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Abstract

In this paper, we establish a convergence result for equilibria in systems

of social interactions with many locally and globally interacting players. As-

suming spacial homogeneity and that interactions between different agents

are not too strong, we show that equilibria of systems with finitely many

players converge to the unique equilibrium of a benchmark system with in-

finitely many agents. We prove convergence of individual actions and of

average behavior. Our results also apply to a class of interaction games

(Morris 1997).
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1 Introduction

Large differences in aggregate social or economic variables are often observed in the absence of

corresponding differences in fundamentals. To accommodate such phenomena, a model must

generate a multiplier that transforms small changes in exogenous variables into large changes

of endogenous variables. Models of social interactions are capable of displaying multiplier

effects. In these models an agent’s behavior depends, among other things, on the choice of

other agents in some reference group and/or the empirical distribution of actions throughout

the whole population. In the presence of positive complementarities where the utility of

undertaking an action increases with the number of agents undertaking the same action, a

change in fundamentals has a direct effect on the behavior of an agent and an indirect effect

through the interaction with others that are of the same sign. If these complementarities are

powerful enough, small differences in fundamentals are amplified. As a result, significantly

different aggregate activities may emerge from slightly distinct fundamentals.

In many examples in the literature an agent’s utility is influenced, among other factors,

by the average behavior of the population. In this case, the modelling is more naturally

done in the context of an infinite number of agents, where one can appeal to law of large

numbers. Horst and Scheinkman (2005) study a general model that allows for local and

global interactions and prove existence, uniqueness and homogeneity of equilibria for a class

of models with an infinite number of agents. In this paper we show that for a class of these

models, the equilibrium in a system with an infinite number of agents is the limit of equilibria

of large finite systems that naturally approximate the infinite system. Our limit theorem can

be viewed as a justification for the analysis of infinite systems. As Horst and Scheinkman

(2005) did to establish uniqueness, we assume a form of spacial homogeneity and limits on the

strength of social interactions. The results in this paper establish convergence of equilibrium

actions of individuals and also the convergence of average actions. These results can be

applied also to certain interaction games (see Morris (1997)). Strictly speaking, our results

apply to games that satisfy the average action property, as defined by Morris and Shin (2005)

- that is when the utility of a player depends on the average action of the other players.1

The rest of the paper proceeds as follows. In Sections 2 and 3 we recall the definition

of systems of social interactions and existence and uniqueness results for infinite systems,

respectively. Section 4 states the main result of this paper: a convergence theorem for

equilibria of finite systems. The proof is given in Section 5.
1In principle, our results could also be extended to deal with the expected utility case. In fact in Horst and

Scheinkman (2005) we deal with utility functions with arbitrary dependence on the distribution of actions.

Convergence results covering this general case would however require substantial increases in the complexity

of the notation and analysis.
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2 Systems of random social interactions

In this section we recall the definition of systems of random social interactions given by Horst

and Scheinkman (2005). Each agent is indexed by an a ∈ A, where A is a subset of the lattice

Zd of d-dimensional vectors with integer entries. An agent will choose an action xa from a

common compact and convex set of possible actions X. An action profile x = {xa}a∈A is a

list of actions xb for each b ∈ A. The configuration space

S :=
{

x = {xb}b∈A : xb ∈ X
}

of all action profiles is equipped with the product topology, and hence it is compact. The

utility function of the agent a ∈ A may also depend on the actions chosen by other agents

b ∈ A. In addition, it is random, that is, it also depends on the realization of a random

variable ϑa defined on the (canonical) probability space (Ω,F , P). In short, agent a’s utility

is of the form

Ûa(xa, {xb}b6=a, ϑ
a).

In models of social interactions, the influence of other agents’ actions on a player’s utility

appears in two distinct ways. The first is the impact of the actions of a particular set of

neighbors. The second is through the distribution of actions throughout the whole popula-

tion. We call the former the local component of social interactions and the latter the global

component. To describe these distinct influences, and to allow for variable degrees of influence

on the utility of an agent by the choices of their neighbors, we write ϑa = (Ja, θa) for each

agent a ∈ A. The random variable θa describes a taste shock and assumes values in R. The

random variable Ja = (Ja,b)b6=a, takes values in RA. The realization of the random variable

Ja,b defines the effect the choice of the neighbor b 6= a has on the utility of the agent a ∈ A.

To accommodate the global component, Horst and Scheinkman (2005) allowed the utility

function to depend also on the distribution of agents’ actions. To simplify our exposition

and proofs we will assume, as is often done in models of social interactions, that only the

average action %(x) associated with the action profile x affects utility. Not all profiles have

an empirical average, but we will deal with this problem below.

We assume that the utility function of the agent is of the form

Ûa(xa, {xb}b6=a, J
a, θa) ≡ Û(xa, {Ja,bxb}b6=a, %(x), θa). (1)

It has for arguments the actions chosen by the different players and the empirical mean of

actions. The choice of these arguments reflects the fact that we think of the realizations of

the random variable (Ja, θa) (a ∈ A) as “frozen.” The reference group of agent a is defined

as

N(a) :=
{

b ∈ A : Ja,b 6= 0
}

.
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Different realizations of the random variables Ja may yield different peer groups, and so

different interaction patterns may emerge. The actions xb of agents that do not belong to

N(a) affect a’s optimal action only indirectly through their impact on the distribution %(x).

The representation of the utility function given by equation (1) is not necessarily unique, and

at this point it is only useful as an interpretation of the interaction patterns.

The special case Ja,b = 0 for all a, b ∈ A corresponds to a mean-field interaction where an

agent’s utility depends on the actions taken by others only trough the distribution of actions.

If interactions are purely global the utility function takes the form

Ûa(xa, {xb}b6=a, J
a, θa) ≡ Û(xa, %(x), θa).

Continuous action versions of the models studied in Brock and Durlauf (2001) and Durlauf

(1996) may be viewed as mean-field interactions. Brock and Durlauf (2001) and Durlauf

(1996) consider systems with finitely many agents and assume that an agent’s utility function

is of the form

Û(xa, θa) = u(xa) +
1
|A|

∑
b∈A

xaEax
b + f(xa, θa) (2)

where Eax
b denotes the expectation of agent a about the behavior of agent b ∈ A. In partic-

ular, an agent’s utility does not depend on the actions taken by his neighbors, but only on

his expectation about their behavior. Brock and Durlauf (2001) argue that in their spatially

homogeneous setup, in equilibrium, all agents share the same expectations about the behav-

ior of their neighbors. This means that, in equilibrium, Eax
b = % for some % ∈ X and for all

a, b ∈ A. For |A| → ∞, assuming that taste shocks are i.i.d, consistency requires %(x) = % for

an equilibrium action profile so a model with the alternative utility function

Û(xa, %(x), θa) = u(xa) + xa%(x) + f(xa, θa). (3)

has equilibria that contain all equilibria of the original model. Hence, in the limit of an

infinite set of agents, any property that is true for all equilibria of a model with utilities

defined by (3), holds automatically for utility functions given by (2).

Example 2.1 A utility function of the form

Ûa(xa, {xb}b6=a, J
a, θa) = u(xa) + xa

∑
b∈N(a)

Ja,bxb + f(xa, %(x), θa) (4)

captures a situation where an agent’s payoff depends on the actual actions taken by his neigh-

bors rather than his expectation about his neighbors actions. Here, the random variables Ja,b

specify the effect of an increase in the action by a neighbor b ∈ N(a) on the marginal utility

of the agent a ∈ A.
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2.1 Infinite systems of random social interactions

The general definition of a utility function given in equation (1) is not convenient for estab-

lishing the existence of an equilibrium in models with infinitely many agents. An existence

proof typically requires continuity of the utility functions and compactness of the configu-

ration space S. In many interesting examples, the configuration x ∈ S enters the utility

function of an agent a ∈ A both locally through the actions xb taken by his neighbors and

globally via the average behavior throughout the entire population. In case of an infinite

number of agents, S is compact in the product topology, but if an agent’s utility function

depends on x through the empirical average %(x) in a non-trivial manner, it is not a contin-

uous function of x.2 In addition, a configuration x does not necessarily have an empirical

average. To solve these difficulties, Horst and Scheinkman (2005) used a method introduced

in Föllmer and Horst (2001) and Horst (2002), that treats the empirical distribution %(x) of

individual actions associated with x ∈ S as an additional parameter of the utility function.

Specifically, in models with infinitely many agents individual utility functions are defined as

a continuous map defined on the extended state space S ×X × Ω. Continuity of the utility

function then translates into a condition on the random variable Ja. The impact of agents

far away must decrease sufficiently fast. In particular, continuity rules out the existence of a

“leader” whose actions affect all agents equally.

We are now ready to define an infinite system of random social interactions. This is a

slightly simplified version of the definition used in Horst and Scheinkman (2005).

Definition 2.2 A system of random social interactions is a vector

E = (A, P, X, (Ua)a∈A)

with the following components:

(i) A ⊂ Zd is the set of agents.

(ii) P is a probability measure on (Ω,F).

(iii) X ⊂ Rl is a common compact, convex, action space.

(iv) Ua : S ×X × RA × R → R a measurable mapping of the form

Ua(xa, {xb}b6=a, %, Ja, θa) ≡ U(xa, {Ja,bxb}b6=a, %, θa),

2The class of continuous functions f : S → R which depend only on finitely many coordinates is dense in

the space C(S) of all continuous functions on S equipped with the topology of uniform convergence. Thus,

f ∈ C(S) depends on an action profile x ∈ S, at least approximately, only through finitely many actions.
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and such that for P-a.e. pair (Ja, θa), the map

(x, %) 7→ Ua(xa, {xb}b6=a, %, Ja, θa)

is continuous and strictly concave in xa; the utility function of agent a ∈ A.

A-priori there is no consistency requirement between the configuration x ∈ S and the

“empirical average” % in the definition of the utility function U . In particular, it is not neces-

sary that we can associate an empirical average with the profile x. However, consistency will

be required in equilibrium. An equilibrium is a random action profile g(J, θ) = {ga(J, θ)}a∈A

with empirical average %(J, θ) such that all agents play a best reply against their neighbors’

actions and the (perceived) average choice %(J, θ), i.e.,

ga(J, θ) = argmaxxa∈XU
(
xa, {Ja,bgb(J, θ)}b6=a, %(J, θ), θa

)
(a ∈ A).

It should be emphasized that for equilibrium analysis it is equivalent to use the continuous

utility function U on the extended state space that involves the variables (x, %) or to use the

possibly discontinuous utility function Û in (1) that depends only on the actions profile x,

since, in equilibrium we will require the “forecast” of the average choice % to coincide with

the empirical average of the action profile x. In terms of Û all agents play a conditional best

reply against the actual actions taken by all the players, given their private taste shocks and

the interaction pattern so

ga(J, θ) = argmaxxa∈X Û(xa, {gb(J, θ)}b6=a, J
a, θa) (a ∈ A).

To prove our limit results we will place further restrictions on E .

Assumption 2.3 The system of random social interactions satisfies:

(i) The set of agents is given by the d-dimensional integer lattice, that is, A = Zd

(ii) P is an ergodic probability measure on (Ω,F), that is the distribution of the random

vector

(J, θ) = (Ja, θa)a∈A

is stationary and satisfies a 0-1-law on the σ-field of all shift invariant events.

(iii) There exists M ∈ N such that P[Ja,b = 0] = 1 for |a− b| > M.

The first two items in this Assumption state that E is ergodic a property that was used in

Horst and Scheinkman (2005) to prove uniqueness of equilibria and to show, in particular, the

existence of averages %(x) associated with the candidate equilibrium actions x. The last item
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in the Assumption simplifies the proofs and guarantees that the dependence of the utility of

an agent on the actions of other agents decays “fast enough.” In what follows we will always

maintain Assumption 2.3.

Our goal is to show that equilibria of infinite systems can be viewed as approximations

of equilibria of finite, but large systems. In the following section we propose a way to embed

models with finitely many agents into infinite systems. Our approach is analytically con-

venient for deriving properties of equilibrium actions when the number of agents tends to

infinity.

2.2 Finite systems of social interactions

There are many ways in which finite systems can be embedded into infinite systems and in

which infinite systems can be approximated by finite ones. A natural approach is to consider

the increasing sequence {An}n∈N, An := [−n, n]d∩A, of finite sub-populations and investigate

convergence properties of equilibrium action profiles as the number of agents tends to infinity.

In models with local interactions where an agent’s utility depends on the choices of neighbors,

there may be agents in An with neighbors not belonging to An. We therefore fix a boundary

condition y ∈ S and assume that all the player b /∈ An take the action yb. In such a situation

the utility function of agent a ∈ An takes the form

Un,y
(
xa, {xb}b6=a, J

a, θa
)

:= U
(
xa, {x̂b}b6=a, %

n,y(x), Ja, θa
)

(5)

where the configuration x̂ coincides with x on An and with the boundary condition y on the

complement Ac
n. Furthermore, %n,y(x) denotes the average choice by the agents in An i.e.,

x̂b :=

{
xb if b ∈ An

yb if b /∈ An

and %n,y(x) :=
1
|An|

∑
a∈An

xa. (6)

For finite systems En,y = (An, X, P, Un,y) the question of existence of an equilibrium

gn,y = {gn,y
a }a∈An follows from continuity and strict concavity of the utility functions along

with compactness and convexity of the action spaces via a standard fixed point argument.

Uniqueness can be guaranteed under additional restrictions on the strength of interactions.

To prove a convergence result for the sequence of random variables {gn,y}n∈N we also need

an existence and uniqueness result for an equilibrium g = {ga}a∈A in the benchmark model

with infinitely many agents. In a second step we prove almost sure convergence of {gn,y}n∈N

to g. In this sense, an infinite system E can be viewed as an approximation of finite, but

large systems En,y.
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3 Equilibria in infinite systems of social interactions

This section recalls results on existence and uniqueness of equilibria in infinite systems of

random social interactions established by Horst and Scheinkman (2005). If interactions are

purely local, existence of equilibria follows from continuity along with strict concavity of the

utility functions and compactness and convexity of the actions spaces by a standard fixed

point argument. In the case of an infinite number of locally and globally interacting agents

we have the additional requirement that, in equilibrium, the agents’ forecast of the average

choice must equal the actual average of actions, and the question of existence and uniqueness

requires additional assumptions. Unless the equilibrium action profiles display a form of

spatial homogeneity, there is no reason expect that the these profiles have an average. As a

result, we consider only homogeneous equilibrium action profiles. To this end, we denote by

T a the a-fold iteration of the canonical shift operator on Ω.

Definition 3.1 A random variable g(J, θ) = {ga(J, θ)}a∈A is a homogeneous equilibrium for

the infinite system E = (A, P, X, U) if:

(i) No agent has an incentive to deviate from the proposed strategy. That is, almost surely

ga(J, θ) = argmaxxa∈XU (xa, {gb(J, θ)}b6=a, %(g(J, θ)), Ja, θa) (a ∈ A). (7)

(ii) The action profile g(J, θ) is homogeneous, i.e.,

ga(J, θ) = g0 ◦ T a(J, θ). (8)

For a homogeneous equilibrium action profile g the ergodic theorem shows that the asso-

ciated average action exists and is almost surely independent of the actual interaction pattern

and the realized vector of taste shocks because P is ergodic. That is, there exists % such that

lim
n→∞

1
|An|

∑
a∈An

ga(J, θ) = % P-a.s. (9)

In particular, the existence of an average action implicitly assumed in (7) is a property of

homogeneous equilibria, not a condition of equilibrium action profiles. Of course, homoge-

neous equilibria are unlikely to exist unless, as we assumed, agents’ utility functions and the

probabilistic structure of interaction patterns and taste shocks are themselves homogeneous.

3.1 Microscopic equilibria of infinite systems

For infinite systems the question of existence and uniqueness of equilibria can conceptually be

separated into two parts. The first part consists of taking as given for each (J, θ) an empirical
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average of actions and asking whether some prescribed profile of actions maximizes utility

of each agent when he takes as given the actions of his neighbors and the given empirical

average. The second part consists in checking whether the actions assigned to each agent

generate the prescribed average choice. To separate the two problems, Horst and Scheinkman

(2005) introduced the notion of microscopic equilibria.

Definition 3.2 An action profile g(%, J, θ) = {ga(%, J, θ)}a∈A is a microscopic equilibrium

associated with % ∈ X if

ga(%, J, θ) = arg max
xa∈X

U(xa, {gb(%, J, θ)}b6=a, %, Ja, θa) P-a.s. (10)

for all a ∈ A. The equilibrium is homogeneous if

ga(%, ·) = g0(%, ·) ◦ T a for all a ∈ A.

A microscopic equilibrium associated with % is an action profile where each agent max-

imizes his utility given the actions taken by all the other agents and given the common

anticipated average % of actions throughout the entire system. What distinguishes a mi-

croscopic equilibrium g(%, J, θ) from an equilibrium is the fact that the empirical average

associated with the configuration g(%, J, θ) does not necessarily coincide with %. Of course, a

microscopic equilibrium associated to some %∗ is an equilibrium if

lim
n→∞

1
|An|

∑
a∈An

ga(%∗, J, θ) = %∗ P-a.s. (11)

While the existence of a microscopic equilibrium for infinite systems follows from stan-

dard arguments there is no guarantee that this equilibrium is homogenous. To the best of our

knowledge no general existence result for homogenous equilibrium in ergodic systems is avail-

able except for the case where E has a unique microscopic equilibrium associated with %. In

this case Lemma 15 of Horst and Scheinkman (2005) guarantees that g(%, ·) is homogeneous.

3.2 Equilibria of infinite systems

The proof of existence and uniqueness of equilibria in infinite systems requires additional

assumptions on the strength of interactions between different agents. We need to place a

qualitative bound on the dependence of an agent’s conditional optimal action on his neighbors’

choices and the perceived average behavior. These bounds can be specified in terms of agent

0’s best reply function

h0 ({xa}a 6=0, %, J, θ) := arg max
x0∈X

U(x0, {xa}a 6=0, %, J0, θ0). (12)
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Modulo shifts, the same bounds can then be applied to the conditional best reply function ha

of an arbitrary agent a ∈ A because the homogeneity property of the utility functions yields

ha

(
{xb}b6=a, %, ·

)
= h0

(
{xb−a}b6=a, %, ·

)
◦ T a. (13)

The following definition allows us to measure the dependence of an agent’s best reply on

another agent’s action and the anticipated average action.

Definition 3.3 The best reply function h0 is Lipschitz continuous if there exist uniformly

bounded random variables (La)a∈A and L% such that

|h0 ({xa}a 6=0, %̂, J, θ)− h0 ({ya}a 6=0, %̃, J, θ)|

≤
∑
a 6=0

La
(
J0, θ0

)
|xa − ya|+ L%

(
θ0

)
|%̂− %̃| P-a.s.

Given an interaction profile J and a configuration of taste shocks θ, the quantity La

may be viewed as a bound for the influence an action taken by the agent a ∈ A has on

the optimal choice of agent 0 ∈ A. In a similar manner, the random variable L% measures

the dependence of agents 0’s best reply on his expectation about the population behavior.3

Existence and uniqueness of equilibria can be established for systems E in which the agents

best reply functions satisfy the following Moderate Social Influence (MSI) condition in its

strong form.

Definition 3.4 Let the agents’ best reply functions be Lipschitz continuous and put

α1 := sup
J0,θ0

∑
a∈A

La(J0, θ0) and α2 := sup
θ

L%(θ0).

We say that E satisfies the MSI condition, respectively, the MSI condition in its strong form,

if the constants La and L% can be chosen to satisfy

α1 ≤ α < 1 respectively α1 + α2 ≤ α < 1. (14)

The following existence and uniqueness result is a consequence of Proposition 18 and

Theorem 19 of Horst and Scheinkman (2005), and plays a crucial role in our proofs.

Theorem 3.5 A system of social interactions E that satisfies the Moderate Social Influence

condition in its strong form has a unique equilibrium. That is, there exists a unique (up to
3We may choose La = 0 for |a| > M because the agents interact locally only with their nearest neighbors,

due to Assumption 2.3 (iii). For sufficiently smooth utility functions, La and L% can be expresses in terms of

cross partial derivatives of U . We refer the reader to Section 4.3 in Horst and Scheinkman (2005) for examples.
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a set of measure zero) spatially homogeneous random vector g(J, θ) = {ga(J, θ)}a∈A whose

empirical average %∗ is almost surely independent of J and θ,

lim
n→∞

1
|An|

∑
a∈An

ga(J, θ) = %∗ P-a.s.

such that each agent plays a best reply against his neighbors actions and the perceived average

of actions %∗:

ga(J, θ) = ha ({gb(J, θ)}b6=a, %
∗, J, θ}) P-a.s.

For finite systems equilibria always exist, and the associated average actions typically

depend on the realization of the random variables (J, θ). Our convergence result stated

below shows that the sequence of average actions converges to the average action of the

unique equilibrium of the infinite system if the interaction between different agents is not too

strong. In finite but large systems the average choice throughout the whole population can

thus be approximated by a deterministic quantity.

4 Approximation of large systems

In this section we will investigate convergence of the equilibria of a sequence {En,y}n∈N of

finite systems. Given the boundary condition y on An, we can always choose La = 0 for

a /∈ An, and hence the strong MSI condition guarantees existence of a unique equilibrium

gn,y(J, θ) = {gn,y
a (J, θ)}a∈An for the system En,y. It turns out that each individual action

and the average action in the equilibrium profiles {gn,y}n∈N converge to the individual and

average actions in the unique equilibrium of the infinite system. More precisely, we have the

following result. The proof requires some preliminaries and will be given in Section 5.

Theorem 4.1 Let En,y = (An, X, P, Un,y) be finite systems of social interactions that satisfy

the Moderate Social Influence condition in its strong form.

(i) For any agent a ∈ A the sequence of equilibrium actions {gn,y
a }n∈N converges almost

surely to the corresponding equilibrium action ga in the infinite system.

(ii) The sequence of empirical averages {%n,y}n∈N converges almost surely to the empirical

average % associated with the equilibrium action g.

That is, the impact of a boundary on both the individual and average behavior vanishes when

the number of agents tends to infinity.
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For infinite systems with local and global interactions any approximation must take a

stand on what happens to agents at the “boundary” of the set An. However, for mean field

system this care is not necessary. The approximating finite systems have exactly the same

utility functions as the infinite system except that the argument is the empirical average in

the finite systems. Hence our Theorem 4.1 is a generalization of Proposition 5 in Glaeser and

Scheinkman (2001) for models in which an agent’s utility only depends on the mean of other

agents action and shocks are iid. We state this result as a corollary.

Corollary 4.2 Let E be a mean field system. If L% ≤ α < 1 almost surely, then the sequence

of unique equilibria in Enconverges almost surely to the unique equilibrium of E.

5 Proof of the approximation result

In this section we prove our approximation result for large, but finite systems of social in-

teractions. The key is to establish macroscopic convergence, i.e., to prove that the sequence

of average actions converges almost surely to the average action associated with the unique

equilibrium of the infinite system. To this end, we need to show that the impact of the

boundary condition on the equilibrium action gn,y
a of the agent a ∈ An decreases to zero

uniformly in the agent’s distance to the boundary of An as n →∞. The idea is to view gn,y
a

as one component of the limit of a deterministic dynamic process starting in gn,x where the

agents myopically optimize their behavior in reaction to the choices of others in the previous

period, given the boundary condition y on Ac
n. In general such a process is not guaranteed to

converge. However, under our MSI condition convergence follows from, e.g., Proposition 4 in

Glaeser and Scheinkman (2001). In a second step we apply the quantitative bounds on the

impact of boundary conditions on individual equilibrium action to prove that, in the limit of

an infinite set of agents, the average behavior is independent of boundary conditions. A third

step consists of showing that convergence of averages implies convergence of individual ac-

tions. Finally, we show that in large systems the average choice is almost surely independent

of the actual realization of taste shocks and interaction patterns.

5.1 Continuous dependence of microscopic equilibria on average actions

Before establishing convergence of equilibria, it is convenient to prove continuous dependence

of microscopic equilibria on the perceived average behavior.

Lemma 5.1 Under the assumptions of Theorem 4.1 the homogeneous microscopic equilibria

g(%, ·) depend continuously on %. That is, for all a ∈ A and almost surely

lim
n→∞

ga(%n, ·) = ga(%, ·) if lim
n→∞

%n = %.

12



Proof: Since g(%, ·) is a homogeneous microscopic equilibrium,

g0(%n, ·) = h0 ({ga(%n, ·)}, %n, ·) and ga(%n, ·) = g0(%n, ·) ◦ T a

where T a denotes the a-fold iteration of the canonical shift operator. Thus, Lipschitz conti-

nuity of the best reply function yields

|g0(%n, ·)− g0(%, ·)| ≤ |h0 ({ga(%n, ·)}a 6=0, %n, ·)− h0 ({ga(%n, ·)}a 6=0, %, ·)|

+ |h0 ({ga(%n, ·)}a 6=0, %, ·)− h0 ({ga(%, ·)}a 6=0, %, ·)|

≤ L%(·)|%− %n|+
∑
a∈A

La(·)|g0(%n, ·) ◦ T a − g0(%, ·) ◦ T a|,

and so our weak interaction condition shows that

|g0(%n, ·)− g0(%, ·)| ≤ 1
1− α

|%n − %| P-a.s.

2

Proposition 18 of Horst and Scheinkman (2005) guarantees that for a homogeneous mi-

croscopic equilibrium action profile g(%, ·) the associated average action is almost surely inde-

pendent of the realization of the random variable (J, θ). The ergodic theorem yields a P-null

set N% which may depend on % such that

lim
n→∞

1
|An|

∑
a∈An

ga(%, J, θ) = µ[%] for all (J, θ) ∈ N c
% .

Continuous dependence of microscopic equilibria on average choices allows us to show that

the set N% can actually be chosen independently of %.

Lemma 5.2 There exists a set N of P-measure zero such that

lim
n→∞

1
|An|

∑
a∈An

ga(%, J, θ) = µ[%] for all (J, θ) ∈ N c and each % ∈ X.

Proof: By Lemma 35 in Horst and Scheinkman (2005) that map % 7→ µ[%] is continuous and

hence uniformly continuous because X is compact. Thus, for any ε > 0 there exists δ > 0

such that

|µ[%]− µ[%̂]| ≤ ε

2
if |%− %̂| < δ.

Furthermore, there exists %1, . . . , %n(ε) ∈ X such that X is contained in the union of all the δ-

balls B1, . . . , Bn(ε) centered at %1, . . . , %n(ε). For any such %i there exists a set N%i of measure

zero such that

lim
n→∞

1
|An|

∑
a∈An

ga(%i, J, θ) = µ[%i] for all (J, θ) /∈ N%i .

13



Let us then fix % ∈ X and (J, θ) /∈ N%1 ∪ · · · ∪ N%n(δ)
. Clearly, % belongs to some ball Bi so

Lemma 5.1 yields

lim sup
n→∞

∣∣∣∣∣ 1
|An|

∑
a∈An

ga(%, J, θ)− µ[%]

∣∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣∣ 1
|An|

∑
a∈An

ga(%i, J, θ)− µ[%i]

∣∣∣∣∣ + ε = ε.

A reverse inequality holds for the lim inf. This proves the assertion, since ε > 0 is arbitrary.

2

5.2 Impact of the boundary conditions

We now establish a quantitative bound on the impact of boundary conditions on individual

equilibrium actions in finite systems.

Proposition 5.3 Let x, y ∈ S. Under the assumption of Theorem 4.1 there exists, for every

ε > 0, some constants N, k ∈ N, that do not depend on x, y, such that

|gn,x
a (J, θ)− gn,y

a (J, θ)| < ε

for all (J, θ) ∈ N c, each n ≥ N and every a ∈ An−k.

Proof: We fix a pair (J, θ) ∈ N c of interaction patterns and taste shocks and recall that

T a denotes the canonical a-fold shift operator on A. To simplify the notation, we suppress

the dependence of equilibrium actions, best reply functions, etc. on (J, θ). We assume with

no loss of generality that the diameter of the action set is at most one, and consider only the

case M = 1 of a nearest neighbor interaction. Similar arguments apply for arbitrary M ∈ N.

Our idea is then to view the equilibrium action gn,y
a as the result of a sequential myopic

best reply dynamics when in every period the agents chose their optimal actions in reaction

to the choices of all the other players in the previous period, given the boundary condition y

on Ac
n. More precisely, we define a deterministic dynamic process {Gn

t }t∈N, Gn
t = (Gn

t (a))a∈A

by

Gn
0 (a) =

{
gn,x
a if a ∈ An

ya if a /∈ An.
and Gn

t+1(a) =

{
h0 ({Gn

t (b)}b6=a, %
n
t , ·) ◦ T a if a ∈ An

ya if a /∈ An

for t ≥ 1 where %n
t denotes the average associated with the actions Gn

t (a) taken by the agents

a ∈ An at time t. In the first period t = 1 only the 2d(n−1)d−1 agents on the boundary of An

change their actions. The resulting impact on the average choice is of the order n−1. In the

second period all agents react to the change of the average. In addition, all the agents that

are at most 2 away from the boundary modify their choices in reaction to changes of their

14



neighbors actions, etc. By Proposition 4 in Glaeser and Scheinkman (2001) the sequence

{Gn
t }t∈N converges to the unique equilibrium gn,y for En,y because the finite system satisfies

our MSI condition. In terms of the quantities

Ln
t (a) := Gn

t (a)−Gn
t−1(a) and Ln

t :=
1
|An|

∑
a∈An

|Ln
t (a)|

we have

|gn,y
a − gn,x

a | ≤
∑
t≥1

|Ln
t (a)|.

The goal is thus to establish an upper bound for the random variables Ln
t (a) and to prove

that
∑

t≥1 |Ln
t (a)| is small whenever n is large enough. To this end, we proceed in four steps.

Step i) We first introduce the random variables La,b := Lb−a ◦ T a that measure the

impact the previous action of the agent b has on agent a’s current best reply. Since

Gn
t+1(a) = h0 ({Gn

t (b)}b6=a, %
n
t ) ◦ T a and Gn

t (a) = h0

(
{Gn

t−1(b)}b6=a, %
n
t

)
◦ T a

Lipschitz continuity of the best reply function yields

|Ln
t+1(a)| ≤

∑
b6=a

La,b|Gn
t+1(b)−Gn

t (b)|+ L%|%n
t − %n

t−1|

≤
∑
b6=a

La,b|Ln
t (b)|+ L%Ln

t .

Write

An
t :=

{
a ∈ An : min

b/∈An

|a− b| ≤ t

}
for the set of all agents that are at most t away from the boundary of An. Furthermore, we

define a sequence {λn
t }t∈N via:

λn
1 := Ln

1 and λn
t+1 := αλn

t +
|An

t+1|
|An|

αt+1 (t = 1, 2, . . .)

where α = α1 + α2 < 1 denotes the bound on the impact of other agents’ choices on an

individual player’s optimal action. In the next step we show that the following estimate for

the random variables Ln
t (a) and Ln

t in terms of the quantities λn
t holds almost surely:

|Ln
t (a)| ≤

{
λn

t + αt if t ∈ An
t

λn
t otherwise

and Ln
t ≤ λn

t . (15)

Step ii) We prove (15) by induction. For t = 1 the assertion follows from the MSI

condition along with the fact that the diameter of the action space is at most one. Hence

15



we assume that (15) holds for all t ≤ T . Consider then the case a /∈ An
T+1 so that b /∈ An

T

for all the neighbors b ∈ N(a). In this case the impact of the boundary condition on the

agent’s action at time T is felt only indirectly through its impact on the average choice. The

induction hypothesis along with out weak interaction condition yields

|Ln
T+1(a)| ≤

∑
b6=a

La,b|Ln
T (b)|+ L%Ln

T

≤
∑
b6=a

La,bλn
T + L%λn

T

≤ αλn
T (16)

≤ λn
T+1.

If a ∈ An
T+1 then b ∈ An

T for at least one of the agent’s neighbors b ∈ N(a). In such a situation

the impact of the boundary condition on a is felt both directly through its impact on some

neighbors’ actions and indirectly through its impact on the average. Thus, the induction

hypothesis yields

|Ln
T+1(a)| ≤

∑
b6=a

La,b|Ln
T (b)|+ L%Ln

T

≤
∑
b6=a

La,b
[
λn

T + αT
]
+ L%Ln

T .

= αλn
T + αT+1 (17)

≤ λn
T+1 + αT+1.

From equations (16) and (17) we now obtain that (15) holds for all t ∈ N because

Ln
T+1 =

1
|An|

∑
a∈An

|Ln
T+1(a)|

≤ αλn
T +

|An
T+1|
|An|

αT+1

= λn
T+1.

Step iii) Next, we establish the existence of a constant K < ∞ that satisfies∑
t≥1

λn
t ≤

K

n
.

To this end, observe first that |An| = (2n + 1)d. For n ≥ t the number of agents that are at

most t away from the boundary can thus be estimated by

|An
t | = (2n + 1)d − (2(n− t) + 1)d ≤ K̂tdnd−1

16



where the constant K̂ < ∞ depends only on the dimension d of the integer lattice. Hence we

obtain for all t ∈ N that
|An

t |
|An|

≤ K̂
td

n
.

This shows that

λn
t ≤ αλn

t−1 + K̂αt t
d

n

≤ α2λn
t−2 + K̂αt (t− 1)d

n
+ K̂αt t

d

n
≤ · · ·

≤ αt−1λn
1 + K̂

αt

n

t∑
i=0

id.

Since λn
1 = Ln

1 is of the order n−1 there exists a constant K̃ such that

λn
t ≤ K̃

αt

n
+ K̃

αt

n

t∑
i=0

id

≤ K̃αt 1 + td+1

n
.

By the quotient criteria K := K̃
∑

t≥0 αt(1 + td+1) < ∞. This yields∑
t≥0

λn
t ≤

K

n
.

Step iv) We are now ready to establish an upper bound on the impact of the boundary

condition on the equilibrium actions of an agent a ∈ A. From (i)-(iii) we obtain

|gn,x
a − gn,y

a | ≤
∑
t≥1

Ln
t (a)

≤
∑
t≥1

λn
t + αn−|a|

∑
t≥1

αt

≤ K

n
+

αn−|a|

1− α
. (18)

This shows that uniformly in a ∈ An the impact of the boundary condition on the agents’

equilibrium actions converges to zero as the number of agents tends to infinity. 2

Remark 5.4 Our estimate (18) shows that the impact of the boundary condition on equilib-

rium actions can de decomposed into two parts. The global impact through the dependence of

choice on average actions decreases linearly as n →∞. The local impact through the depen-

dence of neighbors’ actions decreases exponentially with an agent’s distance to the boundary.
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The same arguments as in the previous proposition can also be applied to microscopic

equilibria.

Corollary 5.5 Let gn,x(%, ·) be the unique equilibrium configuration of En,x with boundary

condition x if all the agents optimize their behavior under the assumption that the average

action is given by %. Under the assumptions of Theorem 4.1 there exists, for every ε > 0,

some constants N, k ∈ N such that

|gn,x
a (%, J, θ)− gn,y

a (%, J, θ)| < ε P-a.s.

for all n ≥ N and each a ∈ An−k. The constants k and N are independent of the boundary

conditions and the perceived average action.

The fact that the impact of boundary conditions on individual equilibrium actions in

finite systems decreases to zero uniformly in the players’ distance to the boundary of the

set An allows us to prove that accumulation points of empirical averages are almost surely

independent of the boundary conditions.

Corollary 5.6 Let gn,x(J, θ) be the unique equilibrium configuration of En,x with boundary

condition x given (J, θ), and let %n,x(J, θ) be the associated average action. Any accumulation

point of the sequence {%n,x(J, θ)}n∈N is almost surely independent of x.

Proof: The sequence {%n,x(J, θ)}n∈N takes values in the compact set X, and so there exists

a subsequence {nk}k∈N and a constant %x that may both depend on the realizations of the

random variables J and θ such that

lim
k→∞

%nk,x(J, θ) = %x.

In order to show that %x does not depend on x, we fix a second boundary condition, y ∈ S,

and consider the sequence of empirical averages {%n,y(J, θ)}n∈N associated with the unique

equilibrium profiles {gn,y(J, θ)}n∈N. This sequence converges along a suitable subsequence

{nl}l∈N of {nk}k∈N. By Proposition 5.3 there exists k ∈ N and ε > 0 such that

lim
l→∞

∣∣∣∣∣∣ 1
|Anl

|
∑

a∈Anl

{gnl,x(J, θ)− gnl,y(J, θ)}

∣∣∣∣∣∣
= lim

l→∞

∣∣∣∣∣∣ 1
|Anl−k|

∑
a∈Anl−k

{gnl,x(J, θ)− gnl,y(J, θ)}

∣∣∣∣∣∣ < ε P-a.s.

This shows that the sequence {%n,y(J, θ)}n∈N converges along the entire sequence {nk}k∈N to

%x(J, θ). Hence any accumulation point of the sequence of average actions is independent of

boundary conditions. 2
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5.3 From average to individual convergence

We now show that convergence of empirical averages implies convergence of individual equilib-

rium actions. The proof is based on an interplay between microscopic equilibria and equilibria

for finite systems and the interplay between microscopic equilibria in finite and infinite sys-

tems. More precisely, the vector of equilibrium actions gn,x(J, θ) of the finite system En,x

with associated average action %n,x(J, θ) may be viewed as the unique microscopic equilibrium

configuration gn,x(%n,x(J, θ), J, θ) where all the agents in An optimize their behavior under

the assumption that the average action is given by %n,x(J, θ), i.e.,

gn,x
a (J, θ) = gn,x

a (%n,x(J, θ), J, θ) for all a ∈ An. (19)

By analogy, for any %, the microscopic equilibrium g(%, J, θ) of the infinite system E can

be regarded as the microscopic equilibrium gn,g(%,J,θ)(%, J, θ) of finite systems with boundary

conditions g(%, J, θ):

ga(%, J, θ) = gn,g(%,J,θ)
a (%, J, θ) for all a ∈ A and each n ∈ N. (20)

Proposition 5.7 Assume that the sequence of average actions {%n,x(J, θ)}n∈N associated

with the unique equilibria gn,x(J, θ) of the finite systems En,x converges to %(J, θ) along some

subsequence {nk}k∈N and let g(%(J, θ), J, θ) be the microscopic equilibrium action profile of the

infinite system associated with %(J, θ). The equilibrium action profiles of the finite systems

converge almost surely to g(%(J, θ), J, θ) on the level of individual actions:

lim
k→∞

gnk,x
a (J, θ) = ga (%(J, θ), J, θ) for any a ∈ A.

In particular, accumulation points of the sequence {(gn,x(J, θ), %n,x(J, θ))}n∈N of equilibria and

associated empirical distributions are almost surely independent of the boundary condition.

Proof: We regard gn,x(J, θ) as the unique equilibrium action profile gn,x (%n,x(J, θ), J, θ, ) of

En,x associated with %n,x(J, θ). The same arguments as in the proof of Lemma 5.1 show that

lim
k→∞

|gnk,x
a (%n,x(J, θ), J, θ)− gnk,x

a (%(J, θ), J, θ) | = 0 for all a ∈ A

almost surely. As a result it is enough to prove that

lim
k→∞

|gnk,x
a (%(J, θ), J, θ)− ga (%(J, θ), J, θ) | = 0. (21)

In view of (20) the specific choice of the boundary condition g = g (%(J, θ), J, θ) yields

ga (%(J, θ), J, θ) = gn,g
a (%(J, θ), J, θ) for all n ∈ N. (22)
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Applying Corollary 5.5 to % = %(J, θ) we obtain for any ε > 0, constants N, k ∈ N such that

almost surely

|gnk,x
a (%(J, θ), J, θ)− gn,g

a (%(J, θ), J, θ) | < ε (23)

for all n ≥ N and each a ∈ An−k. This proves the convergence in (21), due to (22). 2

5.4 Proof of Theorem 4.1

To finish the proof of Theorem 4.1 we first recall from Lemma 5.2 that there exists a set N of

measure zero such that for any % and every pair (J, θ) /∈ N of interaction patterns and taste

shocks, the empirical average associated with the microscopic equilibrium with respect to %

exists and is independent of (J, θ). For every such pair it follows from Propositions 5.3 and 5.7

that any accumulation point (gx(J, θ), %x(J, θ)) of the sequence {(gn,x(J, θ), %n,x(J, θ))}n∈N of

equilibrium action profiles and associated empirical averages is independent of the boundary

condition:

gx
a(J, θ) ≡ ga(J, θ) and %x(J, θ) ≡ %(J, θ). (24)

It remains to prove that the average %(J, θ) does not depend on (J, θ) and that %(J, θ) is the

empirical average associated with the unique equilibrium of the infinite system.

To this end, we consider the average action %n,g(J,θ)(J, θ) associated with the equilib-

rium action profile gn,g(J,θ)(J, θ) of the finite system En,g(J,θ) with boundary condition g(J, θ)

defined by (24). By Proposition 5.7

lim
k→∞

gnk,g(J,θ)
a (J, θ) = ga(%(J, θ), J, θ)

for every a ∈ A. Since gn,g(J,θ)(J, θ) may be viewed as the unique equilibrium action profile in

En,g(J,θ) if the agents optimize their behavior under the assumption that the average action

is given by %n,g(J,θ)(J, θ) we have

gn,g(J,θ)(J, θ) = gn,g(J,θ)(%n,g(J,θ)(J, θ), J, θ).

In view of (20) similar arguments as in the proofs of Lemma 5.1 show that

|gnk,g(J,θ)
a (J, θ)− ga(%(J, θ), J, θ)| < ε

for all sufficiently large k and all agents a ∈ Ank
. In particular, the average %(J, θ) satisfies

%(J, θ) = lim
k→∞

%nk,g(J,θ)(J, θ)

= lim
k→∞

1
|Ank

|
∑

a∈Ank

gn,g(J,θ)
a (J, θ)

= lim
k→∞

1
|Ank

|
∑

a∈Ank

ga(%(J, θ), J, θ). (25)
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By Lemma 5.2 we have for all (Ĵ , θ̂) ∈ N c that the microscopic equilibrium with respect

to %(J, θ) satisfies

lim
n→∞

1
|An|

∑
a∈An

ga(%(J, θ), Ĵ , θ̂) = µ[%(J, θ)]. (26)

Choosing (Ĵ , θ̂) = (J, θ) in (26) we see that the limit in (25) exists along the whole sequence

and that %(J, θ) satisfies the fixed point condition

% = µ[%].

The assumption of moderate social influence guarantees that this map a unique fixed point,

due to Lemma 35 in Horst and Scheinkman (2005). This shows that %(J, θ) is almost surely

independent of (J, θ). 2

6 Conclusion

In this paper, we established a convergence result for equilibria in systems of social interac-

tions when the number of agents growth to infinity. We assumed that the infinite system

satisfies an ergodicity property. Under a moderate social influence condition, which restricts

the influence of an agent’s choices on the optimal decisions of other agents, the finite and

infinite systems have a unique equilibrium. We showed that the equilibria of finite systems

converge almost surely to the equilibrium of the infinite systems. The convergence takes place

both locally, i.e. at the level of individual choices and globally, i.e. at the level of average

actions. Our convergence result can thus be seen as a justification for the analysis of infinite

systems.

References

Brock, W.A. and S.N. Durlauf (2001): “Discrete choice with social interactions,” Review

of Economic Studies, 68 (2), 235-260.

Durlauf, S.N. (1997): “Statistical mechanics approaches to socioeconomic behavior,”

Reprint No. 455, SSRI.
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