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EVOLUTIONARILY STABLE STRATEGIES OF RANDOM GAMES,
AND THE VERTICES OF RANDOM POLYGONS1

BY SERGIU HART, YOSEF RINOTT AND BENJAMIN WEISS

Hebrew University of Jerusalem

An evolutionarily stable strategy (ESS) is an equilibrium strategy that is
immune to invasions by rare alternative (“mutant”) strategies. Unlike Nash
equilibria, ESS do not always exist in finite games. In this paper we address
the question of what happens when the size of the game increases: does an
ESS exist for “almost every large” game? Letting the entries in the n × n

game matrix be independently randomly chosen according to a distribution
F , we study the number of ESS with support of size 2. In particular, we show
that, as n → ∞, the probability of having such an ESS: (i) converges to 1 for
distributions F with “exponential and faster decreasing tails” (e.g., uniform,
normal, exponential); and (ii) converges to 1 − 1/

√
e for distributions F with

“slower than exponential decreasing tails” (e.g., lognormal, Pareto, Cauchy).
Our results also imply that the expected number of vertices of the convex

hull of n random points in the plane converges to infinity for the distributions
in (i), and to 4 for the distributions in (ii).

1. Introduction. The concept of evolutionarily stable strategy (ESS for
short), introduced by Maynard Smith and Price [12], refers to a strategy that,
when played by the whole population, is immune to invasions by rare alternative
(“mutant”) strategies (see Section 2.1 for precise definitions). Formally, an ESS
corresponds to a symmetric Nash equilibrium that satisfies an additional stability
requirement. Every (symmetric) finite game has a (symmetric) Nash equilibrium.
But the same is not true for ESS: there are games with finitely many pure strate-
gies that have no ESS. Moreover, the nonexistence of ESS is not an “isolated”
phenomenon: it holds for open sets of games.2

This leads us to the question of what happens when the number of strategies is
large: does an ESS exist for “almost every large game”? Specifically, assuming that
the payoffs in the game are randomly chosen (they are independent and identically
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distributed random variables), what is the probability that an ESS exists, and what
is the limit of this probability as the size of the game increases?

For pure ESS, the answer to this question is simple: the probability that a pure
ESS exists is 1− (1−1/n)n, which converges to 1−1/e � 63% as n → ∞, where
n is the number of strategies. What about mixed ESS? Here we study mixed ESS
with support of size 2—called “two-point ESS”—and find out that, unlike pure
ESS, the answer depends on the underlying distribution F from which the payoffs
are drawn.

By way of illustration, consider the family of cumulative distribution functions
Fα(x) = 1 − e−xα

for all x ≥ 0, where α > 0. Our result is:

• When α ≥ 1 the probability that there is a two-point ESS converges to 1 as3

n → ∞.
• When α < 1 the probability that there is a two-point ESS converges to 1 −

1/
√

e � 39% as4 n → ∞.

Moreover, we show that the distribution of the number of two-point ESS converges
to a Poisson distribution, with a parameter converging to infinity when α ≥ 1, and
with a parameter of 1/2 when α < 1.

This threshold phenomenon is not restricted to the class Fα. We identify two
classes of distributions. The first is a class of “light-tailed” distributions with tail
probabilities 1−F(x) that decrease exponentially as x → ∞ (i.e., exponential dis-
tributions) or faster (e.g., normal distributions, uniform distributions on bounded
intervals, logistic distributions); they all lead to the same result as Fα for α ≥ 1.

The second is a class of “heavy-tailed” distributions with tail probabilities that de-
crease slower than exponentially as x → ∞ (including, in particular, the following
distributions: Pareto, Cauchy, lognormal, stable with parameter less than 2), which
all behave like Fα for α < 1. We refer to these two classes, respectively, as EF for
“Exponential and Faster decreasing tails,” and SE for “Slower than Exponential
decreasing tails” (see Sections 4 and 5 for precise definitions).

An interesting consequence of our results concerns the classic problem of the
number of vertices of the convex hull of a collection of random points in the plane,
originally studied by Rényi and Sulanke [13]; see Section 3. Taking symmetric
versions of the distributions5 Fα , and assuming that the 2n coordinates of the n

points in the plane are independent and Fα-distributed, we have:

• When α ≥ 1 the expected number of vertices of the convex hull of n random
points in the plane converges to infinity as n → ∞.

3So a fortiori the probability that an ESS exists converges to 1 in this case.
4We also show in this case that the probability that there is either a pure or a two-point ESS

converges to 1 − e−3/2 � 78%.
5That is, Fα(x) = (1/2)e−|x|α for x ≤ 0 and Fα(x) = 1 − (1/2)e−xα

for x ≥ 0 [a distribution F

is symmetric if F(−x) = 1 − F(x) for all x].
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• When α < 1 the expected number of vertices of the convex hull of n random
points in the plane converges to 4 as n → ∞.

In addition, in the second case α < 1, the number of vertices converges in proba-
bility to 4; thus, the convex hull is a quadrilateral with probability converging to 1.

Here again, the results hold for the general classes F E and SE , respectively.
The paper is organized as follows. The two classes of distributions are defined

in Sections 4.1 and 5.1, respectively. Our main results for ESS are stated in Theo-
rems 1 and 2 in Section 2.2 (see also Theorem 17 in Section 4.2 and Theorem 33 in
Section 5.3), and, for the number of vertices, in Theorem 10 in Section 3. Section 2
presents the model—ESS and random games—together with some preliminary re-
sults. Section 3 deals with the number of vertices of random polygons. The detailed
analysis is provided in Sections 4 and 5, and we conclude with a discussion in Sec-
tion 6.

2. Preliminaries.

2.1. Evolutionarily stable strategies. The setup is that of a symmetric two-
person game, with the payoffs given by the n × n matrix R = (R(i, j))i,j=1,...,n.
The interpretation is that a meeting between two players, the first playing the pure
strategy i and the second playing the pure strategy j (where 1 ≤ i, j ≤ n), yields
a payoff of R(i, j) to the first, and R(j, i) to the second (these payoffs may be
viewed as a measure of “fitness” or “reproductive success”).6 A mixed strategy
p is a probability vector on the set of pure strategies, that is, p = (p1, . . . , pn) ∈
�(n) := {x ∈ R

n+ : ∑n
i=1 xi = 1}; the payoff function R is bilinearly extended to

pairs of mixed strategies: R(p,q) := ∑n
i=1

∑n
j=1 piqjR(i, j).

A mixed strategy p ∈ �(n) is an evolutionarily stable strategy (ESS) for the
matrix R if it satisfies the following conditions (Maynard Smith and Price [12]):

[ESS1] R(p,p) ≥ R(q,p) for all q ∈ �(n).

[ESS2] If q 	= p satisfies R(q,p) = R(p,p), then R(q, q) < R(p,q).

This definition is equivalent to the requirement that for every q 	= p there exists
an “invasion barrier” b(q) > 0 such that R(p, (1 − ε)p + εq) > R(q, (1 − ε)p +
εq) for all ε ∈ (0, b(q)). The interpretation of this inequality is that any small
enough proportion ε [i.e., less than b(q)] of q-mutants cannot successfully invade
a p-population, since the mutants’ (average) payoff is strictly less than that of the
existing population.

An ESS p is called an �-point ESS if the support supp(p) = {i :pi > 0} of p is
of size �. In particular, when � = 1 we have a pure ESS. In the biological setup,
� = 1 corresponds to “monomorphism,” and � > 1 to “�-allele polymorphism.” Let
S

(n)
� ≡ S

(n)
� (R) be the number of �-point ESS for the matrix R.

6Thus the payoff matrix of the first player is R, and that of the second player is R�, the transpose
of R.
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2.2. ESS of random games. Let F be a cumulative distribution function on R.
We will assume throughout this paper that F is continuous with a support (a, b)

that is either finite or infinite (i.e., −∞ ≤ a < b ≤ ∞). For every integer n ≥ 1,

let R ≡ R(n) be an n × n matrix whose n2 elements are independent F -distributed
random variables; the number of �-point ESS of R(n) is now a random variable
S

(n)
� .

We use the following notation: E for expectation; L(Z) for the distribution
function of the random variable Z; Poisson(λ) for the Poisson distribution with
parameter λ [i.e., L(Z) = Poisson(λ) if P(Z = k) = e−λλk/k! for all integers
k ≥ 0]; and the convergence of distributions is with respect to the variation norm
[i.e., the l1-norm on measures: ‖L(Z1)−L(Z2)‖ = ∑

k |P(Z1 = k)−P(Z2 = k)|].
The two classes of distributions, namely, the “exponential and faster decreasing
tails” class EF and the “slower than exponential decreasing tails” class SE , will
be formally defined in Sections 4.1 and 5.1, respectively.

We now state our main results on S
(n)
2 , the number of two-point ESS:

THEOREM 1. If F ∈ EF , then, as n → ∞:

(i) μn := E(S
(n)
2 ) → ∞;

(ii) ‖L(S
(n)
2 ) − Poisson(μn)‖ → 0; and

(iii) P(there is a two-point ESS) → 1.

THEOREM 2. If F ∈ SE , then, as n → ∞:

(i) μn := E(S
(n)
2 ) → 1/2;

(ii) ‖L(S
(n)
2 ) − Poisson(1/2)‖ → 0; and

(iii) P(there is a two-point ESS) → 1 − e−1/2 � 0.39.

For the convergence to Poisson distributions (ii) we will use a result of the so-
called “Chen–Stein method” that requires estimating only the first two moments
(see Section 2.5); surprisingly, our proofs in the two cases are different. As for (iii),
they are immediate from (ii). The two theorems are proved in Sections 4 and 5,
respectively. Note that, for distributions in EF , Theorem 1(iii) implies that the
probability that there is an ESS converges to 1 [see Section 6(c)].

Returning to the definition of ESS in Section 2.1, condition [ESS1] says that
p is a best reply to itself, that is, (p,p) is a Nash equilibrium. By the bilinearity
of R, it is equivalent to: R(i,p) = R(p,p) for all i ∈ supp(p), and R(j,p) ≤
R(p,p) for all j /∈ supp(p). Since F is a continuous distribution, it follows that,
with probability 1, the inequalities are strict, that is, R(j,p) < R(p,p) for all
j /∈ supp(p) [the j th row is independent of the rows in supp(p)]. Therefore, there
are no best replies to p outside the support of7 p, that is, R(q,p) = R(p,p) if and

7So (p,p) is a quasi-strict Nash equilibrium.
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only if supp(q) ⊂ supp(p). Thus condition [ESS2] applies only to such q, and we
obtain (see Haigh [10]):

LEMMA 3. For a random matrix R, the following hold a.s.:

(i) i is a pure ESS if and only if R(i, i) > R(j, i) for all j 	= i.

(ii) There is a two-point ESS with support {i, j} if and only if there exist
pi,pj > 0 such that piR(i, i)+pjR(i, j) = piR(j, i)+pjR(j, j) > piR(k, i)+
pjR(k, j) for all k 	= i, j, and R(i, i) < R(j, i) and R(j, j) < R(i, j).

The following is immediate from (i) (see Haigh [10]):

PROPOSITION 4. S
(n)
1 , the number of pure ESS, is a Binomial(n,1/n) random

variable, and thus L(S
(n)
1 ) → Poisson(1) as n → ∞.

PROOF. S
(n)
1 = ∑n

i=1 Ci where Ci is the indicator that i is a pure ESS, that is,
R(i, i) > R(j, i) for all j 	= i, and so P(Ci = 1) = 1/n. �

For two-point ESS, we can express their number S
(n)
2 as a sum of n(n − 1)/2

identically distributed indicators,

S
(n)
2 = ∑

1≤i<j≤n

Dij ,

where Dij ≡ D
(n)
ij is the indicator that columns i, j provide a two-point ESS.8

To study the asymptotic behavior of S
(n)
2 , we will need to evaluate the first two

moments (see Section 2.5), namely, P(Dij = 1) = P(D12 = 1) and P(Dij = Dij ′ =
1) = P(D12 = D13 = 1) (when {i, j} and {i′, j ′} are disjoint, Dij and Di′j ′ are
independent, since Dij is a function of the entries in columns i and j only).

2.3. First moment. The event that D12 = 1 depends only on the entries in
the first two columns of the matrix R, which we will denote Xi = R(i,1) and
Yi = R(i,2). Thus X1, . . . ,Xn,Y1, . . . , Yn are 2n independent F -distributed ran-
dom variables. For each i, let Pi := (Xi, Yi) be the corresponding point in R

2.

The two points P1 and P2 are almost surely distinct, and thus determine a line
Ax + By = C through them, where9

A := Y1 − Y2, B := X2 − X1, C := X2Y1 − X1Y2.(1)

8Lemma 3(ii) implies that, a.s., for each i 	= j there can be at most one ESS with support {i, j} (in
fact, condition [ESS2] implies that the supports of two distinct ESS p and p′ can never be compara-
ble, i.e., neither supp(p) ⊂ supp(p′) nor supp(p) ⊃ supp(p′) can hold).

9A,B and C are thus random variables that are functions of P1 and P2.
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Finally, we denote by � ≡ �(n) the event that there is a two-point ESS with support
{1,2}, that is, D12 = 1; recalling Lemma 3(ii), we have

� ≡ �(n) := {X1 < X2, Y1 > Y2,AXk + BYk < C for all k = 3, . . . , n}.
Let μn := E(S

(n)
2 ) denote the expected number of two-point ESS. Then

μn =
(

n

2

)
P

(
�(n)).(2)

We now define an auxiliary random variable U ≡ U(n), a function of P1 and
P2, as follows:

U :=
{

P(AX3 + BY3 > C|P1,P2), if X1 < X2 and Y1 > Y2,
1, otherwise,

(3)

where A,B and C are determined as above (1) by P1 and P2. Thus U is the
probability that an independent point lies above the line through P1 and P2 when
X1 < X2 and Y1 > Y2. Let FU be the cumulative distribution function of U [note
that FU(1−) = P(X1 < X2, Y1 > Y2) = 1/4]. We have

LEMMA 5.

P(�) =
∫ 1

0
(1 − u)n−2 dFU(u).

PROOF. Immediate since U is determined by P1 and P2, and for all k ≥ 3 the
points Pk are independent of U and P(AXk + BYk > C|P1,P2) = U (the atom at
u = 1 does not matter since the integrand vanishes there). �

COROLLARY 6.

P(D12 = 1) = P(�) = (n − 2)

∫ 1

0
(1 − u)n−3FU(u)du.

PROOF. Integrate by parts:

∫ 1

0
(1 − u)n−2 dFU(u) = [(1 − u)n−2FU(u)]1

0

+ (n − 2)

∫ 1

0
(1 − u)n−3FU(u)du,

and note that the first term vanishes. �
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2.4. Second moment. To evaluate P(D12 = D13 = 1), we need the entries in
the third column of the matrix R as well. Let Zi = R(i,3) be n random variables
that are F -distributed, with all the Xi,Yi,Zi independent. Let �′ be the event that
D13 = 1 (we will use ′ for the XZ-problem), that is,

�′ := {X1 < X3,Z1 > Z3,A
′Xk + B ′Zk < C′ for all k 	= 1,3},

where A′,B ′ and C′ are determined by P ′
1 = (X1,Z1) and P ′

3 = (X3,Z3) [cf. (1)].
Let U ′ be the corresponding random variable: U ′ := P(A′X2 + B ′Y2 > C′|P ′

1,P
′
3)

if X1 < X3 and Z1 > Z3, and U ′ := 1 otherwise; put W := max{U,U ′}, with
cumulative distribution function FW .

PROPOSITION 7.

P(D12 = D13 = 1) = P(� ∩ �′) ≤ (n − 3)

∫ 1

0
(1 − u)n−4FW(u)du.

PROOF. For each k ≥ 4 we have

P(AXi + BYi < C,A′Xi + B ′Z′
i < C′|P1,P2,P

′
1,P

′
3)

≤ min{P(AXk + BYk < C|P1,P2),P(A′Xk + B ′Z′
k < C′|P ′

1,P
′
3)}

= min{1 − U,1 − U ′} = 1 − max{U,U ′} = 1 − W.

Therefore

P(� ∩ �′) ≤
∫ 1

0
(1 − u)n−3 dFW(u).

As in Corollary 6, integrating by parts yields the result. �

2.5. Poisson approximation. The “Chen–Stein method” yields Poisson ap-
proximations for sums of Bernoulli random variables whose dependence is not too
large. We will use the following formulation due to Arratia, Goldstein and Gordon
[1]:

THEOREM 8. Let I be an arbitrary index set. For each α ∈ I, let Zα be a
Bernoulli random variable with P(Zα = 1) = 1 − P(Zα = 0) = pα > 0, and let
Bα ⊂ I be the “neighborhood of dependence” for α; that is, α ∈ Bα and Zα is
independent of Zβ for all β /∈ Bα. Put

Z := ∑
α∈I

Zα,

λ := ∑
α∈I

E(Zα) = ∑
α∈I

pα,

b1 := ∑
α∈I

∑
β∈Bα

E(Zα)E(Zβ) = ∑
α∈I

∑
β∈Bα

pαpβ,

b2 := ∑
α∈I

∑
β∈Bα\{α}

E(ZαZβ).
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Then

‖L(Z) − Poisson(λ)‖ ≤ 2(b1 + b2)
1 − e−λ

λ
≤ 2(b1 + b2).

PROOF. Theorem 1 in Arratia, Goldstein and Gordon [1], with no “near-
independence” (i.e., b′

3 = b3 = 0). �

2.6. Notation. We use the following standard notation, all as n → ∞:g(n) ∼
h(n) for limn g(n)/h(n) = 1; g(n) � h(n) for lim supn g(n)/h(n) ≤ 1; g(n) ≈
h(n) for 0 < limn g(n)/h(n) < ∞; g(n) = O(h(n)) for lim supn g(n)/h(n) < ∞;
and g(n) = o(h(n)) for limn g(n)/h(n) = 0. Also, log is the natural logarithm loge

throughout.

3. The convex hull of n random points in the plane. Interestingly, the ex-
pectation μn of S

(n)
2 is related to the number of vertices, or edges, of the convex

hull K of the n random points in the plane P1,P2, . . . ,Pn (the connection does not,
however, extend beyond the first moments). Denote that number by V ≡ V (n), and
let V0 be the number of edges of K whose outward normal is positive.10 The dis-
tribution F is called symmetric if F(−x) = 1 − F(x) for all x [or, more generally,
if there exists x0 such that F(x0 − x) = 1 − F(x0 + x) for all x].

PROPOSITION 9.

2μn = E(V0) ≥ P(V0 > 0) = 1 − 1

n
.

Moreover, if F is symmetric, then

8μn = E(V ).

PROOF. Let Eij be the indicator that the line segment PiPj is an edge of
K with positive outward normal; then V0 = ∑

i<j Eij . Clearly, P(Eij = 1) =
P(E12 = 1) = 2P(�) (if the additional condition X1 < X2, Y1 > Y2 in � is
not satisfied, interchange P1 and P2; this yields the factor 2), and so E(V0) =
(n(n − 1)/2)2P(�) = 2μn.

Now V0 = 0 if and only if there is a point Pi that is maximal in both the X- and
the Y -direction, that is, Xi = maxj Xj and also Yi = maxj Yj . The probability of
this event is 1/n (letting i be the index where Xi = maxj Xj , the probability that
Yi = maxj Yj is 1/n, since the Y ’s are independent of the X’s). Therefore,

E(V0) ≥ P(V0 ≥ 1) = 1 − 1

n
.

10The “outward normal” to an edge of K is perpendicular to the edge and points away from the
interior of K.
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If F is symmetric, the same holds for outward normals in each of the four quad-
rants, and so E(V ) = 4E(V0). �

Our main result for the number of vertices V (n) is:

THEOREM 10. Let F be a symmetric distribution. Then, as n → ∞:

(i) if F ∈ EF , then E(V (n)) → ∞; and
(ii) if F ∈ SE , then E(V (n)) → 4 and P(V (n) = 4) → 1.

PROOF. Combine Proposition 9 above with results that will be obtained in the
next two sections: Proposition 12 for (i) and Corollary 20 for (ii). �

Some intuition for the interesting result (ii) for “heavy-tailed” distributions is
provided immediately after the proof of Theorem 19 in Section 5.2.11 Figures12 1
and 2 show, for each one of five different distributions, n = 10,000 random points
together with their convex hull and the resulting number of vertices V (n). In the
context of random points drawn from radially symmetric distributions (rather than
independent coordinates), Carnal [4] has shown that E(V (n)) converges to a con-
stant ≥ 4 for a certain class of heavy-tailed distributions (with the constant de-
pending on the distribution).

We conclude this section with a lemma that is useful when comparing distribu-
tions (see its use in the next section).

LEMMA 11. Let F ′ and F ′′ be two distributions, with supports13 (a′, b′) and
(a′′, b′′) and corresponding μ′

n and μ′′
n. If there exists a strictly increasing convex

function ϕ : (a′′, b′′) → (a′, b′) such that F ′′(x) = F ′(ϕ(x)) for all x ∈ (a′′, b′′),
then μ′

n ≤ μ′′
n.

PROOF. Let (X′
i)1≤i≤n and (Y ′

i )1≤i≤n be independent and F ′-distributed ran-
dom variables, and define X′′

i := ϕ−1(X′
i) and Y ′′

i := ϕ−1(Y ′
i ). Put P ′

i = (X′
i , Y

′
i )

and P ′′
i = (X′′

i , Y ′′
i ), and let K ′ and K ′′ be the convex hulls of {P ′

i }i and {P ′′
i }i ,

respectively. Since P(X′′
i ≤ x) = P(ϕ−1(X′

i ) ≤ x) = P(X′
i ≤ ϕ(x)) = F ′(ϕ(x)) =

F ′′(x), the (X′′
i )i and (Y ′′

i )i are F ′′-distributed. If Ax + By is a supporting line
to K ′ at P ′

i with A,B > 0, then (Ap)x + (Bq)y is a supporting line to K ′′ at

11Fisher [8] shows that for certain distributions (including the Weibull distributions with parameter

0 < α < 1) the limit shape of the normalized convex hull is {(x, y) ∈ R
2 : |x|+|y| ≤ 1}—which is the

convex hull of four points. However, this does not imply that the number of vertices V (n) converges
to 4, since there may be many vertices close to each one of these four points (as is the case for the
uniform distribution, where the limit shape is the unit square, and V (n) → ∞).

12Generated by MAPLE.
13−∞ ≤ a′ < b′ ≤ ∞ and −∞ ≤ a′′ < b′′ ≤ ∞.
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FIG. 1. The number of vertices V of the convex hull of n random points drawn from three distrib-
utions in EF . (a) Uniform distribution: n = 10,000, V = 29. (b) Normal distribution: n = 10,000,
V = 16. (c) Exponential distribution: n = 10,000, V = 9.

P ′′
i , where p,q > 0 are subgradients of ϕ at X′

i and Y ′
i , respectively. Therefore

V ′
0 + 1 ≤ V ′′

0 + 1 (the number of vertices supported by positive outward normals
is larger by one than the number of edges supported by such normals), and so
μ′

n ≤ μ′′
n. �

4. Exponential and faster decreasing tails.

4.1. The class EF . We define the class of distributions EF with “Exponen-
tial and Faster decreasing tails” as those continuous distributions F with support
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FIG. 2. The number of vertices V of the convex hull of n random points drawn from two dis-
tributions in SE . (a) Weibull distribution, α = 1/2: n = 10,000, V = 4. (b) Cauchy distribution:
n = 10,000, V = 4.

(a, b) (where −∞ ≤ a < b ≤ ∞) whose “tail” G(x) = 1 − F(x) is a log-concave
function; that is, G(x) = e−g(x) where g : (a, b) → (0,∞) is a strictly increasing
convex function. The functions G and g = − logG are usually called the survival
function and the cumulative hazard function, respectively; for a collection of re-
sults on log-concave probabilities, see Bagnoli and Bergstrom [2].14 A sufficient
(but not necessary) condition for the log-concavity of G is that the density func-
tion f = F ′ be continuously differentiable and log-concave. Some distributions
included in the class EF are the following (for simplicity, we take standard nor-
malizations; replacing x with λx + ν for any λ > 0 and ν clearly preserves the
log-concavity of G):

• Exponential: G(x) = e−x for x ∈ (0,∞).

• Normal: G(x) = ∫ ∞
x (2π)−1/2e−y2/2 dy for x ∈ (−∞,∞).

• Weibull with parameter α ≥ 1: G(x) = e−xα
for x ∈ (0,∞), where α ≥ 1 (these

are the Fα of the Introduction).
• G(x) = e−ex

for x ∈ (−∞,∞).

• Logistic: G(x) = 1/(1 + ex) for x ∈ (−∞,∞).

• Uniform: G(x) = 1 − x for x ∈ (0,1).

14The class of positive random variables with a log-concave G is usually called IFR (for Increasing
Failure Rate).
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Each such distribution is by definition an increasing convex transformation of
the exponential distribution: if F(x) = 1 − e−g(x), then F(x) = F exp(g(x)) for
every x in the support of F [where F exp(x) = 1 − e−x is the exponential cumu-
lative distribution function]. By Lemma 11, it thus follows that the exponential
distribution yields the lower bound on μn over the class EF . Now Haigh [11]
proved that μ

exp
n ≈ log logn, and so we have

PROPOSITION 12. If F ∈ EF , then μn → ∞ as n → ∞.

PROOF. If F ∈ EF , then μF
n ≥ μ

exp
n ≈ log logn → ∞ by Lemma 11 and

Haigh [11]. �

Rényi and Sulanke [13] provide more precise results: μnormal
n ≈ √

logn and
μuniform

n ≈ logn. Also, we note that the class EF can be taken to be much larger;
see Section 6(b).

4.2. Poisson approximation. Our Theorem 1 for the class EF is an immediate
consequence of Proposition 12, together with the general result of Theorem 13
below (which holds for any distribution F, not necessarily in EF ). The analysis
will also yield the universal upper bound of Theorem 17.

THEOREM 13. For every distribution F,

∥∥L(
S

(n)
2

) − Poisson(μn)
∥∥ = O

(
1√
μn

)
as n → ∞.

The remainder of this section is devoted to the proof of Theorem 13. For every
x ∈ R and u ∈ (0,1), let ν(x;u) := P(U < u|X1 = x) [recall the definition (3)
of U ]; then

FU(u) =
∫ ∞
−∞

ν(x;u)dF (x)(4)

and

FW(u) =
∫ ∞
−∞

ν(x;u)2 dF(x),(5)

since, given X1 = x, the events U < u and U ′ < u are independent (the first de-
pends on Y1,X2, Y2 and the second on Z1,X3,Z3; see Section 2.4).

For every b ≥ 0 and u ∈ (0,1), let κu(b) be determined by the equation P(X +
bY ≥ κu(b)) = u (it is unique since X + bY is a continuous random variable). Let
K ≡ Ku := {(x, y) ∈ R

2 : x + by < κu(b) for all b > 0} be the set of all points
that are not contained in any half-plane of probability u with positive normal (see
Figure 3). Clearly, if either P1 ∈ K or P2 ∈ K , then U ≥ u [since, for all b > 0,

the line x + by = c through that point has c < κu(b) and so P(X + bY > c) ≥
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FIG. 3. If U < u, then P2 lies in the darkly shaded area; the probability of the whole shaded area
is u (Lemma 14).

P(X + bY ≥ κu(b)) = u]. The set K is convex (it is an intersection of half-spaces)
and comprehensive [i.e., (x′, y′) ≤ (x, y) ∈ K implies that (x′, y′) ∈ K]. Let y =
η(x;u) be the equation of its boundary, that is, η(x;u) := sup{y : (x, y) ∈ K} [with
η(x;u) := −∞ when there is no such y]. We have:

LEMMA 14. For every x and u ∈ (0,1)

ν(x;u) ≤ uG(η(x;u)) ≤ u.

PROOF. Let P1 = (x1, y1). If P1 ∈ K , then, as we saw above, P(U < u|X1 =
x1, Y1 = y1) = 0.

If P1 /∈ K , then y1 ≥ η(x1;u) (again, see Figure 3); let b0 ≡ b0(x1, y1) :=
inf{b > 0 :x1 + by1 ≥ κu(b)}. The function κu is continuous since the distribu-
tion F is continuous, and so x1 + b0y1 ≥ κu(b0) [note that we may well have
b0 = 0, for which κu(0) = G−1(u)]. Assume that U < u; then there exists b > 0
such that X2 + bY2 = x1 + by1 ≥ κu(b), and so b ≥ b0. Now Y2 < y1 (since
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FIG. 4. The probability of the whole shaded area is u, and that of the darkly shaded area is
G(x1)G(y1) (Lemma 15).

U < u ≤ 1); therefore X2 + b0Y2 ≥ x1 + b0y1, which, as we saw above, is
≥ κu(b0). Thus U < u implies that P2 lies above the line x + b0y = κu(b0), and
so P(U < u|X1 = x1, Y1 = y1) ≤ P(X2 + b0Y2 ≥ κu(b0)) ≤ u by definition of κu.

Taking expectation over Y1 = y1 therefore yields

P(U < u|X1 = x1) ≤ 0P(P1 ∈ K|X1 = x1) + uP(P1 /∈ K|X1 = x1)

≤ uP
(
Y1 ≥ η(x1;u)

) = uG(η(x1;u)) ≤ u. �

LEMMA 15. For every x and u ∈ (0,1)

G(x)G(η(x;u)) ≤ u.

PROOF. If P1 = (x1, y1) /∈ K , then (see Figure 4) there exists b > 0 such
that c := x1 + by1 ≥ κu(b), and so P(X + bY ≥ c) ≤ u. Therefore, P(X ≥
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x1, Y ≥ y1) ≤ P(X + bY ≥ c) ≤ u, and so G(x1)G(y1) ≤ u. This holds for all
y1 > η(x1;u), and G is a continuous function. �

Combining the inequalities in the last two lemmas yields:

COROLLARY 16. For every x and u ∈ (0,1)

ν(x;u) ≤ min
{
u,

u2

G(x)

}
.

From this we can immediately obtain an upper bound on μn which applies to
any distribution F. This bound is known; see Devroye [6].

COROLLARY 17. For every distribution F,

P(�) = O

(
logn

n2

)
and μn = O(logn) as n → ∞.

PROOF. Let t be such that G(t) = u. Applying Corollary 16 in the formula (4)
yields

FU(u) =
∫ ∞
−∞

ν(x;u)dF (x) ≤
∫ t

−∞
u2

G(x)
dF (x) +

∫ ∞
t

u dF (x)

= u2
∫ 1

u

1

z
dz + u2 = u2

(
log

1

u
+ 1

)

[we have used the substitution z = G(x)]. Therefore,

P(�) = (n − 2)

∫ 1

0
(1 − u)n−3FU(u)du

≤ (n − 2)

∫ 1

0
(1 − u)n−3u2

(
log

1

u
+ 1

)
du

≤ 2 logn

n2 + O

(
1

n2

)
. �

We can now prove Theorem 13.

PROOF OF THEOREM 13. Let ξ(u) be determined by G(ξ(u)) = √
FU(u).

For x ≤ ξ(u), we will use the inequality ν(x;u) ≤ u2/G(x) to get
∫ ξ(u)

−∞
ν(x;u)2 dF(x) ≤

∫ ξ(u)

−∞
ν(x;u)

u2

G(x)
dF (x)

≤ u2
√

FU(u)

∫ ξ(u)

−∞
ν(x;u)dF (x)
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≤ u2
√

FU(u)

∫ ∞
−∞

ν(x;u)dF (x)

= u2
√

FU(u)
FU(u) = u2

√
FU(u).

For x ≥ ξ(u), we use ν(x;u) ≤ u to get∫ ∞
ξ(u)

ν(x;u)2 dF(x) ≤
∫ ∞
ξ(u)

u2 dF(x) = u2G(ξ(u)) = u2
√

FU(u).

Altogether,

FW(u) ≤ 2u2
√

FU(u).

Therefore,∫ 1

0
(1 − u)n−4FW(u)du

≤ 2
∫ 1

0
(1 − u)n−4u2

√
FU(u)du

≤ 2
(∫ 1

0
(1 − u)n−3FU(u)du

)1/2(∫ 1

0
(1 − u)n−5u4 du

)1/2

,

by the Cauchy–Schwarz inequality. The first integral is P(�)/(n−2) = O(μnn
−3)

[by Corollary 6 and (2)], the second integral is O(n−5), and so∫ 1

0
(1 − u)n−4FW(u)du = O(μ1/2

n n−4).

Therefore, by Proposition 7,

P(� ∩ �′) = O(μ1/2
n n−3).

We now apply Theorem 8 to S
(n)
2 = ∑

i<j Dij . There are n(n − 1)/2 = O(n2)

terms Dij ; the neighborhood of dependence of each Dij consists of Dik and Djk

for all k, and so it is of size 2n − 3 = O(n). Therefore,

b1 = O(n2)O(n)P(�)2 = O(n3(μnn
−2)2) = O(μ2

nn
−1)

and

b2 = O(n2)O(n)P(� ∩ �′) = O(μ1/2
n ).

This yields ‖L(S
(n)
2 ) − Poisson(μn)‖ ≤ 2(b1 + b2)/μn = O(μnn

−1 + μ
−1/2
n ).

Now E(V (n)) = O(logn), and so μn = O(logn), for any distribution F ; this
follows from Theorem 1 (for dimension d = 2) in [6]. Therefore ‖L(S

(n)
2 ) −

Poisson(μn)‖ = O(μ
−1/2
n ). �

PROOF OF THEOREM 1. Combine Proposition 12 and Theorem 13. �
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5. Slower than exponential decreasing tails.

5.1. The class SE . We define the class of distributions SE with “Slower than
Exponential decreasing tails” as those distributions F with support (a,∞) (where
a ≥ −∞) whose tail G = 1 − F satisfies the following two conditions:

[SE1] “Subexponentiality”:

P(X+ + Y+ > t) ∼ 2G(t) as t → ∞,

where X,Y are independent F -distributed random variables and Z+ :=
max{Z,0}; and

[SE2] “Uniformity”: For all c > 1,

G(ct) � G(t)c as t → ∞, uniformly as c → 1+;(6)

that is, for every ε > 0 there exist t0 ≡ t0(ε) and c0 ≡ c0(ε) > 1 such that
G(ct)/G(t)c > 1 − ε for all t > t0 and all c ∈ (1, c0).

Distributions satisfying [SE1] are called subexponential distributions (origi-
nally introduced by Chistyakov [5]). Some examples are (see Table 3.7 in Goldie
and Klüppelberg [9]; again, we use standard normalizations for simplicity):

• Regularly varying tails: G(x) = x−α�(x), where α ≥ 0 and � is a slowly varying
function, that is, limx→∞ �(cx)/�(x) = 1 for every c > 0. This includes:
– Pareto: G(x) = x−α for x ∈ (1,∞), where α > 0.

– Cauchy: G(x) = ∫ ∞
x (π(1 + y2))−1 dy = arctan(x)/π + 1/2 for x ∈ (0,∞).

– α-stable, where 0 < α < 2.
• Lognormal: G(x) = ∫ ∞

x (
√

2πy)−1e− log2 y/2 dy for x ∈ (0,∞).

• Weibull with parameter 0 < α < 1: G(x) = e−xα
for x ∈ (0,∞).

• “Almost” exponential: G(x) = e−x(lnx)−α
for x ∈ (1,∞), where α > 0.

(However, the exponential distribution does not satisfy [SE1].)
As for condition [SE2], in terms of the cumulative hazard function g(t) :=

− logG(t), it says that for every ε > 0 there exist t0 ≡ t0(ε) and c0 ≡ c0(ε) > 1
such that g(ct) ≤ cg(t) + ε for all t > t0 and all c ∈ (1, c0). Therefore, a suf-
ficient condition for [SE2] is that g(t)/t be a nonincreasing function for large
enough15 t ; this is the case when g is concave (and so G is log-convex; contrast
with EF ), or even star-concave16 (we will see in Lemma 18(ii) below that [SE1]
implies that g(t)/t → 0 as t → ∞). It is now easy to verify that all the distribu-
tions listed above also satisfy [SE2]. Finally, SE is closed under “tail equivalence”:
if 1 − F(t) ∼ 1 − F ′(t) as t → ∞, then F ∈ SE if and only if F ′ ∈ SE (for [SE1],
see Theorem 3 in Teugels [14]).

15The class of positive random variables where g(t)/t is a nonincreasing function for all t is usually
called DFRA (for Decreasing Failure Rate Average).

16That is, g(λx) ≥ λg(x) + (1 − λ)g(0) for all x ≥ 0 and all 0 ≤ λ ≤ 1.
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The next lemma collects a number of properties that will be used in the proof
below.

LEMMA 18. Let F satisfy [SE1]. Then:

(i)

P(X + Y > t) � 2G(t) as t → ∞.(7)

(ii) g(t) := − logG(t) = o(t) as t → ∞.

(iii) There exist γt > 0 such that

lim
t→∞γt = 0,(8)

lim
t→∞γt t = ∞,(9)

lim
t→∞G(t)γt = 1.(10)

Moreover, if F also satisfies [SE2], then

lim
t→∞

G((1 + γt )t)

G(t)
= 1.(11)

PROOF. (i) is immediate from [SE1] since X + Y ≤ X+ + Y+. As for (ii), it is
a well-known property of subexponential distributions (e.g., it follows from (1.4)
in Goldie and Klüppelberg [9]). To get (iii), take, for example, γt = 1/

√
tg(t), and

then (8), (9) and (10) immediately follow from (ii); finally, (10) together with (6)
imply (11). �

5.2. First moment. In this section we will prove that, for distributions in SE ,
the expected number of two-point ESS converges to 1/2, and the number of ver-
tices of the convex hull converges in probability to 4. Some intuition is provided
after the proof of Theorem 19. The main result is

THEOREM 19. Let F ∈ SE . Then

P(�) ∼ 1

n2 and μn → 1

2
as n → ∞.

As a result, the number of vertices V (n) of the convex hull of n random points
satisfies

COROLLARY 20. Let F be a symmetric SE distribution. Then

E
(
V (n)) → 4 and P

(
V (n) = 4

) → 1 as n → ∞.
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PROOF. Theorem 19 and Proposition 9 yield E(V0) → 1 and P(V0 = 0) =
1/n → 0, and so P(V0 	= 1) → 0. The result follows since V = 4V0. �

Thus, for symmetric SE distributions, the probability that the convex hull is a
quadrilateral converges to 1.

For the remainder of this section we assume that F ∈ SE .
The proof of Theorem 19 uses the following result:

PROPOSITION 21. As u → 0

FU(u) � 1
2u2.

Before proving Proposition 21 (to which most of this section is devoted), we
use it to prove Theorem 19.

PROOF OF THEOREM 19. Given ε > 0, let δ > 0 be such that FU(u) ≤ (1 +
ε)u2/2 for all u < δ. We will use Corollary 6, and separate the integral into two
parts. For the first part, we have

∫ δ

0
(1 − u)n−3FU(u)du ≤ (1 + ε)

1

2

∫ δ

0
(1 − u)n−3u2 du

≤ (1 + ε)
1

2

∫ 1

0
(1 − u)n−3u2 du

= (1 + ε)
1

2

2

n(n − 1)(n − 2)
.

As for the second part, we get
∫ 1

δ
(1 − u)n−3FU(u)du ≤ (1 − δ)n−3,

which is less than, say, ε/n3 for all n large enough. Adding the two bounds, mul-
tiplying by n − 2, and recalling Corollary 6 yields P(�) ≤ (1 + 2ε)/n2 for all n

large enough. The opposite inequality is in Proposition 9 [recall (2)]. �

The proof of Proposition 21 requires careful analysis. To get some intuition,
consider the convex hull of n random points P1,P2, . . . ,Pn. Let Pi = (Xi, Yi)

be the (a.s. unique) point with maximal X-coordinate, that is, Xi = maxk Xk. An
essential property of subexponential distributions is that Xi is much larger than all
the other Xk for k 	= i. In addition, the corresponding Y -coordinate, namely Yi,

is also much smaller than Xi. The same holds for the point Pj = (Xj ,Yj ) with
maximal Y -coordinate, which implies that, with high probability, all the points Pk

with k 	= i, j will lie well below the line connecting Pi and Pj , so that Pi and Pj

will be the only vertices with positive outward normals. This basic picture can be
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FIG. 5. L3 is the whole shaded area and L4 (see Lemma 29) is the darkly shaded area.

seen in Figure 5 (recall also Figure 2). The points in the region L2 have large X

(bigger than an appropriate t), whereas the width of L2 (in the Y -coordinate) is
small relative to t. The same holds for the region L1, with X and Y interchanged.
These two regions will thus “catch,” with high probability, the points Pi and Pj

with maximal X and maximal Y, respectively.
Fix 0 < ε < 1, and let t ≡ tu,ε be such that

G(t) = (1 + ε)u;(12)

then u → 0 is equivalent to t → ∞ (since ε > 0 is fixed). We will say that t and u

correspond to one another if they are related by (12). Next, we define the following
sets in R

2 (see Figure 5):

L0 ≡ L0
u,ε := {(x, y) :x ≤ t, y ≤ t, x + y ≤ t},

L ≡ Lu,ε := R
2\L0,

L1 ≡ L1
u,ε := {(x, y) : |x| ≤ γt t, y > t},
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L2 ≡ L2
u,ε := {(x, y) :x > t, |y| ≤ γt t},

L3 ≡ L3
u,ε := L\(L1 ∪ L2).

The reader should keep in mind that t as well as all the sets L,L0, . . . depend
on u (and ε).

For simplicity, we will write P(L) instead of P(Pi ∈ L).

LEMMA 22. As u → 0,

P(Lu,ε) = O(u).

PROOF.

P(L) ≤ P(x + y > t) + P(x > t) + P(y > t) � 4G(t) = 4(1 + ε)u. �

LEMMA 23. There exists u0 ≡ u0(ε) ∈ (0,1) such that, for all u < u0, if
a, b, c satisfy a, b > 0 and P(aX + bY > c) < u (where X,Y are independent
and F -distributed), then c/a > tu,ε and c/b > tu,ε.

PROOF. Assume without loss of generality that a ≥ b. If c/a ≤ t ≡ tu,ε , then

P(aX + bY > c) ≥ P(aX + bY > at)

≥ P
(|Y | ≤ γt t,X > (1 + γt )t

)
= H(γt t)G

(
(1 + γt )t

)
,

where H(z) := 1 − F(−z) − G(z) for z ≥ 0 (we used a ≥ b in the second in-
equality). Now H(γt t)G((1 + γt )t)/G(t) → 1 as t → ∞ by (9) and (11), and
so H(γt t)G((1 + γt )t) > G(t)/(1 + ε) = u for all t large enough, or all u small
enough. This contradiction shows that indeed c > at ≥ bt . �

COROLLARY 24. For all u < u0,

P(P1 ∈ L0
u,ε or P2 ∈ L0

u,ε,U < u) = 0.

PROOF. If U < u < u0, then the entire set L0 lies below the line Ax + By =
C through P1 and P2 [this holds for its two extreme points, (t,0) and (0, t), by
Lemma 23, and A,B > 0]; therefore U < u implies that P1 /∈ L0 and P2 /∈ L0. �

At this point we immediately get the following bounds:

PROPOSITION 25.

P(U < u) = O(u2) as u → 0,

μn = O(1) as n → ∞.
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PROOF. Corollary 24 and Lemma 22 imply that P(U < u) ≤ P(P1,P2 ∈ L) =
P(L)2 = O(u2) as u → 0. Using this in the computation of the proof of Theo-
rem 19 yields P(�) = O(1/n2), and so μn = O(1). �

To get μn � 1/2 will require a more refined analysis (the best constant we can
get up to this point is μn � 4). We start with a useful inequality:

LEMMA 26. Let X and Y be independent and F -distributed. Then, for every
a, b, c, θ > 0,

P(aX + bY > c) ≥ H

(
θ

c

b

)
G

(
(1 + θ)

c

a

)
+ H

(
θ

c

a

)
G

(
(1 + θ)

c

b

)
.(13)

PROOF. We have

P(aX + bY > c) ≥ P
(
aX > (1 + θ)c, |bY | ≤ θc

)
+ P

(|aX| ≤ θc, bY > (1 + θ)c
)
. �

The next three lemmas will deal, respectively, with the three cases: (i)P1 ∈ L1

and P2 ∈ L2; (ii) P1,P2 ∈ L1 or P1,P2 ∈ L2; and (iii) P1,P2 ∈ L3 (recall Corol-
lary 24). The corresponding probabilities turn out to be of the order of u2/2 in the
first case, and o(u2) in the other two cases.

LEMMA 27. As17 u → 0,

P(P1 ∈ L1
u,ε,P2 ∈ L2

u,ε,U < u) ≤ 1
2u2 + εO(u2).

PROOF. Let P1 ∈ L1 and P2 ∈ L2 be such that U < u < u0, where u0 is given
by Lemma 23, and let t0 correspond to u0. The line P1P2 is Ax + By = C with
A = Y1 − Y2, B = X2 − X1 and C = X2Y1 − X1Y2. Since U < u < u0, we have
C/A > t and C/B > t by Lemma 23 and so, taking θ = γt in Lemma 26,

U = P(AX + BY > C|P1,P2) ≥ H(γt t)

[
G

(
(1 + γt )

C

A

)
+ G

(
(1 + γt )

C

B

)]
.

Now X2, Y1 > t and |X1|, |Y2| < γt t, and so |X1| < γtX2 and |Y2| < γtY1, which
implies that A ≥ Y1(1 − γt ),B ≥ X2(1 − γt ) and C ≤ X2Y1(1 + γ 2

t ). Therefore,

C

A
≤ X2

1 + γ 2
t

1 − γt

and
C

B
≤ Y1

1 + γ 2
t

1 − γt

.

17“f (u, ε) = εO(u2) as u → 0” means that there exists a constant M < ∞ such that

limu→0f (u, ε)/u2 < εM for every ε ∈ (0,1) [or, equivalently, for every ε ∈ (0,1) there exists
u ≡ u(ε) > 0 such that f (u, ε)/u2 < εM for all u < u].
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Put ρt := (1 + γt )(1 + γ 2
t )/(1 − γt ) > 1; (8) implies that ρt → 1, and so from (6)

it follows that there is t1 > t0 large enough so that G(ρtz)/G(z)ρt > (1 + ε)−1/2

for all18 z > t > t1. Therefore, for all t > t1, we have

U ≥ H(γt t)[G(ρtX2) + G(ρtY1)]
≥ H(γt t)(1 + ε)−1/2[G(X2)

ρt + G(Y1)
ρt ]

≥ H(γt t)(1 + ε)−1/221−ρt [G(X2) + G(Y1)]ρt .

Now H(γt t)21−ρt → 1 by (9); therefore, there exists t2 ≥ t1 such that H(γt t) ×
21−ρt ≥ (1 + ε)−1/2 for all t > t2, and so

U ≥ (1 + ε)−1[G(X2) + G(Y1)]ρt .

Let u2 correspond to t2; then U < u < u2 implies that

G(X2) ≤ (
(1 + ε)u

)1/ρt − G(Y1) = G(t)1/ρt − G(Y1).(14)

Equation (14) provides a lower bound on X2, and so

P(P2 ∈ L2,U < u|P1) ≤ P
(
X2 satisfies (14)|Y1

) ≤ G(t)1/ρt − G(Y1).

Integrating over Y1 in (t,∞), we have

P(P1 ∈ L1,P2 ∈ L2,U < u) ≤
∫ ∞
t

(
G(t)1/ρt − G(y1)

)
dF(y1)

= G(t)1+1/ρt − 1
2G(t)2,

since
∫ ∞
t G(y1) dF (y1) = − ∫ ∞

t G(y1) dG(y1) = −[G(y1)
2/2]∞t = G(t)2/2.

Now 1/ρt = (1 − γt )/((1 + γt )(1 + γ 2
t )) ≥ 1 − 2γt , and so G(t)1+1/ρt ≤

G(t)2−2γt ∼ G(t)2 by (10), which implies that there is t3 ≥ t2 such that
G(t)1+1/ρt < (1 + ε/2)G(t)2 for all t > t3. This yields

P(P1 ∈ L1,P2 ∈ L2,U < u) ≤
(

1 + ε

2

)
G(t)2 − 1

2
G(t)2

= 1

2
(1 + ε)G(t)2

= 1

2
(1 + ε)3u2

≤ 1

2
(1 + 7ε)u2

for all t > t3. Now let u3 correspond to t3. �

18Indeed, given ε > 0, let z0(ε) and c0(ε) be such that G(cz)/G(z)c > (1 + ε)−1/2 for all z > z0
and c ∈ (1, c0); take t1 > z0 such that ρt < c0 for all t > t1.
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LEMMA 28. As u → 0,

P(P1,P2 ∈ L1
u,ε,U < u) = P(P1,P2 ∈ L2

u,ε,U < u) = εO(u2).

PROOF. Let P1,P2 ∈ L1 be such that U < u < u0, where u0 is given by
Lemma 23, and let t0 correspond to u0. Then Y1 > Y2 > t and −γt t < X1 < X2 <

γt t, and also C/B > t (by Lemma 23); therefore,

C

A
= X2Y1 − X1Y2

Y1 − Y2
≤ γt tY1 − (−γt t)Y2

Y1 − Y2
= γt t

Y1 + Y2

Y1 − Y2
,

from which it follows by Lemma 26 with θ = γt that

U ≥ H

(
γt

C

B

)
G

(
(1 + γt )

C

A

)
≥ H(γt t)G

(
(1 + γt )γt t

Y1 + Y2

Y1 − Y2

)
.

Let t1 > t0 be large enough so that H(γt t) > 1/(1 + ε) for all t > t1, and let u1
correspond to t1; then U < u < u1 implies that

G

(
(1 + γt )γt t

Y1 + Y2

Y1 − Y2

)
< (1 + ε)u = G(t);

thus

(1 + γt )γt t
Y1 + Y2

Y1 − Y2
> t,

or

Y1 < ρtY2,

where now ρt := (1 + γt (1 + γt ))/(1 − γt (1 + γt )) > 1 and ρt → 1. Therefore, for
P2 ∈ L1,

P(P1 ∈ L1,U < u|P2) ≤ P(Y2 < Y1 < ρtY2|Y2)

= G(Y2) − G(ρtY2)

≤ G(Y2) − (1 − ε)G(Y2)
ρt ,

the last inequality holding for all t large enough, say t > t2 ≥ t1, again by (6).
Integrating over Y2 in (t,∞) yields

P(P1 ∈ L1,P2 ∈ L1,U < u) ≤
∫ ∞
t

(
G(y2) − (1 − ε)G(y2)

ρt
)
dF(y2)

= 1

2
G(t)2 − (1 − ε)

1

1 + ρt

G(t)1+ρt .

Now 1 + ρt ∼ 2 + 2γt → 2, and so G(t)1+ρt /(1 + ρt) ∼ G(t)2/2 [recall (10)].
Therefore, there is t3 ≥ t2 such that, for all t > t3,

P(P1 ∈ L1,P2 ∈ L1,U < u) ≤ 1
2G(t)2 − (1 − 2ε)1

2G(t)2

= εG(t)2 = ε(1 + ε)2u2 ≤ 4εu2.

The case where P1,P2 ∈ L2 is the same (interchange X and Y ). �
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LEMMA 29. As u → 0,

P(L3
u,ε) = εO(u).

PROOF. Define L4 := {(x, y) :x + y > t}\(L1 ∪ L2) (see Figure 5); then

P(L4) ≤ P(x + y > t) − P
(|x| < γt t, y > (1 + γt )t

)
− P

(|y| < γt t, x > (1 + γt )t
)
.

Let t1 be large enough so that P(x + y > t) ≤ (2 + ε)G(t) and also H(γt t)G((1 +
γt )t) ≥ (1 − ε)G(t) for all t > t1 [recall (7), (9) and (11)], and thus

P(L4) ≤ (2 + ε)G(t) − 2(1 − ε)G(t) = 3εG(t);
therefore,

P(L3) ≤ P(L4) + P(x ≤ −γt t, y > t) + P(x > t, y < −γt t)

≤ 3εG(t) + 2F(−γt t)G(t) ≤ 4εG(t) = 4ε(1 + ε)u

[note that F(−γt t) ≤ 1 − H(γt t) ≤ ε for t > t1]. �

COROLLARY 30. As u → 0,

P(P1 /∈ L1
u,ε or P2 /∈ L2

u,ε,U < u) = εO(u2).

PROOF. For u small enough,

P(P1 /∈ L1 or P2 /∈ L2,U < u)

= P(P1 /∈ L or P2 /∈ L,U < u)

+ P(P1 ∈ L3,P2 ∈ L,U < u) + P(P1 ∈ L,P2 ∈ L3,U < u)

+ P(P1,P2 ∈ L1,U < u) + P(P1,P2 ∈ L2,U < u)

≤ 0 + 2P(L3)P(L) + 2εO(u2) = 2εO(u)O(u) + 2εO(u2)

by Corollary 24 and Lemmas 29, 22 and 28. �

PROOF OF PROPOSITION 21. Adding up the estimates of Lemma 27 and
Corollary 30 yields P(U < u) ≤ (1/2)u2 + εO(u2) as u → 0. This holds for
every ε ∈ (0,1) and the left-hand side is independent of ε, and so19 P(U < u) ≤
(1/2)u2 + o(u2). �

19Formally, there exists M < ∞ such that lim supu→0 P(U < u)/u2 ≤ 1/2 + Mε for all ε, and so

lim supu→0 P(U < u)/u2 ≤ 1/2.
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5.3. Second moment and Poisson approximation. Recall Section 2.4 and
Proposition 7 there.

PROPOSITION 31. As n → ∞,

P(� ∩ �′) = o(n−3).

PROOF. Proposition 32 below will show that P(W < u) = o(u3). Thus, given
ε > 0, there is δ > 0 such that P(W < u) ≤ εu3 for all u < δ; then, as in the proof
of Theorem 19,∫ 1

0
(1 − u)n−4FW(u)du ≤ (1 − δ)n−4 + ε

∫ 1

0
(1 − u)n−4u3 du = εO(n−4).

Multiplying by n − 3 and recalling that ε > 0 was arbitrary shows that indeed
P(� ∩ �′) = o(n−3). �

It remains to show that:

PROPOSITION 32. As u → 0,

P(W < u) = o(u3).

PROOF. Fix ε ∈ (0,1). First, we have

P(P1 ∈ L1,P2 ∈ L2,U < u,P ′
1 ∈ L1,P ′

3 ∈ L2,U ′ < u)

≤ P(Y1 > t,X2 > t,Z1 > t,X3 > t) = G(t)4 = O(u4).

Next, for all u small enough [i.e., u < u(ε)],

P(P1 /∈ L1 or P2 /∈ L2,U < u,U ′ < u)

≤ P(P1 /∈ L1 or P2 /∈ L2,U < u,P ′
3 ∈ L) = εO(u2)O(u) = εO(u3)

by Corollary 30 and Lemma 22, and the fact that P ′
3 = (X3,Z3) is independent of

P1 = (X1, Y1) and P2 = (X2, Y2)). Similarly, we have

P(P ′
1 /∈ L1 or P ′

3 /∈ L2,U ′ < u,U < u) = εO(u3).

Adding up the two terms yields P(W < u) ≤ εO(u3) for every ε ∈ (0,1), or
P(W < u) ≤ o(u3). �

We can now prove Theorem 2.

PROOF OF THEOREM 2. Again, we apply Theorem 8 to
∑

i<j Dij . We have

b1 = O(n2)O(n)P(�)2 = O(1/n),

b2 = O(n2)O(n)P(� ∩ �′) = o(1),
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by Theorem 19 and Proposition 31, and so ‖L(S
(n)
2 ) − Poisson(μn)‖ ≤ 2(b1 +

b2) = o(1). Now Poisson(μn) converges to Poisson(1/2) since μn → 1/2 by The-
orem 19. �

Recall (Proposition 4) that S
(n)
1 , the number of one-point (pure) ESS, converges

in distribution to Poisson(1) as n → ∞. While S
(n)
1 and S

(n)
2 are not independent,

we will now show that, nevertheless, their sum converges to Poisson(3/2).

THEOREM 33. Put S
(n)
≤2 := S

(n)
1 + S

(n)
2 . If F ∈ SE , then

L
(
S

(n)
≤2

) → Poisson(3/2) as n → ∞.

PROOF. We apply again Theorem 8, this time to
∑

i Ci + ∑
i<j Dij . Let b′

1

and b′
2 correspond to S

(n)
2 = ∑

i<j Dij ; in the proof of Theorem 2 above we
showed that b′

1 = O(1/n) and b′
2 = o(1). The additional dependencies now are

between a term Ci and a term Dij , with the same i and j 	= i. However, we have
E(CiDij ) = P(Ci = Dij = 1) = 0, since Ci = 1 implies that Rii > Rij , whereas
Dij = 1 implies that Rii < Rij (see Lemma 3). Thus b2 = b′

2 = o(1), and

b1 = b′
1 + ∑

i

P(Ci = 1)2 + 2
∑
i

∑
j 	=i

P(Ci = 1)P(Dij = 1)

= O
(
1/n + n(1/n)2 + n2(1/n)(1/n2)

) = O(1/n).

Theorem 8 yields ‖L(S
(n)
≤2 )−Poisson(1+μn)‖ ≤ 2(b1 +b2) = o(1); and we have

1 + μn → 3/2 by Theorem 19. �

COROLLARY 34. If F ∈ SE , then the probability that there is an ESS with
support of size ≤ 2 converges to 1 − e−3/2 � 0.78 as n → ∞.

6. Discussion. We conclude with a discussion of some of the related litera-
ture, together with a number of comments, conjectures and open problems.

(a) Vertices and equilibria. The connection between Nash equilibria and vertices
of random polytopes was used by Bárány, Vempala and Vetta [3] to find Nash
equilibria in random games. Concerning ESS, we emphasize again that the number
of vertices of a random polygon and the number of two-point ESS of a random
game have different distributions; only their expectations are related (by a factor
of 8; see Proposition 9).

(b) The class EF . The class of distributions with “Exponential and Faster de-
creasing tails” for which Theorem 1 holds can clearly be taken to be larger than
that of Section 4. Indeed, since Theorem 13 holds for any distribution, we can in-
clude in EF any F such that μn → ∞. Take, for example, those distributions in
Fisher [8] for which the limit shape of the convex hull is a strictly convex set; this
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implies that the number of vertices, and thus μn, must go to infinity. By Theo-
rem 1 there, this includes distributions where, for some α > 1, the tail probability
G = 1 − F satisfies G−1(1/tc) ∼ c1/αG−1(1/t) as t → ∞ for each c ∈ (0,1).

(c) The probability of having an ESS. For distributions in EF , Theorem 1(iii)
implies that the probability that there is an ESS converges to 1 as n increases. For
distributions in SE , however, it is still unknown what the limit of this probability
is. Some preliminary informal analysis suggests to us the following conjectures: if
F ∈ SE , then, as n → ∞:

• S
(n)
3 → Poisson(1/3);

• S
(n)
≤3 := S

(n)
1 + S

(n)
2 + S

(n)
3 → Poisson(1 + 1/2 + 1/3) = Poisson(11/6);

• S
(n)
� → 0 for all � ≥ 4;

• ∑n
�=1 S

(n)
� → Poisson(11/6);

• P(there is an ESS) → 1 − e−11/6 � 0.84 < 1.

[The geometric objects corresponding to S
(n)
� are now the (� − 1)-dimensional

faces of the convex hull of n random points in R
�.]

(d) Threshold phenomenon. Our distributions exhibit a “threshold” phenom-
enon: either μn → ∞ or μn → 1/2. However, we believe that one may construct
distributions for which the sequence μn has other limit points, or even oscillates
wildly as n increases. Indeed, for each n, the number of vertices, and thus μn,

depends on the distribution F only through a certain interval of its tail [in a neigh-
borhood of G−1(1/n)]. Therefore, one should be able to “glue” various tails (of
the EF or SE types) and get different limit points. See Devroye [7] for such os-
cillations in the case of radially symmetric distributions.

(e) Other distributions. It would be interesting to study additional classes of
distributions. For example, bounded-support distributions whose tail G is not log-
concave are not included in EF ; we conjecture that μn → ∞ in this case, though
perhaps the convergence is at a slower rate than the logn of the uniform distrib-
ution. Another question arises when the distributions of the X-coordinates and of
the Y -coordinates differ (but, say, they are both in EF or both in SE ); this con-
cerns also the number of vertices when the distribution is not symmetric (consider
the different orthants).

Acknowledgments. The authors thank Imre Bárány, Josef Hofbauer, Nati
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