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Abstract

We analyze a game of two-sided private information characterized by ex-
treme adverse selection, and study a special case in the laboratory. Each
player has a privately known ”strength” and can decide to fight or com-
promise. If either chooses to fight, there is a conflict; the stronger player
receives a high payoff and the weaker player receives a low payoff. If both
choose to compromise, conflict is avoided and each receives an intermediate
payoff. The only equilibrium in both the sequential and simultaneous ver-
sions of the game is for players to always fight, independent of their own
strength. In our experiment, we have two main treatments: whether the
game is played simultaneously or sequentially; and the magnitude of the in-
termediate payoff. We observe: (i) frequent compromise; (ii) significantly
more fighting the lower the compromise payoff; (iii) significantly less fighting
by first than second movers; and (iv) almost no evidence of learning. We
explore several theories of cognitive limitations in an attempt to understand
the reasons underlying these anomalous findings, including quantal response
equilibrium, cognitive hierarchy, and cursed equilibrium.

JEL classification: C92, D82.

Keywords: two-sided private information, adverse selection, laboratory ex-
periment, behavioral game theory, quantal response equilibrium, cognitive
hierarchy, cursed equilibrium.



1 Introduction

A major insight from theoretical research in information economics is that
profitable agreements may be severely impeded by private information, and
can even dry up completely. This was nicely illustrated in Akerlof’s (1970)
famous market for lemons example and studied in further detail by My-
erson and Satterthwaite (1983) in a context of optimal contracting with
two-sided private information. More generally, no-trade theorems (Milgrom
and Stokey (1982), Morris (1994)) show that rational, expected utility max-
imizing, Bayesian economic agents will not trade with each other on the
basis of private information alone.

In this paper, we study the other side of the coin, namely a situation
where exchanges (or other type of agreements) are not mutually beneficial
and ask the following question: can private information induce agents to
reach agreements that one of them will (ex post) regret? An all-too-familiar
example, war, illustrates the problem. Suppose there are two nations, either
of which would be better off if conquering the other nation, compared to
peaceful coexistence, and would be worse off being conquered. If there is
a war, whichever country is strongest conquers the other one. Each nation
chooses to either ”attack” or ”not attack”. They remain in peaceful coex-
istence if both choose not to attack, and a war ensues otherwise. If one
formalizes this problem, it is obvious that the strongest nation has always
an incentive to attack the weakest one. Thus, a war is inevitable. More
interestingly, the equilibrium is also war if the leader of each nation knows
its own military strength but knows only the probability distribution of the
other nation’s strength (and therefore is uncertain over his chances of win-
ning). This would be true, for example, even if the benefits of winning the
war were only slightly greater than the peace benefits, the costs of losing the
war were enormous, and the uncertainty about the other nation’s strength
were large. The logic is much like the unraveling argument in adverse selec-
tion games. In deciding whether to attack or not, optimal decision making
requires the agents to condition on their opponent choosing ”not attack”.
Because weaker opponents are the ones who do not attack, this conditioning
will lead stronger opponents to attack. Therefore, there will be a marginal
strength level which is indifferent between peace and forcing a war. But
this calculus will lead the opponent’s marginal non-attackers to attack, and
so forth. The only equilibrium is for the marginal strength type to be the
weakest type. As developed in section 2.1, the same logic applies to other
situations where parties with conflicting goals and private information can
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reach an agreement that cannot ex post benefit both parties: litigation,
electoral debates, and firm competition.

We report here an experiment that analyzes behavior in several varia-
tions of this two-sided asymmetric information environment in the labora-
tory. In all the variations, the equilibrium outcome predicted by the theory
is the same: fighting ensues with probability one. We obtain three main
results, which are inconsistent with standard game theory. First and fore-
most, fighting occurs much less often than predicted by theory. Rather
than 100%, we observe fight rates in the range of 50%-70%. The outcome
characterized by both agents compromising arises with surprising frequency,
nearly one-quarter of the time in some sessions. In terms of our example
it means that, contrary to the predictions of game theory, a war can be
avoided if the military strengths of countries are privately (rather than pub-
licly) known. Second, fight rates are affected by the compromise payoff. In
both the sequential and simultaneous treatments, agents are less likely to
fight the higher the compromise payoff. Third, in the sequential version,
the strategies of first and second movers are different in two ways: second
movers are more likely to fight than first movers, and the behavior of sec-
ond movers is more responsive to strength and less erratic than that of first
movers.

We also obtain some findings about individual behavior. Individual
choice is consistent with the use of cutpoint strategies: fight if and only
if strength is above a certain critical threshold. However, instead of the cut-
points being at (or at least close to) the minimum strength, as predicted by
the theory, we find that players use cutpoints in an intermediate range. The
use of cutpoint strategies indicates that subjects have some understanding of
the game, and the source of violations of equilibrium has to do with the cog-
nitive difficulty to choose the cutpoint optimally. Perhaps more interesting,
we find substantial heterogeneity in the choice of cutpoints across subjects,
and also important differences in the distribution of cutpoints across treat-
ments. Finally, all the results are robust with respect to experience, that is,
there is little evidence of learning.

We then explore three recent theories of cognitive limitations in games,
and analyze the data to investigate the extent to which the insights from
these alternative theories can account for these anomalies. The three ap-
proaches we explore are equilibrium stochastic choice, levels of strategic so-
phistication, and näıve belief formation. The specification of our models
for these three approaches are, respectively, the logit specification of Quan-
tal Response Equilibrium theory (QRE); the Poisson specification of the
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Cognitive Hierarchy model (CH); and a stochastic choice version of Cursed
Equilibrium (CE). The estimated parameters for each model are relatively
constant across treatments. However, there are some important differences
in the predictions, that lead to differences in the fit of the models. An im-
portant result is that only the QRE model captures the tendency of second
movers to fight more often than first movers. The CH and CE models cap-
ture the aggregate tendency of players to fight with probability close to one
when their strength is sufficiently high and with probability close to zero
when their strength is sufficiently low. The CH model predicts that the dis-
tribution of individual cutpoints will be multimodal, clustered around three
or four numbers, which is not reflected in the data. Finally, the best fit
is obtained with a hybrid of QRE and CE, which combines cursedness and
stochastic choice.

2 The theoretical model

We analyze the incentives of agents to compromise when they have conflict-
ing objectives and asymmetric information. To this end, we study a class of
games that have unique Nash equilibrium outcomes in which a compromise
is never reached.

2.1 Some introductory examples

Consider two agents who must decide whether to split a surplus in a pre-
specified manner (compromise) or try to reap all the benefits (no-compromise).
Both agents have private but imperfect information about their likelihood
of obtaining the benefits if they do not compromise and, possibly, its value
also. The ex post sum of utilities may be higher or lower under compromise
than under no-compromise.

A myriad of situations fit this general description, in addition to the ex-
ample of international conflict described in the introduction. In a litigation,
the defendant may offer a settlement to the plaintiff which can be accepted
or not. Both parties have private knowledge of the strength of their case
and the bias of the jury. In an electoral campaign, each candidate can drive
its rival into a public debate, where some qualities of the contenders are
revealed to voters, which affects the electoral outcome. In the absence of a
debate, voters must rely on expected qualities. In a product market compe-
tition, firms offering horizontally differentiated products may start an R&D
race. The winner monopolizes the market and the probability of winning
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is proportional to the privately known quality of their research department.
Alternatively, firms can avoid the race and share the market. In all these
cases, there are only two possible outcomes: settlement, peace, no debate,
market sharing vs. trial, war, debate, R&D race. The first outcome needs
the agreement of both players whereas each player can unilaterally force the
second outcome. Payoffs depend on the state of the world, which is not
realized or revealed until after all players have acted. Also, the utility of
agents under the different outcomes may depend on some exogenously given
private information parameters. Payoffs under agreement are typically de-
termined by the status quo situation, whereas payoffs under no-agreement
are typically determined by a winner-takes-all rule. More generally, in the
no-agreement outcome, there is always one (ex post) winner and one (ex
post) loser relative to the agreement outcome. The total surplus from com-
promise varies across these different applications, although we show below
that the equilibrium does not depend on the compromise payoffs. Wars
are typically costly and socially inefficient, so there is as peace dividend.
Litigation also involves a waste of resources when compared to early set-
tlements (but not compared to last minute settlements). Electoral debates
are roughly neutral if candidates are only interested in winning the election.
However, they provide information regarding the merits of different propos-
als, which can be valuable if candidates care also about policy outcomes. As
for market competition, the profits of a monopolist are typically higher than
the sum of profits of two duopolists, which suggests that firms’ surplus is
increased when they fight for supremacy rather than splitting the market.1

2.2 Formalizing the game

We formalize the problem as follows. Denote by si ∈ Si and sj ∈ Sj the pri-
vately known ”strength” of agents i and j, with i, j ∈ {1, 2} and i 6= j (case
strength, military capacity, politician’s talent, research quality). These val-
ues are drawn from continuous and commonly known distributions Fi(si | sj)
possibly different and possibly correlated. For technical convenience, we as-
sume strictly positive densities fi(si | sj) for all si and sj . Agent i chooses
action ai ∈ A = {ρ, φ}, where ρ stands for ”retreat” and φ for ”fight”. If
a1 = a2 = ρ, there is compromise (settlement, peace, no debate, no race)
and the payoff of agent i is βi(s1, s2). Otherwise, there is no-compromise
(trial, war, debate, race) and the payoff of agent i is αi(s1, s2) if si > sj

and γi(s1, s2) if si < sj , with αi(s1, s2) > βi(s1, s2) > γi(s1, s2) for all

1In these examples, we are not including the welfare of third parties such as society,
voters or consumers. These are also likely to be different across outcomes.
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i, s1, s2. Note that, ex post, a compromise is always beneficial for one agent
and detrimental for the other. The pair of strengths (si, sj) determines the
winner and the loser. Payoffs under compromise and no-compromise are
exogenously given, although they may be unknown at the time of making
the decision if they depend on (s1, s2). Last, depending on the context, the
socially efficient action may be compromise or no-compromise or it may even
be a zero-sum game: αi(s1, s2) + γj(s1, s2) R βi(s1, s2) + βj(s1, s2) for all
si > sj .

2.3 Equilibrium

Given this structure, we can analyze the Perfect Bayesian Equilibrium (PBE)
for the sequential version of the game where agent 1 moves first and agent
2 moves second. We have the following result.

Proposition 1 In all PBE of the game, the outcome is ”no-compromise”.

Proof. Suppose that there exist two sets S̃1 j S1 and S̃2(S̃1) j S2 such that
in a PBE of the game a1(s1) = ρ and a2(s2) = ρ with positive probability
for all s1 ∈ S̃1 and s2 ∈ S̃2(S̃1).2 Denote by s1 = max

s1∈S̃1

and s2 = max
s2∈S̃2(S̃1)

.

According to this PBE, once agent 2 has observed a1 = ρ, the following
inequality must be satisfied:∫

s1∈S̃1

β2(s1, s2)dF1(s1 | s1 ∈ S̃1, s2) >
∫

s1∈S̃1∩s1<s2

α2(s1, s2)dF1(s1 | s1 ∈ S̃1, s2)

+
∫

s1∈S̃1∩s1>s2

γ2(s1, s2)dF1(s1 | s1 ∈ S̃1, s2) ∀ s2 ∈ S̃2(S̃1)

where the l.h.s. is agent 2’s expected payoff if a2 = ρ and the r.h.s. is his
expected payoff if a2 = φ. This condition must hold in particular for s2 = s2.
Since α2(s1, s2) > β2(s1, s2) > γ2(s1, s2), the inequality necessarily implies
that s1 < s2 must be binding at least for some s1 ∈ S̃1. Therefore, s2 < s1.
Now, agent 1’s decision is relevant only if a2 = ρ. Thus, for the strategy
described above to be a PBE, the following inequality must also hold:∫

s2∈S̃2(S̃1)
β1(s1, s2)dF2(s2 | s1) >

∫
s2∈S̃2(S̃1)∩s2<s1

α1(s1, s2)dF2(s2 | s1)

+
∫

s2∈S̃2(S̃1)∩s2>s1

γ1(s1, s2)dF2(s2 | s1) ∀ s1 ∈ S̃1

2Positive probability rather than probability 1 takes care of pure and mixed strategies
at the same time.
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Using the same reasoning as before, s1 < s2. Since both inequalities cannot
be satisfied at the same time, S̃1 6= ∅ and S̃2(S̃1) 6= ∅ cannot both occur in
equilibrium. �

The intuition is simple. In this class of games, agents know that good
news for them is bad news for their rival. Thus, they have opposite interests
on when to reach a compromise. As a result, whenever one agent wants to
compromise, the other should not want to. For instance, country 1 has an
incentive to stay in peaceful coexistence whenever its military strength s1

is low. However, this is precisely when country 2 wants to force a war. In
other words, in these games, one agent’s gain is always the other agent’s loss
(of same or different magnitude, it does not matter). Since a compromise
is broken as soon as one agent does not find it profitable, the fact that
an agent wants to deal implies that the other should not accept it, and
vice versa. The bottom line is that, in equilibrium, compromises are never
possible. We want to stress the generality of this result, which holds for
any distribution of strengths (the same or different for both players) and
any correlation between the players’ strengths. Since the results holds for
any payoffs satisfying αi > βi > γi, it means that introducing risk-aversion
would not change the outcome of the game either. Last, the result is also
unchanged if agents play simultaneously. Indeed, the only difference with
the sequential game is that agent 2 will not compare his options conditional
on having observed the choice of agent 1. However, this does not make any
difference since, both in the sequential and the simultaneous versions, each
agent knows that his action is only relevant if the rival offers a compromise.
Thus the outcome of the Bayesian Nash Equilibrium (BNE) is, just like for
the PBE, always no-compromise. This result is summarized as follows.

Corollary 1 The outcome of the game is still ”no-compromise” if agents
are risk-averse and if they announce their strategy simultaneously.

3 Laboratory experiment

3.1 Description of the game

This is a simplified version of the game described earlier. Each agent inde-
pendently draws a number from a uniform distribution on [0, 1] and privately
observes their own number, which we refer to as the player’s strength, si.
Agent 1 chooses whether to ”fight”, φ, or ”retreat”, ρ. If 1 chooses φ, then
the game ends. The agent with highest strength receives a win payoff H
and the other agent receives a lose payoff L (< H). If agent 1 chooses ρ,
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then it is agent 2’s turn. If agent 2 chooses φ, then as before, the agent with
highest strength receives a payoff of H and the other receives a payoff of L.
If, instead, agent 2 also chooses ρ, then agent 1 and agent 2 each obtains a
pre-specified ”compromise payoff” M , where L < M < H. Thus, the main
simplification relative to the theoretical model presented in section 2 is that
the win, lose and compromise payoffs are all independent of (s1, s2). Each
player’s strength only affects payoffs via the likelihood of winning under
no-compromise. We look at several variations on this game.3

Variant 1. H = 1, L = 0, M = .50 with sequential move.
Variant 2. H = 1, L = 0, M = .39 with sequential move.
Variant 3. H = 1, L = 0, M = .50 with simultaneous move.
Variant 4. H = 1, L = 0, M = .39 with simultaneous move.

In our design, the total surplus under compromise is either smaller than
(M = .39) or equal to (M = .50) the total surplus under no compromise. As
discussed earlier, this specific choice of parameters fits some examples (firm
competition, electoral debate) better than others (military conflict, litiga-
tion). There were at least two reasons for focusing on these values. First,
the M = .50 is a natural benchmark, corresponding to a constant sum game,
where there is no difference in the efficiency of the fight and compromise out-
comes. Second, we wanted to choose another value of M because the various
behavioral theories we were testing all predict a negative comparative static
effect of M on the probability of fighting. Changes in either direction would
allow us to test this. Our choice of a lower value of M was made because we
thought it was the more interesting direction, since for M < .5 always fight-
ing is not only still the unique Nash equilibrium but is also ex ante efficient
and ex ante fair. This allows us to better distinguish social preference or
fairness-based explanations for excessive compromise (see section 5.5) from
behavioral models based on cognitive limitations (see sections 5.1 to 5.4),
and also gives Nash equilibrium its best shot. If the excessive compromise
disappears, this would lend support for social preference theories based on
ex ante fairness and efficiency, whereas, if the excessive compromise persists,
it lends support for the models of cognitive limitations.

3.2 Relation to the experimental literature

Some related games have been studied in the laboratory. Below we describe
(from most to least similar) two simultaneous games of multi-sided asymmet-

3The nominal payoffs in the experiment are: H = 95, L = 5, M ∈ {50, 40}. We present
here the scaled version (x− 5)/90.
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ric information, two sequential games of one-sided asymmetric information
and one static game of full information.

The betting game (Sonsino et al. (2001), Sovic (2004), Camerer et al.
(2006)). An asset yielding a fixed surplus can be traded between agents
who have private information. Trade occurs only if both agents agree. As
in our game, all the BNE imply no trade. There are three main differences.
First, the risky outcome requires agreement in the betting game whereas
the safe outcome requires agreement in the compromise game. Second, the
information structure is simpler than in ours: there are only four possible
states, and in two of them one agent has full information. The common
knowledge of this information partition triggers very naturally unraveling
to no-trade. This special partition is also likely to facilitate learning. Third,
a sequential version of the betting game has not been studied.

Auction of a common value good and the winner’s curse (Kagel and
Levin, 2002). As in our game, agents will play suboptimally if they do
not anticipate the information contained in the rival’s action. Our game
allows for some simple comparative statics (different timings and different
compromise payoffs). Also, our BNE and PBE are simple to compute.

Adverse selection game (Akerlof, 1970). This game also predicts some
unraveling. However, the robust conclusion is the existence of a cutoff below
which there is agreement or trade and above which there is not. This cutoff
can be the lower bound (i.e., never agree as in our game), but it can also
be the upper bound (i.e., always agree) or an interior value, depending on
the parameters of the game. Samuelson and Bazerman (1985) show that
the probability that buyers engage in unfavorable trades is increasing in the
complexity of the adverse selection game. Holt and Sherman (1994) prove
that buyers may underbid or overbid depending on the treatment conditions.
Note that because it is one-sided asymmetric information, the buyer’s action
has no signaling value. There have also been several market experiments
with informed sellers and asymmetric information about product quality
(Lynch et al., 1984).

Blind bidding game (Forsythe et al., 1989). This experiment determines
whether an informed seller reveals the quality of his good to an uninformed
buyer. Full revelation occurs because the seller with the highest quality
good has always an incentive to announce it, then so does the seller with
second highest quality good, and so on. However, there is no role for the
key effect of our game, namely the anticipation of information conveyed by
the rival’s action.

Beauty contest (Nagel, 1995). As in our game, best response dynamics
predicts unraveling for a wide range of parameters. Since the beauty contest
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is a static game of complete information, the details of convergence are
different. Even the most näıve learning rules (such as ‘play optimally given
the outcome in the past round and assuming that nobody else revises his
strategy’) predict rapid convergence if the beauty contest game is played
repeatedly. The experimental data confirms this prediction, and a natural
question is whether a similar convergence pattern is found in the compromise
game.

3.3 Experimental design and procedures

We conduced five sessions with a total of 56 subjects, using a simple 2 × 2
design. The subjects were registered Princeton students who were recruited
by email solicitation, and all sessions were conducted at The Princeton Lab-
oratory for Experimental Social Science. All interaction in a session was
computerized, using an extension of the open source software package, Mul-
tistage Games.4 No subject participated in more than one session. The two
dimensions of treatment variation were the compromise payoff (M = .50 vs.
M = .39) and the order of moves (simultaneous vs. sequential play). In each
session, subjects made decisions over 40 rounds, with M fixed throughout
the session. Half of the subjects participated in sessions with M = .39, and
half the subjects participated in sessions with M = .50. In all sessions, we
set H = 1 and L = 0. Each subject played exactly one game with one
opponent in each round, with random rematching after each round. At the
beginning of each round, t, each subject was independently assigned a new
strength, sit, drawn from a uniform distribution on [0, 1].5 Each subject
observed his own strength, but had to make the fight-retreat decision be-
fore observing the strength of the subject they were matched with. The
opponent’s strength was revealed only at the end of the round.

At the beginning of each session, instructions were read by the experi-
menter standing on a stage in the front of the experiment room, which fully
explained the rules, information structure, and client GUI for the simulta-
neous move game. A sample copy of the instructions is in the Appendix.
After the instructions were finished, two practice rounds were conducted,
for which subjects received no payment. After the practice rounds, there
was an interactive computerized comprehension quiz that all subjects had to

4Documentation and instructions for downloading the software can be found at
http://multistage.ssel.caltech.edu.

5In the experimental implementation of payoffs, the H and L payoffs paid off $.57 and
$.03, respectively. The compromise payoff M was scaled accordingly, at $.30 and $.24 for
the two treatments.
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answer correctly before proceeding to the paid rounds. For the first 20 paid
rounds of a session, subjects played the simultaneous version of the game.
At the end of round 20, there was a brief instruction period during which
rules for the sequential version of the game were explained.6 In each match
of the sequential version, one of the two players was randomly selected to be
the first mover. After the first mover made a fight-retreat choice, the second
mover was informed of that choice, but was not informed of the strength of
the first mover. If the first mover’s choice was fight, the second mover had
no choice, and simply clicked a button on the screen labeled ”continue”. If
the first mover’s choice was retreat, the second mover had a choice between
fight and retreat. After the second mover made a choice, the match ended
and the strength levels and outcome were revealed. The subjects then par-
ticipated in 20 additional rounds of the sequential version of the game, with
opponents, roles (first or second mover), and strengths randomly reassigned
at the beginning of each round. Subjects were paid the sum of their earn-
ings over all 40 paid rounds, in cash, in private, immediately following the
session. Sessions averaged one hour in length, and subject earnings averaged
$25. Table 1 displays the pertinent details of the five sessions.

Session # subjects M rounds 1-20 rounds 21-40

1 8 .50 sequential simultaneous
2 8 .50 simultaneous sequential
3 12 .50 simultaneous sequential
4 14 .39 simultaneous sequential
5 14 .39 simultaneous sequential

Table 1. Session details for the experiment.

4 A descriptive analysis of the results

In this section, we provide a descriptive analysis of the experimental results.
We discuss the main aggregate features of the data, including the mean rates
of fight and retreat, both overall and as a function of strength, and explore
time trends. We compare the data to two natural benchmarks. The first
benchmark is Nash equilibrium, in which all players always choose φ regard-
less of strength (and, in the sequential version, regardless of the choice of the
first mover). A second, weaker benchmark is the type-independent model,

6In one of the sessions, the sequential version was played in rounds 1 − 20 and the
simultaneous version was played in rounds 21− 40. We found no significant order effects.
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where the probability of fighting is independent of strength. We study the
differences in probabilities of fighting as a function of the compromise pay-
off and the timing of the game. Last, we analyze the data at an individual
level. For each player, we estimate a decision rule that maps strength into
a probability of fighting.

4.1 Aggregate fight rates unconditional on strength

The simplest cut at the data is to compare the relative frequencies of choos-
ing fight vs. retreat, without conditioning on the actual draws of si. Table 2
shows the relative fight rates in the experiment, broken down by compromise
payoff and order of moves, with the number of observations in parenthesis.

Order Position M = .39 M = .50 Pooled

Sequential First .589 (280) .538 (264) .564 (544)
Sequential Second .643 (115) .566 (122) .603 (237)
Sequential Both .605 (395) .547 (386) .576 (781)
Simultaneous — .657 (560) .573 (560) .616 (1120)
Pooled .636 (955) .562 (946) .599 (1901)

Table 2. Unconditional fight rates.

There are several differences in fight rates across treatments and condi-
tions.

First, there is a clear difference between φ rates in the M = .39 and the
M = .50 treatments. Fighting is chosen approximately 13% more frequently
when the compromise dividend is lower, and this difference is statistically
significant (p < .01).7 This difference is observed in both the sequential and
simultaneous treatments, for both the first and second movers separately,
and these differences are all approximately the same magnitude. In looking
at subsamples based on treatment or condition, the lower significant levels
reflect the relatively small number of observations in each treatment: p = .05
level for the simultaneous treatment (most observations); p = .10 level for
the sequential treatment; and p > .10 for first movers and second movers,
separately.

7The significance levels reported here and later in the paper are based on based on
standard tests treating the observations as independent. Later in the paper, we consider
individual effects and learning.
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Second, first movers in the sequential game fight less frequently than
second movers, both in the .39 and the .50 treatments. The differences in
means are not statistically significant.

Third, there is more fighting in the simultaneous treatment than in the
sequential treatment. These results are mirrored in a simple probit dummy
variable regression, where the dependent variable is whether a subject chose
to fight and the independent variables are M , ”sim” (= 1 for the simul-
taneous treatment), and ”role” (= 1 for second movers). The estimated
coefficients and standard errors are given in table 3.

Coefficient St. error t-stat.

Constant 1.023 0.267 3.83
M -0.019 0.006 -3.29
sim 0.134 0.066 2.03
role 0.106 0.099 1.08

Table 3. Probit regression of fight rates.

The logic of the game suggests that, over time, learning should lead
to unraveling. That is, perceptive players should be able to realize that
they will improve their payoff by adopting a cutoff strategy lower than the
cutoff strategy used by their opponent. Given the symmetry of the game,
they should realize that perceptive opponents will also notice this. The
unravelling logic may be responsible for the higher fighting rates of second
relative to first movers. It also suggests that φ rates should be increasing
over time, in all treatments. We investigate this hypothesis by breaking
the data down into early and late matches. In each session, there were 20
rounds each of the sequential and the simultaneous games. We code the
choices in the first 10 rounds of each version of the game as ”inexperienced”
and the last 10 rounds of each version as ”experienced”. Table 4 presents
the φ rates, broken down by experience level. The number of observations
is in parenthesis.

Order Role M = .39 M = .50
inexper. exper. inexper. exper.

Sequential First .564 (140) .614 (140) .484 (124) .586 (140)
Sequential Second .672 (61) .611 (54) .484 (64) .655 (58)
Simultaneous — .611 (280) .704 (280) .582 (280) .564 (280)

Table 4. Unconditional fight rates by experience level.
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The effects of experience on the unconditional φ rates is ambiguous. In
four of the six comparisons, the φ rate increases, as hypothesized, although
it remains well below 1. All four such differences are statistically significant.
In two of the six comparisons, φ decreases, but these two changes are not
significant. Furthermore, the two treatments where φ decreases have no
apparent relation with each other (simultaneous with M = .50 and second
player in sequential with M = .39).

4.2 Aggregate fight rates conditional on strength

The analysis above, while providing a useful sketch of the results, falls short
of giving a complete picture of the aggregate data, because the uncondi-
tional φ rates are not a sufficient statistic for the actual strategies. A be-
havior strategy in each game is a probability of choosing φ conditional on
s. By aggregating across all the (strength, action) paired observations for a
treatment, we can graphically display the aggregate empirical behavior strat-
egy, and then compare this strategy across treatments. Figure 1 shows six
graphs. The graphs on the left correspond to M = .39, and the graphs on
the right are for M = .50. The middle and bottom graphs are for the first
and second movers in the sequential treatment, and the top graphs for the
simultaneous movers. The strength is on the horizontal axis, on a scale of
0 to 100, and the empirical fighting frequencies are on the vertical axis on
a scale of 0 to 1. Thus, for example, if all subjects were to choose the same
cutoff strategy s∗, then we would observe a step function, with a probability
of fighting equal to 0 below s∗ and equal to 1 above s∗. Note that func-
tions need not be monotonically increasing, although we expect that players
with higher strength will be more likely to fight. The empirical frequencies
are aggregated into bins of 5 units of strength (1-5, 6-10, etc.) along the
horizontal axis, with φ-probabilities in the vertical axis.

[ Figure 1 here ]

These graphs suggest that second movers in the sequential version of
the game behave differently from first movers in at least two ways. Second
movers fight more than first movers. If one looks at the point in the graph
where the fight probabilities first reach 50%, this switchpoint is in the high
20s for second movers in both the .39 and .50 treatments, while it is in the
mid to high 30s for simultaneous movers and even higher for the first movers
in the sequential treatment. These results are also supported by a probit
regression similar to the one reported in table 3, but including the indepen-
dent variable s to control for strength. The coefficients and t-statistics are
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reported in table 5. Two important new results emerge when controlling for
strength. First, the difference in fight rates between the simultaneous and
sequential treatments, which was significant without controlling for s, is no
longer significant, indicating that the earlier finding was due to the different
realizations of s in the two samples. Second, the coefficient on ”role” is now
marginally significant, suggesting that the variation in sample draws of s
obscured the differences between the fight rates of first and second movers.

Coefficient St. error t-stat

Constant -0.487 0.376 -1.296
M -0.041 0.008 -4.906
sim 0.076 0.093 0.818
role 0.229 0.139 1.640
s 0.054 0.002 26.364

Table 5. Probit regression of fight rates, controlling for strength

The figure also suggests that second movers display less erratic behavior,
in the sense that for low values they (almost) never fight and for high values
they (almost) always fight. This is reflected in a steeper response curves for
player 2 in figure 1. Table 6 describes aggregate behavior by treatment and
position v́ıa a probit model where the independent variables are strength and
a constant term. The steeper response by the second mover is confirmed for
the .39 treatment, where the slope of the second mover’s response curve is
significantly steeper than the slope of the first mover. There is no significant
difference in the slope coefficient for the .50 treatment.

Position M Constant Slope -lnL % pred. #obs.

Seq. 1 .39 -2.73 (.307) .068 (.0071) 76.7 88.6 280
Seq. 2 .39 -3.11 (.585) .088 (.0016) 21.6 92.2 115
Seq. 1 .50 -2.53 (.283) .056 (.0057) 83.4 87.1 264
Seq. 2 .50 -1.83 (.162) .044 (.0063) 45.6 86.9 122

Table 6. Probit comparing slope of response for first and second movers.

4.3 Individual cutpoint analysis

In order to address the question of conditional fight rates, treatment effects,
and differences between first and second movers more carefully, we turn to
an analysis of individual choice behavior. If subjects use cutpoint decision
rules, how do cutpoints vary across treatments? How much variation is there
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across individuals? How consistent is individual behavior with cutpoint de-
cision rules? We document that there is some heterogeneity across subjects,
but more importantly, the distribution of these cutpoint strategies varies
systematically across treatments.

In order to estimate cutpoint decision rules, we use a simple optimal clas-
sification procedure, similar to Casella et al. (2006) and Palfrey and Prisbrey
(1996). For each subject and each condition the subject is in, we look at
the set of strengths they were randomly assigned, and the corresponding
fight/retreat decision they made. For any hypothetical cutpoint strategy
for an individual subject, we can then ask how many of these decisions are
correctly classified. For example, if in some round a subject with strength
40 chose φ, the decision would be correctly classified only if the hypothet-
ical cutpoint were less than or equal to 40. We then use the hypothetical
cutpoint with the fewest misclassified decisions as the estimate for that in-
dividual and condition. If there are multiple best fitting cutpoints, we take
the average. Table 7 presents some cutpoint summary statistics.

Condition M median estimated % misclassified empirical
cutpoint optimum

Simultaneous .39 37.5 3.4 17
Simultaneous .50 45.5 3.7 26
First mover .39 42.5 2.1 15
First mover .50 42.0 2.3 18
Second mover .39 36.0 0.0 18
Second mover .50 38.0 0.8 26

Table 7. Cutpoint summary statistics.

Several observations are immediate. First, very few decisions are mis-
classified. In each of the simultaneous treatments, 16 of 28 subjects are
perfectly classified. In the sequential conditions, the number of perfectly
classified subjects range from 23 to 28 of 28. The worst case of misclassifi-
cation was one subject in the simultaneous, M = .50 treatment who has 5
misclassified observations. Thus, with rare exceptions, subjects use cutpoint
strategies. In our setting, it establishes that subjects have a basic under-
standing of the game, even if they do not play the Nash equilibrium strategy.
Our subjects follow the first step of the logic (best responses are cutpoints),
but fail at the second one (equilibrium unraveling). Although interesting,
this result is not the central point of the section. We document it to justify
our approach of comparing the distributions of estimated cutpoints across
experimental conditions.
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The key questions concern whether the distribution of cutpoints varies
systematically across treatments and, in the sequential games, between first
and second movers. We also want to understand whether these systematic
variations are consistent with the descriptive findings based on aggregate
data described in the previous section. Table 7 reports the median estimated
cutpoint across all subjects, and the percentage of misclassified decisions,
by condition. The median cutpoints mirror the aggregate fight rates by
treatment and condition, as reported in previous sections. Cutpoints are
lower (more fighting) in M = .39 than in M = .50 treatments. They are
lower for second movers than first movers for both the M = .39 and M = .50
treatments, and they are also lower for second movers than for players in
the simultaneous condition for both the M = .39 and M = .50 treatments.
There is no systematic difference between first movers and players in the
simultaneous condition. Last, second movers have fewer classification errors
(therefore, steeper response curves) than first movers.

As further evidence, we consider how the entire distribution of indi-
vidual estimated cutpoints varies across treatments. Figure 2 displays the
estimated cumulative frequency distribution of individual cutpoints used by
our subjects for all the treatments, and broken down by position in the se-
quential treatment. The horizontal axis represents cutpoints, ranging from
0 to 100. The vertical axis indicates how many of the subjects in each treat-
ment or position (out of 28) were using a cutpoint less than or equal to that
number.

[ Figure 2 here ]

These distributions exhibit a wide range of estimated cutpoints, with
few above 60 or below 20. In all treatments and conditions, there is het-
erogeneity that is both significant (one easily rejects the hypothesis that all
subjects use the same cutpoint for any of these conditions), and substan-
tial. The distributions are also different across treatments and conditions.
Also noteworthy is that distributions are never concentrated around partic-
ular cutpoints (i.e., step distribution functions), but they are smoothly and
uniformly increasing over the range.

Finally, one can compare the distribution of cutpoints used by players in
the game to the cutpoint that would be optimal, given the actual frequencies
of fighting in the experiment. These ”empirically optimal” cutpoints are
given in the last column of table 7. The optimal cutpoints are generally
about one-half times the corresponding median estimated cutpoints. Many,
but not all, players are ”fooled” by this game, in the sense that they set
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cutpoints that are too high. We find that 20% of the estimated cutpoints
are within 5 units of strength of the optimal cutpoint, and these subjects
are leaving essentially no money on the table. Of the remaining estimated
cutpoints, 7% are below the optimal cutpoint by at least 5 strength units,
and 73% are above the optimal cutpoint by at least 5 units.

4.4 Summary of descriptive analysis

The main findings of our analysis so far can be summarized as follows.

• Unconditional fight rates range from about 50% to 70%, depending
on the treatment and condition, falling far short of the theoretical
prediction of 100%.

• In all treatments, the φ-rate conditional on strength increases monoton-
ically from virtually 0% for strengths below 20 to virtually 100% for
strengths above 60 if M = .39 or above 70 if M = .50.

• The compromise payoff, M , affects behavior, with less fighting when
the compromise payoff is higher.

• There are some differences between the sequential and simultaneous
treatments. Most striking is that second movers behave differently
than first movers: the former display more fighting and less erratic
behavior (when M = .39) than the latter. For a theory to explain
this pattern, it must predict that observing the behavior of the rival
before making inferences and choices leads to systematic differences
compared with just conditioning on a hypothetical event.

• We do not find consistent evidence of learning. A possible explanation
is the insufficient feedback provided to players (only the rival’s strength
and outcome is revealed at the end of each round). However, given
that the order of moves matters, one would expect that second movers
would use their experience in that role when they subsequently play
as first mover.8

• The vast majority of subjects use cutpoint strategies, with very few
deviations. Across all treatments, over 97% of individual behavior is

8Recall that, in our design, all players gain experience as both first and second movers.
That is, our data on first and second movers are all coming from the same subjects.
Subjects apparently do not draw inferences from their own decision making in different
roles about how other subjects behave in those roles.
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consistent with cutpoint strategies. This shows their understanding, at
least at an intuitive level, that the expected payoff differential between
φ and ρ increases with s, and possibly an even deeper understanding
that the best reply in this game is always a cutpoint strategy. It also
justifies the analysis that focuses on estimated cutpoints.

• The distribution of these cutpoints varies by condition in ways that
mirror the differences in the aggregate fight rates. The empirical dis-
tribution of individual cutpoints is smooth.

5 Alternative behavioral models

Obviously, the Nash equilibrium model is inconsistent with our data. In this
section, we consider several alternative models to explain the excessively
low fight rates. Note that this game is easily solved by iterated dominance,
but only using weak rather than strict dominance. Denote a strategy as a
function that maps strength into a probability of fighting q : [0, 1] → [0, 1].
First note that any strategy q that assigns q(1) < 1 is weakly dominated
by the strategy q′ where q′(s) = q(s) for all s 6= 1 and q′(1) = 1. In the
experiments, the type distribution was discrete, so once we eliminate all
those strategies, then any strategy q that assigns q(.99) < 1 and q(1) = 1 is
weakly dominated by the strategy q′ where q′(s) = q(s) for all s 6= .99 and
q′(.99) = 1. And so forth.9 On the other hand, rationalizability does not
eliminate any strategy, since every strategy is a weak best response to the
equilibrium strategy, q∗(s) = 1 for all s.

We consider two categories of models. Models in the first category have
their foundations in cognitive limitations, and they all have features that
admit the possibility of observing weakly dominated strategies. We study
three models within this class: quantal response equilibrium or QRE (McK-
elvey and Palfrey, 1995), cognitive hierarchy or CH (Camerer et al., 2004),
and cursed equilibrium or CE (Eyster and Rabin, 2005).10 We also consider
some variations that allow for heterogeneity or hybridization between mod-
els, such as the truncated quantal response equilibrium or TQRE (Camerer

9For the M = .50 game, at the last iteration, a player with the lowest strength, s = .01,
is indifferent between φ and ρ, and therefore, there is an equilibrium with s = .01 types
choosing ρ and all other types choosing φ. For the M = .39 game, the iteration continues
all the way down, and the only equilibrium is q∗(s) = 1 for all s.

10Some preliminary findings about CH and CE are discussed in Wang (2006), with
permission of the authors.
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et al., 2006). These hybrid versions allow us to understand better how dif-
ferent models capture different features of the observed behavior. Models in
the second category have their foundations on the existence of systematic de-
viations from self-interest : social preferences, fairness motives, reciprocity,
or altruism. For reasons we discuss later, we estimate only models in the
first category.

5.1 Quantal Response Equilibrium

Quantal response equilibrium applies stochastic choice theory to strategic
games. It is motivated by the idea that a decision maker may take a sub-
optimal action, and the probability of doing so is increasing in the expected
payoff of the action. In a regular QRE (Goeree et al., 2005), one simply
replaces the best response correspondence used to characterize Nash equi-
librium, with a quantal response function that is continuous and monotone
in expected payoffs. That is, the probability of choosing a strategy is a
continuous increasing function of the expected payoff of using that strategy,
and strategies with higher payoffs are used with higher probability than
strategies with lower payoffs. A quantal response equilibrium is then a fixed
point of the quantal response mapping. In a logit equilibrium, for any two
strategies, the log odds of the choice probabilities are proportional to the dif-
ference in expected payoffs, where the proportionality factor, λ, is a measure
of responsiveness of choices to payoffs. That is:

ln
[

σij

σik

]
= λ

[
Uij − Uik

]
where σij is the probability that player i chooses strategy j, and Uij is the
corresponding expected payoff in equilibrium. Note that a higher λ reflects a
”more precise” response to the payoff differential. The polar cases λ = 0 and
λ → +∞ correspond to random choice and Nash equilibrium, respectively.

Specification of the QRE model. We consider two different specifica-
tions of the logit equilibrium version of QRE. The first specification takes
an interim approach and analyzes the game in behavioral strategies. This
approach corresponds to the agent QRE (AQRE) of McKelvey and Palfrey
(1998). Conditional on player 1’s strength, and given the AQRE behavioral
strategies used by player 2, the log-odds of player 1 choosing retreat vs.
fight is proportional to the difference in expected payoffs between retreat
and fight – and similarly for player 2.
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The second analyzes the game in ex ante strategies, and assumes players
choose stochastically over possible plans for whether or not to fight as a
function of strength. Because the set of all possible pure strategies in our
game is huge (2100), we are forced to consider only a subset of such strate-
gies. The natural restriction is to consider only monotone strategies, i.e.,
cutpoint strategies. This is a natural criterion since monotone strategies
are always best responses and, furthermore, any non-monotone strategy is
weakly dominated by a monotone strategy. This also reduces the set of
pure strategies to a small enough number (100) that estimation is possible.
Last, focusing on cutpoint strategies does not seem too restrictive, given
that the behavior of individuals is highly consistent with this type of play,
as previously documented.

In the logit parameterization of the cutpoint QRE, the distribution over
cutpoint strategies used by player 2 has the standard property. Namely, the
log-odds of player 1 choosing any cutpoint c versus any other cutpoint c′

is proportional to the ex ante difference in expected payoffs between using
those two cutpoints – and similarly for player 2.

Logit QRE in behavioral strategies. For any response parameter λ
we solve for a fixed point in behavioral strategies. Denote by φ∗λ such an
equilibrium fixed point, and by φ∗λ(s) the equilibrium probability of fighting
given a strength s.

Consider first the simultaneous game. We need to determine the ex-
pected utility of φ for a player with strength s conditional on the other
player using strategy φ∗λ and having chosen ρ. This is simply equal to the
conditional probability that the other player has strength less than s, given
that he has chosen ρ. It is then given by:

Vφ(s;φ∗λ) =

∫ s
0 [1− φ∗λ(t)]dt∫ 1
0 [1− φ∗λ(t)]dt

(1)

The expected utility of ρ conditional on the other player having chosen ρ is
simply Vρ(s;φ∗λ) = M , so the difference in the expected utility of φ and ρ is:

∆(s;φ∗λ) =
∫ 1

0
[1− φ∗λ(t)]dt

(
Vφ(s;φ∗λ)− Vρ(s;φ∗λ)

)
=

∫ s

0
[1− φ∗λ(t)]dt−M

∫ 1

0
[1− φ∗λ(t)]dt

Hence, in a symmetric logit QRE, φ∗λ is characterized by:
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φ∗λ(s) =
eλ∆(s;φ∗λ)

1 + eλ∆(s;φ∗λ)
for all s ∈ [0, 1]

The sequential game requires solving simultaneously for φ∗λ1(s1) and
φ∗λ2(s2). The expressions for the first mover are exactly the same as in
the simultaneous move game. Therefore, modifying the notation slightly to
make clear that it is player 1’s equation, we get:

φ∗λ1(s1) =
eλ∆1(s1;φ∗λ2)

1 + eλ∆1(s1;φ∗λ2)
for all s1 ∈ [0, 1]

where

∆1(s1;φ∗λ2) =
∫ s1

0
[1− φ∗λ2(t)]dt−M

∫ 1

0
[1− φ∗λ2(t)]dt

The condition for the second mover is the same, except the second mover’s
expected utility difference does not have to be conditioned on the first mover
choosing ρ. We get:

φ∗λ2(s2) =
eλ∆2(s2;φ∗λ1)

1 + eλ∆2(s2;φ∗λ1)
for all s2 ∈ [0, 1]

where

∆2(s2;φ∗λ1) =

∫ s2

0 [1− φ∗λ1(t)]dt∫ 1
0 [1− φ∗λ1(t)]dt

−M

Logit QRE in cutpoint strategies. We next consider the slightly more
sophisticated version of QRE where players are assumed to randomize over
monotone cutpoint strategies, which we call QRE-cut. In our game, a cut-
point strategy is a critical value of strength, c, such that player i chooses φ if
si ≥ c and chooses ρ if si < c. Hence, we define a cutpoint quantal response
to be given by two probability distributions over c, one for each player, de-
noted q1(c) and q2(c). In the simultaneous version of the game, we consider
only symmetric QRE-cut, where q1(c) = q2(c) = q(c) for all c. For the se-
quential version, generally q1(c) 6= q2(c), since it is not a symmetric game
and the second player chooses a cutpoint after observing the first player’s
move. We use the logit quantal response function for a parametric specifi-
cation. Hence, the probability that a player chooses a particular strategy
is proportional to the exponentiated expected payoff from using that strat-
egy, given the cutpoint quantal response function of the other player. It is
worth noting that past studies have found that in binary choice games with
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continuous types, a cutpoint strategy can be a useful variation on the stan-
dard QRE approach (see Casella et al., 2006). Furthermore, the analysis in
section 4.3 suggests that subjects adhere to this type of strategies.

Consider the simultaneous game. The expected utility to player 1 of
using a cutpoint strategy c̃ if player 2 uses q(·) is given by:

U(c̃) =
∫ 1

c̃
sds +

∫ c̃

0

[∫ s

0
q(c) (cM + (s− c)) dc +

∫ 1

s
q(c)cMdc

]
ds (2)

The first term is the probability of drawing a strength s above the cutpoint,
in which case player 1 chooses φ and obtains a payoff 1 only if player 2 has
a lower strength. The second term is the probability of drawing a strength
s below the cutpoint, in which case player 1 chooses ρ. Then, if player 2’s
strength is lower, a compromise gives payoff M and a no-compromise gives
payoff 1. If player 2’s strength is higher, a compromise gives payoff M and
a no-compromise gives payoff 0. In a symmetric logit QRE-cut:

q(c̃) =
eλU(c̃)∫ 1

0 eλU(c)dc
for all c̃ ∈ [0, 1]

In the sequential game, the expression for the first mover’s utility of
using c̃, given player 2 uses q2(·) is the same as in the simultaneous case:

U1(c̃) =
∫ 1

c̃
s1ds1 +

∫ c̃

0

[∫ s1

0
q2(c) (cM + (s1 − c)) dc +

∫ 1

s1

q2(c)cMdc

]
ds1

(3)
By contrast, the second mover’s utility of using c̃, given player 1 uses q1(·)
does not have to be conditioned on the first mover choosing ρ. That is:

U2(c̃) =
∫ 1

c̃

[∫ s2

0 c1q1(c1)dc1∫ 1
0 c1q1(c1)dc1

+

∫ 1
s2

s2q1(c1)dc1∫ 1
0 c1q1(c1)dc1

]
ds2 + c̃M (4)

There are three observations to make about the QRE-cut solutions.
First, in the sequential game, the equilibrium cutpoint distributions are
different for the two players. The second mover generally adopts lower cut-
points, which translates into higher φ rates. Second, players adopt lower
cutpoints when M is lower. Third, the cutpoint distributions for the first
mover in the sequential games are different from the cutpoint distributions
in the corresponding simultaneous games, even though the utility formulas
(equations 2 and 3) are identical.
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We fit the behavioral strategy logit QRE and the cutpoint strategy logit
QRE models by standard maximum likelihood techniques, i.e., finding the
value of λ that maximizes likelihood of the observed frequencies of strategies.
We estimate restricted and unrestricted versions of the models. In the most
restricted version, the parameters are constrained to be the same across all
treatments. We also estimate a version where the parameters are constrained
to be the same for the .39 and .50 treatments, but are allowed to be different
in the simultaneous and sequential games.

5.2 Cognitive Hierarchy

The cognitive hierarchy model (Camerer et al., 2004) postulates that when
a player makes a choice, his decision process corresponds to a ”level of so-
phistication” k with probability pk. The CH solution to a game is uniquely
determined by an assumption about how level 0 types behave (σ0), and the
distribution of levels of sophistication (p).11 Once the behavior of level 0
players is determined, level 1 players are characterized by choosing with
equal probability all strategies that are best responses to level 0 opponents.
Level 2 players optimize assuming they face a distribution of level 0 and
level 1 players, where the distribution satisfies truncated rational expecta-
tions. That is, the beliefs of level 2 players that their opponent is choosing
according to a level 0 or a level 1 decision process, denoted b2(0) and b2(1),
is given by the truncated ”true” distribution of these types: b2(0) = p0

p0+p1

and b2(1) = p1

p0+p1
. Level 2 players are then characterized by choosing with

equal probability all strategies that are best responses to b2 beliefs about
the opponents. Higher levels are defined analogously, so a level k optimizes
with respect to beliefs bk where bk(j) = pj/

∑k−1
l=0 pl for all j ∈ {1, ..., k−1}.

For any distribution of levels, p, this implies a unique specification of
a mixed strategy for each level, σ(p) = (σ0(p), ..., σk(p), ...), and this spec-
ification can be solved recursively, starting with the lowest types. This
generates predictions about the aggregate distribution of actions, denoted
σ(p) =

∑∞
k=0 pkσk(p). In all applications to date, p is assumed to be Poisson

distributed with mean τ . That is, pk = τk

k! e
−τ . We consider two specifica-

tions of the behavior of level 0 types.
11The CH model is an extension of the original level-k model of Nagel (1995). See Stahl

and Wilson (1995), Crawford and Iriberri (2005), Costa-Gomes and Crawford (2006),
and Camerer et al. (2006) for further examples of estimation of level-k models, based on
experimental data.
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Random actions. In the standard CH model, level 0 players are typically
assumed to choose an action randomly. In the context of our game, this
means that they are equally likely to select φ or ρ, independently of their
strength. Level 1 types best respond to level 0 types. It can be easily shown
that the best response strategy is to choose cutpoint M . Level 2 players
then optimize with a cutpoint somewhere between M (the best response if
everyone is level 0) and M2 (the best response if everyone is level 1), with
the exact value depending on p0 and p1. Behavior by higher level players is
defined recursively.

Random cutpoints. An alternative version, which we call the cutpoint
cognitive hierarchy model or CH-cut, replaces the assumption that level
0 types randomize uniformly over actions, with the assumption that they
randomize uniformly over cutpoint strategies. This implicitly endows level
0 types with some amount of rationality, in the form of monotone behavior:
they are more likely to choose φ when their strength is high than when
their strength is low. In our game, a level 0 type who randomizes over
cutpoints has a probability of fighting as a function of s which is equal to
s. As in the standard CH, the best responses of higher types will be unique
cutpoints, and are easily calculated by recursion. Since a level 0 type has a
probability 1−s of choosing ρ, the posterior distribution of strength of a level
0 type conditional on choosing ρ is f(s | ρ) = 1−sR 1

0 (1−x)dx
= 2− 2s. Hence, the

expected payoff of φ for a level 1 type with strength s and conditional on the
other player being level 0 and choosing ρ is

∫ s
0 (2−2x)dx = 2s−s2. Since the

payoff of ρ is M , the optimal cutpoint of a level 1 type is the value sM
1 that

solves 2sM
1 −(sM

1 )2 = M , that is sM
1 = 1−

√
1−M . For our two treatments,

we get s.50
1 = 1−

√
1/2 ≈ .29 and s.39

1 = 1−
√

11/18 ≈ .22. Higher types are
then defined recursively, with the exact cutpoint for a level k depending on
{pl}k−1

l=0 . This produces a CH model that is comparable to QRE in the sense
that all players choose cutpoint strategies, so φ probabilities are monotone
in s for all players.

We fit the Poisson specification of the CH and cutpoint CH models to the
data set by finding the value of τ that maximizes likelihood of the observed
aggregate frequencies of strategies, under the assumption that types are
identically and independently distributed draws. We estimate the best-
fitting values of τ by maximum likelihood for each of the four treatments,
and report both constrained and unconstrained estimates.

24



5.3 Combining quantal response and strategic hierarchies
(TQRE)

The predictions of the CH and CH-cut models differ from the QRE and
QRE-cut models in two important ways. First, in CH models, all players
with the same level of sophistication choose the same cutpoint strategy.
Second, predictions in CH are identical for the sequential and simultaneous
versions of the game. Neither ”bunching” by layers of reasoning nor identical
behavior in the simultaneous and sequential treatments are observed in the
data.

An approach that combines quantal response and hierarchical thinking,
called Truncated Quantal Response Equilibrium (TQRE), is developed in
Camerer et al. (2006). This model introduces a countable number of players’
skill levels, λ0, λ1, ..., λk, ... . The distribution of skill levels in the population
is given by p0, p1, ..., pk, ... . A player with skill level k chooses stochastically
with a logit quantal response function with precision λk. TQRE assumes
truncated rational expectations in a similar manner to CH: a player with
precision λk has beliefs pk

j = pj/
∑k−1

l=0 pl for j < k and pk
j = 0 for j ≥ k.

For reasons of parsimony and comparability to CH, we assume that skill
levels are Poisson distributed and equally space λk = γk. Thus, it is a two
parameter model with Poisson parameter, τ , and a spacing parameter, γ.

The TQRE model has two effects. It smooths out the mass points, and
it makes different predictions for the sequential and simultaneous games.
These effects work slightly differently with behavioral strategies and with
cutpoint strategies, so we estimate both versions.

5.4 Cursed Equilibrium

In a CE model, players are assumed to systematically underestimate the
correlation between the opponents’ action and information. As in the CH
model, a cursed equilibrium will be the same in both the sequential and
simultaneous treatments. In an α-cursed equilibrium (CEα) all players are
α-cursed. However, players believe that opponents are α-cursed with prob-
ability (1 − α) and they believe that actions of opponents are independent
of their information with probability α. All players optimize with respect
to this (incorrect) mutually held belief about the joint distribution of op-
ponents’ actions and information. In our model, we can easily compute the
cutpoint strategy in CEα as a function of M , denoted s∗α(M). For a player
with strength si, and assuming the other player is using s∗α(M), the expected
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utility of φ, conditional on the opponent choosing ρ is given by:

V α
φ (si) = α Pr{sj < si}+ (1− α) Pr{sj < si | aj = ρ, s∗α(M)}

= αsi + (1− α) min{1, si
s∗α(M)}

A player with strength equal to the equilibrium cutpoint must be indifferent
between φ and ρ. Formally, V α

φ (s∗α(M)) = V α
ρ (s∗α(M)). Therefore:12

s∗α(M) =

{
1− 1−M

α if α > 1−M

0 if α ≤ 1−M

A difficulty with CEα is that it cannot be fit to the data due to a zero-
likelihood problem: for each α it makes a point prediction. Therefore,
we slightly modify the equilibrium concept in order to allow for stochas-
tic choice. The approach we follow is to combine QRE with CEα.13 In the
simultaneous move game, a (symmetric) α-QRE is a behavior strategy, or a
set of probabilities of choosing φ, one for each value of s ∈ [0, 1]. We denote
such a strategy evaluated at a specific strength value by φ(s). Given λ and α
we denote by α-QRE the behavior strategy φ∗λα. If player j is using φ∗λα and
player i is α-cursed, then i’s expected payoff from choosing φ when si = s
is given by:

V α
φ (s) =

∫ 1

0
φ∗λα(t)dt

[
αs + (1− α) Pr{sj < s | aj = φ, φ∗λα}

]
+

∫ 1

0
[1− φ∗λα(t)]dt

[
αs + (1− α) Pr{sj < s | aj = ρ, φ∗λα}

]
= αs

∫ 1

0
φ∗λα(t)dt + (1− α)

∫ s

0
φ∗λα(t)dt

+αs

∫ 1

0
[1− φ∗λα(t)]dt + (1− α)

∫ s

0
[1− φ∗λα(t)]dt

And the expected payoff from choosing ρ is:

V α
ρ (s) = αs

∫ 1

0
φ∗λα(t)dt + (1− α)

∫ s

0
φ∗λα(t)dt + M

∫ 1

0
[1− φ∗λα(t)]dt

12In a fully cursed equilibrium (α = 1), all players choose strategies as if there is no
correlation between the opponent’s action and information. Thus, they all behave like a
level 1 player in CH with random actions: s∗1(M) = M .

13Note that player heterogeneity with respect to α would not solve the zero-likelihood
problem: for any cursedness α ∈ [0, 1], it is always true that s∗α(M) ≤ M . However, in
our data set, we have many observations where players with strength s > M choose ρ.
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Using the logit specification for the quantal response function, we then apply
logit choice probabilities to the difference in the expected payoff from φ and
ρ for each si = s. By inspection of V α

φ (s) and V α
ρ (s), this difference is:

∆(s;φ∗λα) = αs

∫ 1

0
[1−φ∗λα(t)]dt+(1−α)

∫ s

0
[1−φ∗λα(t)]dt−M

∫ 1

0
[1−φ∗λα(t)]dt

and the α-QRE in the simultaneous game is then characterized by:

φ∗λα(s) =
eλ∆(s;φ∗λα)

1 + eλ∆(s;φ∗λα)
for all s ∈ [0, 1]

which can be solved numerically, for any value of α.

In the sequential version of the game, we need to simultaneously solve
for the first and second movers, φ∗λα1 and φ∗λα2, respectively. The expected
payoff equations under φ and ρ for the first mover are the same as in the
simultaneous move game, so we have:

V α
φ1(s1) = αs1

∫ 1

0
φ∗λα2(s2)ds2 + (1− α)

∫ s1

0
φ∗λα2(s2)ds2

+αs1

∫ 1

0
[1− φ∗λα2(s2)]ds2 + (1− α)

∫ s1

0
[1− φ∗λα2(s2)]ds2

V α
ρ1(s1) = αs1

∫ 1

0
φ∗λα2(s2)ds2 + (1− α)

∫ s1

0
φ∗λα2(s2)ds2 + M

∫ 1

0
[1− φ∗λα2(s2)]ds2

However, the expressions for the second mover are different, because ex-
pected payoffs are conditional on the observation that the first mover chose
ρ:

V α
φ2(s2) = αs2 + (1− α)

∫ s2

0 [1− φ∗λα1(s1)]ds1∫ 1
0 [1− φ∗λα1(s1)]ds1

V α
ρ2(s2) = M

So, the payoff differences for the first and second movers are, respectively:

∆1(s1;φ∗λα2) =
∫ 1

0
[1− φ∗λα2(s2)]ds2

[
αs1+(1− α)

∫ s1

0 [1− φ∗λα2(s2)]ds2∫ 1
0 [1− φ∗λα2(s2)]ds2

−M

]

∆2(s2;φ∗λα1) = αs2 + (1− α)

∫ s2

0 [1− φ∗λα1(s1)]ds1∫ 1
0 [1− φ∗λα1(s1)]ds1

−M
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Note that the RHS of ∆2 is similar to the RHS of ∆1, except for the factor
of

∫ 1
0 [1−φ∗λα2(s2)]ds2. Since this factor is smaller than 1, it means that the

payoff differences to player 2 are magnified relative to player 1, which, in
equilibrium, will result in φ∗λα2 having higher slope and lower mean compared
to φ∗λα1. The two logit equilibrium conditions are:

φ∗λα1(s1) =
eλ∆1(s1;φ∗λα2)

1 + eλ∆1(s1;φ∗λα2)
for all s1 ∈ [0, 1]

φ∗λα2(s2) =
eλ∆2(s2;φ∗λα1)

1 + eλ∆2(s2;φ∗λα1)
for all s2 ∈ [0, 1]

One can fit the logit version of the α-QRE model to the data set by find-
ing the values of λ and α that maximize likelihood of the observed frequencies
of strategies. As for the previous models, we report both constrained and
unconstrained estimates.

5.5 Models of pro-social behavior

We also considered an alternative class of models which are not based on
cognitive limitation but, instead, are founded on social preferences. There
are a number of candidates from this growing family of models. We consider
three. One is the fairness model by Fehr and Schmidt (1999). In that model,
the utility of individual i when he gets payoff xi and individual j gets payoff
xj is:

Ui(xi, xj) = xi − α max{xj − xi, 0} − β max{xi − xj , 0}

where β 6 α and 0 6 β < 1. For our game, the model implies that the utility
payoff to each agent for winning, compromising and losing are 1−β, M , and
−α, respectively. This implies that if fairness considerations are sufficiently
strong (β ≥ 1−M), the equilibrium unravelling goes the opposite direction,
and all agents always play ρ, regardless of their strength. Otherwise, agents
want to set a lower cutpoint than their rival, and we are back to the Nash
equilibrium prediction where all agents always play φ. Our subjects do not
exhibit such extreme ”boundary” behavior, neither individually nor in the
aggregate. Thus, one would need to add other parameters or assumptions
in order for this model to explain the choices of our subjects.

A second model is altruism, where a player’s utility is the weighted av-
erage of his own payoff and the other agent’s payoff:

Ui(xi, xj) = γ xi + (1− γ) xj
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This model runs into the same problem as the previous one. Each player’s
payoff of winning, compromising and losing are γ, M , and 1−γ, respectively.
Therefore, all players should either always fight or always retreat. Given
estimates of γ from other experiments (γ > .5), the model predicts that
players should always fight if M 6 .50.

Third, models based on reciprocity are also prominent in the social pref-
erences literature. These models provide an explanation for the behavior
commonly observed in the trust game. In our setting, they suggest that
second movers should fight less than first movers, as they are ”returning
the favor” of compromising. However, we find the opposite: observing ρ
significantly decreases rather than increases the willingness to reciprocate
by responding also with ρ.

Overall, these leading models of social preferences described above – fair-
ness, altruism, and reciprocity – fail to explain the basic patterns we observe
in the data. Therefore, we do not to estimate them. In fact, there are at
least two additional reasons why models of pro-social behavior are unsuit-
able to account for the choices of subjects in this particular game. First,
each individual plays the game many times (40), anonymously against a pool
of opponents, with the roles of players, and the strengths randomly assigned
in each match. Given this design, applying models of social preferences to
behavior in isolated games is questionable a priori. In fact, in one of the
designs (M = .50), subjects play a constant sum game against changing
opponents. Hence, deviations from optimal best replies to ”the field” will
necessarily, over the course of the 40 matches, give a player a total expected
payoff below the average payoff of the other subjects. Second and related
to the above argument, in this game selfish play leads to ex ante fair and
efficient allocations. Indeed, for the case of M = .39, myopic ”fair” behavior
(everyone retreating every time) leads to long run inefficient outcomes, and
no long run improvement in the equality of payoffs. Subjects would be leav-
ing over 20% of potential group earnings on the table, with virtually zero
gain in equality of outcomes.

5.6 Model estimates

In this section we estimate the QRE, CH, TQRE and CE models, and explore
the stability of the estimated parameters across the different treatments,
and compare the ability of these models to capture the basic features of the
data, identified in the previous section. We report the estimates in Table
8 at different levels of aggregation: for the treatments separately; pooling
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across the M -treatments; and pooling across all treatments. For the QRE,
CH and TQRE models, we considered both the behavioral strategy version
and the cutpoint version. In all three models, the cutpoint version fits the
data better than the behavioral strategy version in every single treatment
and in all the pooled estimations. This is not surprising, given our earlier
finding that most subjects exhibit choice behavior that is consistent with a
cutpoint strategy. We therefore report and discuss only the results for the
cutpoint versions of these models.

QRE CH TQRE α-QRE
N λ -lnL τ -lnL γ τ -lnL λ α -lnL

Sim .39 560 20.8 171.0 0.6 183.2 4.4 5.0 170.5 26.6 0.92 145.5
Sim .50 560 11.3 213.6 0.3 211.7 449.0 0.4 210.3 18.4 0.77 202.9
Sim All 1120 16.2 387.8 0.5 397.4 6.9 2.7 386.3 21.3 0.85 355.6
Seq .39 395 11.5 125.0 0.4 137.1 6.0 2.4 124.6 23.5 0.97 102.0
Seq .50 386 9.3 140.5 0.5 137.9 142.0 0.5 136.6 15.8 0.75 138.2
Seq All 781 10.4 265.3 0.4 275.1 8.0 1.8 263.5 18.4 0.86 248.9
All 1901 13.0 656.8 0.5 672.6 10.0 1.8 651.2 20.1 0.85 605.9

Table 8. Model estimates.

Figure 3 displays the empirical and fitted fighting probabilities as a func-
tion of strength. Fitted choice frequencies in the figure are based on out-of
sample parameter estimates. Specifically, the displayed curves for the se-
quential data are constructed using the parameter estimates obtained from
the pooled simultaneous data, and vice versa. All these models capture the
upward sloping empirical frequency of φ. All exhibit low φ rates for low
strengths and high φ rates for high strengths.

[ Figure 3 here ]

There is some variation in fit across the different models. The better
fitting models all converge to 0% for low strengths and to 100% for high
strengths. The α-QRE model, which generally fits the best of all these
models, does not have cutpoints built into it explicitly, but boils down to
a ”soft” cutpoint model. The CH and QRE models fit the data similarly
in terms of log likelihood, but there are some important differences in the
predicted fight curves. As one can see from figure 3, the CH model predicts
somewhat better at strengths below 20%, but QRE generally fits better
than CH elsewhere. This can be attributed to two important differences
in the models: (1) QRE predicts that second movers will have different
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(and sharper) response functions than first movers, which is a feature of the
data not captured by CH; (2) QRE generates a smooth fight curve, while
CH predicts clustering of cutpoints, leading to jumps in the fight curve
corresponding to different levels of sophistication.

The TQRE model does not provide a substantial improvement over QRE
or CH. In fact, the fitted φ-rate for TQRE and QRE are very similar. They
both share the problem of overestimating the fighting rates for subjects with
low strength. The α-QRE is the best fitting of all models, as it combines
the elements of cursedness and stochastic choice. The pure cursed equilib-
rium predicts the steepest response of fighting probability as a function of
strength. In fact, all players follow the same cutpoint strategy, which is a
function of α, the players’ degree of cursedness. Adding quantal response,
produces a nice logit function of the fighting probability, that crosses .50 at
s ≈ .40, varying slightly with M and position, consistent with the data. Fur-
thermore, quantal response also introduces a steeper φ curve for the second
movers than for the first movers, which is again consistent with the data.

There are some differences in fit between the M = .39 and the M = .50
treatments, with most models fitting the data from the M = .39 treatment
better, reflecting the steeper empirical φ curves in the M = .39 data. There
is virtually no difference in either the fit or the actual parameter estimates for
the sequential and simultaneous treatments. The α-QRE pooled estimates
of λ and α are not significantly different between the two treatments, even
at the 5% level, and the fit is identical (log Likelihood / N = −.318 in both
cases).

5.7 Summary of estimation results

The main findings about the estimated models summarized as follows.

• All four models capture the most basic qualitative properties of be-
havior (none of which is consistent with Nash equilibrium): fight rates
are high, increasing in s, and decreasing in M . However, each model
captures different specific features of the data.

• Estimates are similar across M treatments, and little power is lost
by pooling treatments. This means that the results are not due to
”tuning the parameters to fit the data”. In fact, the out-of-sample
parameters from M = .39 provide virtually identical predictions for
M = .50 behavior as the within sample estimates.

• Only QRE and the models hybridized with QRE capture the fact that
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first movers behave differently from second movers. In particular, the
φ function is steeper for second movers in those models.

• The cutpoint versions of CH and QRE describe behavior better than
the behavior strategy versions. This is consistent with our findings
at the individual level which indicate that over 95% of choices follow
pure cutpoint strategies.

• TQRE provides an almost identical fit as QRE, suggesting that, in this
game, the addition of hierarchical thinking to quantal response does
not have a substantial impact. This is also consistent with the fact that
we do not find individual cutpoints clustered around 3 or 4 strength
values, as would be predicted by CH and other levels-of-sophistication
models.

• The α-QRE model fits the data best. The estimates of α are signifi-
cantly greater than 0 and significantly less than 1. They are virtually
identical for both the sequential and simultaneous games, suggesting
that the 2-parameter model is not overfitting the data.

6 Conclusions

The compromise game is obviously challenging to the cognitive abilities of
players. This is true not only for our subjects but even for experienced
microeconomists. In our experiment, players seem to understand some ba-
sic elements of the game, such as the cutpoint nature of best responses.
However, they have problems figuring out the full logic of the unravelling
argument.

The paper has considered several cognitive explanations for the surpris-
ing behavior observed in these games of incomplete information. In a future
research, it might be interesting to explore more general models. One can-
didate would be the ”analogy-based expectation equilibrium” developed by
Jehiel and Koessler (2006), which can be seen as a generalized version of
cursed equilibrium. A second direction would be to explicitly allow for het-
erogeneity. While the CH model is suggestive of heterogeneity, the attempts
here and elsewhere to fit the model assumes homogeneity, since repeated
observations of the same individual are treated as independent draws from
the type space. In principle, one could extend the estimation of CH models
to allow for fixed types. However, for our data, it seems unlikely to go very
far because we do not observe clusters of behavior that might correspond
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to types – in contrast to Nagel’s (1995) guessing game, for example. The
QRE and α-QRE models could also be extended to allow for heterogeneity
with respect to λ and α, also with fixed types. This would undoubtedly lead
to better fits in terms of log likelihood, but it is hard to imagine any new
insights emerging from such an exercise.

One of the most interesting findings is that the order of moves affects
choices. In our game, a player’s action is relevant only if the rival chooses ρ.
Thus, first, second and simultaneous movers should all condition their strat-
egy on that event. By contrast, the data shows that players who observe
ρ being played by their rival (second movers) respond more aggressively
than players who must condition on the anticipation of that event (first
movers). Even among subjects who do not observe the choice of the rival
before playing, there is a difference between knowing that one’s choices will
be publicly observed before the rival makes his choice (first movers) and
knowing that one’s choices will not be observed (simultaneous movers). In
sum, hypothetical conditioning on events seems to produce different behav-
ior than observational conditioning on events. While we found one general
explanation for this phenomenon (QRE), a search for other parsimonious
formal models that imply different behavior between our first and second
movers might add to our understanding. Such a search seems a worthy
project for future research. It could also help settle questions well beyond
the scope of our compromise game, such as the effect of using the strat-
egy method in experimental games, and the differences in behavior between
strategically equivalent games (extensive vs. strategic form). Naturally, this
has implications for many strategic settings of significant applied interest,
including common value auctions and voting behavior, where optimal choice
requires bidders to condition on winning and voters to condition on being
pivotal.
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Appendix: Sample Instruction Script

Thank you for agreeing to participate in this research experiment on group decision

making. During the experiment we require your complete, undistracted attention. So we

ask that you follow these instructions carefully. You may not open other applications on

your computer, chat with other students, or engage in other distracting activities, such as

using your cell phones or head phones, reading books, etc.

For your participation, you will be paid in cash, at the end of the experiment. Different

participants may earn different amounts. What you earn depends partly on your decisions,

partly on the decisions of others, and partly on chance. So it is important that you listen

carefully, and fully understand the instructions before we begin. You will be asked some

review questions after the instructions, which have to be answered correctly before we can

begin the paid session.

The entire experiment will take place through computer terminals, and all interaction

between you will take place through the computers. It is important that you not talk

or in any way try to communicate with other participants during the experiment except

according to the rules described in the instructions.

We will start with a brief instruction period. During the instruction period, you will

be given a complete description of the experiment and will be shown how to use the

computers. If you have any questions during the instruction period, raise your hand and

your question will be answered out loud so everyone can hear. If any difficulties arise after

the experiment has begun, raise your hand, and an experimenter will come and assist you

privately.

This experiment will begin with a brief practice session to help familiarize you with

the rules. The practice session will be followed by a paid session. You will not be paid for

the practice session.

This paid session of the experiment has 2 parts. In each part you will make choices

over a sequence of 20 different decision rounds so in total you will make 40 decisions. In

each round, you will receive a payoff, that depends on your decision that round and on

the decision of one randomly selected participant you are matched with. We will explain

exactly how these payoffs are computed in a minute.

At the end of the paid session, you will be paid the sum of what you have earned in all

40 decision rounds, plus the show-up fee of $10.00. Everyone will be paid in private and

you are under no obligation to tell others how much you earned. Your earnings during

the experiment are denominated in POINTS. Your DOLLAR earnings are determined

by multiplying your earnings in POINTS by a conversion rate. In this experiment, the

conversion rate is 0.006, meaning that 100 POINTS equals 60 cents.

Here is how each decision round, or match, works. First, the computer randomly

matches you into pairs. Since there are 14? (note to reader: depends on session) partic-

ipants in today’s session, there will be 7? (note to reader: depends on session) matched
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pairs in each decision round. You are not told the identity of the participant you are

matched with. Your payoff depends only on your decision and the decision of the one

participant you are matched with. What happens in the other pairs has no effect on your

payoff and vice versa. Your decisions are not revealed to participants in the other pairs.

Next, the computer randomly assigns a number to you, which is equally likely to be

any number between 1 and 100. This number is called your “strength.” Each strength

number is chosen independently for each participant. Therefore usually you and the person

you are matched with will have different numbers, although there is a very small (1%)

chance the other participant in your pair has the same strength you have. You are told

your strength, but will not be told the strength of the other participant until after you

have made your decision.

You then have to make a decision to take one of two possible actions. These two

actions are called “fight” and “retreat”. If both of you choose retreat, then both of you

will receive a payoff of 40 points each. However, if either of you chooses fight, then the

one with the greater strength receives a 95 points payoff and the one with less strength

receives a 5 points payoff. Ties are broken randomly.

[SCREEN 1] This slide shows a summary of the Payoffs

Each of you must make your decision to fight or retreat at the same time, so neither

of you are told what the other participant chose (or their strength) until after both of you

have made your choices. The match is over when you and the person you are matched

with have both made a decision, and the computer will show you the results of your match

only.

When all pairs have finished the match and seen the results, we proceed to the next

match. For the next match, the computer randomly reassigns all participants to a new

pair, and randomly reassigns a new strength to each participant. Your new strength

assignment does not depend in any way on the past decisions or strengths of any partic-

ipant including yourself. Strength assignments are completely independent across pairs,

across participants, and across matches. After learning your new strength assignment,

you choose either “fight” or “retreat” and receive payoffs in a similar manner as in the

previous match.

This continues for 20 matches, at which point Part 1 of the experiment is over. I will

read you the instructions for Part 2 after we complete Part 1.

We will now begin the Practice session and go through two practice rounds. During

the practice matches, please do not hit any keys until you are asked to, and when you

enter information, please do exactly as asked. Remember, you are not paid for these 2

practice rounds. At the end of the second practice round you will have to answer some

review questions. Everyone must answer all the questions correctly before the experiment

can begin.

[AUTHENTICATE CLIENTS]

Please double click on the icon on your desktop that says “c”. When the computer
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prompts you for your name, type your First and Last name. Then click SUBMIT and

wait for further instructions.

[START GAME]

[SCREEN 2]

You now see the first screen of the experiment on your computer. It should look

similar to this screen.

At the top left of the screen, you see your subject ID. Please record that on your

record sheet now. You have been randomly matched by the computer with exactly one of

the other participants. This pair assignment will change after each match.

You have been assigned your strength for this match, which is revealed to you on

your screen. [point on overhead]. Your exact strength number on your own screen would

probably be different from the one on this slide.

The participant you are matched with was also randomly assigned a strength, but

that will not be revealed to you until the end of the match. All you know now is that their

strength is some number between 1 and 100, with every number being equally likely.

There are two buttons, one marked “Fight” and one marked “Retreat”. You must

choose one of those two buttons, but please do not do so yet. I want to remind you how

your payoffs will be computed. If you and the person you are matched with BOTH choose

retreat, then each of you receives a 40 points payoff. If either one of you chooses fight, then

whoever has the higher strength receives 95 points and whoever has the lower strength

receives 5 points. If you have the same strength, then the computer will randomly choose

one of you to receive 95 points and the other to receive 5 points.

At this time, if your subject ID is even, please click on the button labelled “fight”. If

your subject ID is odd, please click on the button labelled “retreat”.

When everyone has made a choice, you are told the choice made by the participant you

are matched with and also told that participant’s strength. The outcome is summarized

on your screen. [show on overhead screen]

[SCREEN 3]

Each Round Summary is shown on the center of the screen.

The bottom half of your screen contains a table summarizing the results for all matches

you have participated in. This is called your history screen. It will be filled out as the

experiment proceeds. Notice that it only shows the results from your pair, not the results

from any of the other pairs. PLEASE record this information on your record sheet.

We now proceed to the next match.

For the next match you will be randomly re-matched into pairs, and randomly receive

new strength assignments.

[START next MATCH]

Please notice your new strength assignment. [Reader: Ask if everyone sees it, and

wait for confirmation from them.] Please make the opposite decision in match 2 than you

made in match 1. That is, if your subject ID is even please click on the retreat button
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and if your subject ID is odd, please click on the “fight” button, and then wait for further

instructions.

[wait for them to complete match 2]

Practice match 2 is now over.

Please complete the review questions before we begin the paid session. Once you

answer all the questions correctly, click submit. After both participants in your pair have

answered the first round of questions, the next round of questions will appear. Please

answer all questions correctly and click submit and the quiz will disappear from your

screen. [WAIT for everyone to finish the Quiz]

Are there any questions before we begin with the paid session? We will now begin

with the 20 paid matches of Part 1. Please pull out your dividers for the paid session of

the experiment. If there are any problems or questions from this point on, raise your hand

and an experimenter will come and assist you.

[START MATCH 2]

[After MATCH 21 read:]

We have now reached the end of Part 1. Your total payoff from this part is displayed

on your screen. Please record this on your record sheet and CLICK OK. We will now give

you instructions for Part 2. Please listen carefully.

Part 2

Part 2 of the experiment will take place over a sequence of 2 practice and 20 paid

matches. This Part is almost exactly the same as Part 1, with one difference. For each

pair, one of the participants will choose to retreat or fight before the other participant

makes a choice. The other participant will then be told the first participant’s decision and

will then make their decision in response. Payoffs are computed exactly as before. For

each match, the computer randomly selects the participant to decide first, so sometimes

you will decide first and sometimes you will decide second. The assignment of who decides

first or second does not in any way depend on the strength assignment or past decisions.

The computer program just randomly assigns one participant for each pair to decide first.

We will now proceed through two practice matches to familiarize you with the screens,

which are slightly different than Part 1.

[Go to Match 22]

You now see the first screen of the experiment on your computer.

In this part of the experiment, the computer randomly assigns an order in which the

two members of your pair make decisions. If you are assigned as the first decision maker

in your match, your screen should look similar to this:

[SCREEN 4]

[Describe the screen by pointing and READ THE SCREEN]

Of course your exact strength number on your own screen would probably be different

from the one on this overhead.
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If you are assigned as the second decision maker in your match, your screen looks like

this:

[SCREEN 5]

[Describe the screen by pointing and READ THE SCREEN]

Of course your exact strength number on your own screen would probably be different

from the one on this overhead.

The first decision maker in each pair must make a decision. If you are decision maker

one and your ID is even please click on the Fight button now. If you are decision maker

one and your ID is odd please click on the Retreat button now. If you are decision maker

two, please wait until it is your turn to make a decision.

Next, the first decision maker’s choice is revealed to the second decision maker. Please

do not make any decisions until I finish explaining. The screen looks like:

[SCREEN 6] if decision maker one chose fight, READ the SCREEN

[SCREEN 7] if decision maker one chose retreat READ the SCREEN

After viewing this information, the second decision maker is prompted to a choice.

If decision maker one chose Fight, then the outcome does not depend on decision maker

two’s choice. In this case we simply ask decision maker two to click on the “continue”

button. If decision maker one chose retreat, then the outcome does depend on decision

maker two’s choice, so decision maker two must now make a choice of fight or retreat.

This information is summarized on this slide

[SCREEN 8]

If you are decision maker two and you have a choice, if your ID is even, please click

the Retreat button now. If your ID is odd, please click on Fight now. Otherwise, please

click on the continue button now. This is important so please do not forget to do so. The

match cannot proceed until the second decision maker has clicked a button.

The results of the match are then displayed for both decision makers in the pair. The

screen should look like:

[SCREEN 9] for first decision maker

[SCREEN 10] and like this for second decision maker

We will now proceed to the second practice match [CLICK NEXT MATCH]. When

you are prompted to make a decision, please make the opposite decision from your decision

in the first practice match. That is, if your ID is even, click on Retreat, and if your ID

is odd, click on Fight. Please go ahead and make your choices. If you are decision maker

two and you see the continue button, please remember to click on it or it will delay the

experiment.

[Advance to match 23 and wait for participants to finish]

The practice match is now over. Are there any questions before we begin the 20 paid

matches?

[SCREEN 11] Here is a summary of the Payoff

[START MATCH 24]
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[After MATCH 44, read:]

Your Total Payoff for both parts is displayed on your screen. Please record this payoff

on your record sheet and remember to CLICK OK after you are done.

[CLICK ON WRITE OUTPUT]

Your total payoff is this amount plus the show-up fee of $10. We will pay each of you

in private in the next room in the order of your Subject ID number. Remember you are

under no obligation to reveal your earnings to the other players.

Please put the mouse behind the computer and do not use either the mouse or the

keyboard at all. Please remain seated and keep the dividers pulled out until we call you

to be paid. Do not converse with the other participants or use your cell phone while in

the laboratory.

Thank you for your cooperation.

Could the person with ID number 0 go to the next room to be paid.
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Figure 1. Empirical Fight Rates. 
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Figure 2.  Distribution of cutpoints, by condition.
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Figure 3. Empirical and Fitted Fight Rates. 
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