt(i)

Pt

¸−²
Yt (31)

The pricing decision by the firm is a static optimisation problem, where the

first-order condition is given by

Eit

·
∂Πt(i)

∂Pt(i)

¸
= Eit

·
(1− ²) Yt(i)

Pt
+ ²

Yt(i)

Pt(i)

MCt(i)

Pt

¸
= 0 (32)

where Πt(i) is firm i’s real profit function andMCt(i) is its nominal marginal cost

of producing an extra unit of output. Firms’ conditional expectations operator

at date t is given by

Eit (·) ≡ E
¡·|I it¢

where I it is the information set of firm i (see below).

Rearranging (32) yields

Eit

·
Pt(i)

Pt
− ²

²− 1
MCt(i)

Pt

¸
= 0 (33)

Thus, the firm chooses its price such that its expected relative price is a constant

mark-up over expected real marginal cost. In a situation of complete common

knowledge, equation (33) reduces to the familiar condition that firms set their

price equal to a fixed mark-up over marginal cost.

A log-linear approximation of (33) around Pt(i)/Pt = 1 and St(i) ≡MCt(i)/Pt =
(²− 1)/² gives

Eit [p̂t(i)− st(i)] = 0 (34)
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where p̂t(i) ≡ log(Pt(i)/Pt).
Since real marginal cost is equal to the ratio of the real wage to the marginal

product of labour, and in equilibrium the real wage must also equal the marginal

rate of substitution, as given in (29), a log-linear approximation of real marginal

cost can be expressed as

st(i) = ωyt(i)− (ν + 1)at − λt (35)

where ν ≡ vhh(H̄)H̄/vh(H̄) is the inverse of the Frisch elasticity of labour supply
and ω ≡

³
ν+ζ
1−ζ

´
. Substituting (25) into (35) and rearranging gives

st(i) = (ω + σ) (yt − ynt )− ω²p̂t(i)
where ynt , defined above as the natural rate of output, is given by

ynt ≡
1

(ω + σ)
[(ν + 1)at + σgt] (37)

We can now substitute the expression for marginal cost, given by (35), into

the first-order condition for pricing, (34), to yield

pt(i) = E
i
tpt + ξE

i
txt (38)

where ξ ≡ (ω + σ)/(1 + ω²). This equation is analogous to (1). Averaging (38)
across firms gives

pt = Ētpt + ξĒtxt (39)

where the average expectations operator, Ēt (•) ≡
R 1
0
Eit (•) di, is the average

expectation across firms.

We now turn to the information sets of firms. The underlying sources of

aggregate disturbances are the demand shock gt and the productivity shock at,

which enter the model through the natural rate of interest rnt . To simplify mat-

ters, we assume that each firm observes one private and one public signal of rnt .

Specifically, firm i’s information set is given by

Iit ≡ {rns (i), rns (P )}ts=0
where rnt (i) and r

n
t (P ) are the private and public signals, respectively, of r

n
t . The

conditional distribution of each signal, given rnt , is assumed to be normal with

mean rnt and constant variance; namely,

rnt (i) = r
n
t + vt(i), vt(i)

iid∼ N (0, σ2v) (40)
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rnt (P ) = r
n
t + ηt, ηt

iid∼ N(0, σ2η) (41)

The innovations in (28) and (40)-(41) are assumed to be independent of each

other at all leads and lags.

Other plausible assumptions on firms’ information sets could also be incor-

porated into our framework. For example, one alternative approach would be to

have firms obtain signals of endogenous variables directly, instead of the under-

lying fundamental shocks. For instance, firm i might observe a private signal of

the price level such as pSt (i) = pt + e
p
t (i). We could also allow firms to observe

all of the variables involved in their own production activities, such as their own

output, hours hired and wages paid. In the current set-up, if firms can observe

their own output and hours employed when making pricing decisions, then they

can infer without error the value of the technology shock At (or equivalently, at)

from the production function (30). However, firms would still not be able to infer

the exact value of gt, and hence rnt .

4.3 Monetary Policy

A large literature has developed recently examining the properties of different

monetary policies. One approach taken has been to solve for optimal policy,

where the central bank maximises a measure of expected discounted utility of

the representative agent (see, e.g., Rotemberg and Woodford (1997)).3 An alter-

native approach is to specify the conduct of policy directly in terms of a (fixed)

instrument rule. The type of instrument rule typically studied is an interest rate

reaction function due to the fact that most central banks conduct monetary pol-

icy in practice by setting a target for a short-term nominal interest rate. Yet

another approach, and the one followed in this paper, is to specify a targeting

rule for the central bank. A targeting rule is a relation, analogous to a first-order

condition, to be satisifed between some combination of the endogenous and ex-

ogenous variables in the model. Svensson (2003b) and Svensson and Woodford

(2003) provide a general characterisation of targeting rules and describe their
3In other work (Amato and Shin (2003b)), we consider optimal monetary policy in a model

similar to the one presented here.
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merits.4

One advantage of employing a targeting rule is that it provides a transparent

description of what monetary policy aims to achieve. In this paper, we consider

targeting rules of the form

pt + λxt = δr
n
t (42)

Targeting rules expressed in terms of the price level, similar to (42), have been

shown to have desirable welfare properties in sticky-price models. For instance,

Svensson (1999) and Vestin (1999), among others, have demonstrated that when

the central bank is unable to commit to its future actions, a price-level target-

ing rule performs better than an inflation-targeting rule even if society’s welfare

directly depends upon inflation but not the price level.

It should be noted, however, that (42) does not tell the central bank how to

set the level of the short-term nominal rate on a period-by-period basis. This

would require finding an instrument rule that is consistent with obtaining the

relationship (42) in equilibrium subject to the behavioural equations (27) and

(39). In fact, for a given model describing the behaviour of the private sector,

there may be several interest rate rules consistent with the targeting rule (42).

As an example, in the next section we will illustrate that an instrument rule of a

common form can implement (42) in an equilibrium.

One important additional assumption we make is that the central bank has the

same information set as households.5 This means that policy makers observe,

among other things, the current price level and output without error. The

reason for assuming that the central bank observes the state perfectly is, once

again, to keep our focus on the impact of differential information on firms’ pricing

behaviour and its macroeconomic consequences.
4Additional assumptions may also be required to characterise policy depending upon which

approach is taken. For example, there are different notions of optimality that are linked to the

treatment of the time-consistency problem (see, e.g., Giannoni and Woodford (2002)).
5Recall that households’ information sets are maximally-specific with regard to all random

variables realized to date.
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5 General Equilibrium

The complete model is given by the behavioural equations (27) and (39); the

central bank’s targeting rule (42); the process for the natural rate of interest

(28); and the processes for the signals (40)-(41). We will set up the model in

state-space form, solve for the stochastic process followed by the state - now used

in the Kalman filter sense - and then determine the equilibrium of the price level,

output gap and the interest rate. In the next section, we illustrate some of the

properties of the model.

The first step in solving the model is to describe the state space and determine

the stochastic process followed by the state. In the present model, the state,

denoted by Xt, is given by

Xt ≡
·
θt
ψt

¸
(43)

where θt is a vector of exogenous variables and ψt is defined as

ψt ≡
∞X
k=1

ξλ (1− ξλ)k−1 Ēkt (θt) (44)

where ξλ ≡ ξ/λ and Ēkt (•) is the k -th order average expectations operator. The
exogenous state variables are

θt ≡
·
rnt
ηt

¸
which follows a Markov process given by

θt = Bθt−1 + but (45)

where

B ≡
·
ρ 0
0 0

¸
, b ≡ I2

ut ≡
·
εt
ηt

¸
, ut

iid∼ N(0,Ωu)

Ωu ≡
·
σ2ε 0
0 σ2η

¸
In and 0n denote the n× n identity and null matrices, respectively.6

6We have started to recycle notation here. However, in the following, the appropriate

reference object should be clear.
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Each firm observes the vector of variables

ysigt (i) ≡
·
rnt (i)
rnt (P )

¸
In terms of Xt, y

sig
t (i) can be expressed as

ysigt (i) = ZXt + zvt(i) (46)

where

Z ≡ £ Z1 02
¤
, Z1 ≡

·
1 0
1 1

¸
, z ≡

·
1
0

¸
and the process for vt(i) is given in (40).

Lemma 5 Given equations (45) and (46), the state Xt, defined in (43), follows

the Markov process given by

Xt =MXt−1 +mut (47)

where

M ≡
 B 02

G H

 ,m ≡
 b

h

 ,
and the matrices G, H and h are given in equations (61), (65) and (63), respec-

tively.

Proof. See Appendix A.2.

It is now straightforward to find the equilibrium processes of pt and xt as a

function of the state Xt. Substituting (42) into (39) yields

pt = (1− ξλ) Ētpt + δξλĒtrnt
Solving this expression by repeated substitution (as in section 2), we get

pt = δ

∞X
k=1

ξλ (1− ξλ)k−1 Ēkt rnt (48)

= δe03Xt (49)

where ei is the 4 × 1 unit vector with 1 in the i-th position. Substituting (49)
into (42) implies that

xt =
δ

λ
(e1 − e3)0Xt (50)
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We can also determine the process followed by rt as a function of the state

Xt. Using the solutions for pt and xt in (49)-(50) and the stochastic process for

Xt given by (47), the solution for rt can be found by rearranging (27) and making

the appropriate substitutions. This gives

rt = σEt (xt+1 − xt) + Et (pt+1 − pt) + rnt
=

µ
[M 0 − I]

·
σδ

λ
(e1 − e3) + δe3

¸
+ e1

¶0
Xt (51)

While equation (51) describes how the interest rate should respond to the

state Xt, it is not necessarily a description of how policy should be implemented.

In other words, (51) does not have to be the instrument rule followed by the

central bank in determining the appropriate level of its policy rate target on a

period-by-period basis. In fact, a policy of setting interest rates directly according

to (51) may have some undesirable consequences. For instance, in the special case

of full information in models of the type considered here, it is well known that

rules that specify the interest rate to be a function solely of exogenous variables

lead to indeterminancy of equilibrium (e.g. Woodford (2003b)).

For now, it is informative to show that the targeting rule (42), and the re-

sulting equilibrium characterised by (49)-(51), can be implemented by a simple

instrument rule. Taylor’s (1993) rule (and its generalisations) is a well-known

example. Here we show that a rule where the short-term nominal interest rate

responds only to the price level and output gap is consistent with the eqilibrium

relation (42). Specifically, we consider an instrument rule of the form

rt = αppt + αxxt (52)

The main difference between (52) and the Taylor rule is the inclusion of the price

level instead of the inflation rate.7

Lemma 6 The targeting rule (42) and the resulting equilibrium processes for pt,

xt and rt given in (49)-(51) can be implemented by an instrument rule of the

form (52).

Proof. See Appendix A.3.
7In addition, the coefficients αp and αx will be determined as a function of the model’s

structural parameters and the parameters of the targeting rule (42).
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6 Model Properties

We examine several features of the model presented above. Before proceeding,

we must choose values for the parameters. These are given in Table 1. Our

choices for the preference and technology parameters fall within the range of

values typically used in the literature. The parameters governing the process

of rnt can be rationalised on the basis of estimates provided in Rotemberg and

Woodford (1997) (see Woodford (1999) for further discussion). The variances

of the noise terms in the signals have been chosen somewhat arbitrarily because

there is not much evidence to draw upon in these cases. In the baseline, as well

as the alternatives considered below, the variance of the noise terms (0.2% each)

has been chosen to be much smaller than the variance of the fundamental rnt
(set equal to 1%). Introspection would suggest that measurement and filtering

errors are typically smaller in magnitude than variability in the fundamentals of

the economy; whether this is true in actual economies, however, remains to be

determined. Finally, regarding monetary policy, we set both λ and δ equal to one.

This implies that the central bank aims for the nominal output gap, defined as

pt + xt, to fluctuate one-for-one with the natural rate of interest. This is similar

to nominal GDP targeting except account is taken of fluctuations in the natural

rate of output.

Before proceeding, however, it is worth noting that perfect stabilisation of

the price level and the output gap is actually feasible in the current version of

our model. This can be seen by setting δ = 0 in the targeting rule (42), and

hence the solutions for pt, xt and rt in (49)-(51). If we also assume that the

natural rate of output is the efficient level of output (i.e. resulting from a subsidy

to firms to eliminate the distortion due to monopolistic competition and thereby

raise steady-state output), then perfect stabilisation would correspond to the first-

best equilibrium. While this is an interesting property of the model, we view it as

not being very relevant for the purposes of understanding how monetary policy

can work in actual economies. The reason is that complete stabilisation can

only be achieved under our assumption that the central bank perfectly observes

current and past values of the state. In the more realistic setting where the

central bank also obtains only noisy signals of fundamentals, this equilibrium is
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no longer feasible. The virtue of the current analysis is its relative simplicity in

demonstrating the basic properties of a differential information economy.

6.1 Changing Weights on Higher-Order Beliefs

Recall that one of the key parameters of the model is ξ, which, being the nu-

merator of ξλ, determines in part the relative weight attached to higher-order

expectations in the pricing relation (48). Among other things, ξ depends in-

versely upon the elasticity of substitution, ². Thus, an increase in ², which

increases the coordination motive among firms and produces a smaller steady-

state markup, gives a more prominent role to higher-order beliefs by lowering

ξ.8 One feature of the macro model we wish to highlight is the implication of

changing ξ on the sample paths of the output gap and the price level. We do this

by altering the value of ², since it enters the model only through ξ.

The results of one such experiment are shown in Figure 1. Each panel of

the figure plots one sample realisation (time series) of the price level against the

output gap using the same randomly drawn sample of shocks. The cases in

the panels are distinguished by their treatment of ² and the relative precision of

the public signal, defined as 1/σ2η. The data in the left-hand side panels have

been generated under a steady-state markup of 25%, whereas the right-hand side

panels correspond to a markup of 5%. In addition, the top panels report cases

with high-precision public signals (1/σ2η = 10%), whereas the lower panels are

based on low-precision public signals (1/σ2η = 5%). The plots suggest that,

conditional on the output gap, an increase in competition (lower markup) makes

price a noisier signal of the output gap. A decline in the precision of the public

signal has a similar effect. Both are evident in the lower right panel, where prices

depend relatively more on higher-order expectations (due to lower ξ), which in

turn are adversely affected by noisier information (less precise public signals).

These scatter plots intimate the potential degradation of the information value

of price as a signal of the output gap. For economies that have relatively noisy
8As already noted by Woodford (2003a), such changes are more critical in the current setting

than in standard sticky-price models, where an increase in competition lowers the elasticity of

inflation to the output gap, but no more.
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public signals and a high degree of competition, prices convey poor quality infor-

mation about the underlying output gap.

6.2 Impulse Responses of Higher-Order Beliefs

One way to illustrate the dynamic impact of differential information is to plot

the impulse responses of higher-order beliefs of the fundamentals. In particular,

recalling that the aggregate price level is given by the infinite weighted-sum of

k -th order average expectations of rnt , we wish to examine the evolution of ran-

dom variables such as Ēkt (θt). To compute the impulse responses of Ē
k
t (θt) to

innovations in θt, we first must determine its law of motion. Define

Ψ(k)t ≡


Ēkt (θt)
Ēk−1t (θt)

...
Ēt (θt)
θt

 (53)

The following lemma gives the stochastic process followed by Ψ(k)t .

Lemma 7 The (k+1)-dimensional vector of sequential higher-order beliefs Ψ(k)t ,

defined in (53), follows the Markov process given by

Ψ(k)t = B(k)Ψ
(k)
t−1 + b(k)ut

where B(k) and b(k) are given in (91) and (92), respectively.

Proof. See Appendix A.4.

Figure 2 shows the responses of the first eight orders of average expectations

of rnt with respect to a cumulative one-percent deviation in r
n
t from zero (recall

that all variables are expressed as deviations from steady state). The solid line

shows the path followed by rnt itself. The other lines show the responses of the

first-order (solid with circles) through eighth-order (solid with asterisks) average

expectations. It is evident that higher-order expectations respondmore sluggishly

to the shock, with virtually no initial response in expectations as low as order four
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(solid with square). The discrepancy between Ēkt (r
n
t ) and r

n
t is also monotonically

increasing in k in each period after the shock.

Similar to Figure 2, Figure 3 shows the responses of Ēkt (r
n
t ) to an innovation in

the noise of the public signal (i.e. ηt). For clarity, expectations for k = 1, 2, 4, 8

are only plotted. In the period of the shock, only the response of the first-

order average expectation is much different than zero. Thus, even though a

larger weight is given to the public signal as the order of expectation increases,

this is more than outweighed by the dampening effect of the presence of public

information on higher-order expectations. In addition, notice that there is a

delay in the peak response in expectations of order higher than one, with the

delay increasing in k.

Lastly, in an experiment similar to that in Hellwig (2002), Figure 4 compares

the responses of higher-order expectations to a shock in rnt in the current model

with public information (solid lines with symbols, as in Figure 2) to the responses

in an analogous model without public signals (dashed lines with symbols). Again,

the plain solid line is the path of rnt . For low orders (k = 1 or k = 2), the dynamic

response in expectations in the presence of public signals is always closer to rnt
than in the model without public signals. Note that in this experiment the public

signal always equals the true value of rnt (i.e. the noise term in the public signal

is assumed to be zero at all times). Thus, this figure demonstrates the beneficial

effect of public information in aligning low-order average expectations closer to

the fundamental. However, the relative initial reponse of expectations of a higher

order (k = 4 or k = 8) is the opposite. The larger weight agents place on the

public signal in these cases is not sufficient to counterbalance the relatively more

sluggish adjustment of expectations overall in the presence of public information.

Nonetheless, the response of Ēkt (r
n
t ) converges to r

n
t more quickly when there is

public information. This effect is largely due to the higher persistence imparted

to rnt compared to the noise in the public signal, ηt.

6.3 Volatility and the Quality of Public Information

We next demonstrate that more precise public information does not necessarily

lead to lower volatilty among endogenous variables. This result is evident in
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Figure 5. This figure plots values of the variances of the endogenous variables as

a function of the precision of the public signal. In each panel, the solid line is

the case when firms’ private signals have relatively high precision (1/σ2v = 10%),

whereas the dashed line is the case when these signals have relatively low precision

(1/σ2v = 2%). The figure demonstrates that increases in the precision of the

public signal can result in a higher variance of the price level (and inflation).

In particular, the lowest values for these variances are achieved under the least

precise public signal. The fact that similar effects are evident in both cases (solid

and dashed lines) suggests that these results are robust across a wide range of

values for the precision of the private signal.

Figure 5 illustrates one key effect of public information. From the results

in section 3, recall that more precise public signals get a higher weight in both

individuals’ and average k -fold expectations. A higher weight on a common

(public) signal necessarily means that individuals’ expectations are distributed

more closely together around the public signal. However, this can lead to greater

volatility in the aggregate if the public signal is not very precise relative to private

information. Since higher-order beliefs play a direct role only in firms’ pricing

decisions, it is perhaps not surprising that these effects largely pertain to price

level and, by extension, inflation outcomes; note that the change in the variance

of the output gap and interest rate is small, both relatively and absolutely. These

results are reflective of the finding by Morris and Shin (2002), extended here to a

dynamic macroeconomic setting, that more precise public information does not

necessarily lead to better welfare outcomes. Importantly, this is not predicated

on inefficiencies that arise due to poor information available to the central bank.

On the contrary, the central bank operates with full information on the state of

the economy in our model.

7 Conclusions

An economy with diverse private information has features that are not always

well captured in representative individual models where all agents share the same

information. The most distinctive of these features is the relatively greater im-
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pact of common, shared information at the expense of private information. The

source of the greater impact of public information lies in the strategic complemen-

tarity of the price setting behaviour of firms, and the impact of public information

is greater for those economies where price competition is more fierce.

The observation that public signals have a disproportionately large impact in

games with coordination elements is not new, but our contribution has been to

demonstrate how the theoretical results can be embedded in a standard macroeco-

nomic model that is rich enough to engage in questions of significance for policy

purposes. Moreover, our discussion of the conceptual background in section 3

has been motivated by the need to unravel the main mechanisms at work. By

developing the argument by means of a series of simple examples, our intention

has been to convey the main intuitions, and so show that the results do not rely

in sensitive ways on specific functional forms or distributional assumptions.

In illustrating the basic effects of the presence of both public and private in-

formation in a complete macroeconomic model, we have made several simplifiying

assumptions, such as the fact that consumers and the central bank are fully in-

formed. At the cost of some additional complexity, we can extend our model to

contexts where agents observe noisy signals of the endogenous variables directly

and the central bank has less than perfect information as well (see Amato and

Shin (2003a)). Nevertheless, the results in this paper reveal that the impact of

public information in differential information economies is large, and shifts in the

precision of public signals can have significant effects on observable variables that

enter into calculations of welfare.
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A Proofs

A.1 Alternative proof of theorem 4

An alternative proof of theorem 4 can be given in terms of the eigenvalues and

eigenvectors of the average belief matrix. Let there be n states in Ω, and denote

by pij the (i, j)-th entry of B. For the moment, we will assume that pij > 0 for

all i, j. We’ll return to comment on how the result genernalizes. Suppose there

are N agents. Since pij is the average conditional probability of state j at state

i, we have

pij =
1

N
(p1 (j|i) + p2 (j|i) + · · ·+ pn (j|i))

where pk (j|i) is the k-th agent’s conditional probability of state j at state i. Let
S(i, j) be the subset of individuals for whom states i and j belong to the same

element of their information partition. Clearly, S (i, j) = S (j, i). Denote by

Pk (i) the ex ante probability of the cell of individual k’s partition that contains

state i. Then,

pij =
1

N

X
k∈S(i,j)

pj
Pk (i)

=
pj

P (i, j)

where P (i, j) is defined as 1
P (i,j)

≡ 1
N

P
k∈S(i,j)

1
Pk(i)

. Note that

P
k∈S(i,j)

1

Pk (i)
=

P
k∈S(j,i)

1

Pk (i)
=

P
k∈S(j,i)

1

Pk (j)

so that P (i, j) = P (j, i). Thus, the matrix B can be written as

B ≡


p1

P (1,1)
p2

P (1,2)
· · · pn

P (1,n)
p1

P (2,1)
p2

P (2,2)
· · · pn

P (2,n)
...

...
. . .

p1
P (n,1)

p2
P (n,2)

· · · pn
P (n,n)


where pi is the ex ante probability of state i. We can show thatB is diagonalizable

and has real-valued eigenvalues. To see this, define two matrices D and A. D

is the diagonal matrix defined as:

D =


√
p1 √

p2
. . . √

pn


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A is a symmetric matrix defined as

A =


p1

P (1,1)

√
p1p2

P (1,2)
· · ·

√
p1pn

P (1,n)√
p2p1

P (2,1)
p2

P (2,2)

√
p2pn

P (2,n)
...

. . .√
pnp1

P (n,1)

√
pnp2

P (n,2)
pn

P (n,n)


It can be verified that B = D−1AD. Since A is a symmetric matrix, it is

diagonalizable and has real-valued eigenvalues λ1,λ2, · · · ,λn, and there is an
orthogonal matrix E whose columns are the eigenvectors of A. In other words,

A = EΛE0 where

Λ =


λ1

λ2
. . .

λn


and where E0 is the transpose of E. Thus,

B = D−1AD = D−1EΛE0D = CΛC−1

where C = D−1E. Thus, B is diagonalizable, has real valued eigenvalues, and

whose eigenvectors are given by the columns of C. The matrix C of eigenvectors

can be derived as follows. Since the rows of B sum to one, we know that the

vector

u =

 1...
1


satisfies u = Bu. Thus, u is the eigenvector that corresponds to the eigenvalue

1, which is the largest eigenvalue of B. From this, we have

u = Bu = D−1ADu

so that Du = ADu. In other words, Du is the eigenvector corresponding to the

eigenvalue 1 in A. Du is the column vector
√
p1
...√
pn


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Thus, the orthogonal matrix E of eigenvectors of B has the form:

E =


√
p1 · · ·√
p2 · · ·

...
...√

pn · · ·


and

E−1 = E0 =


√
p1

√
p2 · · · √

pn

...
...

...


From this, and from (7), we can write the matrix of eigenvectors C as follows.

C =


1
...

...
...

1 c2 c3 cn
...
...

... · · · ...
1



C−1 =


p1 p2 p3 · · · pn
p1c21 p2c22 p3c23 · · · pnc2n
...

...
...

p1cn1 p2cn2 p3cn3 · · · pncnn


where ck is the kth eigenvector ofB, and where ckj is the jth entry of ck. Bringing

all the elements together, we have:

Lemma 8 The matrix B of average conditional beliefs satisfies

B =


1
...

...

1 c2 cn
...
... · · · ...

1




1

λ2
. . .

λn




p1 p2 · · · pn

p1c21 p2c22 · · · pnc2n
...

...
...

p1cn1 p2cn2 · · · pncnn


Let f be a random variable, expressed as a column vector conformable with

B. Then,

C−1f =


p1 p2 · · · pn
p1c21 p2c22 · · · pnc2n
...

...
...

p1cn1 p2cn2 · · · pncnn



f1
f2
...
fn

 =


E (f )
E (c2f)
...

E (cnf)


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where E (.) is the expectations operator with respect to public information only

(i.e. with respect to the ex ante probabilities p1, p2, · · · , pn). E (ckf) denotes

the expectation of the state by state product of ck and f . Since Bk = CΛkC−1,

we can write

Bkf = CΛkC−1f

=


1 c21 c31 cn1
1 c22 c32 cn2
...
...

...
. . .

...
1 c2n c3n cnn




E (f)

λk2E (c2f )
...

λknE (cnf )



=


E (f) +

Pn
j=2 λ

k
j cj1E (ckf)

E (f) +
Pn

j=2 λ
k
j cj2E (ckf)

...
E (f) +

Pn
j=2 λ

k
j cjnE (ckf)

→

E (f)
E (f)
...

E (f)

 as k →∞

since λj < 1 for j ≥ 2. Thus, theorem 4 holds when matrix B has positive entries
for all i and j. When B has zero entries, we know that there is some t such that

the power matrix Bt has entries that are all strictly positive. This is due to the

ergodicity of the Markov chain. When the meet of the individual partitions is

non-trivial, then there are as many unit eigenvalues as there are elements in the

meet. So, the above analysis would apply to each element of the meet.

A.2 Proof of Lemma 5

Recall that Xt is defined as

Xt ≡
·
θt
ψt

¸
(54)

where θt is a vector of variables that are exogenous with respect to pt, yt and rt,

and ψt is defined as

ψt ≡
∞X
k=1

ξλ (1− ξλ)k−1 Ēkt (θt) (55)

θt is governed by the process

θt = Bθt−1 + but (56)

for known matrices B and b and where ut ∼ N(0,Ωu) is a vector of iid random
variables.
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The state-space model is completed by specifying the observation equation.

Let ysigt (i) be the ny × 1 vector of variables observed by firm i at date t. The

observation equation is

ysigt (i) = ZXt + zvt(i)

for known matrices Z ≡ [Z1 0ny×n] and z, where 0k×l is the null matrix of

dimension k× l, and vt(i) ∼ N(0, σ2v) is independently and identically distributed
across time and firms. These assumptions, and the law of large numbers, imply

that
R 1
0
vt(i)di = 0.

Our method follows the steps of, but also generalises, the proof in Woodford

(2003a). For now assume (to be confirmed later) that the state, Xt, is given by

the process

Xt =MXt−1 +mut (57)

where

M ≡
·
B 02
G H

¸
,m ≡

·
b
h

¸
and the matrices G, H and h are yet to be determined. When there is no

ambiguity, the subscript will be omitted from In and 0n.

Now consider the firm’s problem of estimating the state,Xt, using the Kalman

filter. Given the assumptions made so far, the Kalman filter produces minimum

mean squared error estimates of the state for the log-linearised version of the

model. Assume that a time-invariant filter exists that is also independent of firm

i, with the Kalman gain denoted by K. Let Xt|s(i) ≡ EisXt. Combining the

prediction and updating equations from the Kalman filter for firm i gives

Xt|t(i) =MXt−1|t−1(i) +K
¡
ysigt (i)− ZMXt−1|t−1(i)

¢
(58)

Averaging across i and rearranging gives

Xt|t = (I −KZ)MXt−1|t−1 +KZXt
= (I −KZ)MXt−1|t−1 +KZMXt−1 +KZmut

Defining Ξ ≡ [ξλI (1− ξλ)I ] and K̂ ≡ ΞK, first notice that ψt = ΞXt|t, and
thus (1− ξλ)ψt−1|t−1 = ψt−1 − ξλθt−1|t−1. This implies

ψt = (Ξ− K̂Z)MXt−1|t−1 + K̂ZMXt−1 + K̂Zmut (59)
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and

Xt−1|t−1 = ϕ1ψt−1 + ϕ2θt−1|t−1 (60)

where ϕ1 ≡ [0 1
1−ξλ I]

0 and ϕ2 ≡ [I − ξλ
1−ξλ I ]

0. Substituting (60) into (59) and

expanding gives

ψt = K̂Z1Bθt−1 +
1

(1− ξλ)
Ξ̂2ψt−1

+

·
Ξ̂1 − ξλ

(1− ξλ)
Ξ̂2

¸
θt−1|t−1 + K̂Z1but

where Ξ̂1 ≡
³
ξλI − K̂Z1

´
B + (1− ξλ)G and Ξ̂2 ≡ (1− ξλ)H.

If Xt is governed by (57), then it must be the case that

G = K̂Z1B (61)

H =
1

1− ξλ
Ξ̂2 (62)

h = K̂Z1b (63)

Ξ̂1 =
ξλ

1− ξλ
Ξ̂2 (64)

The solutions for G and h are given directly by (61) and (63), respectively.

By the definition of Ξ̂2, it can be seen that (62) is satisfied. Finally, the solution

for H is obtained by substituting the result for G into (64):

H =
³
I − K̂Z1

´
B (65)

The last step is to determine the value of K, or equivalently, K̂. Under the

above assumptions, we have (see Harvey (1989))

K̂ = ΞΣZ 0F−1 (66)

where

Σ ≡ var
¡
Xt −Xt|t−1(i)

¢
=MVM 0 +mΩum0 (67)

V ≡ var
¡
Xt −Xt|t(i)

¢
= Σ− ΣZ 0F−1ZΣ (68)

F ≡ var
¡
ysigt (i)− ZXt|t−1(i)

¢
= ZΣZ 0 + σ2vzz

0 (69)

Substituting (68)-(69) into (67), we obtain a Riccati equation:

Σ =M
³
Σ−ΣZ 0 ¡ZΣZ 0 + σ2vzz0¢−1 ZΣ´M 0 +mΩum0 (70)
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It is possible to solve (70) explicitly for Σ. In fact, if we partition Σ as

Σ =

·
Σ11 Σ21
Σ21 Σ22

¸
it can be seen from (66) and the definition of Z that we need only determine Σ11
and Σ21 to obtain the solution for K̂. As it turns out, Σ11 and Σ21 can be solved

for recursively without having to solve for Σ22 as well.

We begin by isolating the upper-left block of equations in (67):

Σ11 = BV11B
0 + Ωu (71)

where

V11 ≡ Σ11 −Σ11Z 01
¡
Z1Σ11Z

0
1 + σ

2
vzz

0¢−1 Z1Σ11
Notice that (71) is a set of three equations that involves only the elements of Σ11.

Let σij denote the (i, j)-th element of Σ11. Thus, by the definition of B, we have·
σ11 σ21
σ21 σ22

¸
= ρ2

·
v11 0
0 0

¸
+

·
σ2ε 0
0 σ2η

¸
(72)

where v11 is the (1, 1) element of the matrix V11. It is immediate from (72) that

σ21 = 0

σ22 = σ
2
η

σ11 = ρ2v11 + σ
2
ε

= ρ2

Ã
σ11 −

¡
σ2η + σ

2
v

¢
σ211¡

σ2η + σ
2
v

¢
σ11 + σ2ησ

2
v

!
+ σ2ε (73)

Rewriting (73), we get¡
σ2η + σ

2
v

¢
σ211 −

¡
σ2ε
£
σ2η + σ

2
v

¤− £1− ρ2¤σ2ησ2v¢σ11 − σ2εσ2ησ2v = 0
which is a quadratic equation in σ11 that has two real roots, one positive and one

negative. Since σ11 is a variance, its solution must be the positive root, which is

given by

σ11 =
σ2ε
2
− 1− ρ

2

2

σ2ησ
2
v£

σ2η + σ
2
v

¤ +
vuutÃσ2ε

2
− 1− ρ

2

2

σ2ησ
2
v£

σ2η + σ
2
v

¤!2 + σ2ε σ2ησ
2
v£

σ2η + σ
2
v

¤
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The second step is to solve for Σ21. From the lower-left block of equations in

(67), we see that Σ21 depends only upon the elements of Σ11 (and other known

parameters):

Σ21 = (GΣ11 +HΣ21)
¡
I − Z01F−1Z1Σ11

¢
B0 + hΩu (74)

Let sij denote the (i, j)-th element of Σ21. Again, by the definition of B, we have·
s12
s22

¸
= hΩuē2

= σ2η

·
K̂12

K̂22

¸
where K̂ij is the (i, j)-th element of K̂. Since F does not depend on Σ21, it

is evident from (66) that there is a linear relationship between K̂ and Σ21. In

particular, K̂12 is a linear function of only s11 and s12; similarly, K̂22 is a linear

function of only s21 and s22. We can therefore obtain expressions for s12 and s22
as linear functions of s11 and s21, respectively; namely,·

s12
s22

¸
=

ξλσ
2
η

1− κ2Σ11Z
0
1F

−1ē2 +
κ1

1− κ2

·
s11
s21

¸
(75)

where

κ1 ≡ (1− ξλ)σ2η ē0F−1ē2,κ2 ≡ (1− ξλ)σ2η ē02F−1ē2
ē ≡ [1 1]0 and ēi is the 2x1 unit vector with 1 in the i-th position.

It remains to solve for s11 and s21. Expanding (74), it turns out that the

upper-left equation involves only s11 and k̂1 ≡ K̂11 + K̂12. Noting again (66), it

can be seen that k̂1 is a linear function of s11 and s12:

k̂1 = ξλē
0
1Σ11Z

0
1F

−1ē+ (1− ξλ) ē0F−1ēs11 + (1− ξλ) ē0F−1ē2s12 (76)

By (75), we can substitute out for s12 in (76) to obtain

k̂1 = χ1 + χ0s11 (77)

where

χ1 ≡ ξλē01Σ11Z01F−1
·
ē+

κ1
1− κ2 ē2

¸
,χ0 ≡ (1− ξλ) ē0F−1

·
ē+

κ1
1− κ2 ē2

¸
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Thus, the upper-left equation of (74) can be written as a quadratic equation in

either k̂1 or s11, which does not depend, in particular, upon s21. In terms of k̂1,

this equation is

$2k̂
2
1 +$1k̂1 +$0 = 0

where

$0 ≡ σ11

µ
χ1
χ0

·
ē0F−1ē+

κ1
1− κ2 ē

0F−1ē2

¸
− ξλσ

2
η

1− κ2
£
ē0F−1ē2

¤ £
ē01Σ11Z

0
1F

−1ē2
¤¶

−χ1
χ0

µ
1− 1

ρ2

¶
$1 ≡ − 1

ρ2

µ
1

χ0
− σ2ε

¶
+ σ11

µ
1 +

ξλσ
2
η

1− κ2
£
ē0F−1ē2

¤ £
ē01Σ11Z

0
1F

−1ē2
¤¶
+
1 + χ1
χ0

−
·
σ211 +

σ11
χ0
(1 + χ1)

¸
ē0F−1ē− 1

χ0

κ1
1− κ2 [σ11 (1 + χ1)] ē

0F−1ē2

$2 ≡ 1

χ0

·
σ11

µ
ē0F−1ē+

κ1
1− κ2 ē

0F−1ē2

¶
− 1
¸

It is difficult to simplify the expressions for $0, $1 and $2 much further. The

roots of k̂1 can be determined numerically for given values of the parameters.

Given a solution for k̂1, we can then find the value of s11 using (77).

Under the range of values for the parameters in the simulations in section

6, k̂1 has two real roots, one positive and one negative. The fact that k̂1 is a

linear combination of Kalman gains does not, by itself, rule out either of these

roots. However, a restriction can be placed upon the chosen root if we wish Xt to

be stationary – which is desirable since we have assumed that θt is stationary.

Recalling the solutions for M and m, we have

[rnt − ψ1t] = ρ
³
1− k̂1

´
[rnt − ψ1t] +

³
1− k̂1

´
εt + K̂12ηt

where ψ1t is the first element of ψt. Since r
n
t itself is assumed to be stationary,

rnt −ψ1t is stationary if and only if
¯̄̄
ρ
³
1− k̂1

´¯̄̄
< 1. If we assume that 0 < ρ < 1,

this condition simplifies to

1− 1
ρ
< k̂1 < 1 +

1

ρ

For the parameter values considered, only the positive root falls within this range,

therefore, this is the one that is selected.
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Finally, analogous to k̂1, k̂2 ≡ K̂21 + K̂22 is a linear function of s21:

k̂2 = ξλē
0
2Σ11Z

0
1F

−1ē+ (1− ξλ) ē0F−1ēs21 + (1− ξλ) ē0F−1ē2s22 (78)

= χ2 + χ0s21 (79)

where

χ2 ≡ ξλē02Σ11Z 01F−1
·
ē+

κ1
1− κ2 ē2

¸
Thus, the lower-left equation of (74) is linear in s21 as a function of s11, s12 and

other known parameters. The solution is

s21 =
ϑχ2

1− ϑχ0
where

ϑ ≡ σ2ε + ρ2
¡
[σ11 − s11]

£
1− σ11ē0F−1ē

¤
+ σ11s12ē

0F−1ē2
¢

A.3 Proof of Lemma 6

Substituting (52) into (27), we get

xt = µ1Etxt+1 − µ1σ−1 [(αp + 1)pt − Etpt+1 − rnt ] (80)

If we assume, for now, that (52) can implement the targeting rule (42), (49) can

be used as an equilibrium solution for the price level in terms of the state Xt.

Substituting for pt in (80), solving forward, and computing expectations of Xt

from (47), we obtain

xt = µ1Etxt+1 − µ1σ−1φ0Xt
= −µ1σ−1φ0

∞X
i=0

µi1EtXt+i

= −µ1σ−1φ0
∞X
i=0

(µ1M)
iXt

= −µ1σ−1φ0(I − µ1M)−1Xt (81)

where 0 < µ1 ≡ (σ−1 + 1)−1 < 1 and

φ ≡ δ [(αp + 1)I −M 0] e3 − e1 (82)
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and assuming that N ≡ (I − µ1M)−1 is nonsingular.
If the instrument rule (52) is to be consistent with the targeting rule (42), it

must be the case that the equilibrium processes for xt given in (50) and (81) are

consistent with each other. This requires

δ

λ
(e1 − e3) = −µ1σ−1N 0φ (83)

Thus, it remains to be shown whether (83) holds for some value of αp. First,

notice that because M is block lower diagonal, N is also block lower diagonal:

N =

·
N11 0
N21 N22

¸
Partition φ accordingly as

φ =

· − (δG0 + I) ē1
[(αp + 1)I −H 0] ē1

¸
Expanding the right-hand side of (83), the first two equalities require

δ

λ
ē1 = −µ1σ−1 (N 0

21 [(αp + 1)I −H 0]−N 0
11 [δG

0 + I]) ē1 (84)

whereas the last two require

δ

λ
ē1 = µ1σ

−1N 0
22 ((αp + 1)I −H 0) ē1 (85)

Equating (84) and (85), we have

N 0
22 ((αp + 1)I −H 0) ē1 = − (N 0

21 [(αp + 1)I −H 0]−N 0
11 [δG

0 + I]) ē1 (86)

which is a system of two equations in one unknown, αp. Rearranging (86) gives

(αp + 1)C
0
1ē1 = C

0
2ē1 (87)

where

C1 ≡ N21 +N22, C2 ≡ H [N21 +N22] + [δG+ I]N11
By the definitions of B and M , N11 is diagonal. Noting (61) and (65), it can

be seen that Gē2 = Hē2 = 02, which implies that N22 is lower diagonal. Taken

together, these results imply that the two equalities in (87) are satisfied if C1,11 6=
0, where Cij is the (i,j)-th element of matrix C, since in (87) both sides of the

second equality are zero and a solution for αp can be obtained from the first

equality and is given by:

αp =
C2,11
C1,11

− 1 (88)
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A.4 Proof of Lemma 7

Recall that Ψ(k)t is defined as

Ψ
(k)
t ≡


Ēkt (θt)
Ēk−1t (θt)

...
Ēt (θt)
θt

 (89)

Proceeding in a similar way as in the proof of Lemma 5, we begin by conjecturing

the form of a state-space model in terms of Ψ(k)t and the observable vector ysigt (i).

We then determine the stochastic process of Ψ(k)t by solving each firm’s optimal

filtering problem and averaging across firms. Accordingly, for now assume (to be

confirmed later) that the state Ψ(k)t follows the Markov process

Ψ
(k)
t = B(k)Ψ

(k)
t−1 + b(k)ut (90)

where

B(k) ≡


Bk,k Bk,k−1 · · · Bk,1 Bk,0
0n Bk−1,k−1 · · · Bk−1,1 Bk−1,0

0n 0n
. . .

...
...

...
...

. . . B1,1 B1,0
0n 0n · · · 0n B0,0

 (91)

b(k) ≡


bk
bk−1
...
b1
b0

 (92)

B0,0 ≡ B, b0 ≡ b (93)

The state-space model is completed by specifying the observation equation. This

is given by

ysigt (i) = ZΨΨ
(k)
t + zvt(i)

where

ZΨ ≡ [0ny×nk Z1]

We wish to determine the matrices Bi,j and bi in terms of known parameters of

the model.
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As before, assume that a time-invariant filter exists that is also independent

of i, with the Kalman gain denoted by KΨ ≡
£
K 0
k+1K

0
k · · ·K 0

1

¤0
. Let Ψ(k)t|s (i) ≡

EisΨ
(k)
t . The updating equation from the Kalman filter for firm i is

Ψ
(k)

t|t (i) = B(k)Ψ
(k)

t−1|t−1(i) +KΨ

³
ysigt (i)− ZΨB(k)Ψ(k)t−1|t−1(i)

´
Averaging across i and rearranging gives

Ψ(k)t|t = B(k)Ψ
(k)
t−1|t−1 +KΨZΨ

³
Ψ
(k)
t −B(k)Ψ(k)t−1|t−1

´
= B(k)Ψ

(k)
t−1|t−1 +KΨZ1

¡
θt −Bθt−1|t−1

¢
(94)

The first n equations of the system (94) can be written as

Ēk+1t (θt) =
kX
i=0

Bk,iĒ
i+1
t−1 (θt) +Kk+1Z1

¡
θt −Bθt−1|t−1

¢
=

kX
i=1

Bk,iĒ
i+1
t−1 (θt) + (Bk,0 −Kk+1Z1B) Ēt−1 (θt)

+Kk+1Z1Bθt−1 +Kk+1Z1but (95)

Yet, the conjectured law of motion for Ēk+1t (θt) implied by (90) is

Ēk+1t (θt) =

k+1X
i=0

Bk+1,iĒ
i
t−1 (θt) + bk+1ut (96)

Thus, the law of motion for Ēkt (θt) can be obtained by first matching coefficients

in (95) and (96), to get

Bk+1,0 = Kk+1Z1B

Bk+1,1 = Bk,0 −Kk+1Z1B

Bk+1,i = Bk,i−1, i = 2, 3, . . . , k + 1

bk+1 = Kk+1Z1b

and, in turn, noting that these equalities imply

Bk,0 = KkZ1B (97)

Bk,i = (Kk−i −Kk+1−i)Z1B, 1 ≤ i < k (98)

Bk,k =
¡
Z−11 −K1

¢
Z1B (99)

bk = KkZ1b (100)
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These arguments also apply to lower-order expectations to obtain analogous ex-

pressions for Bi,j (i = 1, 2, . . . , k − 1; j = 0, 1, . . . , k − 1; i ≥ j) and bi (i =

1, 2, . . . , k − 1).
The elements of KΨ remain to be determined. As before, the assumption that

a time-invariant filter exists means

KΨ = ΣΨZ
0
ΨF

−1
Ψ (101)

where

ΣΨ ≡ var
³
Ψ
(k)
t −Ψ(k)t|t−1(i)

´
= B(k)VΨB

0
(k) + b(k)Ωub

0
(k) (102)

VΨ ≡ var
³
Ψ(k)t −Ψ(k)t|t (i)

´
= ΣΨ − ΣΨZ 0ΨF−1Ψ ZΨΣΨ (103)

FΨ ≡ var
³
ysigt (i)− ZΨΨ(k)t|t−1(i)

´
= ZΨΣΨZ

0
Ψ + σ

2
vzz

0 (104)

By the definition of ZΨ, (101) implies that

Kk+1 = Σk,0Z
0
1F

−1 (105)

where

Σk,0 ≡ cov(
£
Ēkt θt − Eit−1

¡
Ēkt θt

¢¤
,
£
θt − Eit−1 (θt)

¤
)

and Σ0,0 ≡ Σ11. Substituting (103) and (104) into (102), we obtain a Riccati

equation for ΣΨ:

ΣΨ = B(k)

³
ΣΨ − ΣΨZ 0Ψ

¡
ZΨΣΨZ

0
Ψ + σ

2
vzz

0¢−1 ZΨΣΨ´B0(k) + b(k)Ωub0(k) (106)

This last equation can be simplified and partitioned to yield an expression for

Σk,0:

Σk,0 =

kX
i=0

Bk,iΣi,0
¡
B − Σ11Z 01F−1Z1

¢0
+ bkΩub

0 (107)

Notice that (107) cannot be directly recursively solved for Σk,0 (given Σ11)

because the matrices {Bk,i} and {bk} themselves are functions of {Kk}, which, in
turn, are functions of {Σk,0}. Instead, we can invert (105) to get an expression
for Σk,0 in terms of Kk+1 (and Σ11) and substitute this and (97)-(100) into (107)

to obtain a recursive set of equations for Kk in terms of known parameters. The

resulting set of equations has the form:

Kk+1 = D1Kk+1D2 +D3 (108)
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where

D1 ≡ Z 01F
−1 ¡B − Σ11Z 01F−1Z1B¢

D2 ≡ F (Z 01)
−1A0 − Z1Σ11

D3 ≡ D3 (Kk, Kk−1, . . . , K1)

≡ Z 01F
−1
"
KkZ1BΣ11 +

k−1X
i=1

(Kk−i −Kk+1−i)Z1BKi+1F (Z
0
1)
−1
#
·£

B − Σ11Z 01F−1Z1
¤0
+KkZ1bΩub

0

BothD1 and D2 are functions of known parameters. Applying the vec(·) operator
to (108), and rearranging, the unique solution of the elements of Kk+1 (k ≥ 1)

can be found recursively from

vec(Kk+1) =
£
In·ny − (D0

2 ⊗D1)
¤−1

vec(D3 (Kk, Kk−1, . . . , K1))
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Table 1

Baseline Calibrated Parameters

Preferences and Technology
σ 2
ζ 0.3
ν 2
² 11

Markup 10%
Natural Rate of Interest
ρ 0.8
σ2ε (1− ρ2)%/quarter

var(rnt ) 1%/quarter
Signals

σ2v 0.2%/quarter
σ2η 0.2%/quarter
Monetary Policy

λ 1
δ 1
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Figure 1

Effects of Changing the Markup and Precision of Public Signals:

Sample Realisations of the Output Gap and Price Level
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Notes: Each panel plots one sample realisation of the price level against the
output gap. The same sample of randomly drawn shocks is used in each panel
when simulating the time paths of the endogenous variables. Data is constructed
for 1100 periods, but the first 100 observations are dropped to minimise the
influence of initial values. The price level and output gap are in percentages.
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Figure 2
Impulse Responses of Higher-Order Expectations of Natural Rate of Interest:

Shock to Natural Rate of Interest
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Notes: The figure shows the impulse responses of higher-order expectations of the
natural rate of interest (in percentages) with respect to a one-standard deviation
innovation in the natural rate of interest. The solid line is the path followed by
the natural rate of interest, while the other lines correspond to successively higher
orders k of expectations, from k = 1 (o) to k = 8 (*).
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Figure 3
Impulse Responses of Higher-Order Expectations of Natural Rate of Interest:

Shock to Public Signal
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Notes: The figure shows the impulse responses of higher-order expectations of the
natural rate of interest (in percentages) with respect to a one-standard deviation
innovation in the shock to the public signal. The solid line is the path followed
by the public signal shock, while the other lines correspond to higher-order ex-
pectations: k = 1 (o), k = 2 (x), k = 4 (¤) and k = 8 (*).
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Figure 4
Impulse Responses of Higher-Order Expectations of Natural Rate of Interest:

Effects of Public Information
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Notes: The figure shows the impulse responses of higher-order expectations of the
natural rate of interest (in percentages) with respect to a one-standard deviation
innovation in the natural rate of interest. The solid line is the path followed by
the natural rate of interest. The solid lines with symbols represent the case when
there are both public and private signals present, while the dashed lines are the
case of private signals only. The lines distinguished by symbols, whether solid or
dashed, correspond to different degrees of higher-order expectations: k = 1 (o),
k = 2 (x), k = 4 (¤) and k = 8 (*).
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Figure 5
Variances of Endogenous Variables with Respect to Precision of Public Signal
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Notes: The figure plots the variances of endogenous variables with respect to the
precision of the innovation in the public signal. The precision of the private signal
is set equal to 10 percent (solid line) or 2 percent (dashed line). Inflation and
the interest rate are expressed in annualised percentages, while the price level,
output gap and precision of signal innovations are in percentages.
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