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Susan Athey and Ilya Segal�

This paper studies the problem of allocating a good among two players in each period

of an in�nite-horizon game. The players�valuations in each period are private information,

and the valuations change over time. We analyze two special cases for the dynamics of

valuations: �serially correlated valuations,� where players� valuations are exogenous but

serially correlated, and �learning by doing,�where a player�s past consumption improves his

current distribution of valuations but his valuations are otherwise uncorrelated.

We analyze conditions under which there exists an e¢ cient, Bayesian incentive-compatible

(BIC), individually rational (IR), budget-balanced (BB) mechanism, when the mechanism

designer has commitment power. We consider IR constraints where agents have the option

to (permanently) exit the mechanism in each period. This captures situations where there

are restrictions on the nature of long-term contracts agents can sign, such as at-will employ-

ment contracts, as well as restrictions on posting bonds. In addition, the tools of mechanism

design are often used to model decentralized games, and period-by-period IR constraints

may correspond to the need to deter certain types of deviations in a dynamic game. BB is

a desirable property when there is no individual without private information who can serve

as a source or sink of funds; we may also be interested in e¢ ciency for a particular group of

agents (e.g. colluding �rms), so that �burning money�violates e¢ ciency within the group.

In a static setting, Claude d�Aspremont and Louis-Andre Gerard-Varet (1979) (AGV)

constructed an e¢ cient, BIC, BBmechanism, in which given prior beliefs, each player receives

the expected value (over opponent types) of opponent utilities. However, in a dynamic
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model, today�s reports and allocations in�uence opponent prior beliefs in future periods,

and so incentives for truthtelling are undermined.

In a general dynamic model, Susan Athey and Ilya Segal (2006) (AS) construct an e¢ cient

mechanism satisfying BIC and BB, and they provide su¢ cient conditions for IR to hold when

players are very patient and players�current reports have a vanishing impact on expected

utility in the distant future. Here, we apply their construction to the bilateral trading game,

interpreting the transfers and examining comparative statics. We also analyze IR constraints,

�nding su¢ cient conditions for IR constraints to hold for moderate patience or when there

is a non-trivial long-run impact of player�s reports in a given period.

I. The Model

Time is indexed by t = 1; ::;1: There are two players, the �buyer�(b) and the �seller�(s).

Each player i 2 fb; sg has a privately observed valuation for consuming a single indivisible

object in each period (his �type� in period t), denoted �i;t 2 �i;t; where �i;t � R+ is

�nite, and we let �t = �b;t � �s;t. We consider several alternative models of the stochastic

process over player types, denoted (~�t)1t=1, as detailed below. The allocation is denoted

(xb;t; xs;t) 2 f(0; 1); (1; 0)g. Payo¤s are xi;t�i;t + yi;t, where yi;t 2 R is the transfer to player i

in period t:

For a sequence (�t)1t=1; we use the notation �
t = (�1; ::; �t) and � = (�t)1t=1:

We assume the existence of a mechanism designer who receives reports from the players

in each period (which are publicly observed by both players), and can commit in advance

to a history-contingent allocation and transfer plan. The allocation to player i in period t

is denoted (�b;t; �s;t) : �
t ! f(0; 1); (1; 0)g; while the transfers, restricted to satisfy budget

balance, are  b;t : �
t ! R and  s;t = � b;t. The strategy of each player i speci�es player i�s
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reports in all periods t as functions of the history of his true types and all reports. We say

that the strategy is truthtelling if the player reports his true type for all histories.

We consider �ex post�IR constraints within each period: a player can exit after reports

are made but before allocations and transfers are made. For patient players, interim and ex

post IR constraints are similar, so we focus on the more stringent constraint. Once either

player exits, the seller always keeps the object. We require that ex post IR constraints hold

for all possible histories of true types and reports, in order to deter deviations where a player

engages in a series of misreports and plans to exit for some realizations of future types.

II. Serially Correlated Valuations

Suppose that buyer and seller types are serially correlated, but that they are independent

across players and the evolution of types is exogenous to the history of allocations. This

captures the idea that a �rm�s production technology and capabilities evolve slowly over time.

The types follow a �rst-order Markov process (so that today�s type distribution depends

only on yesterday�s type), and to simplify exposition we assume that the types are a¢ liated

over time. The e¢ cient policy allocates to the highest value player and so can be written

��b(�t) = 1f�b;t > �s;tg. To simplify notation we let Et
h
g(~�� )j�t

i
denote the expectation of

g over ~�� j~�t = �t; and Et;t�1
h
g(~�� )j�ti; �t�1�i

i
denotes the expectation over ~�� j(~�i;t; ~��i;t�1) =

(�i;t; ��i;t�1): Following AS, the transfers are constructed as follows, given a constant K 2 R

that is used to transfer utility between the buyer and seller:

 b;t(�t; �t�1) = � s;t(�t; �t�1) = b;t (�b;t; �t�1)� s;t (�s;t; �t�1) +K, where

i;t (�i;t; �t�1) =
1X
�=t

���t
�
Et;t�1

h
~��i;��

�
�i(
~�� )j�i;t; ��i;t�1

i�
�

1X
�=t

���t
�
Et�1

h
~��i;��

�
�i(
~�� )j�t�1

i�
:

The buyer�s incentive payment (b;t) is the di¤erence between expected discounted seller
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surplus given the buyer�s report, and the expected seller surplus given reports in past periods.

The buyer incentive payment is large when serial correlation is high, and when yesterday�s

type was high and today�s is low. Note that if (in an extension of this model) players observed

only partially informative signals about their valuations prior to the allocation decision in

each period, an increase in the accuracy of the signals would increase the overall variability

of the signals as well as the magnitude of transfers, since each period�s information would

have a bigger e¤ect on expectations about the future.

We show that there exists a truthtelling BNE. Consider BIC for the buyer. Because we

impose BB, the buyer must not wish to misreport in order to manipulate the seller�s future

incentive payments; however, the seller�s future incentive payments depend on the seller�s

beliefs about the buyer, which are in turn functions of today�s reports.

First, we show that from the buyer�s perspective, the incentive payments for the seller in

each future period � � t, s;� ; have zero expectation no matter what reporting strategy the

buyer uses, provided that the seller uses a truthful strategy. This follows because the seller�s

incentive payments give the seller the change in expected buyer utility due to the seller�s

current period report, but the buyer�s expectation of this change is always zero. Formally,

for every t and history of reports �̂t�1;

Et�1
h
s;t

�
~�s;t; �̂t�1

���� �̂s;t�1i = 0: (1)

For each t and �s;t�1; let
�e~�s;t; ~�s;t�1� be equal in distribution to �~�s;t; ~�s;t�1� : Equation (1)

holds because for each � � t; the Law of Iterated Expectations (LIE) implies

Et�1
h
Et;t�1

h
~�b;��

�
b(
e~�� )j~�s;t; �̂b;t�1i��� �̂s;t�1i = Et�1 he~�b;���b(e~�� )j�̂t�1i :
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Since this holds for all possible histories, it must hold when we take expectations given the

buyer�s period t beliefs, even if the buyer does not follow a truthful reporting strategy.

Second, we show that in any period t0, the expected value of
P1

�=t0 �
��t0b;� provides the

correct incentives for the buyer. By the one-stage deviation principle, it su¢ ces to verify that

for any history of reports �̂
t0�1

and true types for the buyer �t
0

b ; the buyer has the incentive

to report truthfully in period t0 when he anticipates truthful reporting in future periods.

Note that �̂b;t0 only enters the �rst term of b;t0 and the second term of �b;t0+1. We proceed

by establishing that the �rst term of b;t0 plus the buyer�s expectation of the second term of

�b;t0+1 equals

Et0�1
h
~�s;t0�

�
s(�̂b;t0 ;

~�s;t0)
��� �̂s;t0�1i : (2)

Critically, the second term of �b;t0+1
�
~�b;t0+1;

�
�̂b;t0 ; ~�s;t0

��
does not depend on ~�b;t0+1; so that

the buyer�s expectation of it conditional on (�b;t0 ; �̂s;t0�1) does not depend on �b;t0 and can be

written as

�
1X

�=t0+1

���t
0
�
Et0�1

h
Et0
h
~�s;��

�
s(
~�b;� ; ~�s;� )

��� �̂b;t0 ;e~�s;t0i��� �̂s;t0�1i�
= �

1X
�=t0+1

���t
0
�
Et0;t0�1

h
~�s;��

�
s(
~�b;� ; ~�s;� )

��� �̂b;t0 ; �̂s;t0�1i� ; (3)

using LIE. Adding (3) to the �rst term of b;t0
�
�̂b;t0 ; �̂s;t0�1

�
, yields (2). Since (2) represents

the expected externality of the buyer�s report on the seller, we conclude that the anticipa-

tion of future transfers induces the buyer to report truthfully. Notice that this argument

exploits the fact that the �rst term of b;t0 and the second term of �b;t0+1 di¤er in that the

latter incorporates the arrival of new information about seller types, and the buyer�s private

information about past misreports does not a¤ect his beliefs about the seller�s information.
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Now consider IR. Transfers potentially grow without bound as � approaches 1, so that

we cannot necessarily appeal to arbitrary patience to satisfy IR constraints. Which player�s

IR constraint is most stringent in period t depends on history. However, the only degree of

freedom the transfers o¤er in transferring utility across players is a �xed constant K (if it

varied with history, it would a¤ect incentives). Thus, we look for a K that allows IR to be

satis�ed in the �worst-case�scenario for the buyer, and separately in the worst-case scenario

for the seller. To simplify, suppose seller valuations are serially independent. Let

'(�t; �b;t�1) = E
h
~�s;t�

�
s(�b;t;

~�s;t)
i
� Et�1

h
~�s;t�

�
s(
~�b;t; ~�s;t)j�b;t�1

i
�
�
Et�1

h
~�b;t�

�
b(
~�b;t; �s;t)

��� �b;t�1i� Et�1 h~�b;t��b(~�b;t; ~�s;t)��� �b;t�1i� ;
�' = max

�t;�b;t�1
'(�t; �b;t�1); and ' = min

�t;�b;t�1
'(�t; �b;t�1):

The function ' is the component of period t�s transfer that corresponds to period t payo¤s,

and ' and �' are the smallest and largest possible values of these. Let ��i = maxtmax�i;t,

and �i = mintmin�i;t:

Proposition 1 Suppose seller valuations are serially independent. A su¢ cient condition

for IR to hold in each period is:

1X
�=t+1

���tEt
h
~�b;��

�
b(
~�� )
��� �bi� 1X

�=t+1

���tEt
h
~�s;��

�
b(
~�� )
��� ��bi� ��s (4)

� �'� '+
1X

�=t+1

���t

0BB@ Et�1
h
~�s;��

�
s(
~�� )j�b

i
� Et�1

h
~�s;��

�
s(
~�� )j��b

i
+Et

h
~�s;��

�
s(
~�� )j�b

i
� Et

h
~�s;��

�
s(
~�� )j��b

i
1CCA :

The left-hand side of (4) is the sum of the worst-case buyer utility from consumption and

the worst case of the di¤erence between the seller utility from consumption and his outside

option. The right-hand side is the sum of worst-case transfers.
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When both players�types are fully persistent, we essentially have a static model, in which,

by the logic of the theorem of Roger Myerson and Mark Satterthwaite (1983), we know that

IRs in general cannot be satis�ed (they require continuous types, but the result holds for

many cases of discrete types as well).

With limited persistence, IRs are easier to satisfy. AS show that so long as the type

process has a unique ergodic set (and thus a unique invariant distribution), IR constraints

are satis�ed in this model for � close enough to 1. Consider two examples with moderate

patience. First, suppose that there are two possible �states�at the start of period t, zt = 0

and zt = 1, and a constant c; such that ~zt = 1f~�t�1 > cg. Let pz =Prt�1(~zt = 0jz) and

�i;j;z = Et
h
~�i;t�

�
j(
~�t)jz

i
: Then, (4) becomes

�

1� �
(p0�b;b;0 + (1� p0)�b;b;1 � (p1�s;b;0 + (1� p1)�s;b;1)� �(�b;b;0 � �s;b;1)(p0 � p1) ) (5)

� � (1 + p0 � p1) (p0 � p1) (�s;s;0 � �s;s;1) +
�
��s + �'� '

�
(1� �(p0 � p1)) :

Notice that so long as the impact of states on distributions is small enough and p0 � p1 is

small enough, the term in parentheses on the left-hand side is positive, and thus the left-hand

side grows without bound as � approaches 1; while the right-hand side remains bounded.

For particular parameter values, we can �nd a critical discount factor such that (5) holds.

In a second example, suppose �t � [0; 1]2 for all t. Suppose there exist �0b; �
00
b 2 (0; 1)

such that for all �b;t 2 [�00b ; 1]; Prt( ~�b;t+1 = 1j�b;t) = 1, and for all �b;t 2 [0; �0b]; Prt(~�b;t+1 =

0j�b;t) = 1. The left-hand side of (4) is negative, while the right-hand side is positive. The

inequality will be impossible to satisfy.

We emphasize that (4) is su¢ cient but not necessary. In a model of repeated trade with

serially independent types, Susan Athey and David Miller (2006) show how reallocating
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transfers between states where IR constraints are binding and those where IR constraints

do not bind, while preserving the expected transfers for each player, can reduce the critical

discount factor required for sustaining e¢ cient trade. We conjecture that the qualitative

conclusions about when (4) can be satis�ed will also apply to the question of whether IR

constraints can be satis�ed with any transfers.

III. Learning by Doing

Consider the following model of learning by doing. There is a �nite set of possible states,

Z � R; with highest and lowest elements �Z and Z. These states represent the stock of

learning: in each period t, �nature�selects period t types using a probability distribution that

depends on the state but not directly on time, and player types are independent conditional

on the state zt: The states evolve according to zt = �(zt�1; xb;t). (To simplify exposition

we restrict attention to deterministic transitions). We assume that higher states imply

weakly higher (by First Order Stochastic Dominance) valuations for the buyer and weakly

lower valuations for the seller, and that � is weakly monotone in zt�1: This is a Markov

decision problem, and there exists a e¢ cient policy of the Markov form (��b ; �
�
s) : �t � Z !

f(0; 1); (1; 0)g; which in turn induces a Markov process over states. It is well known that

there exists a �Blackwell�policy, �B, that is optimal for all � su¢ ciently high.

In general, the e¢ cient policy may be biased away from the static e¢ cient allocation

depending on the current state. In the special case where zt = xt�1, the e¢ cient policy

is stationary, since history is irrelevant after types are realized in period t. If, in addition,

the two players are ex ante symmetric and learning by doing is also symmetric, the e¢ cient

policy is just the static e¢ cient policy.

Fix �; with e¢ cient policy (��b ; �
�
s). Let (~z

�
� ;
~�
�
� )j~zt = zt be the random vector equal to the
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state and the type in period � when the state in t is zt and when the e¢ cient policy is used

from t to � � 1. To conserve notation, for a function g we write Et
h
g(~�

�
� ; ~z� )jzt

i
to indicate

the expected value of g with respect to (~z�� ; ~�
�
� )jzt: Transfers in period t are:

 b;t (�t; zt) = � s;t (�t; zt) = b;t (�b;t; zt)� s;t (�s;t; zt) +K, where K 2 R, and

i;t (�i;t; zt) = Et
h
~��i;t�

�
�i(
~��i;t; �i;t; zt)jzt

i
� Et

h
~��i;t�

�
�i(
~�t; zt)jzt

i

+

0BB@ Prt

�
���i(

~��i;t; �i;t; zt) = 1jzt
�

�Prt
�
���i(

~�t; zt) = 1jzt
�

1CCA � 1X
�=t+1

���t

0BB@ Et+1
h
~�
�
�i;��

�(~�
�
� ; ~z

�
� )j�(zt; 1)

i
�Et+1

h
~�
�
�i;��

�(~�
�
� ; ~z

�
� )j�(zt; 0)

i
1CCA :

The incentive payment i;t incorporate the change, starting from state zt; to the expec-

tation of player �i�s discounted payo¤s that results from player i�s period-t report. The

results of AS imply that with these transfers, truthtelling is a BNE. The arguments are sim-

ilar to those in the last section, appropriately modi�ed to account for the fact that di¤erent

reporting strategies lead to di¤erent distributions over future states.

Now consider IR. Each player�s incentive payment is large and positive (negative) when

the player�s type is lower (higher) than expected, and when period t�s allocation can have

(through its e¤ect on zt+1) a large impact on expected future utility for the opponent. AS

show that the following is su¢ cient for IR constraints to hold for � su¢ ciently close to 1:

Condition M For the Blackwell policy �B, the induced Markov process over states has a

unique ergodic set (with a possibily empty set of transient states).

There will be a unique ergodic distribution if, for example, ��(�) can be either zero or

one with positive probability for all histories, and if � is strictly increasing in xb;t: We now
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consider su¢ cient conditions for IR to be satis�ed for a �xed � or if Condition M fails. De�ne

(where ��s is the highest seller type)

'(�t; zt) = Et
h
~�s;t�

�
s(�b;t;

~�s;t; zt)jzt
i
� Et

h
~�s;t�

�
s(
~�t; st)

��� zti
�
�
Et
h
~�b;t�

�(~�b;t; �s;t; zt)jzt
i
� Et

h
~�b;t�

�(~�b;t; ~�s;t; zt)jzt
i�
;

' = min
�t;zt

'(�t; zt); �' = max
�t;zt

'(�t; zt);

�i(zt; xb;t) =

1X
�=t+1

���tEt+1
h
~�i;��

�
i;� (
~�
�
� ; ~z� )

����(zt; xb;t)i� 1fi = sg
 1X
�=t+1

���tEt+1
h
~�s;�

����(zt; xb;t)i!

�Pr
�
���i(

~�t; zt) = 1jzt
�
�

1X
�=t+1

���t

0BB@ Et+1
h
~��i;��

�
�i(
~�
�
� ; ~z� )j�(zt; 1)

i
�Et+1

h
~��i;��

�
�i(
~�
�
� ; ~z� )j�(zt; 0)

i
1CCA

�Pr
�
���i(

~�t; zt) = 0jzt
�
�

1X
�=t+1

���t

0BB@ Et+1
h
~�
�
i;��

�
i;t(
~�
�
� ; ~z� ))j�(zt; 1)

i
�Et+1

h
~�
�
i;��

�
i;t(
~�
�
� ; ~z� ))j�(zt; 0)

i
1CCA ;

The expressions ' and �' are analogous to those in the serially correlated valuations model,

while �i(zt; xb;t) contains all terms in a player�s expected utility that depend on patience,

representing the di¤erence between expected discounted future payo¤s and the portion of

transfers corresponding to future periods in state zt. The following result provides su¢ cient

conditions for there to exist a K such that the worst-case buyer expected utility is greater

than K and the worst-case seller utility is greater than �K:

Proposition 2 A su¢ cient condition for IR to hold in each period is

min
zt;xb;t

�s(zt; xb;t) + min
zt;xb;t

�b(zt; xb;t) � ��s + �'� ': (6)

When will (6) be satis�ed? Condition (M) implies that from every initial state, conver-

gence to the ergodic distribution occurs at a geometric rate. For any two states zt; z0t and
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any xbt; x0bt combining the �rst two terms of �b(zt; xb;t) and �s(z
0
t; x

0
b;t) yields

1X
�=t+1

���t
�
Et+1

h
~�b;��

�
b;� (
~�
�
� ; ~z� )

����(zt; xb;t)i� Et+1 h~�s;���b;� (~��� ; ~z� )����(z0t; x0b;t)i� ; (7)

which would be the gains from e¢ cient trade if there was no e¤ect of the state: Since

Condition (M) guarantees that the long-run e¤ect of zt+1 is negligible in expectation, for

high enough patience the sum will be large. On the other hand, under condition (M), the

last two terms of �s and �b converge to a �nite bound as � increases (the long-run impact of

today�s decision is negligible; see AS for details).

However, when Condition (M) fails, (6) may not hold. Suppose that there are two ergodic

sets of states. For example, suppose that under the Blackwell policy there is �increasing

dominance�: once one player gets su¢ ciently far ahead, it is e¢ cient to continue to allocate

to that player often enough to keep him far ahead. Let z�t be a critical state where �(z
�
t ; 0) is

in the low ergodic set; while there is positive probability of entering the high ergodic set from

�(z�t ; 1): Then the last two terms in �b(z
�
t ; xb;t) grow without bound in �. In an extreme case

where the seller�s (respectively buyer�s) valuations are always above the buyer�s (respectively

seller�s) in the low (resp. high) ergodic set, the �rst term in �b(z�t ; xb;t) is zero, while the

negative terms increase with �. (Recall, however, that (6) is su¢ cient but not necessary.)

On the other hand, if the states have only a small impact on the distribution over valu-

ations, then even if we have absorbing states, the su¢ cient conditions can still be satis�ed.

For example, suppose that �( �Z; 0) = �Z and �(Z; 1) = Z; and that players are ex ante sym-

metric, so that starting from a �middle�state z0; with the Blackwell policy, �Bb;� (~�
�
� ; z0) has

support f0; 1g; so that both absorbing states are possible. Even so, �i(zt; xb;t) grows without

bound in � so long as for each i, the e¤ect of the states is su¢ ciently small.
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IV. Conclusions

Dynamic mechanisms contend with more stringent incentive compatibility constraints,

since players can react to information that they learn in the course of the game. E¢ cient,

BB, BIC mechanisms can be constructed by compensating players for the change in expected

opponent utilities due to the report of today�s information. We show that IR can be satis�ed

when the long-run impact of today�s information is always small relative to the worst-case

player utilities, since the presence of future surplus that is unrelated to today�s reports

induces players to make large transfers and continue with the mechanism.
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Supplementary Material for �Designing E¢ cient Mechanisms for Dynamic

Bilateral Trading Games,�by Susan Athey and Ilya Segal

American Economic Review Papers and Proceedings, May 2007

Proof of Proposition 1: Recall that we consider IR constraints after any history of reports,

including misrepresentations, since a player might choose to misrepresent for several periods

and then (depending on the realizations of types) exit. However, for the simple model where

types follow a �rst-order Markov process, after a buyer sees today�s type, the fact that past

reports were di¤erent than true types is irrelevant, since today�s type provides all relevant

information for predicting the future. Expected discounted payo¤s in period t, given reports

�t are

�i;t�
�
i (�t) +

1X
�=t+1

���tEt
h
~�i;��

�
i (
~�� )
��� �b;ti+ (1fi = bg � 1fi = sg) � 

'(�t; �b;t�1)�K +
1X

�=t+1

���t
�
Et�1

h
~�s;��

�
b(
~�� )j�b;t�1

i
� Et

h
~�s;��

�
b(
~�� )j�b;t

i�!
:

We simply compare these expressions to the outside option, where the seller keeps the

object in the outside option. This condition combines the implied bounds on K for the

worst-case scenario for the each player:

1X
�=t+1

���tEt
h
~�b;��

�
b(
~�� )
��� �bi+

'+

1X
�=t+1

���t
�
Et
h
~�s;��

�
s(
~�� )j��b

i
� Et�1

h
~�s;��

�
s(
~�� )j�b

i�
�

1X
�=t+1

���tEt
h
~�s;��

�
b(
~�� )
��� ��bi+ �'+ ��s

+

1X
�=t+1

���t
�
Et
h
~�s;��

�
s(
~�� )j�b

i
� Et�1

h
~�s;��

�
s(
~�� )j��b

i�
:

The condition given in the proposition is su¢ cient for this.
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Proof of Proposition 2: Payo¤s to player i are
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The expression given in the proposition relies on �nding aK such that this expression exceeds

the outside options in the worst-case scenarios.
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