
Towards a Theory of Deception ∗

David Ettinger†and Philippe Jehiel‡

7th June 2004

Abstract

Deceiving an opponent about one own’s cognitive abilities cannot
be captured by standard approaches in which players understand the
strategy of their opponent perfectly well. We introduce a framework
with boundedly rational players to explain deception. Following Jehiel
(2003) we assume that players partition the decision nodes of their
opponents into analogy classes, and form expectations only about the
average reaction function of their opponent over the various nodes of
analogy classes; we further differentiate cognitive types according to
whether or not the player can distinguish between the types of the
opponent. An equilibrium concept is proposed for such environments.
Deception arises in our setup because the updating of beliefs is made
as if each cognitive type behaved in the same way in the various nodes
of an analogy class, thus allowing rational players to induce the wrong
belief that they are less sophisticated than they really are (by adopting
a behavior that is typical of the average behavior of a less sophisticated
type). We illustrate the phenomenon through a variety of applications,
first in a zero-sum game, then in a simple concession game. We also
show the implication of the approach in a monitoring game and in a
negotiation about the pay rise between an employer and employee

1 Introduction
Being smart is helpful for problem solving, but it often hurts being thought
of as too smart (such a belief generally triggers undesirable reactions). This
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very fact in turn creates incentives to build a reputation for being naive even
if you are smart. But, the question arises as to whether the person(s) one is
interacting with may or may not be deceived by such an (strategic) attitude.
Modern game theory has made significant progress in modelling the idea

of reputation (see for example ch. 9 of Fudenberg and Tirole 1991 for an
account of major contributions). Yet, by assuming that all agents are per-
fectly rational, the by now standard approach does not allow the players to
be deceived. That is, you may convince your opponent that you will behave
in a certain way. But, this does not mean that your opponent is being de-
ceived: in standard equilibrium approaches, you do behave in that way; so
the opponent makes no mistake. Besides, the notion of type in the stand-
ard approach cannot be interpreted in a cognitive way (unlike the wording
”crazy” type might suggest): All types are perfectly rational, and they all
understand perfectly well the strategy of the various types of their oppon-
ent.1 Thus, deceiving your environment (including other fellows with whom
you may interact) about your cognitive ability cannot be captured by the
standard approach.2

This paper proposes a formalization of the idea of deception in a frame-
work with boundedly rational players3. Specifically, we consider two-players
dynamic games with incomplete information in which the type of a player -to
be interpreted as a cognitive type- is defined by his ability to represent (or
learn) the strategy of his opponent. Following Jehiel (2003) we assume that
players partition the decision nodes of their opponents into analogy classes,
and form only expectations about the average reaction function of the op-
ponent over their various analogy classes. We further differentiate types

1Crazy types in Kreps et al. (1982) and following literature should be interpreted as
having payoff specifications other than the ones of the original game, thus making their
”mechanical” behavior optimal.

2Some might argue that mixed strategy equilibria provide a model of deception with the
standard approach: if type A plays action a more frequently than type B does, by playing
a type B deceives his opponent about the identity of his type. Yet, type B should play a
infrequently for the argument to hold. Thus, deception may occur, but only infrequently
and somehow by accident rather than as a result of a deliberate strategy (to justify mixing,
player B should be indifferent between playing a and some other action). Crawford (2003)
provides a recent illustration of this view of deception.

3We define deception as a successful attempt to look of a different cognitive type than
one really is. Thisis to be contrasted with Vrij (2001) quoted in Gneezy (2004) who
defines deception as a successful or unsuccessful deliberate attempt , without forewarning,
to create in another a belief that the communicator considers to be untrue in order to
increase the communicator’s payoff at the expense of the other side. Vrij’s definition puts
an emphasis on the lie aspect of the deception whereas we put emphasis on the cognitive
process through which the communicator manages to convey a false belief to the other
side.
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according to whether or not the player can distinguish between the types of
the opponent. Thus, cognitive types may vary in two dimensions: A player
may be more or less fine on the partition of the decision nodes of his opponent
(the analogy part), and a player may or may not distinguish the behaviors of
the various types of his opponent (we refer to it as the sophistication part).
We propose an equilibrium concept called the Analogy-based Perfect

Bayesian Equilibrium to describe the interaction of players with such limited
cognitive abilities. In equilibrium the analogy-based expectations correctly
represent the average behavior in the various analogy classes, and players
play best-responses to their analogy-based expectations and to their belief
about the type of their opponent. As the game proceeds, players update their
belief about the type of their opponent according to Bayes’ rule as derived
from their analogy-based expectations.4

A simple interpretation of the solution concept is in terms of learning: In
the learning phase, players have a limited access to the database that record
all behaviors of all subjects. The cognitive type of a player as defined by his
analogy partition and his sophistication regarding the identification of other
types’ behaviors summarizes his information treatment at the learning stage.
For example, a player with a coarse analogy partition keeps track only of the
average behavior within each of his classes. And a sophisticated player keeps
track of these (average) behaviors type by type. The Analogy-based Perfect
Bayesian Equilibrium concept assumes that what subjects try to learn has
been learned properly, i.e. it assumes the underlying learning process with
information treatment as just described has converged.
Deception is possible in such a setup whenever you may be of several

possible cognitive types and your opponent is a sophisticated coarse type,
by which we mean that your opponent differentiates between the behaviors
of your various possible types (the sophisticated part), but she does not
distinguish the behaviors at each possible node separately, i.e. she uses a
coarse analogy partition and she knows only the average behaviors of your
various types in each analogy class (the coarse part).
Deception is possible because your opponent updates her belief as if your

various cognitive types behaved in the same way in all nodes of every analogy
class. Thus, when you are rational, by playing the action that mimics best the
average behavior of the coarse type (this need not even be the action chosen
by the coarse type at that period, see the monitoring example developed

4The literature in psychology suggests a number of biases related to belief updating
(for example the so called base rate fallacy or the conjunction fallacy, see Khaneman et
al. (1982) or Thaler (1991)). However, for our theory of deception only the qualitative
features of Bayesian updating matter (more weight should be assigned to a type who is
perceived to play more frequently according to the observed data).
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below) you may induce your opponent to believe that you are coarser than
you really are, thereby deceiving your opponent in a way that may turn out
to be beneficial in the rest of the game.

Related literature:
The paper can be viewed as proposing a bridge between the literature on

psychology and the game theory literature, especially the one interested in
modeling the phenomenon of reputation. We have already pointed out the
connection/difference with the literature on reputation. Regarding psycho-
logy, we note that following the lead of Simon (1956) many researchers have
emphasized the role of heuristics as opposed to rational analysis (see Gieger-
enzer et al. 1989). But, most heuristics discussed in this literature concern
behavioral heuristics like ”Tit for Tat” or ”Take the best” or the recognition
heuristic etc (see Gigerenzer and Selten for an introductory presentation of
these heuristics). To some extent, the cognitive types in our approach can
be viewed as standing for a heuristic used by the players to understand the
reaction of their environment; but, note that our cognitive types are better
viewed as defining a learning heuristic rather than a behavioral heuristic.5

There are many works in economics and psychology that suggest a number
of biases relative to the laws of probabilities (for example, the base rate
and conjunction fallacies, the law of small numbers, the gambler’s fallacy,
overconfidence...).6 Most of these biases are better understood as arising in
non-repeated interactions.7 By contrast, our theory of deception assumes
that the underlying interaction is repeated sufficiently many times so that
players have learned what their cognitive types allow them to. Our work
should thus be viewed as complementary to those works analyzing biases
that arise in non-repeated interactions.
The rest of the paper is organized as follows. We illustrate the phe-

nomenon of deception using a simple two-period zero-sum game example in
the next Section. In Section 3 we provide a formal framework to describe
the Analogy-based Perfect Bayesian Equilibrium in general extensive-form
games. In the following three sections of the paper we suggest a number of
stylized applications in which the phenomenon may be of relevance: These in-
clude a concession game with mediation, a monitoring game and a wage bar-

5Selten (ch2 same book) mentions the need to develop theories of expectation formation.
Our setup can be viewed as providing one such theory.

6While Khaneman et al. (1982) identify a number of these biases, Thaler (1991) also
shows their significance in experimental economics. A number of economists have also
developed theories motivated by these biases (see, for example, Mullainathan (2002) or
Rabin (2002)).

7Subjects seem better at understanding frequencies - which arise with repetition - than
at manipulating the laws of probabilities.
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gaining game between an employer and an employee trying to cheat/deceive
the employer about his willingness to make an effort to get another job. All
missing proofs can be found in Appendix.

2 Deception in a simple Zero-Sum Game
Before we elaborate on the concept of Analogy-based Perfect Bayesian Equi-
librium, we illustrate the idea of deception through a simple two periods
example.
Two players, a Row player and a Column player, play twice, in two con-

secutive periods, a zero-sum stage game, G. In game G the Row player
chooses an action U or D, the Column player chooses an action L or R, and
stage game payoffs are as represented in Table 1. Players do not discount
payoffs between the two periods.

L R
U 5, -5 3, -3
D 0, 0 7, -7

Table 1. The stage game G

When players are rational, they play the unique Nash equilibrium of the
stage game in every period. The Row player plays U with probability 7/9
and D with probability 2/9 and the Column player plays L with probability
4/9 and R with probability 5/9. The value of the game is 70/9 for the Row
player and −70/9 for the Column player.
In equilibrium players play in mixed strategies in order to avoid being pre-

dictable. But, note that no player is ever deceived by his opponent: Whatever
players do in the first period they are expected to play according to the same
mixed strategy in the second period, and players do behave according to that
expected mixed strategy in period two.
The main contribution of this paper will be to provide a setup in which

players may deceive their opponent in equilibrium as a result of the limited
cognitive ability of the opponent.
Specifically, there are two types of Row players which are equally likely:

The Row player may either be Rational or Coarse each with probability
1
2
. When he is Rational the Row player has a perfect understanding of the
strategy of the Column player, as in the standard case. When he is Coarse he
knows (or learns) only the average behavioral strategy of the Column player
over all the various circumstances in which the Column player plays the stage
game G. That is, the Row player when coarse bundles the two times periods
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in which the stage game G is being played and he has only an expectation
over the average behavior of the Column player over these two periods.
The Column player can only be of one type. He is assumed to be Sophist-

icated in the sense that he distinguishes between the behaviors of the Rational
Row player and the Coarse Row player. But, he is assumed to be Coarse in
the sense that for each type of the Row player he knows (or learns) only the
average behavior of this type over all games G that this type must play. In
short, we say that the Column player is a Sophisticated Coarse player.
In the next Section we define formally a solution concept that describes

the equilibrium interaction in such a setup. It is viewed as the limiting
outcome of a learning process in which the expectation characterizing each
cognitive type would eventually be correct. In the present context, we will
now check that the following strategy profile is an Analogy-based Perfect
Bayesian Equilibrium:
Rational Row Player : Play U in period 1. Play D in period 2.
Coarse Row Player : Play U both in periods 1 and 2.
Column Player (Sophisticated Coarse): Play L in period 1. Play R in

period 2 if the Row player played U in period 2. Play L in period 2 if the
Row player played D in period 1.
According to this strategy profile, (U,L) is played in period 1, and (D,R)

and (U,R) are each played with equal probability in period 2 (depending on
whether the Row player is Rational or Coarse).
Thus, the Coarse Row Player should expect the Column Player to play

L and R with equal probability on average across the various stage games
G.8 Given his expectation, the Coarse Row player finds it optimal to play U
whenever he has to move.9

It is also readily verified that the Rational Row player plays a best-
response to the Column player’ strategy, as he gets an overall payoff of
5 + 7 = 12.10

It remains to explain the behavior of the Sophisticated Coarse Column
player. Based on the strategy of the Row player, the Column player’s expect-
ation about the average behavior of the Coarse Row player should be that
he plays U , and her expectation about the average behavior of the Rational
Row player should be that he plays U and D with an equal frequency. Given
these expectations, the Column player can update her belief about the type

8This is because in period 1, the Column player plays L and in period 2 on the equi-
librium path the Column player plays R; thus on average he plays L and R with an equal
frequency.

9This is because 1
2(5 + 3) >

1
2(0 + 7).

10He would only get an overall payoff of 0 + 5 at best if he were to play D in period 1,
and he would obviously get a lower payoff by playing U in period 2.
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of the Row player at the end of period 1 (after observing the action played
by the Row player in period 1) as follows: When action D is being played in
period 1, the Column player should believe that she faces the Rational player
with probability 1;11 When action U is being played in period 1, the Column
player should believe that she faces the Coarse Row player with probability

1/2
1/2+1/2×1/2 =

2
3
.12

Given the above expectation and belief systems of the Column player, we
now check why her behavior is optimal using backward induction. In period
2 after action D has been played in period 1, the column player believes that
she faces the Rational player with probability 1 and her expectation about
this player’s behavior is that he plays U and D with an equal probability. It
is then optimal for the Column player to play L (as 1

2
(−5+ 0) > 1

2
(−3− 7)).

In period 2 after action U has been played in period 1, the Column player
believes that she faces the Coarse player with probability 2

3
(and this type is

expected to play U always) or the Rational player with probability 1
3
(and

this type is expected to play U and D each with probability 1
2
). So overall

in period 2 after U has been played in period 1, the Column player expects
the Row player to play U with probability 2/3 × 1 + 1/3 × 1/2 = 5/6 and
D with probability 1/6. The Column player chooses optimally to play R in
this case (since 5

6
(−3) + 1

6
(−7) > 5

6
(−5)). In period 1, the Column player

believes it is equally likely that the Row player is Coarse or Rational. Thus,
overall in period 1 the Column player expects the Row player to play U with
probability 1/2 × 1 + 1/2 × 1/2 = 3/4 and D with probability 1/4. The
Column player optimally chooses to play L in period 1.13

To summarize, a Rational Row player gets an overall payoff of 12, a
Coarse Row player gets an overall payoff of 8 and the expected payoff of the
Sophisticated Coarse Column player is −10. Note that both the Rational
Row player and the Coarse Row player get an expected payoff higher than
the value of the game which we is 70/9 < 8. Observe also that the Rational
Row player achieves a payoff higher than that the Coarse Row player. This
is, of course, no coincidence, since in equilibrium a Rational player can always
mimic the strategy of a less sophisticated player, thereby getting at least her
payoff (see Proposition 2 below).
More interestingly, the finding that the Row player gets more than his

value in the above example is related to the phenomenon of deception that
11This is because the Coarse Row player is expected to play U always and the Rational

player is expected to play U and D with an equal probability.
12This results from the application of Bayes’ rule assuming that the Coarse player plays

U with probability 1 and the Rational player plays U and D each with probability 1/2.
13This is because 3

4(−3)+ 1
4(−7) < 3

4(−5) and the strategy of the Row player in period
2 is not perceived by the Column player to depend on the first period action profile.
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is caused by the nature of the Column player’s cognitive type. Specifically,
after action U is being played in period 1, the Column player makes the
wrong inference that it is more likely that the Row player is Coarse. This is
erroneous, since the correct updating should be that it is equally likely that
the Row player is Coarse or Rational (both the Row and the Column player
always play U in period 1 and 50 − 50 is the prior belief). Yet, it is the
updating that (rationally) follows from the limited knowledge of the Column
player about the strategy of the Row players. Note that for such erroneous
updating to arise, one needs to have cognitive types that distinguish the
behavior of the various types of their opponent and yet do not distinguish
the behaviors of these types in all possible nodes (as otherwise we would have
the standard correct updating).
We believe this captures an essential aspect of the phenomenon of decep-

tion: In equilibrium, the Column player is being deceived by the Rational
Row player whom by behaving in some way (typically, in a way that is as
close as possible to the typical average behavior of the Coarse Row player)
makes her believe that the Row player is of a type that he really is not.

Comment 1: Observe that if there were only one type for each player
characterized by his analogy partition as in Jehiel (2003), then it would be
impossible to reproduce the behavioral strategies as described above: For
the Column player to play a different action in periods 1 and 2 she should
treat separately the behavior of the Row in the two time periods, but then
in period 1 she could not find it optimal to play L given that the Row player
always plays U .
Comment 2: It would also be impossible to reproduce the behavioral

strategies as described above assuming there is a small fraction of behavioral
types behaving in a mechanical way whereas the rest of the players would
behave rationally (the so called crazy type approach, see Kreps et al. (1982)).
Obviously, in such a setup the Column player when rational could not choose
to play L in the first period expecting the Row player to choose U irrespective
of his type in this period.

3 A general framework

3.1 The class of games

We consider multi-stage games with complete information. We assume that
actions are observable, and we restrict attention to games with two players
i = 1, 2 (excluding Nature) and a finite number of stages such that, at every
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stage and for every player (including Nature), the set of pure actions is finite.
This class of finite multi-stage games is referred to as Γ.
The standard representation of an extensive form game in class Γ includes

the game tree Υ, and the VNM preferences ui of every player i defined on
lotteries over outcomes in the game.
A node in the game tree Υ is denoted by n, and the set of nodes is denoted

by N . The set of nodes at which player i must move is denoted by Ni. For
every such node n ∈ Ni, we let Ai(n) denote player i’s action space at node
n. A node n will also be identified with the history h of play till node n. The
set of players who must move after history h is denoted I(h). A history fol-
lowing h is referred to as ha where a ∈ ×

i∈I(h)
Ai(h) is the action profile played

by the players who must move at node h. The set of histories is denoted byH.

Cognitive types and analogy grouping:
We now introduce the idea of cognitive type parameterized by how fine

the type knows (or learns) the strategy of his opponent. Specifically, each
player i forms an expectation about the behavior of the other player by
pooling together several contingencies in which the other player must move.
Each such pool of contingencies is referred to as a class of analogy. Players
are also differentiated according to whether or not they distinguish between
the behaviors of the various types of their opponent.
Formally, a cognitive type θi of player i is characterized by (Ani, δi) where

Ani stands for player i’s analogy partition and δi is a dummy variable that
stands for whether or not type θi distinguishes between the behaviors of the
various types θj of player j. We let δi = 1 when type θi distinguishes between
types θj’s behaviors and δi = 0 otherwise.
Following Jehiel (2003), type θi ’s analogy grouping Ani is defined as a

partition of the set Nj of nodes where player j must move into subsets αi
referred to as analogy classes.14 When n and n0 are in the same analogy class
αi, it is required that Aj(n) = Aj(n0). That is, in two nodes n and n0 that
player i treats by analogy, the action space of player j should be the same.
The common action space in the analogy class αi will be denoted by A(αi).
The set of types θi is denoted by Θi and the profile of type space is de-

noted by Θ = Θ1 ×Θ2.15

Strategic environment:
14A partition of a set X is a collection of subsets xk ⊆ X such that

S
k

xk = X and

xk ∩ xk0 = ∅ for k 6= k0.
15Observe that Θ is finite in our setup with finite node and action spaces.
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A strategic environment in our setup is described by (Υ, ui, p) where p de-
notes the prior joint distribution on the type space Θ = Θ1×Θ2. To simplify
notation we will assume that the types of the two players are independently
distributed from each other, and we will refer to pi(θi) as the prior probab-
ility that player i is of type θi.

3.2 Concepts

Analogy-based expectations:
An analogy-based expectation for player i of type θi is denoted by βθi . It

specifies for every analogy class αi of type θi of player i a probability measure
over the action space A(αi) of player j. Types θj of player j are distinguished
in this expectation according to whether δi = 1 or 0. If δi = 1, types θj
are distinguished, and βθi can be viewed as a function of θj and αi where
βθi(θj ,αi) should be interpreted as type θi-player i’s expectation about the
average behavior in class αi of player j when his type is θj. If δi = 0, player
i merges the behaviors of all types θj of player j, and βθican be viewed as a
sole function of αi where βθi(αi) should be interpreted as player i’s expecta-
tion about the average behavior in class αi of player j (where the average is
taken over all possible types). We let βi = (βθi)θi denote the analogy-based
expectation of player i for the various possible types θi ∈ Θi.

Strategy:
A behavioral strategy for any player assigned to the role of player i is

denoted by si. It is a mapping that assigns to each node n ∈ Ni at which
player i must move a distribution over player i’s action space at that node.16

We let σθi denote the behavioral strategy of type θi, and for every n ∈ Ni we
let σθi(n) ∈ ∆Ai(n) denote the distribution over Ai(n) according to which
player i of type θi selects actions in Ai(n) when at node n. We let σθi(n)[ai]
be the corresponding probability that type θi plays ai ∈ Ai(n), and we let
σi = (σθi)θi denote the strategy of player i for the various possible types θi.
We let σ denote the strategy profile of all players.

Belief system:
When player i distinguishes the types of player j, i.e. δi = 1, he needs to

hold a belief about the type of his opponent and this belief may vary from
one node to another. Formally, we let µθi denote the belief system of player
16Mixed strategies and behavioral strategies are equivalent since we consider games of

perfect recall.
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i of type θi = (Ani, δi). We let µθi(θj)(h) be the probability that player i of
type θi assigns to the event ”player j is of type θj” conditional on the history
h being realized.
The above notion of belief system is indispensable when δi = 1. For the

case δi = 0, it is not indispensable, but to save on notation when defining
the notion of best-response (see below) we assume that in this case player
i ’s belief coincides with the prior pj throughout the game. We call µi the
belief system of player i for the various possible types θi, and we let µ be the
profile of belief systems for all players.

Sequential rationality:
Based on his analogy-based expectation, player i of type θi constructs a

strategy of player j. That strategy requires that in all nodes n of the analogy
class αi player j behaves according to the expectation hold by player i about
the average behavior in class αi. The constructed strategy may thus depend
on the type θj of player j according to whether δi = 1 or 0. At every
node where he must play, player i is assumed to play a best-response to this
constructed strategy of player j (where the best-response is defined relative
to the belief system when δi = 1).

Formally, we define the βθi-perceived strategy of player j, σ
βθi
j , as

If δi = 1 σ
βθi
θj
(n) = βθi(θj,αi) for every n ∈ αi and θj ∈ Θj

If δi = 0 σ
βθi
θj
(n) = βθi(αi) for every n ∈ αi and θj ∈ Θj

Given the strategy si player i and given history h, we let si |h denote the
continuation strategy of player i induced by si from history h onwards. We
also let uhi (si |h, sj |h) denote the expected payoff obtained by player i when
history h has been realized, and players i and j behave according to si and
sj, respectively.

Definition 1 (Criterion) Player i’s strategy σi is a sequential best-response
to (βi, µi) if and only if for all θi such that pi(θi) > 0, for all strategies si
and all nodes n ∈ Ni,17

X
θj∈Θj

µθi(θj)(n)u
h
i (σθi |n, σ

βθi
θj
|n) ≥

X
θj∈Θj

µθi(θj)(h)u
h
i (si |n,σ

βθi
θj
|n)

Consistency:
17Remember that the node n is identified with the history h that leads to node n.
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In equilibrium, we require two notions of consistency: one that relates
the analogy-based expectations to the strategy profile, and one that relates
the belief systems to the analogy-based expectations.
We start with the consistency of the analogy-based expectations. We

require the analogy-based expectations to correspond to the real average
behaviors in every considered class and for every possible type (if types are
differentiated) where the weight given to the various elements of an analogy
class must itself be consistent with the real probabilities of visits of these
various elements.
The consistency requirement should be thought of as a result of a learning

process in which players would eventually manage to have correct analogy-
based expectations (see below for a more detailed interpretation). To present
formally the consistency idea, let P σ(θi, θj , n) denote the probability that
node n is reached when players i and j are of types θi and θj respectively,
and players play according to σ.

Definition 2 Player i’s analogy based expectation βi is consistent with the
strategy profile σ if and only if:

• For any (θi, θj) ∈ Θ such that δi = 1 : for all αi ∈ Ani,

βθi(θj ,αi) =

P
(θ0
i,n)∈Θi×αi pθ0

i
P σ(θ0i, θj , n) · σθj(n)P

(θ0
i,n)∈Θi×αi pθ0

i
P σ(θ0i, θj, n)

whenever there exist θ0i and n ∈ αi such that P σ(θ0i, θj, n) > 0.
• For any θi ∈ Θ such that δi = 0 : for all αi ∈ Ani,

βθi(αi) =

P
(θ0
i,θ

0
j ,n)∈Θ×αi pθ0

i
pθ0

j
P σ(θ0i, θ

0
j, n) · σθ0

j
(n)P

(θ0
i,θ

0
j ,n)∈Θ×αi pθ0

i
pθ0

j
P σ(θ0i, θ

0
j , n)

whenever there exist θ0i, θ
0
j and n ∈ αi such that P σ(θ0i, θ0j , n) > 0.

The consistency of the analogy-based expectations should be thought of as
a result of a learning process. Specifically, assume that there are populations
of players i and j who are repeatedly and randomly matched to play the
game. In the population of players i, there is a fraction pi(θi) of players of
type θi. After the end of a session, the behaviors of all the players and their
types are revealed. All the information is gathered in a general data set, but
players have different access to this data set depending on their types. A
player i with type θi = (Ani, δi) such that δi = 0 has access to the average
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empirical distribution of behavior in every analogy class αi ∈ Ani where
the average is taken over all nodes n ∈ αi and over the entire population
of players j. A player with type θi = (Ani, δi) such that δi = 1 has access
to the average empirical distribution of behavior in every αi ∈ Ani for each
subpopulation of types θj of players j.
Now suppose that the true pattern of behavior adopted by the players is

that described by the strategy profile σ. A player i with type θi = (Ani, δi)
such that δi = 1 will collect data about the average behavior of types θj in
every class αi ∈ Ani as soon as sometimes a player j with type θj reaches
some node n ∈ αi (according to σ). In the long run, every such statistics
should converge (in the Cesaro’ sense) and the limit point should be an
average of what player j with type θj actually does in each of the nodes n
where n ∈ αi, that is, σθj (n). The weighting of σθj (n) should also coincide
with the frequency with which n is visited (according to σ) relative to other
elements in αi, hence the above expression for βθi(θj,αi). A similar argument
applies when δi = 0 for the expression of βθi(αi).

Remark 1 Definition 2 places no restrictions on player i’s expectations about
those analogy classes that are not reached according to σ. A stronger notion
of consistency would require that the expectations in this case correspond to
limits of expectations that would be consistent with small perturbations of σ.
(Such a notion is in the spirit of sequential equilibria - see Kreps and Wilson
1982 - and is discussed in Jehiel (2003) in a simpler context. We have chosen
to present the weaker notion of consistency for expositional purposes).

Remark 2 In the above learning story we have assumed that there was a
common pool of data. An alternative specification would be that types θi
of players i have access only to those plays where player i was of type θi.
This would lead to alternative notions of consistency,18 but the spirit of the
examples discussed in the paper would continue to hold under these alternative
specifications.
18Specifically, if δi = 1:

βθi
(θj ,αi) =

P
n∈αi

Pσ(θi, θj , n) · σθj (n)P
n∈αi

Pσ(θi, θj , n)

whenever there exists n ∈ αi such that Pσ(θi, θj , n) > 0.
If δi = 0

βθi
(αi) =

P
(θ0

j ,n)∈Θj×αi
pθ0

j
Pσ(θi, θ

0
j , n) · σθ0

j
(n)P

(θ0
j ,n)∈Θj×αi

pθ0
j
Pσ(θi, θ

0
j , n)

whenever there exist θ0j and n ∈ αi such that Pσ(θi, θ0j , n) > 0.
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We now move on to the second consistency requirement that relates the
belief systems of players to their analogy-based expectations. The analogy-
based expectation βθi of player i with type θi = (Ani, δi), δi = 1 allows him
to distinguish between the behaviors of players j with different types. As the
game proceeds, player i updates his belief about the type of player j using
Bayes’ rule (whenever it is applicable) and assuming that player j behaves

according to σ
βθi
θj
as defined above. Formally,

Definition 3 Player i’s belief system µi is consistent with the analogy based
expectation βi if and only if : for any (θi, θj) ∈ Θ such that δi = 1

µθi(θj)(∅) = pj(θj).
And for all histories h, ha

µθi(θj)(ha) = µθi(θj)(h) whenever h /∈ Nj

µθi(θj)(ha) =
µθi(θj)(h)σ

βθi
θj
(h)[aj]P

θ0
j∈Θj µθi(θ

0
j)(h)σ

βθi
θ0
j
(h)[aj ]

whenever h ∈ Nj, there exists θ
0
j s.t. σ

βθi
θ0
j
(h)[aj] > 0 and player j plays aj at h.

Comment: The consistency of the belief system µi with the analogy-based
expectation βi should be thought as a result of an introspective calculus of
player i. Based on his representation of the strategy of his opponent for
the various possible types he makes inference (using Bayes’ law) as to the
likelihood of the various possible types he is facing. This should be contras-
ted with our learning interpretation of the consistency requirement for the
analogy-based expectations (see above Definition 2).

Solution concept:
In equilibrium, we require that, at every node, players play best-responses

to their analogy-based expectations (sequential rationality) and that expect-
ations and beliefs are consistent.

Definition 4 A strategy profile σ is an Analogy-based Perfect Bayesian Equi-
librium if and only if there exist analogy-based expectations βi and belief sys-
tems µi such that for every player i:
1. σi is a sequential best-response to (βi, µi),
2. βi is consistent with σ and
3. µi is consistent with βi.
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An Analogy-based Perfect Bayesian Equilibrium conceptually differs from
a Perfect Bayesian Equilibrium with incomplete information in several im-
portant respects. In particular, the types in our setup are not characterized
by their preferences and their information partitions, but by their cognitive
abilities to understand (or learn) the strategy of their opponents. This is
a totally new notion of types that cannot be interpreted with the standard
approach.19 In particular, note that the limited capability of players to learn
the correct strategy of the various types of their opponent in turn leads them
to make erroneous inferences about the identity of the types they are facing.20

The exploitation of these erroneous inferences give rise to the possibility of
deception (see Section 2 for an example of this). In the next Sections, we
discuss a number of settings in which the phenomenon of deception arises.

3.2.1 Preliminary results

We first note that an equilibrium always exists:

Proposition 1 In finite environments, there always exists at least one Analogy-
based Perfect Bayesian Equilibrium.

Proof 1 The proof follows standard methods, first noting the existence of
equilibria in which each player i is constrained to play any action ai ∈ Ai(n)
at any node n ∈ Ni with a probability no less than ε, and then by showing
that the limit as ε tends to 0 of such strategy profiles is an Analogy-based
Perfect Bayesian Equilibrium. Q. E. D.

We next observe that in an environment in which some types are rational,
these perform better than other cognitive types in equilibrium:

Proposition 2 Consider an Analogy-based Perfect Bayesian Equilibrium of
an environment in which one of the types of player i is rational21. Then this
19Even when each player i can be of only one cognitive type characterized by his analogy

partition, Jehiel (2003) notes that an Analogy-based Expectation Equilibrium cannot be
viewed as a standard Bayes-Nash equilibrium of another game with modified information
structure. A fortiori when there are several possible cognitive types, an Analogy-based
Perfect Bayesian Equilibrium cannot be interpreted as a standard equilibrium of another
game with a modified information structure.
20In this respect, observe that our notion of consistent belief system relies on Bayes’

rule. The possibility of erroneous inferences would a fortiori hold if players did not use
Bayes’ rule.
21A rational type is characterized by an analogy partition that is finest. Whether he

can or cannot differentiate the various types of his opponent (δi = 1 or 0) is irrelevant
when he has the finest analogy partition.
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type of player i gets the highest equilibrium expected payoff among all types
of player i.

Proof 2 The rational type of player i may always mimic the behavior of any
other type θi of player i, thereby ensuring that he can get at least the expected
payoff obtained by any other type. Q. E. D.

Comment: This should be contrasted with results suggesting that irra-
tional types may perform better in equilibrium. Here it is a comparison of
the equilibrium payoffs obtained by different types within the same equilib-
rium. It is not a comparison of equilibrium payoffs of the rational types vs
the irrational ones when one switches from an environment with only rational
types to an environment with only irrational types.

4 A Concession Game

4.1 Description of the game

Two risk-neutral agents negotiate over the division of a pie of size 400. The
negotiation is represented by a series of reciprocal concessions with the pos-
sible intervention of an external mediator. A player, when it is his turn to
make a decision, must choose between two options. He can either concede
one fourth of the pie to the other player or ask for the intervention of an
external mediator. If he chooses to concede and some share of the pie has
not been conceded yet, in the next period, it is the other player’s turn to face
the same choice.
If a player asks for the intervention of the mediator, this mediator splits

what has not been conceded yet into two equal shares given to the two players.
Besides, the player who asked for his intervention must pay a commission fee,
c, equal to 7% of the share of the pie that the mediator has to split.
The game ends when the pie is completely distributed among the two

players either through reciprocal concessions, in the fourth period, or after
the intervention of the mediator. When a player asks for the intervention
of the mediator, we say that he opts out. Player 1 has to make decisions in
periods 1 and 3, and player 2 in periods 2 and 4. If the game ends with player
1 opting out in period k, payoffs are equal to (200− 7(5− k), 200). If it ends
with player 2 opting out in period k, payoffs are equal to (150, 250−7(5−k)).
If players make reciprocal concessions until the complete allocation of the pie
without the intervention of the mediator, payoffs are equal to (200, 200). For
simplicity, we normalize payoffs by subtracting 150 from player 1 ’s payoffs
and 200 from player 2’s payoffs (the end node corresponding payoffs are thus
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(50− 7(5− k), 0), (0, 50− 7(5− k)) and (50, 0)). The game is represented in
figure 1.
The concession game described in figure 1 is a variant of the centipede

game (Rosenthal 1982). With rational players, the game has a unique sub-
game perfect Nash equilibrium. Both players opt out whenever they have
the opportunity to. This is the worst possibility for players 1 and 2 in terms
of the share of the pie given to the mediator. Player 1 pays the mediator 28,
the highest possible commission fee. Player 1 does not concede in the first
period since he anticipates that, if he does, player 2 will call the mediator in
the next period.

4.2 The game played by boundedly rational agents

We consider boundedly rational agents who bundle nodes into analogy classes
as follows. With probability 1

3
, player 1 is Coarse i.e. An1 = {{n2, n4}}, he

puts n2 and n4 in the same analogy class. Whether δ1 = 0 or δ1 = 1 does not
matter since player 2 is assumed to be of only one type. With probability 2

3
,

player 1 is Rational, i.e. An1 = {{n2}, {n4}}.22 With probability 1, player
2 is Coarse, i.e. An2 = {{n1, n3}}, he puts n1 and n3 in the same analogy
class, and Sophisticated, i.e. δ2 = 1, player 2 distinguishes the behaviors of
the two possible types of player 1.

Proposition 3 The following strategy profile is an Analogy-based Perfect
Bayesian Equilibrium:
Player 2 concedes in n2 and opts out in n4. Player 1 when rational con-

cedes in n1 and opts out in n3. Player 1 when coarse concedes in both n1 and
n3.

Remark. The strategy profile in which players opt out whatever their
types whenever they have to move is also an equilibrium. Together with
the equilibrium shown in Proposition 3 these are the only equilibria in pure
strategies (see Appendix).

The equilibrium outcome can be summarized as follows: with probability
2
3
the mediator is called at n3; with probability 1

3
he is called at n4. The

expected fee paid to the mediator is equal to 28
3
.

It is important to realize that for concessions to take place in the game
of figure 1 it is vital that player 1 can be of several types and that player 1
distinguishes between the behaviors of the two types of player 1. If players
22It is irrelevant whether δ1 = 1 or 0 when the analogy partition is the finest.
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1 and 2 were each of one type, it would be impossible to observe concessions
in equilibrium however these types are specified.23

The crucial part of the equilibrium is about understanding the reasoning
of the coarse player 1 at n3. We will also elaborate on the reasoning of player
2 at node n2.
The coarse player 1 at node n3 believes that player 2 will concede with

probability 3/4 at the next node and hence he concedes at n3.24

Player 2 concedes at node n2 based on the following reasoning. Player
1 when rational is perceived to concede with probability 1/2 on average.25

Player 1 when coarse is perceived to concede always. Thus, when player
2 sees player 1 conceding at his first decision node he updates his belief
about the type of player 1 is facing using Bayes’ rule and assuming that
the behaviors of the various types of player 1 follow the perceptions just
described: his updated belief is that player 1 is coarse with probability

(1/3)1
(1/3)1+(2/3)(1/2)

= 1
2
. Combining with the perceptions of the various types’

behaviors, player 2 believes at node n2 that player 1 will concede with prob-
ability (1

2
)(1
2
)+(1

2
)(1) = 3

4
in n3. His perceived expected payoff if he concedes

in n2 is (34)43 =
129
4
, which is strictly higher than 29, his payoff if he opts out

in n2. Conceding in n2 is a best response to his belief.
Several observations are in order. First, note that the updated belief

of player 2 about player 1’s type at node n2 is different from the correct
Bayesian updated belief according to which at n2 the probability that player
1 is coarse should coincide with the prior 1/3 (all types concede at n1). The
rational player 1 deceives player 2 by conceding at node n1. He makes player
2 wrongly believe that he is more likely to be the coarse type than he really is.
This is turn induces player 2 to concede at node n2 because he is sufficiently
confident that player 1 is coarse, thereby always conceding.
23It is easy to see that no equilibrium in pure strategy with concessions can be sustained

whatever the analogy partitions. The types most favorable to concessions are the coarsest
types. But, whatever his belief player 2 opts out at n4. Thus, in a pure strategy equi-
librium, the most optimistic belief that player 1 may have is that player 2 concedes with
probability 1/2 on average. With such a belief, player 1 chooses to opt out at n3. But,
then player 2’s belief about 1 is that he concedes at best with probability 1/2. This in
turn induces player 2 to opt out at n2 (because 29 > 43/2). Hence, player 1 ’s belief is
that player 2 opts out always, and he must opt out at n1. It is left to the reader to check
that there is no equilibrium in mixed strategy either.
24At the equilibrium, player 2 always concedes in n2 reached with probability 1 and

opts out in n4 reached with probability 1
3 (because rational player 1 opts out at n3 and

the probability that player 1 is rational is 2/3).
25At node n1 he concedes, at node n3 he opts out and these two nodes are met with the

same frequency.
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Second, observe that if player 2 did not distinguish between the types of
player 1 (i.e. δ2 = 0) he could not be deceived about player 1’s type, and
also at node n2 he would opt out rather than conceding.26

Taking advantage of this latter observation, consider now the effect of
adding a small proportion of Coarse non Sophisticated players 2. It is read-
ily verified that the following strategy profile would be an equilibrium. For
all players other than the coarse non-sophisticated player 2, they would be-
have as described in Proposition 3. The coarse non-sophisticated player 2
would opt out at node n2. In this equilibrium, the coarse non-sophisticated
player 2 would perform better than the the coarse sophisticated player 2
(the former gets 29 while the latter gets only 43

3
), thus illustrating that more

sophistication need not be beneficial.

5 The monitoring game

5.1 Presentation of the game

We consider a monitoring game with an employer and an employee. In three
consecutive periods, the employee has to choose between working, W, or
shirking, S. In the first period, the employee has entire discretion (he is
not controlled). Then, the employer decides whether or not to control the
employee in the last two periods. At t = 0, the employee makes his first
decision concerning period 1. If the employee works in period 1, he gets 0
and the employer gets 1. If the employee shirks in period 1, he gets 1 and
the employer gets 0. At date t = 1, the employer observes the decision made
by the employee in period 1. The employer can choose either to control (C)
the employee or to delegate (D) the decision power to the employee for the
last two periods. At periods t = 2 and t = 3, the employee chooses between
working or shirking.
If, at t = 1, the employer chooses C, he is sure to obtain a payoff of 2

from the employee’s actions in the last two periods.27 If the employee tries
to shirk in period 2 and 3, it will be costly for him but not for the employer.
The employee pay-off is strictly decreasing in the number of times he shirks
from period 2 to 3. He gets 2 if he works twice, 1 if he works once and shirks
once and 0 if he shirks twice. An interpretation of the control technology is
26By definition of his type he would not make any updating about the type of his

opponent. He would believe that player 1 concedes on average with probability 2/3 and
29 > 86

3 .
27This holds whatever the employee does in these two periods and independently from

what he obtained in the first period.
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that it is such that the employee always fulfills his task. If he shirks, he is
punished and eventually does what he should do.
If, at t = 1, the employer chooses D, his payoff is strictly increasing

in the number of times the employee works in the last two periods. If the
employee shirks twice, the employer gets 0, if he shirks once and works once,
the employer gets 2 and if he works twice, the employer gets 3. The pay-off
of the employee is strictly decreasing in the number of times he works in
periods 2 and 3: he gets 1 if he never shirks, 2, if he shirks once and 4 if he
shirks twice. The game is represented in figure 2.
Observe that except if the employee decides to shirk when he is con-

trolled28, the sum of players’ payoffs is equal to 5. With fully rational agents,
this game has a unique subgame perfect Nash equilibrium. In this equilib-
rium, the employee shirks in period 1, the employer chooses to control him
and the employee works in the last two periods. The employee gets 3 and
the employer gets 2.

5.2 The game played by boundedly rational agents

We consider two types of employees. Coarse employees who put in the same
analogy class all the decision nodes in which the employer has to make a
decision and Rational employees who use two analogy classes, one for each
decision node of the employer. The employee is Coarse with probability 2/3
and Rational with probability 1/3.29

The employer is a Sophisticated Coarse type. That is, he has a unique
analogy class that contains all the decision nodes of the employee. Besides,
δ2 = 1, i.e. he distinguishes between the behaviors of the two different types
of employees.
We first explain why the strategy profile of the Subgame Perfect Nash

equilibrium is not an equilibrium in this setup. By contradiction, assume
it is an equilibrium. Then the belief of the employer should be that the
employee works with probability 2/3. But, with such a belief, the employer
would choose to Delegate and not to Control after the employee’s decision
to Shirk at t = 0 (he would choose D and not C because (2

3
)2 × 3 + (1

3
)2 ×

0+ 2(1
3
)(2
3
)× 2 > 2), violating the prescription of the Subgame Perfect Nash

equilibrium. As it turns out there is a unique equilibrium in pure strategies:

Proposition 4 The game has a unique equilibrium in pure strategies. At
t = 0, the employee shirks when Coarse and works when Rational. In the
28In this case, we consider that the employee is punished which destroys a fraction of

the created added value.
29Whether δ1 = 0 or 1 is irrelevant, since the employer can be of only one type.
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last two periods, the employee, whatever his type and his behavior at t = 0,
shirks if the employer chose D and works if the employer chose C at t = 1.
The employer chooses D if he observes that the employee worked in period 1
and C if he observes that the employee shirked in period 1.

At the equilibrium, if the employee is Rational, he works in the first
period, the employer chooses D and the employee shirks in periods 2 and 3.
If the employee is Coarse, he shirks in the first period, the employer chooses
C and the employee works in periods 2 and 3. A Rational employee gets
4, a Coarse employee gets 3 and the expected payoff of the employer is 5/3.
Compared to what happens when all agents are rational, a Rational employee
obtains a higher revenue and the Coarse employer gets a lower expected
payoff.30 This difference is due to the employer’s decision to delegate to the
Rational employee. This strategy is costly for the employer. In the rest of
this Section we elaborate on why the employer chooses this strategy.
First, observe that, in equilibrium, a Coarse employee works twice and

shirks once while a Rational employee works once and shirks twice. Since
the employer puts in the same analogy class all the decision nodes of the
employee, he perceives a Coarse employee to be a (relatively) working em-
ployee and a Rational employee to be a (relatively) shirking employee. When
he chooses between D and C, the employer cares about the type of the em-
ployee insofar as it is indicative of whether the employee is perceived to be
working or shirking.
The most interesting aspect of this example is about the updated belief

of the employer after observing the employee’s action at date t = 0. When
the employer observes that the employee works in the first period, he puts
more weight on the probability that the employee is the working type (while
he is, with probability 1, a Rational employee, i.e. a shirking type). The
employer chooses to delegate, i.e. D, because he is sufficiently confident that
the employee will work next with a high probability. Symmetrically, when
the employee shirks in the first period, the employer puts more weight on the
probability that the employee is a shirking type (while he is, with probability
1, a Coarse employee of the working type). He chooses to control.
Interestingly, we see that a Rational employee, in the first period, in order

to have the employer believe that he is Coarse -that is, to be a relatively
working employee as perceived by the employer- behaves differently from a
Coarse employee. He mimics the most frequent behavior of a Coarse employee
which differs, in this node, from the actual behavior of a Coarse employee.
It remains to explain the behavior of the employee at date t = 0. A

Coarse employee puts the two decision nodes of the employer in the same
30The Coarse employee gets the same payoff as in the rational paradigm!
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analogy class. He does not perceive that the employer choice may depend
on his own decision at t = 0. That is why he decides to shirk in period 1.
A Rational employee perceives that by working in the first period, he will
deceive the employer who will believe that he is more likely to be of the
working type. Besides, it is worth losing 1 in the first period to obtain that
the employer chooses to delegate next, thereby making an extra profit of 2
in the last two periods (2 is equal to the difference between what he gets if
the employer chooses D and he shirks twice and what he gets if the employer
chooses C and he works twice). This explains why a Rational employee does
work in the first period.
We believe that this example captures important features of the deception

process. In equilibrium, the rational employee manages to impose a false
belief about his type. The employer is deceived by the Rational employee
who behaves in the first period in a way that the Coarse employer associates
with the Coarse employee (he works). The employer subsequently chooses to
delegate the decision power and gets a lower outcome than what he would get
by controlling the employee. What is striking here is that a Coarse employee
does not even behave that way in the first period, he shirks. A Rational
agent in order to be identified with a Coarse agent follows the most frequent
behavior of a Coarse agent even though at this specific decision node a Coarse
agent would not behave that way. We recognize here standard swindlers’
stratagems. The swindler tries initially to build a confidence relationship
with his prey. To do so, in the first interactions, he follows an excessively
honest behavior (even a standard honest agent would not behave that way).
The coarse prey infers from this behavior that the agent he is facing is honest.
He drops his guard and the swindler takes advantage of it in the following
periods. The swindler’s strategy relies on the coarseness of his prey who
wrongly interprets his initial extreme honesty.31 A rational prey would rightly
interpret this excessively honest behavior of the swindler in the initial periods,
“too good to be true” or “too nice to be honest”, and would not believe in the
honesty of the swindler. But, a boundedly rational prey as modelled in this
paper is deceived. The example illustrates how incentives may be profoundly
affected in the presence of boundedly rational agents.
31This phenomenon is well exposed in many movies such as ”The House of Games”

(1987) by David Mamet, “The Sting” (1973) by George Roy Hill or “The Color of Money”
(1986) by Martin Scorsese (honest is replace here by bad pool player).

22



6 A wage negotiation game

6.1 Description of the game

We consider the following wage negotiation between a professor and the dean
of his department. At t = 1, the professor chooses between accepting the
status quo (SQ) and developing contacts with another university (D) in view
of an alternative faculty position in another department. Establishing these
contacts costs him γ > 0. If he develops contacts, the professor asks for a
pay rise ∆ (> 0) to the dean. At t = 2, the dean decides either to refuse (R)
or to accept (A) the pay rise. If the dean accepts, the professor stays in the
department and the negotiation process is over, the professor ends up with a
higher wage and stays in his original position. If the dean refuses, at t = 3,
the professor chooses again between accepting the status quo (SQ), staying
in his department with his initial salary or developing further contacts (D)
with the other department at cost γ, getting from it an alternative offer. If
the professor chooses the second option, he goes back to the dean, exhibits his
alternative offer and asks for a pay rise ∆0 (> 0).32 At t = 4, the dean decides
whether he accepts (A) the pay rise ∆0 or refuses it (R). The professor stays
in the department if the dean accepts the pay rise or leaves it and goes to
the other department if the dean refuses it. If the professor accepts the offer
of the other department, the original department incurs a cost −X and the
professor gets U − 2γ.33
We normalize payoffs so that in the original situation both the department

and the professor have a pay-off 0. We further assume that X < ∆0 and
U < γ, and to fix ideas, we let ∆ = 3, ∆0 = 4, γ = 1, X = 7

2
and U = 1

2
. In

a perfect rationality world, X < ∆0 implies that at t = 4, the dean prefers
to let the professor go rather than accept the pay rise. Given that there is
no pay rise at t = 4, U < γ implies that at t = 3 the professor does not find
it useful to generate an outside offer of U for an extra cost γ. Anticipating
that no further search effort will be made by the professor, the dean at t = 2,
finds it optimal not to accept a pay raise. Finally, at t = 1, the Professor
does not develop contacts because he anticipates no pay rise will be accepted.
The game is represented in figure 3.
In the standard rationality paradigm, even though the Professor has the

possibility to go for another job, the outside option is perceived as non-
credible and there is no pay rise.
32We have in mind that ∆0 > ∆ so that the new pay rise compensates at least partially

for the extra search cost.
33U is equal to the value of the alternative offer minus the costs the professor incurs

leaving his university.
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6.2 The game played by boundedly rational agents

We wish to illustrate now why the limited cognitive abilities of the Professor
and the Dean may explain the possibility of search activity and pay rise in
this model in which the outside option of the Professor would traditionally
be thought of as non-credible.
Specifically, the distribution of players’ cognitive types is the following.

With probability 1/2, the dean is Sophisticated Coarse, An = {{n1, n3}}, he
puts in the same analogy class both decision nodes of the professor and δ = 1,
he distinguishes between the various types of the professor. With probability
1/2, the dean is Rational, An = {{n1}, {n2}} and δ = 1.
With probability 1/2, the professor is Coarse, An = {{n2, n4}}, he puts

in the same analogy class both decision nodes of the dean and δ = 0, he does
not distinguish between the various types of the dean. With probability 1/2,
the professor is Rational, An = {{n2}, {n4}} and δ = 1.
The following proposition illustrates the possibility of search activity and

pay rise in equilibrium:

Proposition 5 A Sophisticated Coarse dean accepts the pay rise in n2 and
refuses to give a pay rise in n4. A Rational dean always refuses to give a
pay rise. A Coarse professor establishes contacts with an alternative depart-
ment whenever he has the opportunity to and a Rational professor establishes
contacts in n1 and accepts the status quo in n3.

Remark : The Subgame Perfect Nash equilibrium strategy profile (de-
scribed earlier) is also an equilibrium. Together with the strategy displayed
in Proposition 5 these are the only equilibria in pure strategies (see the Ap-
pendix).

In the equilibrium of Proposition 5, the professor always makes an effort
to get an alternative offer at t = 1. With probability 1

2
, the dean concedes

a pay rise, with probability 1
4
, the professor leaves his department and, with

probability 1
4
, he stays in his department with his initial salary.

The logic of the equilibrium is as follows. First, it is readily verified that
the behaviors of the rational professor and the rational dean are optimal
(given the behaviors of other players). So let us focus on the Coarse Professor
and the Sophisticated Coarse dean.
A Coarse professor puts n2 and n4 in the same analogy class. His per-

ception of the dean’s behavior in n4 is contaminated by the dean behavior in
n2. Because the dean accepts a pay rise with a positive probability at t = 2,
a Coarse professor perceives that he accepts it with a probability equal to 2

5

(= 1/2
1+1/4

) at t = 4. For such a high probability of acceptance, it is worthwhile
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developing further contacts at t = 3 since 2
5
(2)+ 3

5
(−3
2
) = −1

10
> −1. It is also

readily verified that a Coarse Professor finds it optimal to develop outside
contacts at t = 1.
Now, let us consider the Sophisticated Coarse dean. He perceives that

a Coarse professor always chooses D both in n1 and in n3 and a Rational
professor chooses D with a probability 2

3
in these two nodes34. At t = 2,

he observes that the professor chose D in n1. After having observed the
professor’s behavior in n1, the Sophisticated Coarse dean’s updated belief is
that the Professor is Coarse with probability (1/2)1

(1/2)1+(1/2)(2/3)
= 3

5
. Combining

the perceived behaviors and beliefs, the Sophisticated Coarse dean expects
the Professor to choose D in n3 with probability (35)1+(

2
5
)2
3
= 13

15
. According

to this expectation, the dean prefers to accept the pay rise in n2.35

It should be noted that the dean accepts the pay rise here because he
puts a sufficiently high probability on the Professor being coarse due to this
erroneous belief updating. If the dean had kept the prior belief that the
Professor is Coarse with probability 1

2
(which is actually correct at node n2),

he would have chosen not to accept the pay rise at n2.36

For rational agents, the presence of boundedly rational agents has two
main consequences. First, at the start of the interaction, Rational professors
mimic Coarse professors and develop efforts toward the outside university.
That way, they deceive Coarse deans, and make them believe that they are
facing a Coarse professor with a high probability. Coarse deans accept the
pay rise at t = 2 because they are sufficiently afraid that the professor will
otherwise leave (after making extra search effort). Second, Rational deans
fail to be identified as Rational deans by Coarse professors at t = 3. Coarse
professors do not perceive that there exist two types of deans. Thus, even
though a Rational dean behaves differently from a Coarse dean at t = 2,
a Coarse professor keeps on believing, at t = 3, that the dean will concede
with probability 2

5
at t = 4. In this case, Rational deans would prefer being

identified as what they are : Rational deans who never accept pay rises.
Coarse professors would then choose the status quo at t = 2 and the rational
dean would get 0 rather than −7

4
(expected payoff in the second equilibrium

with boundedly rational agents). This illustrates that it may be costly for
34In the first node, reached with probability 1, a Rational professor chooses D and in n3,

reached with probability 1
2 , a Rational professor chooses SQ. Therefore, a Sophisticated

Coarse dean perceives that a Rational Professor chooses D with a probability 1+0
1+1/2 =

2
3

in the analogy class gathering n1 and n3.
35This is because −3 > 13

15(
−7
2 ) +

2
15(0).

36He would have perceived that his payoff obtained by not accepting the pay rise is −3512
(= ( 12 × 1 + 1

2 × 2
3)(

−7
2 ) + (1− (12 × 1 + 1

2 × 2
3))(0)) and he would not have accepted the

pay rise (since −35
12 > −3).
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a rational agent not to be distinguished from other types due the cognitive
limitations of other players.

7 Appendix

7.1 Proof of Proposition 3

Proof :
First, we prove that no other strategies than the one we mention in Pro-

position 3 can be part of an equilibrium.
It is a strictly dominant strategy for player 2 to take in n4, therefore, at

the equilibrium, player 2 always take in n4. By backward induction, we can
infer that at the equilibrium, if player 1 is Rational, he always takes in n3.
Suppose that player 2 takes in n2. If player 1 is Rational, he plays the

unique best response, take in n1. Besides, since player 2 takes in n2, he
always takes when he is in the analogy class {n2, n4}. Then either player 1
always takes in n1 or player 1, if he is Sophisticated Coarse, perceives that
player 2 always takes when he is either in n2 or in n4. Taking in n1 and n3
is also his unique best-response to his belief.37 If player 2 takes in n2, player
1, whatever his type is, has a unique best response, take in n1 and in n3.
Now, suppose that player 2 passes in n2. A Rational player 1 has a unique

best response, pass in n1. Suppose that a Sophisticated Coarse player 1
takes in n1. Player 2 passes in n2 and never has the opportunity to play
in n4. Therefore, whenever nodes n2 or n4 are reached, player 2 passes. A
Sophisticated Coarse player expects that player 2 will pass with probability
1 in n2 and n4. Taking in n1 is not a best response to such a belief and
cannot be an equilibrium strategy for a Sophisticated Coarse player 1. Now,
suppose that a Sophisticated Coarse player 1 passes in n1 and takes in n3.
Again, n4 is never reached and player 2 passes in n2. Since he puts n2 and
n4 in the same analogy class, a Sophisticated Coarse player 1 expects that
player 2 will pass with probability 1 in n4. Taking in n3 is not a best response
to such a belief.
There only remains two pairs of strategies that can be part of an equilib-

rium:
- Players take whenever they have the opportunity to.
- Player 1 passes in n1 whatever his type is. He takes in n3, if he is

Rational and passes, if he is Sophisticated Coarse. Player 2 passes in n2 and
37We should also notice that there exists no belief about the average behavior of player

2 in {n2, n4} such that taking in n1 and passing in n3 would be a best response to this
belief for a Sophisticated Coarse player 1.
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takes in n4.
Suppose that players choose to take whenever they have the opportunity

to. This is an equilibrium with player 1 believing that player 2 takes with
probability 1 in the analogy class {n2, n4}38 and player 2 believing that player
1 passes with probability 1 in the analogy class {n1, n3} whatever his type
is. Strategies are best responses to beliefs and beliefs are consistent with
strategies. This is the first type of equilibrium that we mention.
Let us consider the second type of equilibrium. First, if player 1 is Ra-

tional and player 2 follows the defined strategy, it is clearly a best-response
for him to pass in n1 and to take in n3. Now, if player 1 is Sophisticated
Coarse and players follows the defined strategies, he perceives that player 2
passes with a probability 1

1+1/3
= 3

4
in the analogy class {n2, n4}. Therefore,

in n3, he perceives that his expected payoff, if he passes, is equal to (34)50
which is strictly higher than 36, his payoff if he takes. Hence, passing is
a best-response to his belief. In n1, he also perceives that player 2 passes
with a probability 3

4
in n2 and n4. His perceived expected payoff if he passes

-knowing that he will pass if n3 is reached- is ( 916)50 which is strictly higher
than 22, his payoff if he takes. The strategy of a Sophisticated Coarse player
1 is a best response to the unique analogy based expectation strategy of
player 2 that is consistent with its observed behavior.
Now, let us consider player 2. First, taking in n4 is a strictly dominant

strategy. Furthermore, if players follows the defined equilibrium strategies,
player 2 perceives that a Rational player 1 passes with a probability 1

2
in

the analogy class {n1, n3} and a Sophisticated Coarse player 1 passes with
probability 1 in this same analogy class. In n2, conditional on having observed
that player 1 passed in n1, he believes that player 1 is Sophisticated Coarse
with probability 1×(1/3)

1×(1/3)+(1/2)×(2/3) =
1
2
(application of the Bayes’ rule with

the analogy based expectation strategies of player 1 perceived by player 2).
Then, in n2, player 2 perceives that player 1 will pass in n3 with a probability
(1
2
)1 + (1)1

2
= 3

4
. His perceived expected payoff, if he passes is (3

4
)43 which

is strictly higher than 29, his payoff if he takes.
Q.E.D.

7.2 Proof of Proposition 4

First, a Coarse employee puts in the same analogy class the two nodes in
which the employer has to make a decision. He perceives that his decision in
the first node does not affect the decision made by the employer. Therefore,
at the equilibrium, he always shirks in the first period.
38Or in n2 and n4 if player 1 is Rational.
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Second, if the employer chooses C, there is a unique best-response for the
employee whatever his type and belief are: To work in both final periods.
Conversely, if the employer chooses F , there is a unique best-response for the
employee whatever his type and belief are: To shirk in both final periods.
Therefore, to find an equilibrium, we only need to determine what will be

the decision of a Rational employee at t = 0 and the decision of the employer.
Suppose that the employer chooses D when he observes that the employee

shirks in the first period. A Rational employee has a unique best-response:
Always to shirk. In that case, the employee shirks three times whatever his
type is. Therefore, the employer perceives that the employee always shirks
and choosing D is not a best response to such a belief. Hence, choosing D
when the employee shirks cannot be part of an equilibrium strategy.
Suppose now that the employer chooses C both if the employee works

and if the employee shirks in the first period. The employee, whatever his
type is, has a unique best response: to shirk in the first period and to work
in the last two periods. The employer perceives that an employee, whatever
his type is, when he has to make a decision, shirks with a probability 1/3
and works with a probability 2/3. C is not a best response to such a belief.
Hence, choosing C in both cases cannot be part of an equilibrium either.
The only remaining possibility for the employer is to choose C when he

observes that the employee shirks in the first period and to choose D when
he observes that the employee works in the first period. A Rational employee
has a unique best response to such a behavior, to work in the first period
(we already found the other elements of the employee’s strategy).
Now, to check if this is an equilibrium, we need to establish if it exists a

belief consistent with these behaviors such that the employer behavior is a
best response to this belief.
If players follow the described behaviors, a Coarse employee shirks once

and works twice and a Rational employee shirks twice and works once. Since
the employer puts in the same analogy class all the nodes in which the em-
ployee has to make a decision, he considers that a Coarse employee chooses
to work with a probability 2/3 and a Rational employee chooses to work
with a probability 1/3 when they have to make a decision. Therefore having
observed that an employee works in the first period, he revises his belief and
considers that he is Coarse with probability: (2/3)(2/3)

(2/3)(2/3)+(1/3)(1/3)
= 4

5
. If the

employer observes that the employee shirks in the first period, he believes
that he is Coarse with probability (1/3)(2/3)

(1/3)(2/3)+(2/3)(1/3)
= 1

2
. Besides, since the

employer puts in the same analogy class all the employee’s nodes, he thinks
that, in the last two periods, a Coarse (resp: Rational) employee works twice
with a probability 4/9 (resp: 1/9), shirks once and works once with a prob-
ability 4/9 (resp: 4/9) and shirks twice with a probability 1/9 (resp: 4/9).
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If we cross beliefs regarding the type of the employee and the average
behavior of employee of each type, we obtain the following. After having
observed that the employee shirks (resp: works) in the first period, the em-
ployer believes that he will shirk twice with a probability 25

90
(resp: 16

90
), work

once and shirk once with a probability 40
90
(resp: 40

90
) and work twice with a

probability 25
90
(resp: 34

90
). With such beliefs, if the employer observes that the

employee works in the first period, he prefers choosing D and if he observes
that the employee shirks in the first period, he prefers choosing C.

Q.E.D.

7.3 Proof of Proposition 5

We first prove that these strategies are constitutive of equilibria.
The first equilibrium. Suppose that the dean always refuses to give a

pay rise to the professor. Then whatever his type is, it is a best response for
the professor to always accept the status quo since −3

2
< −1 < 0. Whether

the professor gathers in the same analogy class n2 and n4 does not matter
since the dean behaves the same way in these two nodes if they are reached.
Now, if the professor never develops contacts with another department, it is
a best response for the dean never to concede a pay rise since −3 < 0 and
−4 < −7

2
. Again, whether the dean gathers in the same analogy class n1 and

n3 does not matter since the professor behaves the same way in these two
nodes when they are reached.

The second equilibrium. Suppose that a Coarse professor choosesD in
n1 and n3, a Rational professor choosesD in n1 and SQ in n3, a Sophisticated
Coarse dean chooses C in n2 and R in n4 and a Rational professor chooses
R in n2 and n4. First, let us remark that the strategies of the Rational
professor and dean are clearly best response to the strategy of the other
agents. Now, a Coarse professor perceives that the dean concedes with a
probability 1/3 in the analogy class {n2, n4} and a best response to this belief
is to choose D in n3 and n1 since −1 < −1 − 1 + (1/3)4 + (2/3)(1/2) and
0 < −1+ (1/3)3+ (2/3)[−1 + (1/3)4+ (2/3)(1/2)]. Besides, a Sophisticated
Coarse dean chooses R in n4 since it is a dominant strategy. Now, if agents
plays according to the defined strategy, a Sophisticated Coarse dean believes
that, in the analogy class {n1, n3}, a Coarse professor always chooses D
and a Rational professor chooses D with a probability 2/3. When n2 is
reached, a Sophisticated Coarse dean perceives that the professor is Coarse
with a probability 1×1/2

1×1/2+2/3×1/2 =
3
5
. Then, he perceives that the professor

will choose D in n3 with a probability 3
5
× 1 + 2

5
× 2

3
= 13

15
. If the dean
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concedes in n2, he gets −3, if he refuses, his perceived expected pay-off is
−13
15
× 7

2
= −91

30
< −3 so that his perceived best response is to concede in n2.

We now prove that no other equilibrium can exist.
First, whatever his type is, it is a strictly dominant strategy for the dean

to choose R in n4. Therefore, choosing C in n4 cannot be part of an equilib-
rium. Now, by backward induction, we can infer that at the equilibrium, if
the professor is Rational, choosing D in n3 cannot be part of an equilibrium
either.
Suppose that a Coarse professor choosesD in n1 and SQ in n3. A Rational

dean has a unique best response, to choose R in n2. Besides, a Rational
professor always chooses SQ in n3. Then, a Sophisticated Coarse dean,
whatever his strategy is, perceives that a professor, whatever his type is,
chooses SQ with a probability at least 1/3 in the analogy class {n1, n3}. The
Sophisticated Coarse dean has a unique best response to this belief, to choose
R in n2. Now, the behavior of the Coarse professor is not a best response to
his belief since he perceives that the dean always passes in the analogy class
{n2, n4}. Therefore, there cannot exist an equilibrium in which the Coarse
professor chooses D in n1 and SQ in n3.
Suppose that a Coarse professor chooses SQ in n1. A Rational dean has

a unique best response, to choose R in n2. Besides, a Rational professor
always chooses SQ in n3. Then, whatever his behavior is, a Sophisticated
Coarse dean perceives that a professor, whatever his type is, chooses SQ with
a probability at least 1/3 in the analogy class {n1, n3}. The Sophisticated
Coarse dean has a unique best response to this belief, to choose R in n2.
The behavior of the Coarse professor is a best response to his belief since he
perceives that the dean always passes in the analogy class {n2, n4} and he
will also choose SQ in n3. The Rational professor has unique best-response,
to choose SQ in n1 and the Rational dean’s best response is to choose R in
n2. This is the first type of equilibrium that we mention.
Suppose that a Coarse professor chooses D in n1 and D in n3 and the

Rational professor chooses SQ in n1. The best response of the dean, Soph-
isticated Coarse or Rational, is C in n2. Then, choosing SQ in n1 cannot be
an equilibrium strategy for a Rational professor. Hence, there cannot exist
n equilibrium in which a Coarse professor chooses D in n1 and D in n3 and
the Rational professor chooses SQ in n1.
Suppose that a Coarse professor chooses D in n1 and D in n3 and the

Rational professor chooses D in n1. The best response of the Rational dean
is R in n2 since a Rational professor chooses SQ with probability 1 in n3.
Now, what will a Sophisticated Coarse dean do in n2? If he chooses R in n2,
a Rational professor is better off choosing SQ in n1 so that it cannot be an
equilibrium. If a Sophisticated Coarse dean concedes in n2, then he has the
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following belief. In the analogy class {n1, n3}, a Coarse professor chooses D
with probability 1 and a Rational professor chooses D with probability 2/3.
Now, when n2 is reached, a Sophisticated Coarse dean perceives that the
professor is Coarse with a probability 1×1/2

1×1/2+2/3×1/2 =
3
5
. He perceives that

the professor will choose D in n3 with a probability 3
5
×1+ 2

5
× 2

3
= 13

15
. If the

dean concedes in n2, he gets −3, if he refuses, his perceived expected pay-off
is −13

15
× 7

2
= −91

30
< −3 so that his perceived best response is to concede in

n2.
Q.E.D.
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Figure 1: The concession game.
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Figure 2: The monitoring game.
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Figure 3: The wage negotiation game.
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