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1 Introduction

Traditionally, we treat expansions and contractions of the economy as a result

of exogenous random shocks explained by a change in policy, a change in demand,

technological change, and other supply shocks. An alternative view is to consider

the endogenous aggregate ßuctuation via a chaotic system, or a simple nonlinear

deterministic system that can have stochastic-like unpredictable behavior. One of

the most convenient empirical methods for considering two competing views of the

business cycle is to compute a stability measure called the largest Lyapunov exponent.

It measures the sensitive dependence on initial conditions and is often employed to

deÞne a chaotic behavior in either a deterministic or stochastic nonlinear system

(Eckmann and Ruelle, 1985, and Nychka, Ellner, Gallant, and McCaffrey, 1992). A

chaotic system has a positive Lyapunov exponent while an exogenous system with a

unique and globally stable steady state has a negative Lyapunov exponent.

In practice, the nonparametric regression method is often employed to compute

Lyapunov exponents of an unknown nonlinear autoregressive (AR) model. Such a

nonparametric approach was Þrst considered by Eckmann and Ruelle (1985) and

Eckmann, Kamphorst, Ruelle, and Ciliberto (1986) and its statistical properties are

later considered byMcCaffrey, Ellner, Gallant, and Nychka (1992), Whang and Linton

(1999), and Shintani and Linton (2004). By applying this nonparametric method to

the GDP series from OECD countries, Shintani and Linton (2003) found that the

Lyapunov exponents were signiÞcantly negative for most cases, which supported the

exogenous view of a business cycle as opposed to the chaotic view. This approach

is also applied to foreign exchange rates by Dechert and Gençay (1992), monetary
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aggregates by Serletis (1995) and Barnett, Gallant, Hinich, Jungeilges, Kaplan, and

Jensen (1995), and the stock return series by Abhyankar, Copeland, and Wong (1997)

and Shintani and Linton (2004). However, one potential drawback of the approach

employed in these studies is that only a univariate time series could be considered

in each estimation. If the true system consists of N equations, the theoretical result

known as Takens embedding implies that 2N + 1 lags are required in the nonlinear

AR model for this univariate method to be valid. Therefore, when N is large, the

nonparametric estimation method is known to be subject to computational difficulties

(the curse of dimensionality).

The main objective of this paper is to consider an alternative approach to con-

ducting a test regarding the stability of the multivariate nonlinear system with a

large N . Instead of running a nonparametric regression using each individual eco-

nomic time series, we consider a multiple time series generated from a dynamic factor

model with a common factor following a nonlinear process. Such a common factor

approach achieves dimensional reduction by construction and thus is less subject to a

high dimensionality problem, unlike the nonparametric regression applied to a single

series. For this reason, introducing an assumption of the common factor structure

in a system of equations seems to be advantageous in a stability analysis of business

cycles.

The dynamic factor model, originally considered by Sargent and Sims (1977) and

Geweke (1977), has long been employed in macroeconomic analysis, including con-

struction of business cycle indexes, analysis of stock price dynamics and international

business cycle analysis. The dynamic factor model also Þts well within the frame-

work of the dynamic stochastic general equilibrium (DSGE) models, the workhorse in
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the modern macroeconomics literature, since they predict that a small set of driving

forces is responsible for covariation in macroeconomic variables. Furthermore, recent

theoretical studies revealed that chaotic endogenous ßuctuation can be derived under

a DSGE-type framework (e.g., Brock and Hommes, 1998). In this paper, we consider

the possibility of applying the Lyapunov exponent-based test to the estimated com-

mon factors for the purpose of determining whether these sources of business cycles

are better explained using endogenous or exogenous models.

Our testing procedure consists of two steps. We Þrst estimate the common factors

in the dynamic factor model by employing the method of principal components and

then test the nonlinear factor structure and the chaotic behavior using the estimated

factors. The estimator based on principal components has become increasingly popu-

lar in the recent literature of dynamic factor models (e.g., Stock and Watson, 2002a,b,

Bai, 2003, Diebold, 2003, and Shintani, 2004). We emphasize that the principal com-

ponent approach is indeed useful in a high dimensional nonlinear framework because

it remains theoretically valid under a very ßexible nonlinear dynamic factor structure

when both the number of the series (N) and the time series observations (T ) are

large. To investigate this theoretical prediction, we conduct a Monte Carlo simula-

tion using the data generated from both chaotic and stable nonlinear models. The

results of the simulation suggest that the method works well for many combinations

of N and T typically available in practice. To provide empirical evidence regarding

the nonlinear dynamics and the stability, we utilize the full balanced panel of 159

monthly U.S. macroeconomic time series (N = 159) with the sample period from

1959:3 to 1998:12 (T = 478), and estimate a large dimensional dynamic factor model.

The evidence suggests the possibility of nonlinearity in the U.S. while it excludes the
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class of nonlinearity that can generate endogenous ßuctuation or chaos. This evidence

suggests the justiÞcation of using the nonlinear impulse response analysis proposed

by Gallant, Rossi, and Tauchen (1993), and Potter (2000); thus, we also report the

nonlinear impulse response functions of the common factors.

The remainder of the paper is organized as follows: Section 2 introduces a dynamic

factor model and the Lyapunov exponent of a common factor. Simulation results to

evaluate the Þnite sample performance of the method employed in this paper are

provided in Section 3. Section 4 presents the empirical results of a nonlinear stability

analysis using the large U.S. data. Some concluding remarks are made in Section 5.

2 Model

Let xit be an i-th component ofN -dimensional multiple time seriesXt = (x1t, . . . , xNt)0

and t = 1, ..., T . A simple dynamic factor model associates each xit with a scalar com-

mon factor ft in equations

xit = bift + eit, i = 1, ..., N, (1)

where bi�s are factor loadings with respect to i-th series, eit�s are idiosyncratic shocks.

A conditional mean function of the common factor ft is assumed to have a p-th order

nonlinear AR form,

ft = m (ft−1, ..., ft−p) + ut (2)

where ut is a martingale difference sequence with E(ut|Ft−1) = 0 and E(u2t |Ft−1) = σ2t
where Ft−1 = {ft−1, ft−2, ...}. Depending on the shape of the nonlinear function
m (ft−1, ..., ft−p), the dynamics of ft can be either chaos or stable. The largest Lya-
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punov exponent of the common factor ft is deÞned as

λ ≡ lim
M→∞

1

2M
ln |ν1(M)| (3)

where ν1(M) is the largest eigenvalue of T0MTM , and TM = JM−1 · JM−2 · · · · · J0
where

Jt =


∆m1t ∆m2t · · · ∆mp−1,t ∆mpt

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 , (4)

for t = 0, 1, . . . ,M − 1, where ∆mjt = ∂m(ft)/∂ft−j, for j = 1, . . . , p, are partial

derivatives of conditional mean function evaluated at ft = (ft−1, ..., ft−p). A chaotic

system has a positive Lyapunov exponent while a exogenous system with a unique

and globally stable steady state has a negative Lyapunov exponent.

When factor ft is observable, the conditional mean function in equation (2) can be

directly estimated using a nonparametric regression method applied to ft. The result

can then be used to construct a consistent estimator of λ following the approach used

by Nychka, Ellner, Gallant, and McCaffrey (1992) and others. However, since ft is

not observable in the dynamic factor model, the direct estimation is not feasible.

One may want to employ a maximum likelihood estimator (MLE) that incor-

porates latent variables under some distributional assumptions on eit�s and ut, the

approach used by Stock and Watson (1989), Chauvet (1998), and Kim and Nelson

(1998) in their analysis of the business cycle index. However, the MLE is not suitable

in the current context because of the following two reasons. First, the MLE approach

allows nonlinearity but the functional form in equation (2) needs to be speciÞed.

The parametric approach of Lyapunov exponent estimation has been considered in

some cases (e.g., Bask and de Luna, 2002). However, in practice, information on the
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functional form is usually not available, and therefore the nonparametric approach

is generally preferable in the estimation of Lyapunov exponent. Second, the MLE

approach becomes computationally difficult when the number of the series (N); thus,

the number of parameters becomes large.

In this paper, we Þrst estimate the unobservable common factor ft nonparamet-

rically based on the principal components of N variables instead of relying on the

MLE. We then run a nonparametric regression of equation (2) using the estimated

factor and compute λ just as in the case when ft is observable. Estimation of the

latent factor based on principal components has become increasingly popular in the

recent literature of dynamic factor models (e.g., Stock and Watson, 2002a,b, Bai,

2003, Diebold, 2003, and Shintani, 2004). We emphasize that this approach is advan-

tageous for the nonlinear stability analysis in a dynamic factor framework since the

estimator of the factor remains consistent under a very ßexible nonlinear dynamic

factor structure when the number of the series (N) and the time series observations

(T ) are large.

Our approach contrasts with the case of N dimensional system without assuming

a common factor structure. In such a case, embedding is required to estimate the

Lyapunov exponents (see Gençay and Dechert, 1992, for example). Suppose the

dynamics of Xt = (x1t, . . . , xNt)0 are given by Xt = G(Xt−1) where G : RN → RN .

In addition, suppose a single time series yt = w(Xt) where w : RN → R will be used

for the nonlinear stability analysis. The Lyapunov exponent of G is known to be

preserved in the embedded dynamics of yt given by yt = m (yt−1, ..., yt−p∗) where p∗

is an embedding dimension that satisÞes p∗ ≥ 2N + 1. Therefore, computing λ of N
dimensional system based on nonlinear AR model of a single series yt is justiÞable as
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long as p∗ lags are included. However, one limitation is that N needs to be small to

employ a nonparametric method. As N becomes large, the nonparametric regression

quickly becomes difficult since p∗ depends on N (the curse of dimensionality). Our

dynamic factor approach, in contrast, is not subject to this problem since the lag

length p in equation (2) is assumed to be Þxed regardless of the size of N .

The remaining issue is to see whether we can justify replacing the true factor

with the estimated factor in the nonparametric regression. A related issue in the

nonparametric kernel estimator for time series was also considered by Andrews (1995).

He derived the conditions required for the generated regressor that depends on the

common
√
T -consistent estimator to become negligible in the limiting distribution

of nonparametric regression. In the rest of this section, we discuss that a similar

argument can be also applied to the nonparametric estimation of factor dynamics.

Our estimator of a common factor, eft, is the Þrst principal component of N
series which corresponds to the Þrst eigenvector of the T × T matrix XX 0 with

normalization T−1
PT

t=1
ef 2t = 1, where X is the T × N data matrix with t-th row

given by X 0
t = (x1t, · · · , xNt). The asymptotic theory of eft under N, T → ∞ is

developed by Stock and Watson (2002b) and Bai (2003) and others. Under mild

conditions on moments and memory, the estimator eft has been shown to be a √N -
consistent estimator of ft (up to a scaling constant). Below is a set of assumptions

typically employed in these theoretical studies. Note that const. implies �for some

Þnite positive constant.�

Assumption F: (i) E (ft) = µf = 0, E ((ft)2) = Σf = 1, E ((ft)4) ≤ const. and
√
T (F 0F/T − Σf) = Op (1) where F = [f1, · · · , fT ]0.
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(ii) |bi| ≤ const. and
√
N (B0B/N − Σb) = Op (1) where B = [b1, · · · , bN ]0.

(iii) E (eit) = 0, E |eit8| ≤ const., E(eiseit) = 0 for all t 6= s, σ2e = N−1PN
i=1 σ

2
ei ≤

const., and E(eitejt) = τ ij ≤ const. for all t, i and j.
(iv) {ft}, {bi} and {eit} are mutually independent.
(v) N/T 2 →∞ as T →∞.

(i) and (ii) are the moment conditions for the factor ft and factor loading bi, respec-

tively. (iii) is a condition on the cross-sectional correlation of the idiosyncratic error

eit. This allows the dynamic factor model to have an approximate factor structure

instead of an exact factor structure. Serial correlation of eit can be also incorporated

but is not allowed here. (iv) and (v) are stronger than necessary but are introduced

here to simplify the derivation of the theoretical result to be followed.

In principle, any nonparametric estimator can be used to estimate equation (2).

Here, we follow Andrews (1995) and restrict our attention to Nadaraya-Watson type

kernel regression estimator with p = 1 given by

bm (f) = TX
t=1

ftK

µ
ft−1 − f
h

¶
Á

TX
t=1

K

µ
ft−1 − f
h

¶
(5)

where K is a kernel function and h is a bandwidth such that h → 0 as T → ∞.
This is an infeasible estimator since ft is not observable. The feasible estimator that

replaces ft with eft will be denoted by em(f). To derive the asymptotic properties of
the nonparametric estimator, we introduce the following assumptions.

Assumption K: (i) m(f) is twice continuously differentiable for all f .

(ii) The kernel functionK is symmetric around zero,
R
K(u)du = 1,

R |K(u)| du <
∞, |u| |K(u)|→ 0 as u→ 0, sup|K(u)| <∞, R K2(u)du <∞ and

R
K 02(u)du <∞.
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(iii) ft is strictly stationary with twice continuously differentiable marginal density

g(f)(> 0) and is strong-mixing with mixing coefficients α(j) satisfying
P∞

j=T α(j)
1/2 =

O(T−1), and max1≤t≤T |ft| = Op(lnT ).
(iv) h = const.× T−β for 0 < β < 1

3
.

(i) and (ii) are the standard conditions for the nonparametric kernel regression

estimators. The last condition in (iii) is from extreme value theory and is expected

to hold for a very broad class of distribution. The rate of bandwidth in (iv) allows

an optimal rate that minimizes the MSE (β = 1/5).

Proposition 1. Let xit and ft be generated from (1) and (2), respectively, and

suppose that assumptions F and K are satisÞed. Then bm (f) − em (f) = op(1/√Th)
for all f .

The results above provide the validity of the two-step estimation applied to the

estimated factor. When both N and T tend to inÞnity, the effect of the estimation

error of the factor becomes negligible in the asymptotic distribution of the Þnal esti-

mator, since the variance of the nonparametric kernel estimator bm (f) is Op(1/(Th)).
While we only provide the proof for p = 1 case in the Appendix, the result can easily

be generalized to the case of higher order models with p > 1. Furthermore, the re-

sult of kernel autoregression in Proposition 1 can be applied to other nonparametric

methods, such as neural networks, by replacing the assumptions to the ones suitable

for each estimator.
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3 Simulation Results

In this section, we study the Þnite sample performance of the Lyapunov exponent

estimator of the common factor for the various combination ofN and T . In particular,

we consider two nonlinear AR(1) processes to generate ft, the logistic map with a

positive λ and the STAR model with a negative λ.1 The Þrst model is the logistic

map with a system error given by

ft = aft−1(1− ft−1) + σtεt (6)

where εt ∼iid U(−1/2, 1/2) and σt = σ ×min {aft−1(1− ft−1), 1− aft−1(1− ft−1)}.
This particular form of conditional heteroskedasticity ensures that the process ft is

restricted to the unit interval as long as 0 ≤ σ ≤ 2. In the case of σ = 0, the

dynamics of the logistic map is deterministic chaos when the parameter a is in the

range of 3.57 < a ≤ 4. In this simulation, we focus on the chaotic case with a = 4.
Note that when p = 1, the deÞnition of the Lyapunov exponent in equation (3)

simpliÞes to

λ ≡ lim
M→∞

M−1
MX
t=1

ln |m0(ft−1)| (7)

where m0(f) is the Þrst derivative of the function m(f). When σ = 0, the value

of λ for equation (6) is positive and is known to be ln 2 ≈ 0.693. For moderate

σ > 0, equation (6) becomes a stochastic system but its dynamics can be considered

as noisy chaos when λ > 0. True λ�s of equation (6) for various values of non-zero

σ are computed using simulation method and provided in Table 1. It shows that λ

approaches 0.693 as σ becomes smaller.

1We consider these two nonlinear models because they are often used in economic analysis. For
example, a logistic model is used in Day (1982) and a STAR model is used in Michael, Nobay and
Peel (1997).
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As a second nonlinear model, a smooth transition AR (STAR) model is considered.

For a linear AR(1) model with m(ft−1) = ρft−1, the Lyapunov exponent is λ = ln |ρ|
since m0(f) = ρ for all f . Therefore, the stationary condition |ρ| < 1 corresponds to
a negative Lyapunov exponent. For example, in the case of ρ = 0.5, λ is − ln 2 ≈
−0.693. In the case of a unit root with ρ = 1, λ is zero. Therefore, in the linear case
with positive ρ, the faster speed of adjustment implies smaller λ (λ→ −∞) and the
higher persistence implies larger λ (λ→ 0). However, in economic analysis, the speed

of adjustment is often believed to be faster when deviation from the steady state is

larger. The STAR model can be used to incorporate such a nonlinear adjustment. In

simulation, we use

ft =

 µ+ ρft−1 + σεt ft−1 > c
S(ft−1) + σεt −c ≤ ft−1 ≤ c
−µ+ ρft−1 + σεt ft−1 < −c

(8)

where S(ft−1) = ft−1− ft−1{1− exp(−f 2t−1)}, εt ∼iid N(0, 1), ρ = 0.5, µ = S(c)− ρc
and c(> 0) is a threshold value that satisÞes S 0(c) = ρ. The function S(ft−1) provides

a simple STAR structure with the slowest speed of adjustment around the steady state

level f = 0. The linear AR structure outside the (−c, c) band is introduced here to
ensure that the speed of adjustment is always positive. In this model, m0(f)→ 1 as

f approaches 0 and m0(f) → ρ = 0.5 as |f | increases. Therefore, we expect that λ
approaches 0 as σ becomes smaller and λ approaches ln |ρ| = − ln 2 ≈ −0.693 as σ
becomes larger. True λ�s for various values of σ obtained from simulation in Table 1

lie between −0.693 and 0 and thus conÞrm this conjecture.

We Þrst evaluate the performance of a nonparametric estimator of the Lyapunov

exponent in the case of observable ft. Such an estimator is not feasible in practice,

but can be obtained in the simulation study. In this section, to estimate m function
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in equation (2), we employ a local polynomial estimator which is a type of kernel

estimator. Note that the Nadaraya-Watson estimator considered in the previous

section is a local polynomial estimator of order zero (local constant estimator). Here

we employ the local polynomial estimator of order two (local quadratic estimator)

since this choice of order is known to be most appropriate for the Þrst derivative

estimation required for the Lyapunov exponent computation (See Fan and Gijbels,

1996).2

Table 1 reports the results for T =50, 100, 200, 400 and 800 for both the logistic

map and the STAR model based on 1,000 iteration.3 The set of values of σ under

consideration is σ ∈ {0.00, 0.05, 0.10, 0.20, 0.50} for the logistic map and σ ∈ {0.05,
0.10, 0.20, 0.50, 1.00} for the STAR model. For the logistic map with positive true
λ, the Lyapunov exponent estimator performs surprisingly well for all the cases. The

mean of the estimators shows that small sample bias is almost negligible even with

T =50. Decreasing standard deviation with increasing T conÞrms the consistency of

the estimator. In contrast, the small sample bias seems to be present for the STAR

model with negative true λ. This bias, however, diminishes quickly as sample size

grows. The standard deviation is somewhat larger than that of logistic map case for

the corresponding T , but is decreasing with T conÞrming the adequacy of asymptotic

theory. The difference between mean and median implies some skewness to the left for

small T but it disappears for large T . Because we cannot expect the feasible estimator

based on the estimated factor to perform better than the infeasible estimator, this

2Since the nonlinear estimation is not invariant to scale, we always normalize the factors in the
(0,1) unit interval before running a nonparametric regression for this paper.

3We use standard normal density as a kernel function (Gaussian kernel) with several different
choices of bandwidth h. In the table, the results based on h = 0.3×range are reported.
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result serves as a benchmark in the following analysis.

Let us now consider the Lyapunov exponent estimation applied to the factor

estimated using principal components. Individual series xit is generated from equation

(1) with eit and bi being iid N(0, 1). The common factor ft generated from both

the logistic map and the STAR model is normalized to have unit variance before

generating xit so that the common component bift and the idiosyncratic component

eit each has the same contribution to the variance of xit.

We evaluate the performance of our estimator for all the combinations of N =25,

50, 100, 200, and 400 and T =100, 200, and 400. Tables 2 to 4 report the results

for T =100, 200, and 400, respectively, using various values of N . For each table,

the results from the infeasible estimator for corresponding T are also reported for

the purpose of comparison with our proposed estimator. For each table with Þxed

T , the estimator applied to the principal components of xit approaches the infeasible

estimator as N grows. This evidence combined with the results from Table 1 suggests

convergence of the estimator predicted by the asymptotic theory under N, T → ∞.
The bias from small N turns out to be negative for both the logistic map and the

STAR model. In addition, the skewness with small N can be now seen in the case

of the logistic map, which was not present in the infeasible estimators with small T .

This asymmetry in distribution, however, is not observed when N becomes as large

as 100. In contrast, some skewness is present for large N in the case of the STAR

model with small T because of the skewness in the infeasible estimator.

Overall, the asymptotic approximation seems to work well for many combinations

of N and T typically available in practice. Most importantly, the small standard

deviation in the simulation implies the successful detection of correct sign of λ for
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both the logistic map and the STAR model despite the presence of some Þnite sample

bias from smallN . Since the positive λ is the key to distinguishing the chaotic process

from the stable system, we expect that conducting the inference regarding the sign

of λ of the principal components will work well in the next empirical section.

4 Empirical Results

4.1 Testing for Neglected Nonlinearity in Principal Compo-
nents

In this section, we investigate the nonlinear stability of the common factors ex-

tracted from the 159 monthly macroeconomic variables from the U.S. We use the same

data source (and transformations) employed in Stock and Watson (2002a) in their

analysis of macroeconomic forecasting using estimated factors from a large number

of predictors (diffusion index forecast), but we focus only on balanced panels. The

series in a list provided in Appendix B of Stock and Watson (2002a) are divided

into 14 categories, each of which represents an important facet of the macroeconomic

activities (e.g., production, consumption, employment, inßation, interest rates). The

sample period is from 1959:3 to 1998:12, giving a maximum number of time series

observations T = 478. All the series are standardized to have sample mean zero and

unit sample variance since principal components are not scale-invariant.

The estimated series of eft based on the Þrst principal component of the full bal-
anced panel series xit with N = 159 is shown in Figure 1. In the Þgure, eft is rescaled
to have the same drift and variance as the (logarithm of) industrial production.4 The

comparison of eft with the NBER recessionary episodes, shown in the shaded area,
4Therefore, the series in the Þgure is equivalent to the cummulated sum of the Þrst principal

component rather than the original series.
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shows the clear procyclical property of the common factor. The asymptotic theory

predicts the eft to be a consistent estimator of ft as N → ∞. To investigate this
prediction using the data, we take Þrst Þve and two series from each category in

Appendix B of Stock and Watson (2002a) and compute eft based on two subsamples
with N = 63 and 27. Two additional series of eft are also shown in the same Þgure.
Consistent with the theory, it shows a larger difference in eft between N = 27 and

N = 159 compared to the difference between N = 63 and N = 159.

As a preliminary analysis, we Þrst investigate the nonlinearity in the factor dynam-

ics in equation (2). In applications, a linear structure is often assumed in equation

(2) to simplify the analysis (e.g., Stock and Watson, 1989). Since the chaotic dy-

namics with positive λ is only possible with nonlinear dynamics, we employ several

tests for the null hypothesis of linearity (or neglected nonlinearity) that has a power

against a wide range of nonlinear alternatives. When p = 1, our testing hypothesis

is m(ft−1) = ρft−1, or E [ut|ft−1] = 0, where ut = ft − ρft−1. This hypothesis can be
rewritten as the unconditional moment restriction of the form E [Ψ(ft−1)ut] = 0 with

any vector of measurable functions Ψ(ft−1); thus a number of tests can be constructed

with the different choice of Ψ(ft−1).

Ramsey�s (1969) regression speciÞcation error test (RESET), which is one of the

most well-known tests in the speciÞcation testing literature, uses a s×1 vector of poly-
nomial functions of Þtted value from linear regression, Ψ(ft−1) = ((bρft−1)2, . . . , (bρft−1)s)0.
The test statistic is deÞned as RESET = T

³PT
t=1 bu2t −PT

t=1 bv2t´ /PT
t=1 bu2t , where

but = ft − bρft−1 and bvt are the residuals from the regression of but on auxiliary regres-
sors Ψ(ft−1) (and ft−1), and asymptotically follows χ2 distribution with s degree of

freedom.
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For White�s (1989) neural network test, Ψ(ft−1) =
¡
ψ (γ1ft−1) , . . . ,ψ

¡
γqft−1

¢¢0
is

a q×1 vector of logistic activation functions ψ with the coefficients γj�s being randomly
drawn independent of ft−1. The test statistic (NN) can be similarly constructed by

using auxiliary regressors and its limit distribution is χ2 distribution with q degree

of freedom.

One drawback of the White�s neural network test is the unidentiÞability of γj�s

under the null hypothesis. Instead of using random γj�s, Teräsvirta, Lin, and Granger

(1993) replaced the activation functions with their Volterra expansion up to the third

order under the null. This LM type neural network test (NN-LM) can be constructed

by using auxiliary regressors based on quadratic and cubic terms from the Volterra

expansion of the nonlinear AR model (Ψ(ft−1) = ((ft−1)2, (ft−1)3)
0 for AR(1) case).

The test statistic asymptotically follows χ2 distribution with p(p+1)/2+p(p+1)(p+

2)/6 degree of freedom where p is lag order of AR model.

The last test we consider is the kernel-based consistent speciÞcation test for AR

models proposed by Fan and Li (1997). It utilizes the Ψ(ft−1) = E (ut|ft−1) g (ft−1)
where g (ft−1) is a density function of ft−1. The test statistic (KERNEL) is based on

kernel estimator of E [Ψ(ft−1)ut] and follows asymptotically normal with an appro-

priate standardization.

We apply these four tests to eft, which is estimated by the principal components
method since ft is not available. In addition to the Þrst principal component, we

apply the same tests to the k-th principal component for k = 2 to 6. Table 5 reports

the results of all four tests applied to each principal component for p = 1 to 4. For

RESET, the results based on s = 4 are reported. For NN, we use three (excluding the

Þrst) principal components of Ψ(ft−1) with q = 10 to avoid collinearity of ft−1 and
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Ψ(ft−1). Improved Bonferroni procedures from Þve draws is then used to construct p-

values (see Lee, White, and Granger, 1993, for this procedure in detail). The RESET,

NN, and NN-LM tests reject the linear hypothesis of the common factor for many

cases at the conventional signiÞcance level. In contrast, based on the KERNEL test,

the same hypothesis is not rejected for all cases. One possible reason of this mixed

outcome is the difference in the power among the speciÞcation tests.5 However, since

at least three tests provided evidence against linearity, we proceed to the estimation

and test of the Lyapunov exponent of the common factor using the nonparametric

regression method.

4.2 Lyapunov Exponents of Principal Components

Here we compute the Lyapunov exponent, λ, of the common factor obtained from

the principal components. As an estimation method of the nonlinear AR model of

equation (2), we employ a kernel-based nonparametric method � the local polynomial

estimator of order two � the method used in the simulation section. In addition to the

kernel-based method, we also consider the neural networks as an alternative method

for estimating the nonlinear function. The Þrst and latter methods can be considered

as the local and global nonparametric methods, respectively, and thus reporting both

results should provide useful information regarding the robustness of our approach

to the choice of the estimator.6 The stability of the nonlinear system can be directly

investigated by conducting a hypothesis test regarding the sign of λ using the standard

error of the estimator of λ (see Shintani and Linton, 2004, for this procedure in detail).

5Lee�s (2001) simulation study compared the performance of NN and KERNEL and reported
that KERNEL was less powerful than NN unless the bootstrapped critical value was used.

6These two methods are also employed in Shintani and Linton (2003) in their study of nonlinear
stability in the international output series.
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Table 6 shows the Lyapunov exponent estimates of the principal components of

159 series based on the nonlinear AR model with p = 1 to 4. In addition to λ of the

Þrst principal component, those of the k-th principal component from k = 2 to 6 are

also reported. Both full sample estimates (M = T ) and block estimates (M < T )

are presented.7 For the kernel-based estimation, Gaussian kernel function, K, is used

with the bandwidth h = 0.2×range. For the neural network estimation, the logistic
activation function, ψ, is used with the number of hidden units q = 4.8 For all cases,

the Lyapunov exponents of the Þrst principal component are signiÞcantly negative,

implying evidence against a chaotic explanation of business cycles. This empirical

Þnding is robust to the choice of nonparametric methods � kernel regression and

neural networks.

The second to sixth principal components also provide evidence against chaos

while the second principal component has a somewhat larger exponent in comparison

with the other principal components.

These results are consistent with the former studies that applied the nonparamet-

ric Lyapunov exponent test to a single time series. It is worth pointing out that we

are considering a system of a large number of variables and still obtaining evidence

of nonlinear stability.

7For block estimation, we use M = 70 and report the median based on six blocks. Here, M is
approximately 8× (T/ lnT )1/2.

8To solve the minimization problem required for the neural network estimation, the criterion
function is modiÞed to have the weight decay identical to the one employed in Franses and van Dijk
(2000).
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4.3 Nonlinear Impulse Response Function of Principal Com-
ponents

The negative Lyapunov exponents can be considered an empirical justiÞcation of

the impulse response analysis that is commonly used among macroeconomists since

it requires the assumption of the exogenous shocks and a stable steady state in the

system.

For the nonlinear system, the nonlinear impulse response analysis was proposed

by Gallant, Rossi, and Tauchen (1993), and Potter (2000). Here we compute the non-

linear impulse response function of the common factors based on the nonparametric

method. One of the most frequently used deÞnitions of the n-period ahead nonlinear

impulse response is

IRn(δ) = E(ft+n−1|ft−1 = f ∗)− E(ft+n−1|ft−1 = f)

= mn(f
∗)−mn(f)

where ft−1 = (ft−1, ..., ft−p), f∗ =
¡
µf + δ, µf , ..., µf

¢
and f =

¡
µf , µf , ..., µf

¢
. Unlike

the linear impulse response function, the nonlinear impulse response function is known

to depend on the size of shock δ and the initial condition µf . Note that the mean

µf is identical to the steady state level in the absence of shocks for a globally stable

system with negative λ. In contrast, in the case of chaos, µf cannot be considered as

the steady state. In addition, a small difference in δ results in completely different

shapes of the impulse responses. Therefore, the nonlinear impulse response analysis

is inappropriate for a system with positive λ since it cannot represent the typical

shock propagation process in the system.

The nonlinear impulse response function can be obtained by estimating the n-
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period ahead conditional mean function mn (ft−1, ..., ft−p) using the same nonpara-

metric method used in the estimation of 1-period ahead conditional mean function

m (ft−1, ..., ft−p) = m1 (ft−1, ..., ft−p) in equation (2). As in the 1-period ahead case,

nonparametric regression bmn(f) based on ft is not feasible and emn(f) based on eft
need to be employed.

Figures 2A to 2D show the nonlinear impulse response function for the case of

p = 1 to 4, respectively. For the size of the shock, we use δ ∈ {+2σ, +σ, −σ,
−2σ} where σ is the standard deviation of the shocks estimated using the residuals
of the nonparametric regression of equation (2). The linear impulse responses from

the linear AR models are also shown in the Þgures for comparison. The shapes of

impulse responses in Þgures show a clear difference between the linear and nonlinear

cases.

Recall that the larger Lyapunov exponent was obtained for the second principal

component (k = 2) compared to the Þrst principal component (k = 1) in the previous

section. The nonlinear impulse responses of the second principal component are

shown in Figures 3A to 3D for the case of p = 1 to 4, respectively. Comparisons with

Figures 2A to 2D reveal a much higher persistence of common shocks in the second

factor, which is consistent with a less stable result from the Lyapunov exponent. Half-

lives computed from these impulse responses can be used to measure the persistence

in common shocks. For example, when p = 2, half-lives from the linear impulse

responses are 1.20 months for k = 1 and 3.54 months for k = 2. When nonlinear

impulse responses are used, the half-lives of the +2σ, +σ, −σ, and −2σ shocks in the
Þrst principal component (k = 1) are 0.87, 0.93, 0.97, and 1.00 months, respectively.

In contrast, the half-lives of corresponding shocks in the second principal component
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(k = 2) are 5.05, 5.06, 5.27, and 5.32 months, respectively. According to Stock and

Watson (2002a, p.153), the Þrst factor loads primarily on output and employment

and the second factor, on interest rate spreads, unemployment rates, and capacity

utilization rates. While identiÞcation of each shock in two factors is not our intention

here, the results of our nonlinear analysis seem to provide some useful information

regarding the characteristics of the source of business cycles.

5 Conclusion

The largest Lyapunov exponent is a useful nonlinear stability measure in distin-

guishing chaos from an exogenous shock-driven aggregate ßuctuation in an economy.

In practice, this measure is nonparametrically estimated from a single economic time

series. Such an approach, however, cannot be applied to test the nonlinear stability

of a large system of equations because of the dimensionality problem of the nonpara-

metric methods. To circumvent this problem, we proposed computing the nonlinear

stability measure of the common component of multiple time series under the frame-

work of a dynamic factor model.

We employed a method of principal components to estimate the unobservable

common factors since the method is known to provide a consistent estimator when

a large panel data is available. Furthermore, the nonparametric regression based on

the estimated factor was shown to be a valid approach to investigating the nonlinear

dynamic factor structure. The simulation evidence also suggested that our procedure

worked well with a sample size typically available in practice.

The empirical evidence from a large U.S. panel data suggested the possibility

of nonlinearity in the system while it excluded the class of nonlinearity that could
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generate endogenous ßuctuation or chaos. This result was consistent with the former

studies that applied a nonparametric Lyapunov exponent test to a single time series

(e.g., Shintani and Linton, 2003). Therefore, we now have evidence on nonlinear

stability not only within a univariate or a small system of equations but also within

a system of a large number of variables.
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Appendix A: Proofs

Lemma A.1. Suppose assumptions F and K are satisÞed. Then,

(i) 1√
Th

PT
t=1

³ eft −Hft´K ³ ft−1−fh

´
= op(1),

(ii) 1√
Th3

PT
t=1

³ eft−1 −Hft−1´K 0
³
ft−1−f

h

´
= op(1),

(iii) 1√
Th3

PT
t=1

³ eft−1 −Hft−1´ ftK0
³
ft−1−f

h

´
= op(1), and

(iv) 1√
Th3

PT
t=1

³ eft −Hft´³ eft−1 −Hft−1´K 0
³
ft−1−f

h

´
= op(1)

where H = v−1( eF 0F/T )(B0B/N), eF =
h ef1, · · · , efT i0and v is the largest eigenvalue of

XX0/TN .

Proof of Lemma A.1.

From Proposition 2 of Bai (2003), max1≤t≤T
¯̄̄ eft −Hft ¯̄̄ = Op(T−1/2) given N/T 2 →

∞. The result for Lemma A.1(i) follows from

1√
Th

TX
t=1

³ eft −Hft´K µft−1 − f
h

¶

≤
√
Th

Ã
1

Th

TX
t=1

K

µ
ft−1 − f

h

¶!
max
1≤t≤T

¯̄̄ eft −Hft ¯̄̄
= Op

³√
Th
´
·Op (1) ·Op(T−1/2) = Op(T−β/2).

Similarly, for (ii),

1√
Th3

TX
t=1

³ eft−1 −Hft−1´K0
µ
ft−1 − f

h

¶

≤
√
Th

Ã
1

Th2

TX
t=1

K 0
µ
ft−1 − f

h

¶!
max
1≤t≤T

¯̄̄ eft −Hft ¯̄̄
= Op

³√
Th
´
·Op (1) ·Op(T−1/2) = Op(T−β/2).

The results for (iii) and (iv) follow from

1√
Th3

TX
t=1

³ eft−1 −Hft−1´ ftK0
µ
ft−1 − f

h

¶

≤
√
Th

Ã
1

Th2

TX
t=1

K 0
µ
ft−1 − f

h

¶!
max
1≤t≤T

¯̄̄ eft −Hft ¯̄̄ max
1≤t≤T

|ft|

= Op
³√
Th
´
·Op (1) ·Op(T−1/2) ·Op(lnT ) = Op

µ
lnT

Tβ/2

¶
.

and
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1√
Th3

TX
t=1

³ eft −Hft´³ eft−1 −Hft−1´K 0
µ
ft−1 − f

h

¶

≤
√
Th

Ã
1

Th2

TX
t=1

K0
µ
ft−1 − f

h

¶!µ
max
1≤t≤T

¯̄̄ eft −Hft ¯̄̄¶2
= Op

³√
Th
´
·Op (1) ·Op(T−1) = Op(T−(β+1)/2).

Proof of Proposition 1.

√
Th (em (f)− bm (f))

=

"
1√
Th

TX
t=1

eftKÃ eft−1 − f
h

!#
Áeg (f)− " 1√

Th

TX
t=1

ftK

µ
ft−1 − f

h

¶#
Ábg (f)

=

(
1√
Th

TX
t=1

eftKÃ eft−1 − f
h

!
− 1√

Th

TX
t=1

ftK

µ
ft−1 − f

h

¶)
Áeg (f)

+

µ
1eg (f) − 1bg (f)

¶"
1√
Th

TX
t=1

ftK

µ
ft−1 − f

h

¶#

=

(
1√
Th

TX
t=1

eftK µft−1 − f
h

¶
− 1√

Th

TX
t=1

ftK

µ
ft−1 − f

h

¶)
Áeg (f)

+

(
1√
Th

TX
t=1

eftKÃ eft−1 − f
h

!
− 1√

Th

TX
t=1

eftK µft−1 − f
h

¶)
Áeg (f)

+
√
Th

µ
1eg (f) − 1bg (f)

¶"
1

Th

TX
t=1

ftK

µ
ft−1 − f

h

¶#
= a∗T + b

∗
T + c

∗
T , say,

where

bg (f) = 1

Th

TX
t=1

K

µ
ft−1 − f

h

¶
and eg (f) = 1

Th

TX
t=1

K

Ã eft−1 − f
h

!
.

For the numerator of a∗T , we have

1√
Th

TX
t=1

³ eft − ft´K µft−1 − f
h

¶

=
1√
Th

TX
t=1

³ eft −Hft´K µft−1 − f
h

¶
+

1√
Th

(H − 1)
TX
t=1

ftK

µ
ft−1 − f

h

¶
= op(1) +Op(

√
h) = op(1).
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The convergence of the Þrst term follows from Lemma A.1(i). For the second term,
we used

√
Th (H − 1) 1

Th

TX
t=1

ftK

µ
ft−1 − f

h

¶
= Op(

√
Th)Op(T

−1/2) = Op(
√
h)

where H − 1 = Op

³
min(

√
T ,
√
N)−1

´
= Op(T

−1/2) follows from Assumption F(i) and

(ii). For the numerator of b∗T , from a mean value expansion, it can be rewritten as

1√
Th

TX
t=1

eftK0
µ
ft−1 − f

h

¶Ã eft−1 − ft−1
h

!
+

1√
Th

TX
t=1

eftK00
µ
f∗t−1 − f

h

¶Ã eft−1 − ft−1
h

!2

where f∗t−1 lies between eft−1 and ft−1. Since the Þrst term dominates the second term,
it suffices to show the convergence of the Þrst term.

1√
Th3

TX
t=1

eftK0
µ
ft−1 − f

h

¶³eft−1 − ft−1´
=

1√
Th3

TX
t=1

eft ³ eft−1 −Hft−1´K0
µ
ft−1 − f

h

¶
+

1√
Th3

(H − 1)
TX
t=1

eftft−1K 0
µ
ft−1 − f

h

¶

=
1√
Th3

TX
t=1

³ eft −Hft´³ eft−1 −Hft−1´K0
µ
ft−1 − f

h

¶

+H
1√
Th3

TX
t=1

³ eft−1 −Hft−1´ ft−1K0
µ
ft−1 − f

h

¶

+(H − 1) 1√
Th3

TX
t=1

³ eft −Hft´ ft−1K 0
µ
ft−1 − f

h

¶

+
√
ThH (H − 1) 1

Th2

TX
t=1

ftft−1K0
µ
ft−1 − f

h

¶
= op(1).

For the Þrst to third terms, convergence follows from Lemma A.1(iii) and (iv). Similarly,
from a mean value expansion, we have

√
Th (eg (f)− bg (f))

=
1√
Th

TX
t=1

K0
µ
ft−1 − f

h

¶Ã eft−1 − ft−1
h

!
+

1√
Th

TX
t=1

K00
µ
f∗t−1 − f

h

¶Ã eft−1 − ft−1
h

!2

with the dominant Þrst term being op(1) from Lemma A.1(ii). Since bg (f)−1 = Op(1), we
have

√
Th
³eg (f)−1 − bg (f)−1´ = op(1) and c∗T = op(1). Furthermore, eg (f)−1 = Op(1)

implies both a∗T and b
∗
T to be op(1) since the numerators are shown to be op(1).
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Table 1. Simulation Results: Lyapunov Exponent Estimates of Observed
Variables

(A) Logistic Map
σ 0.00 0.05 0.10 0.20 0.50

true λ 0.693 0.693 0.693 0.694 0.699
T = 50 0.691/0.692 0.693/0.693 0.694/0.693 0.695/0.695 0.699/0.699

(0.023) (0.025) (0.027) (0.026) (0.032)
100 0.694/0.693 0.693/0.693 0.693/0.693 0.695/0.694 0.699/0.699

(0.014) (0.013) (0.013) (0.014) (0.018)
200 0.693/0.693 0.693/0.693 0.693/0.693 0.694/0.694 0.699/0.699

(0.006) (0.007) (0.007) (0.008) (0.011)
400 0.693/0.693 0.693/0.693 0.693/0.693 0.694/0.694 0.699/0.699

(0.003) (0.004) (0.004) (0.004) (0.006)
800 0.693/0.693 0.693/0.693 0.693/0.693 0.694/0.694 0.699/0.699

(0.002) (0.002) (0.002) (0.002) (0.004)

(B) STAR Model
σ 0.05 0.10 0.20 0.50 1.00

true λ -0.077 -0.159 -0.286 -0.460 -0.561
T = 50 -0.289/-0.251 -0.367/-0.328 -0.501/-0.467 -0.686/-0.659 -0.803/-0.758

(0.169) (0.187) (0.202) (0.244) (0.295)
100 -0.168/-0.154 -0.249/-0.232 -0.393/-0.372 -0.586/-0.565 -0.694/-0.671

(0.076) (0.093) (0.124) (0.165) (0.194)
200 -0.114/-0.107 -0.193/-0.186 -0.329/-0.315 -0.516/-0.499 -0.621/-0.603

(0.036) (0.047) (0.071) (0.106) (0.129)
400 -0.092/-0.090 -0.169/-0.167 -0.297/-0.295 -0.479/-0.474 -0.583/-0.577

(0.019) (0.026) (0.042) (0.066) (0.080)
800 -0.081/-0.080 -0.157/-0.155 -0.281/-0.279 -0.459/-0.455 -0.562/-0.559

(0.011) (0.016) (0.026) (0.042) (0.052)

Notes: The results are based on 1,000 Monte Carlo draws using the design described
in the main text. Both sample mean and median of the kernel estimates of the
largest Lyapunov exponents are reported (mean/median). Numbers in parentheses
are sample standard deviations.

29



Table 2. Simulation Results: Lyapunov Exponent Estimates of
Unobserved Common Factors (T=100)

(A) Logistic Map
σ 0.00 0.05 0.10 0.20 0.50

true λ 0.693 0.693 0.693 0.694 0.699
N = 25 0.355/0.364 0.350/0.361 0.355/0.364 0.353/0.366 0.354/0.358

(0.113) (0.112) (0.116) (0.115) (0.115)
50 0.514/0.517 0.517/0.520 0.516/0.516 0.513/0.519 0.516/0.521

(0.076) (0.075) (0.074) (0.076) (0.076)
100 0.598/0.599 0.598/0.601 0.597/0.599 0.596/0.598 0.608/0.610

(0.057) (0.056) (0.055) (0.054) (0.056)
200 0.645/0.645 0.643/0.644 0.643/0.644 0.643/0.645 0.649/0.648

(0.044) (0.043) (0.046) (0.044) (0.045)
400 0.668/0.668 0.668/0.668 0.666/0.667 0.670/0.671 0.674/0.675

(0.036) (0.038) (0.037) (0.036) (0.037)
∞ 0.694/0.693 0.693/0.693 0.693/0.693 0.695/0.694 0.699/0.699

(0.014) (0.013) (0.013) (0.014) (0.018)

(B) STAR Model
σ 0.05 0.10 0.20 0.50 1.00

true λ -0.077 -0.159 -0.286 -0.460 -0.561
N = 25 -0.296/-0.264 -0.339/-0.313 -0.453/-0.433 -0.635/-0.619 -0.746/-0.719

(0.136) (0.123) (0.133) (0.171) (0.201)
50 -0.231/-0.209 -0.291/-0.273 -0.422/-0.406 -0.612/-0.588 -0.719/-0.697

(0.102) (0.103) (0.126) (0.167) (0.194)
100 -0.196/-0.177 -0.268/-0.251 -0.404/-0.385 -0.593/-0.568 -0.700/-0.672

(0.093) (0.101) (0.122) (0.163) (0.196)
200 -0.184/-0.166 -0.259/-0.237 -0.401/-0.380 -0.587/-0.567 -0.694/-0.677

(0.089) (0.101) (0.127) (0.163) (0.190)
400 -0.169/-0.154 -0.247/-0.232 -0.386/-0.370 -0.579/-0.569 -0.690/-0.676

(0.077) (0.090) (0.114) (0.157) (0.189)
∞ -0.168/-0.154 -0.249/-0.232 -0.393/-0.372 -0.586/-0.565 -0.694/-0.671

(0.076) (0.093) (0.124) (0.165) (0.194)

Notes: The results are based on 1,000 Monte Carlo draws using the design described
in the main text. Infeasible estimates from Table 1 are also shown as N = ∞ as
a benchmark case. Both sample mean and median of the kernel estimates of the
largest Lyapunov exponents are reported (mean/median). Numbers in parentheses
are sample standard deviations.
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Table 3. Simulation Results: Lyapunov Exponent Estimates of
Unobserved Common Factors (T=200)

(A) Logistic Map
σ 0.00 0.05 0.10 0.20 0.50

true λ 0.693 0.693 0.693 0.694 0.699
N = 25 0.355/0.364 0.355/0.365 0.358/0.362 0.354/0.364 0.356/0.364

(0.103) (0.102) (0.098) (0.102) (0.100)
50 0.514/0.517 0.514/0.515 0.511/0.515 0.516/0.521 0.520/0.521

(0.057) (0.013) (0.013) (0.014) (0.018)
100 0.599/0.600 0.599/0.600 0.601/0.603 0.599/0.600 0.606/0.606

(0.038) (0.039) (0.040) (0.040) (0.040)
200 0.644/0.645 0.645/0.646 0.645/0.645 0.646/0.648 0.649/0.650

(0.031) (0.031) (0.032) (0.031) (0.030)
400 0.668/0.668 0.669/0.669 0.668/0.669 0.669/0.668 0.674/0.674

(0.025) (0.026) (0.027) (0.025) (0.026)
∞ 0.693/0.693 0.693/0.693 0.693/0.693 0.694/0.694 0.699/0.699

(0.006) (0.007) (0.007) (0.008) (0.011)

(B) STAR Model
σ 0.05 0.10 0.20 0.50 1.00

true λ -0.077 -0.159 -0.286 -0.460 -0.561
N = 25 -0.214/-0.201 -0.271/-0.262 -0.394/-0.380 -0.573/-0.558 -0.679/-0.661

(0.070) (0.069) (0.088) (0.118) (0.139)
50 -0.161/-0.151 -0.230/-0.222 -0.359/-0.348 -0.542/-0.529 -0.647/-0.632

(0.052) (0.058) (0.080) (0.113) (0.133)
100 -0.141/-0.135 -0.215/-0.207 -0.345/-0.336 -0.529/-0.515 -0.634/-0.617

(0.044) (0.049) (0.070) (0.105) (0.125)
200 -0.127/-0.119 -0.203/-0.197 -0.338/-0.327 -0.524/-0.511 -0.628/-0.615

(0.041) (0.049) (0.073) (0.105) (0.125)
400 -0.119/-0.113 -0.196/-0.188 -0.330/-0.322 -0.517/-0.504 -0.621/-0.603

(0.037) (0.045) (0.069) (0.103) (0.122)
∞ -0.114/-0.107 -0.193/-0.186 -0.329/-0.315 -0.516/-0.499 -0.621/-0.603

(0.036) (0.047) (0.071) (0.106) (0.129)

Notes: The results are based on 1,000 Monte Carlo draws using the design described
in the main text. Infeasible estimates from Table 1 are also shown as N = ∞ as
a benchmark case. Both sample mean and median of the kernel estimates of the
largest Lyapunov exponents are reported (mean/median). Numbers in parentheses
are sample standard deviations.
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Table 4. Simulation Results: Lyapunov Exponent Estimates of
Unobserved Common Factors (T=400)

(A) Logistic Map
σ 0.00 0.05 0.10 0.20 0.50

true λ 0.693 0.693 0.693 0.694 0.699
N = 25 0.358/0.370 0.357/0.372 0.358/0.369 0.357/0.369 0.359/0.369

(0.087) (0.085) (0.088) (0.088) (0.088)
50 0.516/0.519 0.515/0.518 0.513/0.516 0.514/0.515 0.519/0.523

(0.044) (0.045) (0.044) (0.045) (0.045)
100 0.602/0.602 0.601/0.602 0.603/0.604 0.600/0.602 0.605/0.605

(0.028) (0.029) (0.027) (0.029) (0.028)
200 0.646/0.646 0.646/0.647 0.646/0.646 0.646/0.646 0.651/0.651

(0.022) (0.022) (0.022) (0.022) (0.021)
400 0.668/0.669 0.670/0.670 0.668/0.668 0.671/0.671 0.675/0.674

(0.018) (0.018) (0.018) (0.018) (0.018)
∞ 0.693/0.693 0.693/0.693 0.693/0.693 0.694/0.694 0.699/0.699

(0.003) (0.004) (0.004) (0.004) (0.006)

(B) STAR Model
σ 0.05 0.10 0.20 0.50 1.00

true λ -0.077 -0.159 -0.286 -0.460 -0.561
N = 25 -0.170/-0.164 -0.236/-0.231 -0.356/-0.350 -0.534/-0.529 -0.639/-0.633

(0.039) (0.040) (0.051) (0.073) (0.087)
50 -0.134/-0.130 -0.205/-0.202 -0.328/-0.323 -0.508/-0.501 -0.613/-0.606

(0.029) (0.032) (0.046) (0.069) (0.082)
100 -0.112/-0.109 -0.187/-0.185 -0.313/-0.309 -0.495/-0.489 -0.600/-0.591

(0.023) (0.029) (0.045) (0.070) (0.085)
200 -0.102/-0.099 -0.178/-0.176 -0.305/-0.302 -0.488/-0.483 -0.593/-0.586

(0.022) (0.027) (0.041) (0.064) (0.078)
400 -0.098/-0.094 -0.174/-0.171 -0.302/-0.299 -0.482/-0.476 -0.585/-0.580

(0.022) (0.028) (0.044) (0.068) (0.082)
∞ -0.092/-0.090 -0.169/-0.167 -0.297/-0.295 -0.479/-0.474 -0.583/-0.577

(0.019) (0.026) (0.042) (0.066) (0.080)

Notes: The results are based on 1,000 Monte Carlo draws using the design described
in the main text. Infeasible estimates from Table 1 are also shown as N = ∞ as
a benchmark case. Both sample mean and median of the kernel estimates of the
largest Lyapunov exponents are reported (mean/median). Numbers in parentheses
are sample standard deviations.
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Table 5. Test for Neglected Nonlinearity in Principal Components

p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4
RESET NN

(Ramsey, 1969) (White, 1989)
k = 1 0.012 0.025 0.053 0.054 0.016 0.003 0.007 <0.001
k = 2 0.191 0.101 0.361 0.350 0.210 <0.001 <0.001 0.202
k = 3 0.002 <0.001 <0.001 <0.001 0.001 0.002 <0.001 <0.001
k = 4 0.001 0.111 0.257 0.117 0.002 0.003 0.002 <0.001
k = 5 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.586 0.004
k = 6 0.008 0.020 0.047 0.125 0.007 0.038 0.080 0.086

NN-LM KERNEL
(Teräsvirta, Lin, and Granger, 1993) (Fan and Li, 1997)

k = 1 0.006 0.002 <0.001 <0.001 0.745 0.777 0.775 0.763
k = 2 0.108 0.001 <0.001 <0.001 0.804 0.814 0.816 0.832
k = 3 0.001 <0.001 <0.001 <0.001 0.775 0.762 0.776 0.797
k = 4 0.001 0.007 0.002 <0.001 0.675 0.759 0.782 0.764
k = 5 <0.001 <0.001 <0.001 <0.001 0.760 0.770 0.783 0.790
k = 6 0.005 0.017 0.085 0.060 0.729 0.779 0.797 0.823

Notes: Numbers are p-values of the tests for the null hypothesis of linearity applied to
k-th principal components of 159 macroeconomic variables (N = 159). The sample
period is 1959:3-1998:12 (T = 478).

33



Table 6. Lyapunov Exponent Estimates of Principal Components

(1) Full Sample (2) Block
p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4

(A) Kernel Estimation

k = 1 -0.527 -0.321 -0.223 -0.160 -0.540 -0.311 -0.235 -0.139
(0.018) (0.027) (0.017) (0.015) (0.038) (0.047) (0.046) (0.028)

k = 2 -0.239 -0.120 -0.077 -0.082 -0.239 -0.095 -0.069 -0.071
(0.010) (0.015) (0.008) (0.007) (0.017) (0.008) (0.009) (0.013)

k = 3 -0.998 -0.837 -0.512 -0.391 -1.019 -0.763 -0.515 -0.393
(0.020) (0.028) (0.021) (0.019) (0.052) (0.058) (0.047) (0.052)

k = 4 -2.283 -0.906 -0.315 -0.184 -2.252 -0.868 -0.327 -0.182
(0.063) (0.017) (0.011) (0.009) (0.159) (0.054) (0.025) (0.019)

k = 5 -1.423 -1.003 -0.770 -0.481 -1.413 -0.983 -0.753 -0.447
(0.011) (0.021) (0.020) (0.017) (0.024) (0.058) (0.047) (0.052)

k = 6 -0.722 -0.290 -0.146 -0.105 -0.715 -0.311 -0.150 -0.101
(0.034) (0.018) (0.009) (0.007) (0.077) (0.057) (0.020) (0.020)

(B) Neural Network Estimation

k = 1 -0.515 -0.267 -0.218 -0.094 -0.527 -0.275 -0.220 -0.088
(0.020) (0.024) (0.026) (0.020) (0.055) (0.069) (0.053) (0.042)

k = 2 -0.235 -0.092 -0.061 -0.046 -0.240 -0.088 -0.053 -0.041
(0.018) (0.009) (0.006) (0.005) (0.037) (0.007) (0.007) (0.013)

k = 3 -0.888 -0.504 -0.415 -0.312 -0.953 -0.552 -0.415 -0.275
(0.041) (0.036) (0.017) (0.018) (0.055) (0.054) (0.011) (0.049)

k = 4 -2.385 -0.890 -0.302 -0.210 -2.364 -0.924 -0.298 -0.189
(0.079) (0.026) (0.019) (0.013) (0.246) (0.032) (0.040) (0.025)

k = 5 -1.987 -0.881 -0.761 -0.367 -1.940 -0.816 -0.701 -0.333
(0.039) (0.026) (0.024) (0.022) (0.099) (0.055) (0.062) (0.057)

k = 6 -0.628 -0.275 -0.111 -0.081 -0.593 -0.274 -0.116 -0.084
(0.032) (0.023) (0.011) (0.009) (0.082) (0.049) (0.025) (0.020)

Notes: The largest Lyapunov exponents of k-th principal components of 159 macro-
economic variables (N = 159). The sample period is 1959:3-1998:12 (T = 478).
Numbers in parentheses are HAC standard errors based on QS kernel with optimal
bandwidth (see Andrews, 1991). Median values are reported for the subsample esti-
mates (Block).
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Figure 1.  First Principal Component
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