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ABSTRACT

This paper studies the econometrics of computed dynamic models. Since these models generally lack

a closed-form solution, their policy functions are approximated by numerical methods. Hence, the

researcher can only evaluate an approximated likelihood associated with the approximated policy

function rather than the exact likelihood implied by the exact policy function. What are the

consequences for inference of the use of approximated likelihoods? First, we find conditions under

which, as the approximated policy function converges to the exact policy, the approximated

likelihood also converges to the exact likelihood. Second, we show that second order approximation

errors in the policy function, which almost always are ignored by researchers, have first order effects

on the likelihood function. Third, we discuss convergence of Bayesian and classical estimates.

Finally, we propose to use a likelihood ratio test as a diagnostic device for problems derived from

the use of approximated likelihoods.
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1. Introduction

This paper studies the following problem. Most dynamic economic models do not have a

closed-form solution. Instead, the solution is approximated by numerical methods. Hence,

when a researcher builds the likelihood function of the model given some data, she is not

evaluating the exact likelihood, but only an approximated likelihood given her approximated

solution to the model. What are the effects on statistical inference of using an approximated

likelihood instead of the exact likelihood function?

In the last 20 years, there has been a remarkable increase in the use of dynamic models with

approximated likelihoods and simulation techniques in econometrics. We can find examples

in labor economics, IO, health economics, demographics, game theory, development, public

finance, auction theory, macroeconomics, open economy, finance, and other fields. Without

being exhaustive, we can cite Flinn and Heckman (1982), Wolpin (1984), Pakes (1986), Rust

(1987), Sargent (1989), Rosenzweig and Wolpin (1993), Daula and Moffitt (1995), Keane

and Wolpin (1997), Rust and Phelan (1997), Gilleskie (1998), Keane and Moffitt (1998),

DeJong, Ingram, and Whiteman (2000), Schorfheide (2000), Jofre-Bonet and Pesendorfer

(2003), Smets and Wouters (2003), Crawford and Shum (2005), and Rabanal and Rubio-

Ramírez (2005) among dozens of others. Moreover, a growing number of policy-making

institutions (the European Central Bank, the Federal Reserve Board, the Riksbank, the

IMF, the Bank of Canada, the Bank of Spain, and the Bank of Italy) are formulating and

estimating dynamic models with approximated likelihoods for policy analysis.

The standard practice of researchers when it comes to using likelihood methods is to

conduct inference as if they had the exact solution of the model and to ignore the effects

of approximation errors on the solution of the model. Surprisingly enough, hardly anything

is known about the implications of these approximation errors for likelihood analysis. Con-

sequently, we understand very little about the possible mistakes that researchers face when

conducting inference. How different are the approximated and the exact likelihood functions?

Does the approximated likelihood function converge to the exact likelihood as the approxi-

mated policy function converges to the exact policy function? If it does, at what speed? How

do approximated policy functions affect parameter inference and model comparison?
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Our first result is to find technical conditions under which, if the approximated policy

function converges to the exact policy function in the sup norm for given parameter values,

the approximated likelihood function also converges to the exact likelihood. Why is this

result important? Because it is easy to build examples where the violation of our technical

conditions implies that the sequence of approximated policy functions converges to the exact

policy function but the sequence of approximated likelihoods does not converge. Section 1

presents one particularly simple example of non-convergence. This example illustrates that

we cannot generally assume the convergence of the approximated likelihood, and hence it

underscores the need to derive conditions under which this convergence is guaranteed.

Our second finding is that second order approximation errors in the policy function, which

almost always are ignored by researchers, have first order effects on the likelihood function.

We show that the approximated likelihood function converges at the same rate as the ap-

proximated policy function. However, the error in the approximated likelihood function gets

compounded with the size of the sample. Therefore, period by period, small errors in the

policy function accumulate at the same rate at which the sample size grows. Similarly, third

order approximation errors in the policy function will have second order effects on the likeli-

hood function, and so on.

This result warns us that there could be strong biases from statistical inference performed

with the approximated model instead of the exact one. We present a simple application

that shows that this bias is quantitatively relevant in real-life models. Our application also

illustrates how to diagnose and correct the biases in inference using a Likelihood Ratio test.

Our theoretical and empirical findings thus have dramatic and unexpected consequences for

the many researchers engaged in likelihood-based inference of approximated models.

Our third result concerns the convergence of estimates. We show that the convergence of

Bayesian estimators comes directly from our first result, the pointwise convergence of the like-

lihood. The case of maximum likelihood estimates is more involved. Pointwise convergence

of the likelihood does not allow us to swap the argmax and lim operators. But, we can im-

pose mildly more stringent conditions to prove the uniform convergence of the approximated

likelihood function to the exact likelihood. Uniform convergence implies the convergence of

maximum likelihood point estimates.
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Our paper is the first systematic analysis of the implications of approximation error on

likelihood inference. We build on the recent work by Santos and Peralta-Alva (2005) and

Santos (2004), who have derived some pioneering results on the convergence of the moments

generated by a numerically approximated model when the computed policy functions converge

to the exact ones. Santos and Peralta-Alva have shown that the moments computed under the

numerically approximated policy converge to their exact values as the approximation errors

of the computed solution go to zero. We extend this research to the study of the convergence

properties of approximated likelihood functions. This extension raises a whole new range of

issues not previously explored either in economics or statistics. Also, our theoretical results

confirm some of the conjectures in Duffie and Singleton (1993) and provide a foundation for

the experiments in Keane and Wolpin (1994).

A related issue that is different from the focus of this paper is how to evaluate the likelihood

when that likelihood function is intractable given some policy rules. This evaluation is usually

performed by simulation methods (see Gouriéroux and Monfort, (1996)). Pakes and Pollard

(1989) provide results regarding the convergence and asymptotics of simulation estimators.

Of course, both problems can exist at the same time: We may need to approximate the

decision rule of the agents and, even with that approximation, resort to simulation methods

to evaluate the likelihood. This would be the case, for example, if we want to evaluate the

likelihood function of the neoclassical growth model when the solution method is nonlinear.

The rest of the paper is organized as follows. Section 2 presents an example where the

sequence of approximated likelihoods does not converge to the exact likelihood. Section 3

fixes an environment to discuss the convergence of the likelihood. Our main result concerning

convergence is contained in section 4. Section 5 narrows down the speed of convergence,

its relation to the sample size, and proposes a likelihood ratio rest to diagnose inference

problems. Section 6 presents our findings regarding the convergence of maximum likelihood

point estimates. Section 7 studies an application that confirms that the results of the paper

hold in practice. Section 8 concludes. An appendix gathers all the proofs of the results in

the paper.
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2. An Example of Nonconvergence

We begin by presenting an example to show how, in general, we cannot assume the conver-

gence of the approximated likelihood to the exact likelihood. This example is built around

a discrete policy function. This policy function will be approximated in such a way that the

sequence of approximated policy functions converges to the exact policy function but the se-

quence of approximated likelihoods does not. Our example may not surprise the reader since

the convergence failure relies on the presence of multiple ergodic sets. However, it illustrates

in a transparent environment our point that we cannot just assume the convergence of the

likelihood.

Let us think about the following dynamic discrete choice problem. An agent has to choose

the current state St among three possible states S = {1, 2, 3}. After choosing the state, the
agent gets a random endowment yt = εi,t if St = i, where εi,t is normally distributed with

standard deviation σi. The period utility function is u (yt, St, St−1). This utility depends on

the current endowment, the current state St, and on the state St−1 chosen last period. The

presence of St−1 links the current choice with future payoffs, which are discounted at rate β.

Also, the agent has access to a randomization device.

The utility function, the discount factor, and the randomization device are such that the

exact policy function of the agent is given by:

ϕ =


1 0 0

0 1
2

1
2

0 1
2

1
2

 .

This policy function is interpreted as follows. If the agent chose state 1 in the last period,

she will choose state 1 in the current period with probability 1 (first row of the matrix). If

the agent chose state 2 in the last period, she will choose state 2 with probability 1/2 and

state 3 with probability 1/2 (second row of the matrix). The agent will behave in the same

way if she chose state 3 in the last period (last row of the matrix).1

1It is possible to find utility functions and discount factors that imply this policy function. We omit details
in the interest of space.
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This policy function generates two ergodic distributions for the states of the economy:

(1, 0, 0) and
¡
0, 1

2
, 1
2

¢
. The presence of these two nonoverlapping ergodic distributions implies

that, in order to write the likelihood function, we need to specify where the initial state of

the economy S0 is coming from. Following Lubik and Schorfheide (2004), we assume that

there is a sunspot that picks one of the two distributions. The sunspot has probability πA to

signal the first ergodic distribution and πB to signal the second (where πA + πB = 1).

If the economist observes a sequence of endowments yT , the likelihood conditional on the

first state S0 of those data is:

L
¡
yT ; γ, S0 = i

¢
=



TY
t=1

φ
³
yt
σ1

´
if S0 = 1YT

t=2

³
φ
³
yt
σ2

´
+φ
³
yt
σ3

´´
2

φ
³
yt
σ2

´
if S0 = 2YT

t=2

³
φ
³
yt
σ2

´
+φ
³
yt
σ3

´´
2

φ
³
yt
σ3

´
if S0 = 3

(1)

where γ is the vector of parameters of the model and φ (·) is the standardized normal density.
Equation (1) and the sunspot distribution imply that the likelihood function equals:

L
¡
yT ; γ

¢
= L

¡
yT ; γ, S0 = 1

¢
πA +

Ã
L
¡
yT ; γ, S0 = 2

¢
2

+
L
¡
yT ; γ, S0 = 3

¢
2

!
πB (2)

Now let us assume that the economist cannot compute the exact policy function ϕ, but

only an approximated policy function ϕj of the form:

ϕj =


1− δj

δj
2

δj
2

0 1
2

1
2

0 1
2

1
2


where 0 < δj < 1 is the maximum absolute error in the approximation of the policy function

and j is an index of the accuracy of the approximation. Suppose that the solution method

is such that the economist computes exactly yt = εi,t if St = i for all j and that δj → 0

as j → ∞. Given these two properties of the solution method, no matter how good our
approximated policy function is (i.e., no matter how small δj is), the ergodic distribution for
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the states of the economy is
¡
0, 1

2
, 1
2

¢
for all j.

Therefore, the economist evaluates the approximated likelihood:

Lj
¡
yT ; γ

¢
=
L
¡
yT ; γ, S0 = 2

¢
2

+
L
¡
yT ; γ, S0 = 3

¢
2

(3)

for all j. Comparing (2) and (3), we see that, as δj → 0, ϕj → ϕ, but Lj
¡
yT ; γ

¢
9 L

¡
yT ; γ

¢
.

This example shows that the sequence of approximated likelihoods may fail to converge.

Hence, it is important to find conditions that ensure the convergence of the approximated

likelihoods and to assess the rate of convergence. Also, this example presents several ele-

ments that will be important in our results: the continuity of the exact policy function, the

convergence of the sequence of approximated policy functions, the maximum error of the

approximated policy function, and the stationary distribution of states of the economy.

3. The Setting

The equilibrium law of motion of a large class of dynamic economies can be specified as a

state space system of the form (see Stokey, Lucas, and Prescott, (1989)):

St = ϕ (St−1,Wt; γ) (4)

Yt = g (St, Vt; γ) . (5)

Here St is a vector of state variables that characterize the evolution of the system. The vector

St belongs to the compact set S ⊂ Rl. Often, we will use the measurable space (S,S)where
S is the Borel σ − field. The variables Wt and Vt are i.i.d. shocks with compact supports

in subsets of some Euclidean space, with bounded and continuous densities. Wt and Vt are

independent of each other. The observables in each period are stacked in a vector Yt. If we

have T periods of observations, we let Y T ≡ {Yt}Tt=1 with Y 0 = {∅}. We assume that Y T
is distributed according to the probability density function pT0 (·). Finally, γ, which belongs
to the compact set Υ ⊂ Rn, is the vector of structural parameters, i.e., those describing the
preferences, technology, and information sets of the economy. To avoid stochastic singularity,

we have that dim (Wt) + dim (Vt) ≥ dim (Yt) .
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Equation (4) is known as the transition equation, since it governs the evolution of states

over time. Equation (5) is called the measurement equation because it relates states and

observables. Note that in this framework we can accommodate cases in which the dimen-

sionality of the shocks could be zero or where the shocks have more involved stochastic

structures. Also, the states might be part of the observables if g is the identity function along

some dimension.

To deal with a larger class of models, we partition {Wt} into two sequences {W1,t} and
{W2,t}, such that Wt = (W1,t,W2,t) and dim (W2,t) + dim (Vt) = dim (Yt). If dim (Vt) =

dim (Yt) , we set W1,t = Wt ∀t, i.e., {W2,t} is a zero-dimensional sequence. If dim (Wt) +

dim (Vt) = dim (Yt) , we set W2,t = Wt for ∀t, i.e., {W1,t} is a zero-dimensional sequence.
Also, let W T

i = {Wi,t}Tt=1, V T = {Vt}Tt=1, and ST = {St}Tt=0 for ∀T . Let yT be a realization
of the random variable Y T for ∀T . We define W 0

i = {∅} and y0 = {∅}.
Finally, we introduce some additional constructs. Let C (S) be the space of all contin-

uous, S−measurable, real-valued functions on S. We endow C (S) with the norm kfk =
maxs∈S |f (s)| so that this is a Banach space. For a vector-valued function f = (. . . , f i, . . .) ,
we define kfk = maxi kf ik. Convergence of a sequence of functions {fj} should be understood
in the metric induced by this norm.

Before getting into our analysis, we make the following assumptions:

Assumption 1. For all γ, functions ϕ (·, ·; γ) and g (·, ·; γ) are continuously differentiable,
with bounded partial derivatives.

Assumption 1 arises naturally in a number of economic models. The continuity of ϕ (·, ·; γ)
often follows from primitive conditions of the economic model (see Theorem 4.8 in Stokey,

Lucas, and Prescott, (1989)) that ensure the continuity and single-valuedness of the agents’

policy functions.

Standard arguments show that there exists a unique invariant distribution of the dynamic

model, µ∗ (S; γ). In the next assumption, we state the existence of that invariant distribution,

µ∗ (S; γ) , and that it is has a density that we can use in our future derivations. With some

extra work (see Brin and Kifer, (1987), and Peres and Solomyak, (1996)), this assumption

could be written directly in terms of the policy functions ϕ (·, ·; γ) and g (·, ·; γ).
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Assumption 2. For all γ, there exists a unique invariant distribution for S, µ∗ (S; γ), that

has a Radon-Nykodim derivative with respect to the Lebesgue measure.

Let us also make the following assumption:

Assumption 3. For all γ and t, the following system of equations:

S1 = ϕ (S0, (W1,1,W2,1) ; γ)

ym = g (Sm, Vm; γ) for m = 1, 2, ..., t

Sm = ϕ (Sm−1, (W1,m,W2,m) ; γ) for m = 2, 3, ..., t

has a unique solution, (vt (W t
1, S0, y

t; γ) , st (W t
1, S0, y

t; γ) , wt2 (W
t
1, S0, y

t; γ)), and we can eval-

uate p (vt (W t
1, S0, y

t; γ) ; γ) and p (wt2 (W
t
1, S0, y

t; γ) ; γ) for all S0, W t
1, and t.

Assumptions 1 and 3 imply that, for all γ and t, we can evaluate the conditional densities

p (yt|W t
1, S0, y

t−1; γ) for all S0 andW t
1. To simplify the notation, we write (v

t, st, wt2), instead

of the cumbersome expression (vt (W t
1, S0, y

t; γ) , st (W t
1, S0, y

t; γ) , wt2 (W
t
1, S0, y

t; γ)). Hence,

for all γ and t, we have p (yt|W t
1, S0, y

t−1; γ) = p (vt; γ) p (w2,t; γ) |dy (vt, w2,t; γ)| for all S0
and W t

1, where |dy (vt, w2,t; γ)| stands for the determinant of the Jacobian matrix of yt with
respect to Vt and W2,t evaluated at vt and w2,t.

Using assumptions 2 and 3, we can define the likelihood of the data as follows. If yT is a

realization of the random variable Y T , its likelihood conditional on parameter values γ is:

L
¡
yT ; γ

¢
=

TY
t=1

p
¡
yt|yt−1; γ

¢
=

TY
t=1

Z Z
p
¡
yt|W t

1, S0, y
t−1; γ

¢
p
¡
W t
1, S0|yt−1; γ

¢
dW t

1dS0. (6)

To avoid trivial problems, we assume that the model assigns positive probability to the

data, yT . This is formally reflected in the following assumption:

Assumption 4. For all γ and t, the model gives some positive probability to the data yT ,

that is, p (yt|W t
1, S0, y

t−1; γ) > ξ ≥ 0 for all S0 and W t
1.
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Assumption 4 allows us to write the likelihood (6) in the following recursive way:

L
¡
yT ; γ

¢
=

TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z ÃZ TY
t=1

p (W1,t; γ) p
¡
yt|W t

1, S0, y
t−1; γ

¢
dW t

1

!
µ∗ (dS0; γ)

for all γ. This structure will be useful for proving our results in the next sections.

We let bγ ¡yT¢ ≡ argmaxγ∈Υ p ¡yT ; γ¢ to be the pseudo-maximum likelihood point estimate
(PMLE). Note that we do not assume that there exists a value γ∗ such that p

¡
yT ; γ∗

¢
=

pT0
¡
yT
¢
, i.e., the model may be misspecified (hence, the term pseudo).

4. Convergence of the Likelihood

If the researcher knows the transition and measurement equations, ϕ (·, ·; γ) and g (·, ·; γ), the
evaluation of the likelihood function (6) is conceptually a simple task. However, in most real-

life applications, the economist has access only to numerical approximations to the transition

and measurement equations, ϕj (·, ·; γ) and gj (·, ·; γ). We index the approximations by j to
emphasize that, frequently, the approximation to the unknown transition and measurement

equations admits refinements that will imply that ϕj (·, ·; γ) and gj (·, ·; γ) converge to their
exact values as j goes to infinity. For example, the dynamic programming algorithm allows

for more vertex points, perturbation approaches for a higher order of the expansion, and

projection methods for more basis functions.

But the use of ϕj (·, ·; γ) and gj (·, ·; γ) raises a fundamental issue. The researcher cannot
evaluate the exact likelihood function L

¡
yT ; γ

¢
, implied by the exact ϕ (·, ·; γ) and g (·, ·; γ) ,

because she does not have access to those latter two functions. The researcher can only

evaluate the approximated likelihood Lj
¡
yT ; γ

¢
implied by the approximated ϕj (·, ·; γ) and

gj (·, ·; γ). What are the effects on inference of employing Lj
¡
yT ; γ

¢
, instead of L

¡
yT ; γ

¢
?

Does Lj
¡
yT ; γ

¢
converge to L

¡
yT ; γ

¢
? What about the point estimates?

This section shows that, under some conditions, for any given value of the parameters, γ,

the approximated likelihood function, Lj
¡
yT ; γ

¢
, converges to the exact likelihood function,

L
¡
yT ; γ

¢
, as the approximated transition and measurement equations ϕj (·, ·; γ) and gj (·, ·; γ)

converge to the exact transition and measurement functions. Formally, we prove that for any
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given γ, Lj
¡
yT ; γ

¢→ L
¡
yT ; γ

¢
as ϕj (·, ·; γ)→ ϕ (·, ·; γ) and gj (·, ·; γ)→ g (·, ·; γ).

First, we establish that for all γ and t, the conditional probability p (yt|W t
1, S0, y

t−1; γ) is

a continuous, real-valued function of S0 for all W t
1.

Lemma 1. Let γ ∈ Υ. Under assumptions 1 and 3, for all t, p (yt|W t
1, S0, y

t−1; γ) ∈
C (W t

1, S0).

The proof of lemma 1, as the proof of the other results in the paper, can be found in

the appendix. This lemma implies that L
¡
yT ; γ

¢
is bounded, since p (yt|W t

1, S0, y
t−1; γ) is

continuous with bounded support.

We now prove that for all j, γ, and t, the conditional probability pj (yt|W t
1, S0, y

t−1; γ)

associated with the approximated transition and measurement equations is also a continuous,

real-valued function of S0 for all W t
1. To do so, we follow a parallel structure to that on our

previous section.

First, we assume:

Assumption 5. For all j and γ, the functions ϕj (·, ·; γ) and gj (·, ·; γ) are continuous. For
all j and γ, ϕj (·, ·; γ) and gj (·, ·; γ) are continuously differentiable at all points except at a
finite number of points. At the points of differentiability, all partial derivatives are bounded,

and the bounds are independent of j.

Assumption 5 ensures continuity of ϕj (·, ·; γ) and gj (·, ·; γ) at all points, while both
functions may not be differentiable at a finite number of points. This lack of differentiability

allows us to consider solution methods that, by construction, have kinks at a finite number of

points. Those include, for example, value function iteration with linear interpolation or the

finite elements method with linear basis functions. Under further mild regularity conditions,

all our results will hold when these functions fail to be differentiable at a countable number

of points.

Let µ∗j (S; γ) be the invariant distribution associated with the approximated function

ϕj (·, ·; γ). Then, we assume:
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Assumption 6. For all γ, the invariant distribution for S, µ∗j (S; γ), has a Radon-Nykodim

derivative with respect to the Lebesgue measure.

As was the case in assumption 2, with some extra work this assumption could be written

in terms of the policy functions ϕj (·, ·; γ), and gj (·, ·; γ).
We also postulate the equivalent of assumption 3 for the approximated functions:

Assumption 7. For all j, γ, and t, the following system of equations:

S1 = ϕj (S0, (W1,1,W2,1) ; γ)

ym = gj (Sm, Vm; γ) for m = 1, 2, ..., t

Sm = ϕj (Sm−1, (W1,m,W2,m) ; γ) for m = 2, 3, ..., t

has a unique solution,
¡
vtj (W

t
1, S0, y

t; γ) , stj (W
t
1, S0, y

t; γ) , wtj,2 (W
t
1, S0, y

t; γ)
¢
, and we can

evaluate p
¡
vtj (W

t
1, S0, y

t; γ) ; γ
¢
and p

¡
wtj,2 (W

t
1, S0, y

t; γ) ; γ
¢
for all S0 and W t

1 but a finite

number of points.

As before, assumptions 5 and 7 imply that for all j, γ, and t, we can evaluate the

conditional densities pj (yt|W t
1, S0, y

t−1; γ) for all S0 and W t
1 but a finite number of points.

Again, to simplify the notation, we write
¡
vtj, s

t
j, w

t
j,2

¢
rather than the cumbersome expres-

sion
¡
vtj (W

t
1, S0, y

t; γ) , stj (W
t
1, S0, y

t; γ) , wtj,2 (W
t
1, S0, y

t; γ)
¢
. Since assumption 5 implies that

dyj (vj,t, wj,2,t; γ) exists for all but a finite set of S0 and W t
1, we have that, for all j, γ, and

t, pj (yt|W t
1, S0, y

t−1; γ) = p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)| for all S0 and W t
1 but a fi-

nite number of points. Notice that the Jacobian matrix of yt with respect to Vt and W2,t in

the approximated solution, dyj (·, ·; γ), is now a function of j because of its dependency on
ϕj (·, ·; γ) and gj (·, ·; γ).
We also define the pseudo-maximum likelihood point estimate (PMLE) of the approx-

imated model as bγj ¡yT¢ ≡ argmaxγ∈Υ pj
¡
yT ; γ

¢
and require the approximated model to

explain the data even if it does so with arbitrarily low probability:

Assumption 8. For all j, γ, and t, the model gives some positive probability to the data

yT , that is, pj (yt|W t
1, S0, y

t−1; γ) ≥ ξ > 0 for all S0 and W t
1 but a finite number of points.
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Now we can prove the equivalent to lemma 1 for the approximated functions. As in the

case of the exact probability, this lemma ensures that Lj
¡
yT ; γ

¢
is bounded.

Lemma 2. Let γ ∈ Υ. Under assumptions 5 and 7, for all j and t, pj (yt|W t
1, S0, y

t−1; γ) ∈
C (W t

1, S0) but in a finite number of points.

Under assumptions 1 and 5, as the approximated transition and measurement functions

converge to the exact transition and measurement functions, the invariant distribution gen-

erated by those approximations will converge to the invariant distribution implied by exact

measurement and transition functions. This result is formally stated in Theorem 2 in Santos

and Peralta-Alva (2005), which we reproduce here.

Lemma 3. Let γ ∈ Υ, ϕj (·, ·; γ) → ϕ (·, ·; γ). Then, under assumptions 1 and 5, every
sequence of invariant distributions

©
µ∗j (S; γ)

ª
converges weakly to the invariant distribution

µ∗ (S; γ) associated with ϕ (·, ·; γ).

4.1. Main Result: Convergence of the Likelihood Function

As the densities pj (yt|yt−1; γ) and p (yt|yt−1; γ) depend on the Jacobians of ϕj (·, ·; γ), gj (·, ·; γ),
ϕ (·, ·; γ) , and g (·, ·; γ), to prove convergence of the likelihood function, we need to consider
the convergence of such Jacobians as an intermediate step. To show that dϕj (·, ·; γ) →
dϕ (·, ·; γ) and dgj (·, ·; γ)→ dg (·, ·; γ), as ϕj (·, ·; γ)→ ϕ (·, ·; γ) and gj (·, ·; γ)→ g (·, ·; γ), we
first need to assume:

Assumption 9. For all j and γ, ϕj (·, ·; γ) and gj (·, ·; γ) have bounded second partial deriv-
atives at all points except at a finite number of points. The bounds are independent of

j.

This assumption is satisfied naturally by most solution methods for dynamic economic

models, since a common strategy is to find an approximation to the unknown functions

using some well-behaved basis, such as polynomials. Our previous examples of value function

iteration and the finite elements method fit into this category. Other popular procedures,

such as linearization and perturbation methods, do as well.

13



Our next lemma ensures that wherever the transition and measurement equations are dif-

ferentiable, we have that dϕj (·, ·; γ)→ dϕ (·, ·; γ) and dgj (·, ·; γ)→ dg (·, ·; γ), as ϕj (·, ·; γ)→
ϕ (·, ·; γ) and gj (·, ·; γ)→ g (·, ·; γ). This seemingly surprising result follows from the Arzelà-

Ascoli theorem.

Lemma 4. Let γ ∈ Υ. Under assumption 9, if ϕj (·, ·; γ) → ϕ (·, ·; γ) and gj (·, ·; γ) →
g (·, ·; γ), then dϕj (·, ·; γ)→ dϕ (·, ·; γ) and dgj (·, ·; γ)→ dg (·, ·; γ).

Now, we are ready to use lemmas 1- 4 to prove the main result of this section, the

convergence of the likelihood function. Formally:

Proposition 1. Let γ ∈ Υ. Under assumptions 1 to 9, if ϕj (·, ·; γ) → ϕ (·, ·; γ) and
gj (·, ·; γ)→ g (·, ·; γ), then

TY
t=1

pj
¡
yt|yt−1; γ

¢→ TY
t=1

p
¡
yt|yt−1; γ

¢
.

The result is key for applied work. It states that for any given γ, as we get better ap-

proximations of the policy function in our dynamic economic model, the computed likelihood

converges to the exact likelihood. This finding provides a foundation for empirical estimates

based on the approximation of policy functions, since it guarantees, at least asymptotically,

that we are finding the right object of interest, the likelihood function implied by the economic

model.

4.2. Comments on the Assumptions

The assumptions in the previous sections are intended to get the convergence of the approxi-

mated likelihood function to the exact likelihood, and hence, they seem necessary to carry out

statistical inference in approximated dynamic equilibrium models via the likelihood function.

In this section, we distinguish between technical and substantive assumptions.

We assume compactness of the support of St, Vt, and Wt. This assumption is important

for the results shown in the paper because lemma 3, that we borrow from Santos and Peralta-

Alva (2005), requires such compactness. Recent work by Stachurski (2002), who studies the
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asymptotic behavior of the stochastic neoclassical growth model without compactness of the

shocks and states, suggests it could be possible to relax this assumption with extra work.

We also assume that the densities of Vt and Wt are bounded and continuous. The conti-

nuity of the density is needed to prove lemma 1, while the boundness of the density is used in

the proof of proposition 1. The assumption of independence of Vt and Wt within and across

time is a technical assumption that can be relaxed with heavier notation.

Assumption 1 is substantial for the proofs of lemmas 1 and 3. Assumption 2 implies

that the invariant distribution µ∗ (S; γ) is unique and has a Radon-Nykodim derivative with

respect to the Lebesgue measure.2 These two requirements are essential and may seem

restrictive in certain contexts. However, if the model has multiple invariant distributions,

the likelihood function is not univocally defined. Moreover, in the case of multiple invariant

distributions, the likelihood function may not be approximated by numerical methods, since

some ergodic sets may not be robust to perturbations of the model, i.e., the correspondence

of invariant distributions may fail to be lower semicontinuous (see Santos and Peralta-Alva,

(2005)). Multiple steady states arise in several deterministic and stochastic settings (see

Boldrin and Woodford, (1990), for models with sunspots and endogenous fluctuations, Kehoe

and Levine, (1985), for overlapping generations models, and Benhabib and Farmer, (1999),

for models with taxes and externalities).3 The existence of a Radon-Nykodim derivative is

also important to handle the lack of differentiability of ϕj (·, ·; γ) and gj (·, ·; γ) in a finite
number of points. Assumption 3 is vital to have a well defined likelihood. Assumption 4

is technical since it only rules out trivial models that assign zero probability to the data.

Similar arguments apply for assumptions 5 to 8. Finally, assumption 9 is fundamental for

lemma 4.

4.3. Applications of the Main Result

Proposition 1 has a number of applications. We highlight just two of them. First, pointwise

convergence implies that for any given γ and γ0, the ratio of likelihood functions converges.

2The violation of this condition is the reason why, in the example in the working paper of the article, the
sequence of approximated likelihoods of the model falls to converge to the exact likelihood.

3For some valuable criteria for testing the uniqueness of the invariant distribution, see Futia (1982) and
Stokey, Lucas, and Prescott (1989, Chapters 11 and 12).
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This result is useful in all contexts in which likelihood ratios are built, such as in classical

hypothesis testing or when implementing the Metropolis-Hastings algorithm for posterior

simulation.

Corollary 1. Let γ, γ0 ∈ Υ. If the conditions of Proposition 1 are satisfied for γ and γ0, it

follows that:
Lj
¡
yT ; γ0

¢
Lj (yT ; γ)

→ L
¡
yT ; γ0

¢
L (yT ; γ)

.

The second application of the result directly affects Bayesian inference. There are two

main objects of interest in the Bayesian paradigm: the marginal likelihood of the model

and the posterior of the parameters. The marginal likelihood of the model is defined as

p
¡
yT
¢
=
R
Υ
L
¡
yT ; γ

¢
π (γ) dγ, while the marginal likelihood of the approximated model is

pj
¡
yT
¢
=
R
Υ
Lj
¡
yT ; γ

¢
π (γ) dγ. Marginal likelihoods are important as measures of fit of

the model and for building Bayes ratios, a key step in the Bayesian comparison of models

(Geweke, (1998)).

Given that L
¡
yT ; γ

¢
and Lj

¡
yT ; γ

¢
are bounded, an application of Arzelà’s theorem

delivers the convergence of the marginal likelihood:

Corollary 2. If the conditions of Proposition 1 are satisfied for all γ, it follows that pj
¡
yT
¢→

p
¡
yT
¢
.

Given some prior distribution of the parameters, π (γ), the posterior is given by p
¡
γ|yT¢ ∝

L
¡
yT ; γ

¢
π (γ) for the exact likelihood, and pj

¡
γ|yT¢ ∝ Lj ¡yT ; γ¢π (γ) for the approximated

likelihood. Proposition 1 also implies the convergence of the posterior.

Corollary 3. If the conditions of Proposition 1 are satisfied for all γ, it follows that pj
¡
γ|yT¢→

p
¡
γ|yT¢ .
The posterior distribution of the parameters of the model —beyond expressing our con-

ditional belief— is also useful for evaluating expectations of the form E
¡
h (γ) |yT ¢ , in which

h (γ) is a function of interest. Examples of such functions include loss functions for point

estimation and point prediction, indicator functions for percentile statements, moment con-

ditions, predictive intervals, or turning point probabilities.
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Consider the expectation of the exact modelE
¡
h (γ) |yT¢ = 1

p(yT )

R
Υ
h (γ)L

¡
yT ; γ

¢
π (γ) dγ

and the approximated model Ej
¡
h (γ) |yT¢ = 1

pj(yT )

R
Υ
h (γ)Lj

¡
yT ; γ

¢
π (γ) dγ. Then:

Corollary 4. If the conditions of Proposition 1 are satisfied for all γ, and h (γ)Lj
¡
yT ; γ

¢
π (γ)

and h (γ)L
¡
yT ; γ

¢
π (γ) are Riemann-integrable, then Ej

¡
h (γ) |yT¢→ E

¡
h (γ) |yT¢.

It is important to notice that proposition 1 shows pointwise convergence of the likelihood

function. Therefore, we cannot use it to prove convergence of the PMLE, since we cannot

swap the argmax and limit operator. Below, we provide additional assumptions to prove

uniform convergence of the likelihood function and, consequently, to prove the convergence

of the PMLE bγj ¡yT¢→ bγ ¡yT¢.
5. Speed of Convergence of the Likelihood

The goal of this section is to analyze the speed of convergence of the approximated likeli-

hood function, Lj
¡
yT ; γ

¢
, to the exact likelihood function, L

¡
yT ; γ

¢
for a fixed γ. Given

a bound for the difference between the approximated and exact transition and measure-

ment equations,
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤ δ, we will ob-

tain a bound for the difference between the approximated and exact likelihood functions¯̄̄YT

t=1
pj (yt|yt−1; γ)−

YT

t=1
p (yt|yt−1; γ)

¯̄̄
.

Let us introduce some additional assumptions needed in the section:

Assumption 10. For all γ, the densities ofWt and Vt are differentiable, with bounded partial

derivatives.

Assumption 11. For all γ, ϕ (·, ·; γ) and g (·, ·; γ) are twice continuously differentiable, with
bounded second partial derivatives.

Now, we prove:

Lemma 5. Let γ ∈ Υ. Under assumptions 1, 3, 10, and 11, p (yt|W t
1, S0, y

t−1; γ) is continu-

ously differentiable with bounded partial derivatives with respect to S0 for all t.
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It follows that p (yt|W t
1, S0, y

t−1; γ) is Lipschitz with respect to S0 for all t, with Lipschitz

constant Lp.

Once we have the continuity and differentiability of p (yt|W t
1, S0, y

t−1; γ), the next step is

to bound the difference |pj (yt|W t
1, S0, y

t−1; γ)− p (yt|W t
1, S0, y

t−1; γ)| . This difference will be
a key component when we evaluate the differences between likelihoods. We then parameterize

both ϕj (·, ·; γ) = ϕ (·, ·; γ, θj), and gj (·, ·; γ) = g (·, ·; γ, θj), where θj ∈ Φ, ∀j, for a compact
subset Φ ∈ RM , in such a way that they have bounded partial derivatives with respect to θ,

as functions of S,W, and V . The bounds are independent of j. This parameterization and

assumptions 10 and 11 will allow us to apply the implicit function theorem to prove lemma 6

below. The next result uses lemma 4 and follows from an application of the implicit theorem

in a space of functions.

Lemma 6. Let γ ∈ Υ. Under assumptions 1 to 11, if
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and

kgj (·, ·; γ)− g (·, ·; γ)k ≤ δ, then there exists a positive constant χ such that for all t:

¯̄
pj
¡
yt|W t

1, S0, y
t−1; γ

¢− p ¡yt|W t
1, S0, y

t−1; γ
¢¯̄ ≤ χδ

for all S0 and W t
1 but in a finite number of points.

In the next proposition, we apply Theorem 6 of Santos and Peralta-Alva (2005). We first

impose a contractivity condition on ϕ, which is equivalent to their Condition C.

Condition 1. Let γ ∈ Υ. There exists some constant 0 < α < 1 such that:

Z
kϕ (S,W ; γ)− ϕ (S0,W ; γ)k dQ (W ; γ) ≤ α kS − S0k

for all S, S0, and where Q (·; γ) is the distribution of W .

Condition 1 arises naturally in a large class of applications in economics. For example, it

appears in the stochastic neoclassical growth model (Schenk-Hoppé and Schmalfuss, (2001)),

in concave dynamic programs (Foley and Hellwig, (1975), and Santos and Peralta-Alva,

(2005)), in learning models (Schmalensee, (1975), and Ellison and Fudenberg, (1993)) and in

stochastic games (Sanghvi and Sobel, (1976)). Also, it is a common condition in the literature
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on Markov chains (Stenflo, (2001)). Santos and Peralta-Alva (2005), in their examples 5.3

and 5.4, show how this condition can be checked for dynamic models both with and without

a close-form solution.

Now we are ready to prove the main result of the section. Given a bound for the difference

between the approximated and exact transition and measurement equations, we can bound

the difference between the approximated and exact likelihood functions. Formally:

Proposition 2. Let γ ∈ Υ. Assume that condition 1 holds. Under assumptions 1 to 11, if°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤ δ, there are some positive constants

B and L such for all T :¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

p
¡
yt|yt−1; γ

¢¯̄̄̄¯ <
µ
TBχ+

L

1− α

¶
δ.

Proposition 2 states that the difference between the likelihoods is bounded by a linear

function of the length of the sample of observations, T , and the bound on the error in the

transition and measurement equation δ.4

A number of insights emerge from this result. First, second order approximation errors in

the policy function, which almost always are ignored by researchers, have first order effects

on the likelihood function. Any given error in the policy function δ gets multiplied by T.

The intuition is that small errors in the policy function accumulate at the same rate at which

the sample size grows. Similarly, third order approximation errors in the policy function will

have second order effects on the likelihood function, and so on.

Moreover, in empirical applications, the constants in the bound, B and χ, can be esti-

mated from repeated solutions of the model under different numerical approximations. Con-

sequently, the researcher can bound the difference between the exact and approximated like-

lihood and use proposition 2 as a guide to determine the accuracy δ that she needs to ask

from her solution method.

Second, in order to guarantee asymptotic convergence in the estimation of dynamic mod-

4Santos (2000) shows that for a class of dynamic optimization problems, the approximation error of the
policy function δ is of the same order of magnitude as the Euler equation residual. Since Euler errors are easy
to estimate, we can replace δ by an Euler error estimate and obtain a bound of the same order of magnitude.
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els, the error in the policy function must depend on the length of the sample: the longer the

sample, the smaller the policy function error. Otherwise, the bound in the difference between

the approximated and the exact likelihood goes to infinity. Our proposition suggests that

justifying a solution method based on small errors in the policy function without a reference

to the size of the sample may be misleading for estimation purposes.

Third, our result shows that there is an inherent limitation in the use of linearization meth-

ods to estimate nonlinear dynamic economies. This point is important because linearization

is the most common strategy for computing approximate solutions of dynamic stochastic

general equilibrium models, like the ones popular in macroeconomics. Proposition 2 shows

that linearization is due to fail as the sample size grows. The reason is that linearization fixes

the policy function error and, then, the exact and approximated likelihood diverge as the T

goes to infinity. Thus, proposition 2 cautions us on the indiscriminate use of linearization.

Finally, proposition 2 suggests the use of likelihood ratios as a diagnosis device to check

for the importance of the errors in the approximated likelihood. The researcher can evaluate

the likelihood of the model at PMLE parameter values for different choices of approximation

errors and build a likelihood ratio. Suppose that we have two approximations of the transition

and measurement equation j and j0 with approximation errors δ and δ0 such that δ < δ0. Then,

for observations yT , we can compute:

LR
¡bγj ¡yT¢ ,bγj0 ¡yT¢ , j, j0¢ = TX

t=1

log pj
¡
yt|yt−1;bγj ¡yT¢¢− TX

t=1

log pj0
¡
yt|yt−1; bγj0 ¡yT ¢¢

where bγj ¡yT¢ and bγj0 ¡yT¢ are the PMLEs of the parameters of the model. Note that in
general bγj ¡yT¢ 6= bγj0 ¡yT¢ .
Vuong (1989) develops the asymptotic behavior of this statistic to compare competing

models that are non-nested, overlapping, or nested and whether both, one, or neither is

misspecified. Given the flexibility of his findings, we can interpret the two different ap-

proximations of the same exact model as two competing models. Consequently, the result

of the likelihood ratio test will tell us if the data support one approximation of the model

significantly better than the other one.

We suggest that a promising strategy to check the robustness of the inference could be to
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increase the accuracy of the numerical solution of the model until the value of the likelihood

ratio is such that a researcher cannot distinguish between the version of the model implied by

the less accurate solution and the version of the model with a more accurate solution. This

proposal is easy to implement and might protect against some of the worst forms of incorrect

inference that we document in our next section.

Note that, in general, it is dangerous to use a statistical test to evaluate a numerical

approximation method because approximation errors are not random quantities and because

it is always possible to generate a sample long enough such that the approximate solution

is rejected by the test. In our case, however, the likelihood ratio we propose escapes this

criticism because it compares the importance of approximation errors with the sample error.

Consequently, longer sample will discriminate better among competing solutions.5

A Bayesian version of this procedure will compute the Bayes factor of the two models
pj(yT )
pj0(yT )

and follow the standard interpretation of the value of such ratio (see, for an example of

this approach, Fernández-Villaverde and Rubio-Ramírez, (2005)). The strategy will be again

to increase the accuracy of the solution until we cannot tell the two approximations of the

model apart using the Bayes factor.

6. Convergence of the Maximum Likelihood Estimates

In section 4 we established the convergence of the approximated likelihood function and the

convergence of Bayesian estimates. However, we mentioned that we could not guarantee the

convergence of the PMLE. The reason is that, under pointwise convergence, we cannot, in

general, swap the lim and the argmax operators. To fill this gap in our analysis, this section

provides some conditions under which the PMLE of the approximated likelihood function,bγj ¡yT ¢, will converge to the PMLE of the exact likelihood function, bγ ¡yT¢. In particular,
we show that if the policy functions converge uniformly in the parameter space, i.e., for any

δ, there is an N such that ∀j ≥ N, °°ϕj (·, ·; ·)− ϕ (·, ·; ·)°° ≤ δ and kgj (·, ·; ·)− g (·, ·; ·)k ≤ δ

for all S,W, V , and γ, then the likelihood function also converges uniformly, implying the

convergence of the PMLE.

5We thank a referee for pointing out this observation to us. In the previous lines, we follow her argument.
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Our first step is to show that if the policy functions converge uniformly in the parameter

space, then pj (yt|W t
1, S0, y

t−1; γ) converges uniformly to p (yt|W t
1, S0, y

t−1; γ). To accomplish

this goal, we restrict the way in which γ can enter the densities of Wt and Vt:

Assumption 12. The densities of Wt and Vt are continuous with respect to γ.

Analogously, we modify assumptions 1, 5, 10, and 11:

Assumption 13. The bounds in assumptions 1, 5, 10, and 11 are independent of γ.

And, finally, we substitute the previous parametrization of the approximated transition

and measurement equations by the following new assumption:

Assumption 14. For all j, ϕj (·, ·; ·) (= ϕ (·, ·; ·, θj)) and gj (·, ·; ·) (= g (·, ·; ·, θj)) have bounded
partial derivatives with respect to θ, as a function of S, W , V, and γ. The bounds are inde-

pendent of j.

These three new assumptions guarantee that all the bounds are uniform on γ. The main

practical consequence of these new assumption is that the researcher needs to check the ap-

propriate behavior of the policy function of the model over the whole space of parameter

values of interest and not just at one particular value of the parameters. This may turn diffi-

cult if the theoretical behavior of the model changes over the parameter space: for example,

if the policy functions become discontinuous when one particular parameter gets larger.

Armed with our stronger assumptions, we can modify lemma 6 to get:

Lemma 7. Under assumptions 1 to 11, and assumptions 12 to 14, if the policy functions

converge uniformly in the parameter space, then there is an N such that ∀j ≥ N :

¯̄
pj
¡
yt|W t

1, S0, y
t−1; γ

¢− p ¡yt|W t
1, S0, y

t−1; γ
¢¯̄ ≤ χδ,

for all γ, S0, and W t
1 but a finite number of points and for some finite constant χ.

We can also modify proposition 2 to get:
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Proposition 3. Let condition 1 hold. Under assumptions 1 to 11, and assumptions 12 to

14, if the policy functions converge uniformly in the parameter space, then there is an N such

that ∀j ≥ N : ¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

p
¡
yt|yt−1; γ

¢¯̄̄̄¯ <
µ
TBχ+

L

1− α

¶
δ.

for all γ and for some finite constant B and L.

Proposition 3 implies that if the policy functions converge uniformly in the parameter

space, then the approximated likelihood function also converges uniformly to the exact like-

lihood function. Uniform convergence of the likelihood function implies convergence of the

maximizer and, therefore, of the PMLE. Formally:

Corollary 5. Let condition 1 hold. Under assumptions 1 to 11, and assumption 14, if the

policy functions converge uniformly in the parameter space, then bγj ¡yT¢→ bγ ¡yT¢ .
Finally, note that even with uniform convergence, we cannot deliver the convergence of the

partial derivatives of the approximated likelihood function. This problem limits our ability

to interpret the standard errors and confidence intervals built under classical methods.

7. An Application

We now present an application that illustrates how the first order effect on the likelihood

function of second order errors on the solution of the policy function has a crucial impact when

we perform statistical inference in real-life models. Our application makes three points. First,

it shows how we can reject a correctly specified economic model in favor of an alternative

(misspecified) statistical model just because the accuracy of the solution of the economic

model is too low. Second, it demonstrates how we can diagnose the problem cleanly and

choose a solution accuracy that leads us to reject the statistical model. Third, it documents

important biases in parameter estimates because of approximation errors in the solution of

the model and how we can eliminate those biases. Because of space considerations, we provide
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here only a short summary of our main findings and refer the interested reader to the working

paper version of the article.

We use the neoclassical growth model as our underlying theoretical framework. A prag-

matic consideration guides this choice. The neoclassical growth model and its variations are

the workhorses of modern macroeconomics. For example, the successful new generation of

business cycle models initiated by Smets and Wouters (2003) and estimated by likelihood

methods is built around the backbone of the neoclassical growth model augmented with real

and nominal rigidities. Consequently, any lesson learned with the basic model is likely to be

useful in a large class of applications, including those that are highly relevant for policymak-

ing. At the same time, the model is sufficiently simple to allow us to derive analytical results

that will be useful for interpreting our findings.

We simulate 200 observations from the neoclassical growth model with log utility and full

depreciation. Why do we pick this particular version of the model? Because for this case

we know the exact likelihood since the model has a closed-form solution in logs suitable to

evaluation with the Kalman filter. Thus, we have the exact likelihood to compare against the

approximated likelihood implied by different numerical approximations.

We analyze the case when the researcher does not know that the model has an exact

closed-form solution. Instead, the researcher solves for the optimal policy functions using

value function iteration and evaluate the likelihood of the model with a Particle filter (see

Fernández-Villaverde and Rubio-Ramírez, (2004), for a description of this filter).

Note that the value function iteration and the Particle filter are only used as numerical

procedures to compute two unknown (from the researcher’s perspective) functions: the policy

function and the likelihood function of the model. If we allowed the number of grid points in

the value function iteration and the number of particles in the Particle filter to go to infinity,

the combination of value function iteration and the Particle filter would deliver exactly the

same likelihood function than the result of applying the exact loglinear solution of the model

and the Kalman filter.

In practice, since we will have a finite number of grid points and a finite number of

particles, the value of the likelihood will be affected by two approximation errors: one in the

computation of the optimal policy function and a second one in the Particle filter. However,
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we show below that this second error is orders of magnitude smaller than the first error. Thus,

the differences in likelihoods and inference documented in the application are fundamentally

the result of the approximation error in the computation of the policy function, our object

of interest.

We could have studied a more sophisticated case where, instead of having full depreciation,

the neoclassical growth model is calibrated to match basic characteristics of the U.S. data.

This exercise would have the advantage of being more realistic. However, it would imply

that we cannot evaluate the exact likelihood of the model since the model does not have a

closed-form solution. Consequently, we could not compare the exact likelihood function with

the approximated one, limiting the usefulness of the example.

7.1. The Neoclassical Growth Model

Let yT = (y0, ..., yT ) be some given data, where yt ∈ R2 for all 0 ≤ t ≤ T . The components of
yt are output and gross investment. We want to calculate the likelihood of data yT implied

by the neoclassical growth model where, in addition, we observe yT with measurement error

Vt. Let Vt ∼ N (0,Λ), where Λ is a diagonal matrix with σ21 and σ22, as diagonal entries. We

assume two observables to keep the dimensionality of the model low while we capture most

of its dynamics.

In the neoclassical growth model there is a representative household whose preferences

over consumption ct and leisure 1− lt are represented by the utility function:

U = E0

∞X
t=0

βt {ξ log ct + (1− ξ) log (1− lt)}

where β ∈ (0, 1) is the discount factor, ξ pins down labor supply, and E0 is the conditional
expectation operator.

The only good in this economy is produced according to the Cobb-Douglas production

function eztλkαt l
1−α
t , where kt is the aggregate capital stock, lt is the aggregate labor input, λ is

a scale parameter, and zt is the technology level. zt follows an AR(1) zt = ρzt−1+²t with ²t ∼
N (0,σ). We consider the stationary case (i.e., |ρ| < 1). The law of motion for capital is kt+1 =
it + (1− η)kt, where it is investment and η is the depreciation factor. The economy satisfies
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the resource constraint ct + it = eztλkαt l
1−α
t . Finally, let γ = {τ ,α,β, ρ, ξ, η,λ,σ,σ1,σ2} be

the vector of structural parameters of the model.

A competitive equilibrium can be defined in a standard way. Since both welfare theorems

hold, we solve the equivalent and simpler social planner’s problem. We can think about this

problem as finding the optimal policies for consumption c (·, ·), labor l (·, ·) , and next period’s
capital k0 (·, ·) that characterize the optimal choices as functions of the two state variables,
capital and the technology level.6

7.2. The Likelihood Function for a Particular Calibration

As described in the introduction, we set, unrealistically but rather conveniently for our point,

η = 1. In this case the model has two important and useful features. First, the income and

the substitution effect from a productivity shock to labor supply exactly cancel each other.

Consequently, lt is constant and equal to:

lt = l =
(1− α) ξ

(1− α) ξ + (1− ξ) (1− αβ)

Second, the policy function for capital is kt+1 = αβeztλkαt l
1−α, or in logs:

log kt+1 = logαβλl
1−α + α log kt + ρzt−1 + ²t

These two properties allow for a closed-form solution of the model and thus, for the easy

evaluation of the likelihood of the model.

We derive now the exact and the approximated likelihood function of the model.

6For simplicity, we omit the issue of the support of the innovations to the model. Our theorems require
bounded support of their densities, while our assumption of normality of ²t implies that its support is the
whole real line. We can fix this problem assuming that the normal distribution is truncated above and
below by a number bigger than any number that the floating point arithmetic of the computer can evaluate.
Analogously, we ignore that in the computer, we can use only the computable reals instead of the real line.
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7.2.1. The Exact Likelihood

Since the policy function for capital is linear in logs, we have the transition equation for the

model: 
1

log kt+1

zt

 =


1 0 0

logαβλl1−α α ρ

0 0 ρ




1

log kt

zt−1

+

0

1

1

 ²t. (7)

As described before our observables are log output (log outputt) and log investment (log it)

subject to a linearly additive measurement error Vt =
³
v1,t v2,t

´0
. Let Vt ∼ N (0,Λ), where

Λ is a diagonal matrix with σ21 and σ22, as diagonal elements. Then:

 log outputt

log it

 =

 − logαβλl1−α 1 0

0 1 0




1

log kt+1

zt

+
 v1,t

v2,t

 . (8)

Given that (7) and (8) are linear, we can evaluate the exact likelihood of the model given

some data with the Kalman filter.

7.2.2. The Approximated Likelihood

Now, let us suppose that the researcher does not know that the model is loglinear. Then,

she solves the social planner’s problem using value function iteration over a grid of points

of capital and productivity. To simplify the exercise, we assume that the researcher knows

l and that labor is constant over time. This solution method implies a policy function for

capital kt+1 = gj (zt, kt; γ) , where j denotes that this policy function is an approximation. We

select value function iteration because it is one of the most commonly used nonlinear solution

methods, because it satisfies our assumptions regarding the approximated transition and

measurement equations, and because it is a method for which we have plenty of convergence

theorems (see Santos and Vigo, (1998)). In particular, we know that as the grid gets finer,

gj (ρzt−1 + ²t, kt; γ)→ αβeztλkαt l
1−α.
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The approximated likelihood function to evaluate is derived from the system:

kt+1 = gj (ρzt−1 + ²t, kt; γ) (9)

zt = ρzt−1 + ²t

and  log outputt

log it

 =

 − logαβλl1−α
0

+
 1 0

1 0

 log kt+1

zt

+
 v1,t

v2,t

 . (10)

Given that (9) and (10) constitute a nonlinear system, we evaluate the approximated likeli-

hood of the model given some data with a Particle filter.

The use of the Particle filter is only due to the fact that the approximated policy function

kt+1 = gj (zt, kt; γ) generated by value function iteration is nonlinear, even if the exact policy

function is in fact (log-) linear.

7.3. Differences in Likelihoods

How different are the likelihoods of the approximated and of the exact model? To answer

this question, we generate a sample size of 200 observations from the exact loglinear model

with the calibration: α = 0.4, β = 0.99, λ = 1, ρ = 0.95, ξ = 0.356, σ = 0.007, σ1 = 0.001,

σ2 = 0.002, and the scale factor λ to get λl1−αt = 1.

We emphasize two points. First, the sample size of 200 observations aims to replicate the

average size of U.S. macro data. In that sense our goal is to show how the problems hinted by

our theoretical results may appear in a real life context.7 Second, the exact model from which

we generate our sample is loglinear. Consequently, none of the results in our application will

depend on the presence of nonlinearities. A researcher that test for nonlinearities in the

simulated data will not find any since, by construction, those nonlinearities do not exist in

our data.

7Of course, some applications, for example in finance, have much longer sample sizes since data is collected
every day or even by every transaction. The problems of approximating the likelihood would be much more
severe on those circumstances.
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We solve the model using three different grids: a coarse one with 2,000 points (50 in

the capital axis and 40 points along the technology axis), an intermediate grid with 4,000

points (100 in the capital axis and 40 points along the technology axis), and fine grid with

40,000 points (1,000 in the capital axis and 40 points along the technology axis). Along the

technology axis we evaluate the corresponding integral using quadrature. We keep fixed the

number of points along the technology axis to illustrate more sharply how a refinement of the

policy function along one particular dimension improves the likelihood. Given this parame-

terization, the maximum value of the absolute difference between the exact and approximated

policy functions, δ, takes the values:

Table 7.1: δ as a Function of the Grid Size

Grid Points δ

2,000 0.001357

4,000 0.000674

40,000 0.000076

To interpret this number it is useful to think about its welfare implications. Even with

only 2,000 points in the grid, the optimization problem is sufficiently well behaved that the

welfare loss from using the approximated policy rule instead of the exact loglinear policy

function is less than one-twentieth of a percent in terms of consumption.

The use of 2,000 points (50 in the capital axis and 40 points along the technology axis)

may look too few for a standard macroeconomic application. However, in the literature of

estimation of structural models, it is often the case that, because of computational reasons,

a small number of grid points is used. To estimate the model, the value function needs to

be solved repeatedly for different parameter values. Consequently, a relative small number

of grid points is a common choice. See, for example, Keane and Wolpin (1994) and their

discussion concerning the number of grid points.

Figure 1 plots the absolute value difference between the log likelihoods of the exact and

the approximated model
¯̄
logL

¡
yT ; γ

¢− logLj ¡yT ; γ¢¯̄ as a function of the sample size for
the three grids. To minimize the impact of the error coming from the Particle filter, we

created a swarm of 100,000 particles, well beyond the 20,000 required to achieve stability
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of the estimation of the likelihood (see Fernández-Villaverde and Rubio-Ramírez, 2004, for

details). In this way, the difference in the log likelihoods attributable to the approximation

is several orders of magnitude bigger than difference attributable to the Particle filter.

Figure 1 illustrates the results from sections 3 and 4. Proposition 1 states that, for a fixed

sample size, as δ goes to zero
¯̄
logL

¡
yT ; γ

¢− logLj ¡yT ; γ¢¯̄ also goes to zero. This result is
also confirmed by Figure 1. Proposition 2 proves that the absolute value difference between

the log likelihoods of the exact and the approximated model is proportional to δ. Therefore,

if we reduce δ by half, the absolute value difference between the likelihoods should also be

approximately reduced by half. This result is also confirmed by Figure 1.

A second implication of proposition 2 is that for a fixed δ, as the sample size increases,

the absolute value difference between the likelihoods increases linearly with the sample size.

In addition, the slope of the increase is proportional to δ. In Figure 1 we see how the larger

the sample size, the larger the difference between the log likelihoods for any value of δ. We

plot the log differences because the size of the likelihood in levels will make the plot difficult

to read. We need to remember that, in this case, a linear growth in time will be plotted as a

parabola. Indeed in Figure 1, we the difference in logs grows at a decreasing rate, implying

a linear rate in levels.

The surprising lesson of this figure is how bad the approximation of the likelihood is with

the grid of 2,000 points even if a naive welfare comparison criterion would have suggested that

the approximation was acceptable. In contrast, when we use 40,000 points, the approximated

likelihood stays very close to the exact one, even at the end of the sample.

7.4. Impact on Inference

Can the likelihood differences documented in Figure 1 affect inference in an important way?

The answer is yes.

Imagine that we have three different researchers. Each of them is trying to estimate the

parameters of the neoclassical growth model and decide if the neoclassical growth model with

full depreciation is a good description of the data. To do so, we give each of them the same

sample of 200 observations which we generated from the exact loglinear model. Since none of

the three researchers knows that the model has a closed-form solution, they solve the model
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using value function iteration and estimate it using a particle filter and maximum likelihood.

The only difference is that the first researcher uses the approximation of the model with 2,000

points in the grid, the second researcher the approximation with 4,000 grid points, and the

third researcher the approximation 40,000 points.

All three researchers estimate the structural parameters γ and compare the fit of their

model against a simple alternative: a VAR(1) estimated with the same observables and same

sample. Note that a VAR(1) is misspecified, since the dynamics of the neoclassical growth

model, from which we have simulated the data, imply a VAR(∞) .
Regarding model comparison, the researchers follow two alternatives. First, from a clas-

sical perspective, they undertake the comparison using Vuong’s (1989) likelihood ratio test

for model selection. as we discussed before, Vuong;s test is flexible enough to fit our needs

to compare the different numerical solutions of the neoclassical growth model against each

other or against a VAR(1). Second, the researchers compute Bayes factors using a degenerate

prior that puts all the mass in the true parameter value. The Bayes factor also allows to

compare competing models that are non-nested, overlapping, or nested and whether both,

one, or neither is misspecified.

7.4.1. Impact on Model Comparison I: A Classical Perspective

Let Lj (y2−200; γ) be the likelihood of the neoclassical growth model solved using j grid points

and the sample from the second to the two hundredth observation evaluated at γ. Let

G (y2−200; θ) be the likelihood of the VAR(1) evaluated at θ, where θ is the vector of pa-

rameters of the VAR. We drop the first observation since the VAR uses it to initialize the

autoregression. We could evaluate the likelihood of the unconditional VAR and exploit all

the 200 observations. The answers are nearly identical given that we initialize our simulated

data at the deterministic steady state. Evaluating the conditional VAR makes the next ex-

planation easier to follow. Also Lj (yt; γ) and G (yt; θ) are the likelihoods of the observation

at period t.

Define:

LRj,2−200
³bγj ¡yT ¢ ,bθ ¡yT¢´ = 200X

t=2

log
Lj
¡
yt;bγj ¡yT¢¢

G
³
yt;bθ (yT )´
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as the likelihood ratio between the neoclassical growth model and the VAR(1), where bγj ¡yT¢
and bθ ¡yT¢ are the maximum likelihood estimates of γ and θ, and

bω2j,2−200 = 1

199

200X
t=2

log Lj ¡yt;bγj ¡yT¢¢
G
³
yt;bθ (yT )´

2 −
 1

199

200X
t=2

log
Lj
¡
yt;bγj ¡yT¢¢

G
³
yt;bθ (yT )´

2

as its estimated variance.

Vuong shows that, under the null that:

H0 : E
0

 200X
t=2

log
Lj
¡
yt;bγj ¡yT¢¢

G
³
yt;bθ (yT )´

 = 0
where E0 is taken with respect the true data generation process (in our case the neoclassical

growth model with depreciation and exact solution), the statistic

199−0.5LRj,2−200
³bγj ¡yT¢ ,bθ ¡yT¢´ /bωj,2−200 D→ N (0, 1) .

We can implement this test using the data that generated Figure 1. For bθ ¡yT¢, we pick
the maximum likelihood estimates given the sample. For bγj ¡yT¢ we take, however, the true
values we used to generate the data. In that way we eliminate the small sample problem for

the neoclassical growth model.

We look first at the case of the researcher that uses 2,000 points. This researcher finds a

statistic of −4.27 and overwhelmingly rejects the neoclassical growth model in favor of the
VAR(1). Note how misleading the inference is: the data are generated by the same model

that the researcher is using except that is using a slightly different policy function because of

numerical reasons. Despite using the correct model, the accumulation of likelihood errors in

just 199 observations is such that the researcher will reject the right model. What happens

with the researcher that uses 4,000 points? In her case, she computes a statistic of -0.09 and

concludes that she cannot tell the two models apart.

Finally, what will happen with the researcher that uses 40,000 points? She finds a statistic

of 1.07, and she (marginally) rejects the VAR(1) in favor of the neoclassical growth model.
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The third researcher is then the only one making the right inference, despite the fact that

all three researchers are using the same model except for the choice of the number of grid

points. Why is she making the right decision? Because the use of 40,000 grid points reduces

the error in the policy function so much more than the number required by a simple welfare

comparison that she is immune to the bias induced by the approximation error.

We can run a version of the likelihood ratio test between two different approximations of

the neoclassical growth model. Those comparisons provide us with an example of how the

likelihood ratio test helps to diagnose the problems created by the numerical approximation

to the policy function. The value of the test comparing the solution with 2,000 points and

with 4,000 points is -4.93, strongly indicating that 2,000 grid points are too few. The test

comparing the solution with 4,000 points and the solution with 40,000 points is -1.40, also

supporting (although less overwhelmingly) that the 4,000 are still not enough. Only later,

when we increase the number of grid points to 40,000 the test delivers a solid answer of

non-significativity: the likelihood ratio test between 40,000 points and the exact solution is

only -0.11.

These results show how to use Vuong’s method to select the accuracy of the numerical

solution of the model. We should increase that accuracy until the value of the likelihood ratio

is such that the researcher cannot distinguish between the version of the model implied by

the less accurate solution and the version of the model with a more accurate solution. This

proposal is easy to implement and will protect against some of the worst forms of incorrect

inference we documented.

7.4.2. Impact on Model Comparison II: A Bayesian Perspective

Now we implement the Bayesian perspective to the model comparison. In order to avoid the

complication of specifying a prior for the parameter values and finding the posterior, we can

assume that the researcher has a prior that puts all the mass in the true parameter value.

In that way, as in the classical approach, we eliminate the small sample problem for the

neoclassical growth model.

With that prior, the (log) Bayes factor is just the difference between the loglikelihoods

of two competing models. Table 7.2 we give the values of the loglikelihoods for 2,000, 4,000,

33



and 40,000 grid points, for the exact likelihood, and for the VAR(1).

Table 7.2: Value of the Loglikelihoods

2,000 Grid Points 1,558.53

4,000 Grid Points 1,624.50

40,000 Grid Points 1,632.31

Exact Loglikelihood 1,632.34

VAR(1) 1,625.24

A good way to read these number is to use Jeffreys’ (1961) rule: if one hypothesis is

more than 100 times more likely than the other, the evidence is decisive in its favor. This

translates into differences in logmarginal likelihoods of 4.6 or higher between two models or

two versions of a model.

This rule shows first the model with 2,000 grid points is easily defeated by the VAR(1)

since the logdifference in favor of the VAR is nearly 67. Second, the model with 4,000 grid

points and the VAR(1) are difficult to distinguish since the logdifference is 0.74. Finally, the

model with 40,000 grid points performs well ahead of the VAR(1), with a difference of the

loglikelihoods of 7.1. These results are identical to the findings from the classical test, with

the partial exception that the Bayes factor provides more decisive evidence in favor the model

with 40,000 grid points over the VAR(1), which was not favored beyond reasonable doubt in

the likelihood ratio test because of a relatively high estimate of the variance bωj,2−200.
Also, we can see how the Bayes factor can be used as a diagnostic devise for the problems

induced in the likelihood by the numerical approximation. For example, the difference in

the loglikelihoods with 4,000 grid points and with 40,000 grid points, nearly 66, clearly

indicates that 4,000 are not enough points in the grid. However, 40,000 grid points, which

induce a difference with the exact loglikelihood of only 0.03 are enough to provide a good

approximation to the likelihood.

In the same spirit as in the classical approach, these results show how we can use the

Bayes factor to select the level of accuracy needed to avoid inference problems. We should

increase the accuracy of the solution of the model until the Bayes factor stabilizes and cannot

distinguish between two different versions of the model.
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7.4.3. Impact on MLE

Table 7.3 reports the MLE of the parameters of the neoclassical growth model as a function

of the grid points. As predicted by our results on the convergence of MLE estimates, the

more refined the grid (the lower the δ), the better the estimates.

Table 7.3: MLE as a Function of the Grid Size

Exact 2,000 4,000 40,000

α 0.4000 0.4014 0.4000 0.4000

β 0.9896 0.9862 0.9895 0.9896

ρ 0.9500 0.9507 0.9506 0.9500

σ 0.0070 0.0068 0.0069 0.0070

Is the inference mistake relevant? Given the point estimates for β, the researcher using

2,000 points in the grid would estimate a steady state interest rate 140 basis points higher

than the exact one, a researcher using 4,000 points would only be 10 basis points off, and a

researcher using 40,000 would get an almost perfect point estimate. Given the importance of

the estimate of β (and its inverse, the steady state interest rate) for policy making institutions

like the Federal Reserve System, these point estimates reveal that the inference mistake

induced by the approximation error could be relevant for practitioners.

7.5. Concluding Remarks on the Application

We have studied the consequences of using approximated likelihood functions instead of the

exact likelihoods when we estimate the neoclassical growth model. We have documented the

quantitative importance of our theoretical findings and how the likelihood ratio test and the

Bayes factor can be used to check for accuracy of the solution.

Is this example realistic? We pick a representative model, the neoclassical growth model

with 200 observations. However, we calibrated the model in an unrealistic way and we con-

fronted it against simulated data. What will happen with real data and a realistic calibration?

That case is more difficult to gauge because we cannot evaluate the exact likelihood. However,

Fernández-Villaverde and Rubio-Ramírez (2005) attempt to answer this question estimating
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the model linear and nonlinearly. They document differences in the values of the logmarginal

likelihood of around 93 in favor of the nonlinear approach and they report important changes

in point estimates of the parameters of the model. This evidence strongly suggests that the

problems on inference induced by approximating the policy function appears in real data and

affects real inferences.

8. Conclusions

In this paper we have studied the consequences of using approximated likelihood functions

instead of the exact likelihood when we estimate computed dynamic economic models. We

have offered a positive result, the convergence of the approximated likelihood to the exact

likelihood as the approximated policy functions converge to the exact policy functions. But

we have also shown that the errors in the approximated likelihood function accumulate as

the sample size grows and that to guarantee convergence of our estimates, we need to reduce

the size of the error in the approximated policy function as we include more data. Finally,

we propose to use a likelihood ratio test as a diagnostic device for problems derived from the

use of approximated likelihoods.

There are several additional issues that we leave for future analysis. First, it would be

important to eliminate the assumption of continuity of the transition and measurement equa-

tions, since a large class of models, especially in microeconomic applications, implies choices

with jumps and discontinuities. Second, it seems desirable to establish the error bounds of

Proposition 2 under milder assumptions than our contractivity condition. However, it ap-

pears that the structure of the bound will remain the same under more general assumptions.

Hence, all the implications of our analysis for conducting statistical inference and testing

of dynamic equilibrium models are not specific to this contractivity property and should

prevail in more general settings. Third, we could show the convergence of standard error

estimates to complete the analysis of classical estimation. Finally, we could cover settings

with multiplicity of equilibria like those that often appear in game theory (Bajari, Hong, and

Ryan, (2004)), IO (Pakes, Ostrovsky, and Berry, (2005)), and macroeconomics (Lubik and

Schorfheide, (2004)).
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9. Appendix

Proof of Lemma 1. Let γ ∈ Υ. Note that vt and w2,t are continuous functions of W t
1 and

S0 and that |dy (vt, w2,t; γ)| is a continuous function of vt and w2,t. Therefore, since Vt and
W2,t have continuous densities, it is the case that p (yt|W t

1, S0, y
t−1; γ) ∈ C (W t

1, S0).

Proof of Lemma 2. The proof follows the same steps as the proof of the previous

lemma.

In the proof of Lemma 4 we use the following well-known theorems:

Theorem 1. Assume {an} is an infinite sequence in a metric space (X, d). Then an → a if

and only if every infinite subsequence {a0n} ⊂ {an} has a convergent subsequence {a00n} ⊂ {a0n}
such that a00n → a (Proposition 19, page 31, DePree and Swartz, (1988)).

Theorem 2. If fn → f in the sup norm, and f 0n → g in the sup norm, then g = f 0 (Theorem

8.6.3, page 157, Dieudonné, (1960)).

Proof of Lemma 4. Assumption 9 implies that
©
ϕj (·, ·; γ)

ª
, and {gj (·, ·; γ)} have

uniformly bounded second derivatives. Hence,
©
dϕj (·, ·; γ)

ª
and {dgj (·, ·; γ)} is a family

of equicontinuous functions. Moreover, by the Arzelà-Ascoli theorem, every subsequence

of
©
ϕj (·, ·; γ)

ª
and {gj (·, ·; γ)} has a convergent subsequence in the C1 topology.8 Since©

ϕj (·, ·; γ)
ª
and {gj (·, ·; γ)} converge to ϕ (·, ·; γ) and g (·, ·; γ) , respectively, every subse-

quence of
©
ϕj (·, ·; γ)

ª
and {gj (·, ·; γ)} has a convergent subsequence in the sup norm to

ϕ (·, ·; γ) and g (·, ·; γ). Moreover, theorem 2 implies that every subsequence of
©
dϕj (·, ·; γ)

ª
and {dgj (·, ·; γ)} has a convergent subsequence in the sup norm to dϕ (·, ·; γ) and dg (·, ·; γ).
Therefore, theorem 1 implies that dϕj (·, ·; γ)→ dϕ (·, ·; γ) and dgj (·, ·; γ)→ dg (·, ·; γ) in the
sup norm.

Proof of Proposition 1. Let γ ∈ Υ. The proof is divided into two steps.

Step 1: convergence of pj (yt|W t
1, S0, y

t−1; γ). First, remember that assumption 1

entails that ϕ (·, ·; γ) , g (·, ·; γ) , and their partial derivatives are continuous. Second, note

8The C1 topology is defined as follows: kfkC1 = kfk+ kf 0k, where k·k is the sup norm.
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that assumption 5 states that ϕj (·, ·; γ) and gj (·, ·; γ) are continuous, while their partial
derivatives are continuous at all but a finite number of points. Third, recall that the

densities of Vt and W2,t are continuous. Finally, we have also assumed that ϕj (·, ·; γ) →
ϕ (·, ·; γ) and gj (·, ·; γ) → g (·, ·; γ). Thus, by assumption 9, we have that |dyj (·, ·; γ)| →
|dy (·, ·; γ)| at all but a finite number of points, and we can assert that pj (yt|W t

1, S0, y
t−1; γ)→

p (yt|W t
1, S0, y

t−1; γ) , except in a finite number of points.

Step 2: convergence of
QT
t=1 pj (yt|yt−1; γ). Assumptions 4 and 8 allow us to write:

TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z ÃZ TY
t=1

p (W1,t; γ) p
¡
yt|W t

1, S0, y
t−1; γ

¢
dW t

1

!
µ∗ (dS0; γ) ,

TY
t=1

epj ¡yt|yt−1; γ¢ = Z ÃZ TY
t=1

p (W1,t; γ) p
¡
yt|W t

1, S0, y
t−1; γ

¢
dW t

1

!
µ∗j (dS0; γ) ,

and

TY
t=1

pj
¡
yt|yt−1; γ

¢
=

Z ÃZ TY
t=1

p (W1,t; γ) pj
¡
yt|W t

1, S0, y
t−1; γ

¢
dW t

1

!
µ∗j (dS0; γ) .

Let

fT (S0; γ) =

Z TY
t=1

p (W1,t; γ) p
¡
yt|W t

1, S0, y
t−1; γ

¢
dW t

1.

Thus the likelihood functions are

TY
t=1

p
¡
yt|yt−1; γ

¢
=

Z
fT (S0; γ)µ

∗ (dS0; γ)

and
TY
t=1

epj ¡yt|yt−1; γ¢ = Z fT (S0; γ)µ
∗
j (dS0; γ) .

By lemma 1, fT (S0; γ) is continuous. Therefore, we can apply corollary 3.3 of Santos and

Peralta-Alva (2005) to show that:

TY
t=1

epj ¡yt|yt−1; γ¢→ TY
t=1

p
¡
yt|yt−1; γ

¢
. (11)
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If we define

fj,T (S0; γ) =

Z TY
t=1

p (W1,t; γ) pj
¡
yt|W t

1, S0, y
t−1; γ

¢
dW t

1,

it follows that
TY
t=1

pj
¡
yt|yt−1; γ

¢
=

Z
fj,T (S0; γ)µ

∗
j (dS0; γ) .

Note that W1,t has bounded support and bounded density. Also, lemma 2 shows that

pj (yt|W t
1, S0, y

t−1; γ) is continuous except in a finite number of points, with bounded support,

and hence it is bounded. Consequently, fj,T (S0; γ) is bounded. In addition, step 1 shows

that pj (yt|W t
1, S0, y

t−1; γ)→ p (yt|W t
1, S0, y

t−1; γ), except in a finite number of points. Hence,

fj,T (S0; γ)→ fT (S0; γ), but in a finite number of points.

Therefore, for every ε > 0, ∃N such that if j > N , |fj,T (S0; γ)− fT (S0; γ)| < ε, except

in a finite number of points. Thus, we can write¯̄̄̄
¯
TY
t=1

pj
¡
yt|yt−1; γ

¢− TY
t=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ ≤

Z
|fj,T (S0; γ)− fT (S0; γ)|µ∗j (dS0; γ) . (12)

Since µ∗j (dS0; γ) has a density with respect to the Lebesgue measure (assumption 6), the

right-hand side of (12) is less than ε. We then conclude that:

TY
t=1

pj
¡
yt|yt−1; γ

¢→ TY
t=1

epj ¡yt|yt−1; γ¢ . (13)

To complete the proof, we put together the convergence results (11) and (13).

Proof of Corollary 1. Let γ, γ0 ∈ Υ. Proposition 1 shows that Lj
¡
yT ; γ

¢→ L
¡
yT ; γ

¢
and Lj

¡
yT ; γ0

¢ → L
¡
yT ; γ0

¢
. Moreover, assumptions 4 and 8 imply that L

¡
yT ; γ

¢ ≥ ξ > 0

and Lj
¡
yT ; γ

¢ ≥ ξ > 0 for all j. Therefore

Lj
¡
yT ; γ0

¢
Lj (yT ; γ)

→ L
¡
yT ; γ0

¢
L (yT ; γ)

.

Proof of Corollary 2. Let γ ∈ Υ. Since the approximated likelihoods Lj
¡
yT ; γ

¢
and
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L
¡
yT ; γ

¢
are bounded and Riemann-integrable (because they are densities), we can apply

Arzelà’s theorem (see (Apostol), 1974, Theorem 9.12) and proposition 1 to get

Z
Υ

Lj
¡
yT ; γ

¢
π (γ) dγ →

Z
Υ

L
¡
yT ; γ

¢
π (γ) dγ.

Proof of Corollary 3. Let γ ∈ Υ. Proposition 1 shows that Lj
¡
yT ; γ

¢ → L
¡
yT ; γ

¢
.

Then Lj
¡
yT ; γ

¢
π (γ)→ L

¡
yT ; γ

¢
π (γ) and the result follows.

Proof of Corollary 4. Let γ ∈ Υ. Proposition 1 shows that Lj
¡
yT ; γ

¢ → L
¡
yT ; γ

¢
and corollary 2 that pj

¡
yT ; γ

¢ → p
¡
yT
¢
. The result follows from an application of Arzelà’s

theorem.

Proof of Lemma 5. Let γ ∈ Υ. To prove that p (yt|W t
1, S0, y

t−1; γ) is continuously

differentiable with respect to S0, we need to show that

∂p (yt|W t
1, S0, y

t−1; γ)
∂S0,i

exists and is continuous for all i.

Assumption 3 allows us to write

p
¡
yt|W t

1, S0, y
t−1; γ

¢
= p (vt; γ) p (w2,t; γ) |dy (vt, w2,t; γ)| ,

for all t. Since in addition Vt and W2,t have bounded densities, assumptions 1, 10, and 11

imply that
∂p (yt|W t

1, S0, y
t−1; γ)

∂S0,i

exists and it is bounded for all t and all i.

Proof of Lemma 6. Let γ ∈ Υ. Let (vt, st, wt2) be the unique solution to the following
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system of equations:

S1 = ϕ (S0, (W1,1,W2,1) ; γ) ,

ym = g (Sm, Vm; γ) for m = 1, 2, ..., t

Sm = ϕ (Sm−1, (W1,m,W2,m) ; γ) for m = 2, 3, ..., t

and let
¡
vtj, s

t
j, w

t
j,2

¢
be the unique solution to the approximated system of equations:9

S1 = ϕj (S0, (W1,1,W2,1) ; γ) ,

ym = gj (Sm, Vm; γ) for m = 1, 2, ..., t

Sm = ϕj (Sm−1, (W1,m,W2,m) ; γ) for m = 2, 3, ..., t.

By assumption 1, functions ϕ and g are differentiable. In addition, assumption 4 implies that

|dy (vt, w2,t; γ)| 6= 0 for all t. Since
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤

δ, by the implicit function theorem of Schwartz (see theorem G.2.3, page 32, Mas-Colell,

(1985)), there exists a λ (S0,W
t
1) such that:

°°¡vtj, stj, wtj,2¢− ¡vt, st, wt2¢°° ≤ λ
¡
S0,W

t
1

¢
δ. (14)

Since the model is stationary, equation (14) holds for all t.

Notice that λ (S0,W
t
1) depends on the derivatives of ϕj (·, ·; γ) and gj (·, ·; γ) with re-

spect to θj. These derivatives are bounded independently of j. Therefore ∃λ such that°°¡vtj, stj, wtj,2¢− (vt, st, wt2)°° ≤ λδ, for all S0 and W t
1.

Assumption 10 implies that the densities of Vt and Wt are absolutely continuous. Then,

∃ε such that:
|p (vj,t; γ) p (wj,2,t; γ)− p (vt; γ) p (w2,t; γ)| ≤ εδ, (15)

for all S0 and W t
1. As before, note that equation (15) also holds for all t.

9Both
¡
vtj, s

t
j, w

t
j,2

¢
and (vt, st, wt2) depend on s0, and w

t
1, but to simplify notation, we do

not make this dependence explicit.
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By lemma 5 the determinant of the Jacobian matrix of yt with respect to Vt,W2,t,

|dy (·, ·; γ)| is Lipschitz. Let Ly be the Lipschitz constant. Then:

||dy (vj,t, wj,2,t; γ)|− |dy (vt, w2,t; γ)|| ≤ Lyλδ, (16)

for all S0 and W t
1.

By lemma 4 and the fact that
°°ϕj (·, ·; γ)− ϕ (·, ·; γ)°° ≤ δ and kgj (·, ·; γ)− g (·, ·; γ)k ≤ δ

we have that
°°dϕj (·, ·; γ)− dϕ (·, ·; γ)°° ≤ κδ and kdgj (·, ·; γ)− dg (·, ·; γ)k ≤ κδ for some

constant κ except in a finite number of points. Then, by assumptions 1 and 5, we know that

∃Ψ1 such that:

|dyj (vj,t, wj,2,t; γ) [r, s]− dy (vj,t, wj,2,t; γ) [r, s]| < Ψ1δ

for all r and s, and for all s0 and wt1, except in a finite number of points. Here A[r, s] stands

for the row r and column s of matrix A.

Note that if A and B are two n × n matrices such that |A[i, j]−B[i, j]| < Ψ1δ and

|A[i, j]|, |B[i, j]| < Ψ2, then |det (A)− det (B)| < n!nΨn−12 Ψ1δ. In addition, assumptions 1

and 5 also imply that ϕj, ϕ, gj, and g are Lipschitz. Therefore, ∃Ψ2 such that:

|det (dyj (vj,t, wj,2,t; γ))− det (dy (vj,t, wj,2,t; γ))| ≤ n!nΨn−1
2 Ψ1δ, (17)

for all S0 and W t
1, except in a finite number of points.

Using equations (16) and (17) we get:

|det (dyj (vj,t, wj,2,t; γ))− det (dy (vt, w2,t; γ))| ≤
¡
n!nΨn−1

2 Ψ1 + Lyλ
¢
δ, (18)

for all S0 and W t
1.

Now, let Ψ3 =
¡
n!nΨn−1

2 Ψ1 + Lyλ
¢
. We can put together equations (15) and (18) to find:

|p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)|− p (vt; γ) p (w2,t; γ) |dy (v, w2,t; γ)|| ≤
≤ |p (vj,t; γ) p (wj,2,t; γ)| εδ + |dy (vt, w2,t; γ)|Ψ3δ,

for all S0 and W t
1, except in a finite number of points.
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Note that p (v; γ) and p (w2; γ) are bounded functions. By assumption 1, |dy (v, w2; γ)| is
also a bounded function. Let B1 and B2 be the bounds to p (v; γ) p (w2; γ) and |dy (v, w2; γ)| ,
respectively. Define B = max {B1, B2}. Then

|p (vj,t; γ) p (wj,2,t; γ) |dyj (vj,t, wj,2,t; γ)|− p (vt; γ) p (w2,t; γ) |dy (v, w2,t; γ)|| ≤ Bδ (ε+Ψ3)

for all s0 and wt1, but in a finite number of points. For χ = B (ε+Ψ3), the lemma is proved.

Proof of Proposition 2. Let γ ∈ Υ. Define fT (S0; γ) as in the proof of proposition 1

and note that:

∂fT (S0; γ)

∂S0,i
=

Z TY
t=1

p (W1,t; γ)
TX
t=1

∂p (yt|W t
1, S0, y

t−1; γ)
∂S0,i

TY
s=1,s6=r

p
¡
ys|W s

1 , S0, y
s−1; γ

¢
dW t

1,

is bounded because lemma 5 bounds

∂p (yt|W t
1, S0, y

t−1; γ)
∂S0,i

for all t and i, and lemma 1 bounds p (ys|W s
1 , S0, y

s−1; γ) for all s. Therefore, fT (S0; γ) is

Lipschitz for all t with Lipschitz constant L (the Lipschitz constant is different for each t,

but since t is finite, we can set a global L).

By condition 1, we can then apply Theorem 6 of Santos and Peralta-Alva (2005) to

fT (S0; γ) to get: ¯̄̄̄
¯
TY
s=1

p
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ ≤ Lδ

1− α
. (19)

Note now that using the values for the likelihoods in the proof of proposition 1, we have:¯̄̄̄
¯
TY
s=1

pj
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ =

=

Z ÃZ TY
t=1

p (W1,t; γ)
¡
pj
¡
yt|W t

1, S0, y
t−1; γ

¢− p ¡yt|W t
1, S0, y

t−1; γ
¢¢
dW t

1

!
µ∗j (dS0; γ) .

(20)
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Lemmas 1 and 2 show that p (yt|W t
1, S0, y

t−1; γ) and pj (yt|W t
1, S0, y

t−1; γ) are bounded for all

t and j. Thus, we can define a constant B such that:

Z ÃZ TY
t=1

p (W1,t; γ)B
TX
t=1

¯̄
pj
¡
yt|W t

1, S0, y
t−1; γ

¢− p ¡yt|W t
1, S0, y

t−1; γ
¢¯̄
dW t

1

!
µ∗j (dS0; γ)

is an upper bound to (20).

Lemma 6 shows that |pj (yt|W t
1, S0, y

t−1; γ)− p (yt|W t
1, S0, y

t−1; γ)| ≤ χδ for all t, and for

all S0 and W t
1 but for a finite number of points. Therefore,¯̄̄̄

¯
TY
s=1

pj
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ ≤ TBχδ. (21)

Putting together (19) and (21) delivers the result.

Proof of Lemma 7. The proof is a modification of the proof of lemma 6. The argument

is the same except in the following points:

1. We use assumption 14 to state that
°°¡vtj, stj, wtj,2¢− (vt, st, wt2)°° ≤ λδ for all γ, all S0

and W t
1.

2. We need assumptions 10, 12, and 13 to show that the densities of Vt and Wt are

absolutely continuous.

3. We need assumptions 11 and 13 to show that the determinant of the Jacobian matrix

of yt with respect to Vt,W2,t, |dy (·, ·; ·)|, is Lipschitz. Also, by assumption 13, the
Lipschitz constant Ly is independent of γ.

4. We need assumptions 1, 5, and 13 to show existence of a constant Ψ1, independent of

γ, such that:

|dyj (vj,t, wj,2,t; γ) [r, s]− dy (vj,t, wj,2,t; γ) [r, s]| < Ψ1δ

for all r and s, and for all γ, all S0 and W t
1, except in a finite number of points.
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5. We need assumptions 1, 5, and 13 to prove existence of a constant Ψ2, independent of

γ, such that:

||dyj (vj,t, wj,2,t; γ)|− |dy (vj,t, wj,2,t; γ)|| ≤ n!nΨn−1
2 Ψ1δ, (22)

for all γ, all S0 and W t
1, but in a finite number of points.

6. Since V, W , and γ have compact support, assumption 12 is important to guarantee

that p (v; γ), p (w2; γ) are bounded functions of γ, all S0 and W t
1. Assumptions 1 and

13 imply that |dy (v, w2; γ)| is also a bounded function of γ, all S0 and W t
1.

Proof of Proposition 3. The proof is a modification of the proof of proposition 2.

The argument is the same except:

1. We use assumptions 12 and 13 to make the bounds ∂fT (S0;γ)
∂S0,i

independent of γ. Then

fT (S0; γ) is Lipschitz for all t with a Lipschitz constant L independent of γ, and the

difference ¯̄̄̄
¯
TY
s=1

p
¡
yt|yt−1; γ

¢− TY
s=1

epj ¡yt|yt−1; γ¢
¯̄̄̄
¯ ≤ Lδ

1− α
, (23)

holds for all γ.

2. Assumption 13 makes the bounds on p (yt|W t
1, S0, y

t−1; γ) and pj (yt|W t
1, S0, y

t−1; γ) in-

dependent of γ. Therefore, the bound B and all the expressions where it appears are

independent of γ.
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Figure 1: Absolute Value Difference between the Likelihoods as a Function of the Sample Size
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