
 
 
 

ROBUST IMPLEMENTATION: 
THE ROLE OF LARGE SPACES 

 
 

By 
 

Dirk Bergemann and Stephen Morris 
 
 
 

June 2005 
 
 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1519 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
http://cowles.econ.yale.edu/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7280729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Robust Implementation:

The Role of Large Type Spaces�

Dirk Bergemanny Stephen Morrisz

First Version: March 2003

This Version: June 2005

Abstract

A social choice function is robustly implemented if every equilibrium on every type space achieves

outcomes consistent with a social choice function. We identify a robust monotonicity condition

that is necessary and (with mild extra assumptions) su¢ cient for robust implementation.

Robust monotonicity is strictly stronger than both Maskin monotonicity (necessary and

almost su¢ cient for complete information implementation) and ex post monotonicity (necessary

and almost su¢ cient for ex post implementation). It is equivalent to Bayesian monotonicity on

all type spaces. It requires that there not be too much interdependence of types.

We characterize robust monotonicity for some interesting economic environments. We iden-

tify conditions where, if robust implementation is possible, it is possible in a direct mechanism.

We identify conditions where, if robust implementation is not possible, virtual robust imple-

mentation is not possible either.
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1 Introduction

The mechanism design literature provides a powerful characterization of which social choice func-

tions can be achieved when the designer has incomplete information about agents�types. If we

assume a commonly known common prior over the possible types of agents, the revelation principle

establishes that if the social choice function can arise as an equilibrium in some mechanism, then

it will arise in a truth-telling equilibrium of the direct mechanism (where each agent truthfully

reports his type and the designer chooses an outcome assuming they are telling the truth). Thus

the Bayesian incentive compatibility constraints characterize whether a social choice function is

implementable in this sense.

There are two important limitations of Bayesian incentive compatibility analysis. First, the

analysis typically assumes a commonly known common prior over the agents�types. This assump-

tion may be too stringent in practise. In the spirit of the "Wilson doctrine" (Wilson (1987)), we

would like implementation results that are robust to di¤erent assumptions about what players do

or do not know about other agents�types. Second, the revelation principle only establishes that the

direct mechanism has an equilibrium that achieves the social choice function. In general, there

may be other equilibria that deliver undesirable outcomes. We would like to achieve full imple-

mentation, i.e., show the existence of a mechanism all of whose equilibria deliver the social choice

function. We studied the �rst "robustness" problem in an earlier work, Bergemann and Morris

(2004). The second "full implementation" problem has been the subject of a large literature. In

the incomplete information context, key full implementation references are Postlewaite and Schmei-

dler (1986), Palfrey and Srivastava (1989) and Jackson (1991). In this paper, we study "robust

implementation" where we require robustness and full implementation simultaneously. Requiring

both simultaneously adds extra structure to the problem and enables us to derive distinctive new

economic results.

Interim implementation on all type spaces is possible if and only if it is possible to implement

the social choice function using an iterative deletion procedure. We refer to the resulting notion as

iterative implementation. We �x a mechanism and iteratively delete messages for each payo¤ type

that are strictly dominated by another message for each payo¤ type pro�le and message pro�le that

has survived the procedure. This observation about iterative deletion illustrates a general point

well-known from the literature on epistemic foundations of game theory (e.g., Brandenburger and

Dekel (1987), Battigalli and Siniscalchi (2003)): equilibrium solution concepts only have bite if we

make strong assumptions about type spaces, i.e., we assume small type spaces where the common

prior assumption holds.

We exploit this equivalence between robust and iterative implementation to obtain necessary and
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su¢ cient conditions for robust implementation in general environments. Our necessity argument is

conceptually novel, exploiting the iterative characterization. The necessary conditions for robust

implementation are ex post incentive compatibility of the social choice function and a condition

- robust monotonicity - that is equivalent to requiring interim monotonicity on every type space.

Suppose that we �x a "deception" specifying, for each payo¤ type �i of each agent, a set of types

that he might misreport himself to be. We require that for some agent i and a type misreport of

agent i under the deception, for every misreport �0�i that the other agents might make under the

deception, there exists an outcome y which is strictly preferred by agent i to the outcome he would

receive under the social choice function for every possible payo¤ type pro�le that might misreport

�0�i; where this outcome y satis�es the extra restriction that no payo¤ type of agent i prefers

outcome y to the social choice function if the other agents were really types �0�i. This condition -

while a little convoluted - is easier to interpret than the interim (Bayesian) monotonicity conditions.

It is very strong and implies both Maskin monotonicity and ex post monotonicity conditions (but

is strictly weaker than dominant strategies). We will present examples to illustrate the relationship

between these monotonicity conditions.

The su¢ ciency argument requires only a modest strengthening of the necessary condition by

guaranteeing the existence of a �bad�outcome. With the existence of a bad outcome, we show that

the necessary conditions are also su¢ cient for robust implementation. The su¢ cient conditions

guarantee robust implementation in pure, but more generally also in mixed strategies. Our robust

analysis thus removes the frequent gap between pure and mixed strategy implementation in the

literature.

The iterative characterization comes with the additional bene�t that tight implementation re-

sults can be proved via a �xed point of a contraction mapping. In particular, we consider a general

class of interdependent preferences in which the private types of the agents can be linearly aggre-

gated. In this environment we show that the social choice function can be robustly implemented if

and only if the interdependence is not too large. If 
 is the weight of the type of agent j (relative to

the type of agent i) for the utility of agent i, then the robust implementation condition can simply

be stated as: 
 < 1= (I � 1), where I is the number of agents. Surprisingly, the converse result for

 > 1= (I � 1) even extends to a robust version of virtual utility. In other words, we also show that if

 > 1= (I � 1), then not only robust implementation, but even robust virtual implementation fails.
We further illustrate the strength of the contraction mapping idea in the implementation context

with two examples, one of a public good and one of a private good (single unit auction) allocation

problem with quasilinear utility. An important paper of Chung and Ely (2001) analyzed the single

(and multi-unit) auction with interdependent valuations with dominance solvability (elimination of

weakly rather than strictly dominated actions). In a linear and symmetric setting, they reported
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su¢ cient conditions for direct implementation that coincide with the ones derived here. We show

that in the environment with linear aggregation, under strict incentive compatibility, the basic in-

sight extends from the single unit auction model to general allocations models, with elimination of

strictly dominated actions only (thus Chung and Ely (2001) require deletion of weakly dominated

strategies only because incentive constraints are weak). We also prove a converse result: if there

is too much interdependence, then neither the direct nor any augmented mechanism can robustly

implement the social choice function (this result will also hold with deletion of weakly dominated

strategies).

In the implementation literature, it is a standard practice to obtain the su¢ ciency results

with augmented mechanisms. By augmenting the direct mechanism with additional messages, the

designer may elicit additional information about undesirable equilibrium play by the agents. Yet, in

many environments common to applied mechanism designs, such a single crossing or supermodular

preferences, the structure of the preferences may already permit direct implementation (see a

companion paper, Bergemann and Morris (2005), for direct implementation results in ex post

equilibrium). We thus provide necessary and su¢ cient conditions for robust implementation in the

direct mechanism. In the direct mechanism, the agents can alert the designer only by a report of

their type. In consequence, the incentive compatibility conditions for the rewards are identical to

the truth-telling constraints, and the necessary and su¢ cient conditions for robust implementation

coincide.

The results in this paper concern full implementation. An earlier paper of ours, Bergemann and

Morris (2004), addresses the analogous questions of robustness to rich type spaces, but looking at the

question of partial implementation, i.e., does there exist a mechanism such that some equilibrium

implements the social choice function. We showed that ex post (partial) implementation of the

social choice function is a necessary and su¢ cient condition for partial implementation on all type

spaces.1 This paper establishes that an analogous result does not hold for full implementation.

In a companion paper, Bergemann and Morris (2005), we therefore investigate the notion of ex

post implementation. The necessary and su¢ cient conditions then straddle the Nash and Bayesian

implementation conditions as an ex post equilibrium is a Nash equilibrium at every incomplete

information (Bayesian) type pro�le. However in contrast to the iterative argument pursued here,

the basic reasoning in Bergemann and Morris (2005) invokes more traditional equilibrium argu-

ments. By comparing the conditions for ex post and robust implementation, it becomes apparent

that robust implementation typically imposes additional constraints on the allocation problem. In

Bergemann and Morris (2005), we showed that in single crossing environments, the same single

1This result does not extend to social choice correspondences.
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crossing conditions which guarantee incentive compatibility also guarantee full implementation. In

contrast, in the linear aggregation environment, we show that robust implementation imposes a

strict bound on the interdependence of the preferences, which is not required by the truthtelling

conditions. The contraction mapping behind the iterative argument directly pointed at the source

of the restriction of the interaction term.

In this paper, we follow the classic implementation literature in allowing for arbitrary mech-

anisms, including modulo and integer games. By allowing for these mechanisms, we are able to

make tight connections with the existing implementation literature. Allowing for these badly be-

haved mechanisms does complicate our analysis: for example, we must allow for trans�nite iterated

deletion of best responses in our de�nition of iterative implementation. Of course, when direct im-

plementation turns out to be possible, we do not need badly behaved mechanisms. We also report

some results on what happens with "nice" mechanisms where rationalizable messages always exist

and best responses are well de�ned. We can further strengthen our necessary conditions in this

case.

Robust

Implementation

Corollaries 1 and 2

()
Iterative

Implementation

Jackson (1991) m m Theorem 2

Bayesian Monotonicity

on All Types Spaces
()

Proposition 6

Robust

Monotonicity

Figure 1: Relationship between Bayesian and Robust Implementation / Monotonicity

Our results extend the classic literature on Bayesian implementation due to Postlewaite and

Schmeidler (1986), Palfrey and Srivastava (1989) and Jackson (1991). We focus in this paper on

an indirect approach to extending these results. We �rst note the equivalence between robust

implementation and iterative implementation. We then exploit the equivalence to report a direct

argument showing that robust monotonicity is a necessary and almost su¢ cient condition for itera-

tive implementation. But in the light of the classic literature, we know that a necessary and almost

su¢ cient condition for robust implementation must be Bayesian monotonicity on all type spaces.

We con�rm and clarify our results by directly checking that robust monotonicity is equivalent to
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Bayesian (or interim) monotonicity on all type spaces. Figure 1 gives a stylized account of the

connection between these alternative approaches.

The remainder of the paper is organized as follows. Section 2 describes the formal environment

and solution concepts. Section 3 considers four examples that illustrate the main results of the

paper. Section 4 establishes the relation between iterative and robust implementation. Section

5 establishes necessary conditions for robust implementation in the direct mechanism. Section

6 reports our main result on the necessary and su¢ cient conditions for robust implementation.

Section 7 explores the link between robust and virtual implementation. Section 8 considers the

preference environment with a linear aggregation of the types and obtains sharp implementation

results. Section 9 discusses extensions and variations of our implementation results, examining

the role of lotteries, pure strategies and "nice" mechanisms. Section 10 concludes. The Appendix

contains some additional examples and proofs.

2 Setup

2.1 The Payo¤ Environment

We consider a �nite set of agents, 1; 2; :::; I. Agent i�s payo¤ type is �i 2 �i. We write � 2 � =

�1 � � � � ��I . There is a set of outcomes Z. We assume that each �i and Z are countable. Each
individual has von Neumann Morgenstern utility function ui : Z � � ! R. Thus we are in the
world of interdependent types, where an agent�s utility depends on other agents�payo¤ types. We

allow for lotteries over deterministic outcomes.2 Let Y = �(Z) and extend ui to the domain Y ��
in the usual way:

ui (y; �) =
X
z2Z

y (z)ui (z; �) .

A social choice function is a mapping f : � ! Y . If the true payo¤ type pro�le is �, the planner

would like the outcome to be f (�). In this paper, we restrict our analysis to the implementation

of a social choice function rather than a social choice correspondence or set.3

2.2 Type Spaces

We are interested in analyzing behavior in a variety of type spaces, many of them with a richer

set of types than payo¤ types. For this purpose, we shall refer to agent i�s type as ti 2 Ti, where
2The role of the lottery assumption and what happens when we drop it are discussed in Section 9.1.
3The extension to social choice correspondences might not be straightforward. One reason is that with social

choice correspondences, the incentive compatibility conditions that arise from requiring partial implementation would

typically be weaker than ex post incentive compatibility, as shown by examples in Bergemann and Morris (2004).
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Ti is a countable set.4 A type of agent i must include a description of his payo¤ type. Thus there

is a function b�i : Ti ! �i with b�i (ti) being agent i�s payo¤ type when his type is ti. A type of

agent i must also include a description of his beliefs about the types of the other agents; thus there

is a function b�i : Ti ! �(T�i) with b�i (ti) being agent i�s belief type when his type is ti. Thusb�i (t�i) [ti] is the probability that type ti of agent i assigns to other agents having types t�i. A type
space is a collection:

T =
�
Ti;b�i; b�i�I

i=1
.

2.3 Mechanisms

A planner must choose a game form or mechanism for the agents to play in order the determine the

social outcome. Let Mi be the countably in�nite set of messages available to agent i.5 Let g (m)

be the distribution over outcomes if action pro�le m is chosen. Thus a mechanism is a collection

M = (M1; :::;MI ; g (�)) ;

where g :M ! Y .

2.4 Solution Concepts

Now holding �xed the payo¤ environment, we can combine a type space T with a mechanismM to

get an incomplete information game (T ;M). The payo¤ of agent i if message pro�le m is chosen

and type pro�le t is realized is then given by

ui

�
g (m) ;b� (t)� .

A pure strategy for agent i in the incomplete information game (T ;M) is given by

si : Ti !Mi.

A (behavioral) strategy is given by

�i : Ti ! �(Mi) .

The objective of this paper is to obtain implementation results for interim, or Bayesian Nash,

4The countable types restriction clari�es the relation to the existing literature. In Section 9.3, we discuss what

happens if we allow for uncountable type spaces.
5This assumption clari�es the relation with the existing literature. We discuss in Section 9.2 what happens if we

restrict attention to �nite messages.
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equilibria on all possible types spaces.6 The notion of interim equilibrium for a given type space T
is de�ned in the usual way.

De�nition 1 (Interim equilibrium)

A strategy pro�le � = (�1; :::; �I) is an interim equilibrium of the game (T ;M) if, for all i, ti and

mi with �i (mijti) > 0,

X
t�i2T�i

X
m�i2M�i

0@Y
j 6=i

�j (mj jtj)

1Aui

�
g (mi;m�i) ;b� (t)� b�i (t�i) [ti]

�
X

t�i2T�i

X
m�i2M�i

0@Y
j 6=i

�j (mj jtj)

1Aui

�
g
�
m0
i;m�i

�
;b� (t)� b�i (t�i) [ti]

for all m0
i.

The concern for robustness, expressed by the qualifying condition, for all type spaces, pulls

the interim equilibrium in the direction of rationalizability. Consequently we de�ne a message

correspondence pro�le S = (S1; ::::; SI), where each Si : �i ! 2Mi and we write S for the collection
of message correspondence pro�les. The collection S is a lattice with the natural ordering: S � S0

if Si (�i) � S0i (�i) for all i and �i. The largest element is S =
�
S1; :::; SI

�
, where Si (�i) = Mi for

each i and �i. The smallest element is S = (S1; :::; SI), where Si (�i) = ? for each i and �i.
We de�ne an operator b to iteratively eliminate never best responses. To this end, we de-

note the belief of agent i over message and payo¤ type pro�les of the remaining agents by �i 2
�(M�i ���i). The operator b : S ! S is now de�ned as:

bi (S) [�i] =

8>>>>>>>>>><>>>>>>>>>>:
mi 2Mi

����������������
9�i s.th.:

(1) �i (m�i; ��i) > 0) mj 2 Sj (�j) ; 8 j 6= i

(2)

P
m�i;��i

�i (m�i; ��i)ui (g (mi;m�i) ; (�i; ��i))

�P
m�i;��i

�i (m�i; ��i)ui (g (mi;m�i) ; (�i; ��i)) ; 8m0
i 2Mi

9>>>>>>>>>>=>>>>>>>>>>;
:

We observe that b is increasing by de�nition: i.e., S � S0 ) b (S) � b (S0). By Tarski�s �xed

point theorem, there is a largest �xed point of b, which we label SM. Thus (i) b
�
SM

�
= SM and

6We label these "interim" equilibria rather than "Bayesian" equilibria in light of the fact that our type space does

not have a common prior. Dekel, Fudenberg and Levine (2002) argue that learning justi�cations that support the

equilibrium assumption will - under reasonable assumptions - also imply a common prior on types. We nonetheless

maintain the equilibrium solution concept for comparison with the literature. But note that in any case we end up

using the fact that with rich type spaces, equilibrium does not have any bite above iterated deletion.
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(ii) b (S) = S ) S � SM. We can also construct the �xed point SM by starting with S - the

largest element of the lattice - and iteratively applying the operator b. If the message sets are �nite,

we have

SMi (�i) , \
n�1

bi
�
bn
�
S
��
[�i] .

But because the mechanismM may be in�nite, trans�nite induction may be necessary to reach the

�xed point.7 Thus SMi (�i) are the set of messages surviving (trans�nite) iterated deletion of never

best responses. If message sets are �nite (or compact), a well known duality argument implies that

never best responses are equivalent to strictly dominated actions. However, the equivalence does

not hold with in�nite (non-compact) message sets.8 In a compact message analysis, Chung and Ely

(2001) consider a version of this solution concept in an incomplete information mechanism design

context with dominated (not strictly dominated) messages deleted at each round. We observe that

the solution concept de�ned through the iterative application of the operator b is weaker than the

notion of interim rationalizability for a given type space T .9 Under b, every agent i is allowed to
hold arbitrary beliefs about ��i and is not restricted to a particular posterior distribution over

��i. On the other hand, if the type space T were the universal type space, then SMi (�i) would be

equal to the union of all interim rationalizable actions of agent i over all types ti 2 Ti whose payo¤
type pro�le coincides with �i, or b�i (ti) = �i.

For brevity and for lack of a better expression, we refer to the messages mi 2 SMi (�i) as

rationalizable actions.

2.5 Implementation

We now de�ne the notions of interim, robust and iterative implementation.

De�nition 2 (Interim Implementation)

Social choice function f is interim implemented on type space T by mechanism M if the game

7Lipman (1994) contains a formal description of the trans�nite induction required (for the case of complete

information, but nothing important changes with incomplete information). As he notes "we remove strategies which

are never a best reply, taking limits where needed".
8The following simple example (suggested to us by Andrew Postlewaite) illustrates the non-equivalence. Players

1 and 2 each choose a non-negative integer, k1 and k2 respectively. The payo¤ to player 1 from k1 = 0 is 1. The

payo¤ to player 1 from action k1 � 1 is 2 if k1 > k2, 0 otherwise. For any belief that player 1 has about 2�s actions,
there is a (su¢ ciently high) action from player 1 that gives him a payo¤ greater than 1. Thus action 0 is never a best

response for player 1. However, for any mixed strategy of player 1, there is a (su¢ cient high) action of player 2 such

that action 0 is a better response for player 1 than the mixed strategy. Thus action 0 is not strictly dominated.
9For the notion of interim rationalizability, see Battigalli and Siniscalchi (2003) and Dekel, Fudenberg, and Morris

(2005).
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(T ;M) has an equilibrium and every equilibrium � of the game (T ;M) satis�es

� (mjt) > 0) g (m) = f
�b� (t)� .

We note that a tradition in the implementation literature commonly restricts attention to pure

strategy equilibria, but we allow mixed strategy equilibria.10

De�nition 3 (Robust Implementation)

Social choice function f is robustly implemented by mechanism M if, for every T , f is interim
implemented on type space T by mechanismM.

We observe that the notion of robust implementation requires that we can �nd a mechanism

M which implements f for every type space T . A weaker requirement would be to ask that for

every type space T there exists a, possibly di¤erent, mechanism M such that f is implemented.

This weaker notion would still lead to the same necessary condition as the stronger implementation

version we pursue here, and we believe that it would not lead to a substantial change in the

su¢ ciency conditions either.

We shall establish the necessary and su¢ cient conditions for robust implementation via the

iterative deletion process outlined above.

De�nition 4 (Iterative Implementation)

Social choice function f is iteratively implemented by mechanismM if, for all �, SM (�) 6= ? and

if for all � and m; m 2 SM (�)) g (m) = f (�).

3 Examples

We precede the formal results with four examples which are meant to illustrate the main insights

of the paper. At the same time, they will facilitate a brief review of the key results in the imple-

mentation literature.

The �rst example is a model of majority rule introduced by Palfrey and Srivastava (1989).

It highlights the di¢ culty of Bayesian implementation in a world of interdependent values. Ex

post implementation and virtual implementation on some type spaces are possible, but interim

implementation is impossible for some type spaces and thus robust implementation is impossible.

The second example builds around a simple coordination game. It shows that robust imple-

mentation, even though it is strong requirement, is substantially weaker than dominant strategy

implementation. It also highlights the role of augmented mechanisms in achieving implementation.

10We discuss the pure strategy / mixed strategy modelling choice in Section 9.1.
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The third example involves the provision of a public good with quasilinear utility. It demon-

strates that robust implementation can frequently be achieved in the direct rather than the aug-

mented mechanism. In addition, the example illustrates the relationship between robust implemen-

tation and rationalizability. In fact, we obtain a tight condition, in terms of the interdependence

for robust implementation. Conversely, if the conditions fails, we show that even robust virtual

implementation is impossible.

The fourth and �nal example investigates a single unit auction with symmetric bidders. The

generalized Vickrey-Groves-Clark mechanism only satis�es weak rather than strict incentive com-

patibility constraints. We therefore propose an "-e¢ cient allocation rule with strict ex post incentive

constraints. The " e¢ cient allocation rule can also be interpreted as virtual implementation of the

e¢ cient rule. In either case, we show that the rule itself can be either robustly implemented or

robust virtually implemented, respectively, if there is not too much interdependence among the

payo¤ types.

3.1 Majority Rule

In the �rst example, introduced by Palfrey and Srivastava (1989), there are three agents and each

has two possible "payo¤ types", �a or �b. There are two possible choices for society, a or b. All

agents have identical preferences. If a majority of agents (i.e., at least two) are of type �y, then

every agent gets utility 1 from outcome y and utility 0 from the other outcome. The social choice

function agrees with the common preferences of the agents. Thus f : f�a; �bg3 ! fa; bg satis�es
f (�) = y if and only if # fi : �i = �yg � 2. It is useful to use this simple example to review the

existing implementation literature and understand the role of interdependent types.

Clearly, incentive compatibility is not a problem in this example. The problem is that in the

"direct mechanism" - where all agents simply announce their types - there is the possibility that all

agents will choose to always announce �a. Since no agent expects to be pivotal, he has no incentive

to truthfully announce his type when he is in fact �b. What happens if we allow more complicated

mechanisms?

If there were complete information about agents�preferences, then the social choice function is

clearly implementable: the social planner could pick an agent, say agent 1, and simply follow that

agent�s recommendation.

But suppose instead that there is incomplete information about agents�preferences. In partic-

ular, suppose it is common knowledge that each agent�s type is �b with independent probability q,

with q2 > 1
2 . This example fails the Bayesian monotonicity condition of Postlewaite and Schmei-

dler (1986) and Jackson (1991). Palfrey and Srivastava (1989) observe that it is also not possible
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to implement in undominated Bayesian Nash equilibrium in this example.

Bergemann and Morris (2005) have analyzed the alternative "more robust" solution concept

of ex post equilibrium in this context. It is easy to construct an augmented mechanism whose

only ex post equilibrium delivers the social choice function. Let each agent send a message

mi 2 f�a; �bg � ftruth, lieg, with the interpretation that an agent is announcing his own type and
also sends the message "truth" if he thinks that others are telling the truth and sends the message

"lie" if he thinks that someone is lying. Outcome y is implemented if a majority claim to be type

�y and all agents announce "truth"; or if either 1 or 3 agents claim to be type �y and at least one

agent reports lying.

There is a truthtelling ex post equilibrium where each agent truthfully announces his type and

also announces "truth". Now suppose there exists an ex post equilibrium such that at some type

pro�le, the desired outcome is not chosen. Note that whatever the announcements of the other

agents, each agent always has the ability to determine make the outcome y, by sending the message

"lie" and - given the announcements of the other agents - choosing his message so that an odd

number of players have claimed to be type �y. So this is not consistent with ex post equilibrium.

Serrano and Vohra (2005) show that virtual Bayesian implementation is possible in this example.

The idea is that it is possible to exploit common knowledge of q to design a bet as a function of

q that will give each player an incentive to truthfully announce his type. This bet may lead to

a small but positive probability that the wrong outcome is realized in equilibrium. But virtual

implementation is possible.

Robust implementation is impossible in this example. Consider the type space where there is

common knowledge that whenever an agent is type �y, he assigns probability 1
2 to both of the other

agents being type y0 6= y and probability 1
2 to one being type y and the other being y

0. Thus every

type of every player thinks there is a 50% chance that outcome a is better and a 50% chance that

b is better. Evidently, there is no way of designing a mechanism that ensures that agents do not

fully pool. But if they fully pool, robust implementation is not possible.

3.2 Coordination

This example establishes that although robust implementation is a strong requirement, it is weaker

than dominant strategies. There are two agents. Each agent i has two possible types, �i and �0i.

There are six possible outcomes: Z = fa; b; c; d; z; z0g. The payo¤s of the agents are a function of
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the allocation and the true payo¤ type pro�le, given by:

a �2 �02

�1 3; 3 0; 0

�01 0; 0 1; 1

b �2 �02

�1 0; 0 3; 3

�01 1; 1 0; 0

c �2 �02

�1 0; 0 1; 1

�01 3; 3 0; 0

d �2 �02

�1 1; 1 0; 0

�01 0; 0 3; 3

and
z �2 �02

�1 2; 2 2; 0

�01 2; 2 2; 0

z0 �2 �02

�1 2; 0 2; 2

�01 2; 0 2; 2

:

The social choice function is given by the e¢ cient outcome:

f �2 �02

�1 a b

�01 c d

:

Clearly, the social choice function is strictly ex post incentive compatible. But in the "direct

mechanism" where each agent simply reports his type, there will always be an equilibrium where

each type of each agent misreports his type, and each agent gets a payo¤ of 1. This is also strictly

ex post incentive compatible. The social choice function f which selects among fa; b; c; dg embeds
a coordination game. We further observe that the payo¤ for agent 1 from allocations z and z0 are

equal and constant for all type pro�les. On the other hand, the payo¤ of agent 2 from z and z0

depends on his type but not on the type of the other agent.

We now consider the following augmented simple mechanism:

g �2 �02

�1 a b

�01 c d

� z z0

The corresponding incomplete information game has the following payo¤s:

type �2 �02

type action �2 �02 �2 �02

�1 �1 3; 3 0; 0 0; 0 3; 3

�01 0; 0 1; 1 1; 1 0; 0

� 2; 2 2; 0 2; 0 2; 2

�01 �1 0; 0 1; 1 1; 1 0; 0

�01 3; 3 0; 0 0; 0 3; 3

� 2; 2 2; 0 2; 0 2; 2
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Suppose we iteratively remove actions for each type that could never be a best response given the

type action pro�les remaining. Thus in the �rst round, we would observe that type �1 would never

send message �01 and type �
0
1 would never send message �1. Knowing this, we could conclude that

type �2 would never send message �02 and type �
0
2 would never send message �2. This in turn implies

that neither type of agent 1 will ever send message �. Thus the only remaining message for each

type of each agent is truth-telling. But now they must behave this way in any equilibrium on any

type space.

3.3 Public Good

The third example describes the provision of a public good with quasilinear utility. The utility of

each agent is given by:

ui (�; x; y) =

0@�i + 
X
j 6=i

�j

1Ax+ yi;

where x is the level of public good provided and yi is the monetary transfer to agent i. The

utility of agent i depends on his own type �i 2 [0; 1] and the type pro�le of other agents, with

 � 0. The cost of establishing the public good is given by c (x) = 1

2x
2. The planner must choose

(x; y1; :::; yI) 2 R+�RI to maximize social welfare, i.e., the sum of gross utilities minus the cost of

the public good:  
(1 + 
 (I � 1))

IX
i=1

�i

!
x� 1

2
x2.

The socially optimal level of the public good is therefore equal to

f0 (�) = (1 + 
 (I � 1))
IX
i=1

�i.

We choose essentially unique (up to a constant) transfers that give rise to ex post incentive com-

patibility:

fi (�) = � (1 + 
 (I � 1))

0@

0@X
j 6=i

�j

1A �i +
1

2
�2i

1A .
We �rst argue that if 
 < 1

I�1 , the social choice function f is robustly implementable in the direct

mechanism where each agent reports his payo¤ type �i and the planner chooses outcomes according

to f on the assumption that agents are telling the truth. Consider an iterative deletion procedure.

Let S0 (�i) = [0; 1] and, for each k = 1; 2; ::, let Sk (�i) be the set of reports that agent i might

send, for some conjecture over his opponents�types and reports, with the only restriction on his

conjecture being that each type �j of agent j sends a message in Sk�1 (�j).
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Suppose that agent i has payo¤ type �i, has a point conjecture that other agents have type

pro�le ��i and report their types to be �0�i, and he reports himself to be type �
0
i. Then his expected

payo¤ is a constant (1 + 
 (I � 1)) times0@�i + 
X
j 6=i

�j

1A0@�0i +X
j 6=i

�0j

1A�
0@


0@X
j 6=i

�0j

1A �0i +
1

2

�
�0i
�21A .

The �rst order condition with respect to �0i is then

�i + 

X
j 6=i

�j � 


0@X
j 6=i

�0j

1A� �0i = 0,
so he would wish to set

�0i = �i + 

X
j 6=i

�
�j � �0j

�
.

Note that this calculation veri�es the strict ex post incentive compatibility of f . The quadratic pay-

o¤ / linear best response nature of this problem means that we can characterize Sk (�i) restricting

attention to such point conjectures. In particular, we will have

Sk (�i) =
h
�k (�i) ; �

k
(�i)

i
;

where

�
k
(�i) = min

8<:1; �i + 
 max
f(�0�i;��i):�0j2Sk(�j) for all j 6=ig

X
j 6=i

�
�j � �0j

�9=;
= min

8<:1; �i + 
 max
��i

X
j 6=i

�
�j � �k�1 (�j)

�9=; .
Analogously,

�k (�i) = max

8<:0; �i � 
 max
��i

X
j 6=i

�
�
k�1

(�j)� �j
�9=; .

Thus

�
k
(�i) = min

n
1; �i + (
 (I � 1))k

o
;

and

�k (�i) = max
n
0; �i � (
 (I � 1))k

o
.

Thus �0i 6= �i ) �0i =2 Sk (�i) for su¢ ciently large k, provided that 
 < 1
I�1 .
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On the other hand if 
 > 1
I�1 , then we argue that there exist type spaces where the social choice

function f is not virtually implementable. Consider a type space where it is common knowledge

whenever agent i has type �i, he is convinced that the types of other players ��i are such thatX
j 6=i

�j =
1




�
1

2
� �i

�
:

Observe that 
 > 1
I�1 implies that we can choose the �j to be in the interval [0; 1]. Agent i�s

preferences are independent of his type on this type space. Now �x any mechanism and restrict

each player to a pooling strategy, i.e., sending the same message independent of his type. Since all

types now have identical preferences over outcomes, this pooling strategy is an equilibrium.11

3.4 Private Good

The �nal example is a single unit auction with symmetric bidders. There are I agents and agent

i�s payo¤ type is �i 2 [0; 1]. If the pro�le type pro�le is �, agent i�s valuation of the object is

�i + 

X
j 6=i

�j ,

where 0 � 
 � 1.
In Bergemann and Morris (2005), we showed that Maskin monotonicity fails in this example,

so complete information implementation is impossible. This in turn implies that robust implemen-

tation is impossible. But Bergemann and Morris (2005) also showed that ex post implementation

occurs in the direct mechanism if there are at least three agents.

We next argue that virtual robust implementation is possible in this example if 
 < 1
I�1 . An

allocation rule is a function x : � ! [0; 1]I , where xi (�) is the probability that agent i gets the

object and so
P
i
xi (�) � 1. The symmetric e¢ cient allocation rule is the following:

x�i (�) =

(
1

#fj:�j��k for all kg , if �i � �k for all k;

0; if otherwise.

A symmetric "-e¢ cient allocation rule is the following:

x��i (�) = "
�i
I
+ (1� ")x�i (�) :

In the Appendix, we verify that the resulting generalized VCG transfers satisfy strict ex post

incentive compatibility and show that this "-e¢ cient allocation is robustly implementable. Under
11This argument is complete only if we know that an equilibrium exists in the game where players are restricted

to pooling strategies. This will be true for well-behaved mechanisms. Our general negative result holds even if this

is not guaranteed.
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this allocation rule, the object is not allocated with probability "
2 . At the cost of some additional

algebra, we could replace this rule with

x��i (�) = "
�iP
j
�j
+ (1� ")x�i (�)

which allocates the object with probability 1.

However, if 1
I�1 < 
 � 1, only constant allocations are robust implementable, by the same

argument as in the public good case: we can construct beliefs for each type such that types are

indistinguishable.

4 Interim Equilibrium and Iterative Elimination

The notion of robust implementation requires that a social choice function f can be interim im-

plemented for all type spaces T . As we look for necessary and su¢ cient conditions for robust
implementation, conceptually there are (at least) two approaches to obtain the conditions.

One approach would be to simply look at the interim implementation conditions for every

possible type space T and then try to characterize the intersection or union of these conditions for
all type spaces. This is the approach we initially pursued, and it works in brute force kind of way.

In Section 9.1, we review what happens under this approach.

But we focus our analysis on a second, more elegant, approach. We �rst establish an equiv-

alence between robust and iterative implementation and then derive the necessary conditions for

robust implementation as an implication of iterative implementation. The advantage of the second

approach is that after establishing the equivalence, we do not need to argue in terms of large type

spaces, but rather derive the results from a novel argument using the iterative elimination process.

A complicating element in the implementation context is the fact that the augmented mecha-

nisms often have in�nite message spaces and that best responses may not exist. These complications

are inherent to the entire implementation literature and we therefore have to carefully address these

issues before we establish the implementation results.

4.1 Best Response

We start with the �xed point SM of the iterative elimination procedure. Recall that by de�nition,

SM is a �xed point of b, and thus for all mi 2 SMi (�i), there exists �i 2 �(M�i ���i) such that

(1) �i (m�i; ��i) > 0) mj 2 SMj (�j) for each j 6= i

(2)
P

m�i;��i

�i (m�i; ��i)

"
ui (g (mi;m�i) ; (�i; ��i))

�ui (g (m0
i;m�i) ; (�i; ��i))

#
� 0 for all m0

i 2Mi

(1)
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Proposition 1 (Rationalizable Actions)

mi 2 SM (�i) if and only if there exists a type space T , an interim equilibrium � of the game

(T ;M) and a type ti 2 Ti such that (i) �i (mijti) > 0 and (ii) b�i (ti) = �i.

Proof. ()) Suppose m�
i 2 SM (��i ). Now consider the following type space T de�ned through:

Ti =
�
(mi; �i) : mi 2 SMi (�i)

	
:

Let b�i (mi; �i) , �i.

By (1), we know that for each mi 2 SMi (�i), there exists �
mi;�i
i 2 �(M�i ���i) such that:

�mi;�i
i (m�i; ��i) > 0) mj 2 SMj (�j) for each j 6= i;

andX
m�i;��i

�mi;�i
i (m�i; ��i)

�
ui (g (mi;m�i) ; (�i; ��i))� ui

�
g
�
m0
i;m�i

�
; (�i; ��i)

��
� 0; 8m0

i 2Mi.

Let b�i (m�i; ��i) [mi; �i] , �mi;�i
i (m�i; ��i) .

Now by construction, there is a pure strategy equilibrium s with si (mi; �i) = mi. But now

si (m
�
i ; �

�
i ) = m�

i and b� (m�
i ; �

�
i ) = ��i .

(() Suppose there exists a type space T , an equilibrium � of (T ;M), and m�
i 2Mi and t�i 2 Ti

such that �i (m�
i jt�i ) > 0 and b�i (t�i ) = ��i . Let

Si (�i) =
n
mi : �i (mijti) > 0 and b�i (ti) = �i for some ti 2 Ti

o
.

Now interim equilibrium conditions ensure that b (S) � S. Thus S � SM. Thusm�
i 2 SMi

�b�i (t�i )�,
which concludes the proof.

Brandenburger and Dekel (1987) showed an equivalence for �nite action complete information

games between the set of actions surviving iterated deletion of strictly dominant actions and the

set of actions that could be played in a subjective correlated equilibrium. Proposition 1 is a

straightforward generalization of Brandenburger and Dekel (1987) to incomplete information and

in�nite actions. The in�nite action extension (for complete information) was shown in Lipman

(1994). The �nite action incomplete information extension is reported in a recent paper of Battigalli

and Siniscalchi (2003) (following an earlier analysis in Battigalli (1999)).

Notice that there is no guarantee that SM (�i) is non-empty or that the game (T ;M) has an

equilibrium: the Proposition holds vacuously in this case. But for implementation results, we care
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about existence. We have the following two conditions that relate existence of equilibrium on all

type spaces to the actions surviving iterated deletion.

De�nition 5 (Ex Post Best Response)

Message correspondence S satis�es the ex post best response property if, for all i and �i 2 �i, there
exists m�

i 2 Si (�i) such that

m�
i 2 argmax

mi2Mi

ui (g (mi;m�i) ; (�i; ��i)) ;

for all ��i and m�i 2 S (��i).

We observe that for S to satisfy the ex post best response property, Si must be non-empty for

all i and all �i.

De�nition 6 (Interim Best Response )

Message correspondence S satis�es the interim best response property if, for all i and  i 2 �(��i),
there exists �i 2 �(M�i ���i) such that:

1. �i (m�i; ��i) > 0) mj 2 Sj (�j) for each j 6= i;

2. for all ��i 2 ��i : X
m�i2M�i

�i (m�i; ��i) =  i (��i) ;

3. for all �i 2 �i there exists m�
i 2 Si (�i) such that

m�
i 2 argmax

mi2Mi

X
m�i;��i

�i (m�i; ��i)ui (g (mi;m�i) ; (�i; ��i)) :

The interim best response property only requires that for every conjecture over payo¤ type

spaces, there exists some beliefs over messages consistent with the message correspondence S, such

that a best response is in the message correspondence. In particular, it does not require that a best

response exists for all possible beliefs over message pro�les. Note that the ex post best response

property is a stronger requirement than the interim best response property. Also note that the

interim best response property implies that SMi (�i) is non-empty for all i and �i.

Proposition 1 links every action pro�le in the set of rationalizable actions to an equilibrium

action for some type space T . Proposition 2 strengthens the relationship between rationalizable and
equilibrium actions, after imposing some structure on the best response property of rationalizable

and equilibrium actions, respectively.
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Proposition 2 (Best Response Properties)

1. If SM satis�es the ex post best response property, then (T ;M) has an equilibrium for each

T .

2. If (T ;M) has an equilibrium for each T , then SM satis�es the interim best response property.

Proof. (1.) By the ex post best response property, there exists, for each i, s�i : �i !Mi such

that

s�i (�i) 2 argmax
mi2Mi

ui
�
g
�
mi; s

�
�i (��i)

�
; (�i; ��i)

�
for all ��i. Now �x any type space. The strategy pro�le s with

si (ti) = s�i

�b�i (ti)�
is an equilibrium of the game (T ;M).

(2.) Suppose (T ;M) has an equilibrium for each T . Fix any i and  i 2 �(��i). Fix any
type space T with, for each �i 2 �i, a type t�i (�i) such that (a) b�i (t�i (�i)) = �i for each �i, (b)b�i (t�i (�i)) = �i for all �i and (c) X

ft�i:b��i(t�i)=��ig
�i (t�i) [t

�
i ] =  i (��i) (2)

for all �i and ��i. The game has an equilibrium �. Let mi be any message with �i (mijt�i (�i)) > 0.
Let

�i (m�i; ��i) =
X

ft�i2T�i:b��i(t�i)=��ig
��i (m�ijt�i)�i (t�i) [t�i ] .

Now �i (mijt�i (�i)) > 0 implies

mi (�i) 2 argmax
mi2Mi

X
m�i;��i

�i (m�i; ��i)ui (g (mi;m�i) ; (�i; ��i)) .

Proposition 1 implies that every message pro�le mj which is played in equilibrium by type �j is

part of the set SM, or that:

�i (m�i; ��i) > 0) mj 2 SMj (�j) for each j 6= i.

By construction of the type space T , in particular property (c) as expressed by (2), this implies
that X

m�i2M�i

�i (m�i; ��i) =  i (��i) for all ��i 2 ��i.
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Since these properties hold for arbitrary i and  i 2 �(��i), SM satis�es the interim best response

property, which concludes the proof.

It is unfortunate that there is a gap between the necessary and su¢ cient conditions in this

Proposition. However, an example in the Appendix shows that it is possible to construct (admit-

tedly silly) mechanisms where (T ;M) has an equilibrium for each T , but SM fails the ex post best

response property. The ex post best response property must be satis�ed if the mechanism is nice,

i.e., best responses always exist.

4.2 Implementation

The �rst part of the de�nition of implementation is the requirement that all outcomes that occur

in equilibrium are consistent with the social choice function. The �rst de�nition checks if this is

true for some �xed type space T and mechanismM.

De�nition 7 (Interim Material Implementation)

Social choice function f is interim materially implemented on type space T by mechanism M if

every equilibrium � of the game (T ;M) satis�es

� (mjt) > 0) g (m) = f
�b� (t)� ;

for all t.

The next de�nition checks if the same property holds for every type space:

De�nition 8 (Robust Material Implementation)

Social choice function f is robustly materially implemented by mechanism M if, for every T , f is
interim materially implemented on type space T by mechanismM.

Finally, we ask if iterated deletion delivers acceptable outcomes:

De�nition 9 (Iterative Material Implementation)

Social choice function f is iteratively materially implemented by mechanism M if, for all �, m 2
SM (�)) g (m) = f (�).

Now Proposition 1 immediately implies an equivalence between robust and iterative implemen-

tation.

Corollary 1 (Equivalence)

Social choice function f is iteratively materially implemented by M if and only if f is robustly

materially implemented by mechanismM.
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In all the above de�nitions, we quali�ed that implementation as being "material" because the

premise of the de�nition might be vacuous: the mechanism M might have the property that on

any type space, there is no equilibrium and no messages surviving iterated deletion.12

Proposition 2 gave the slightly messier result relating equilibrium existence and properties of

messages surviving iterated deletion. The following corollary gives the immediate implications for

our implementation de�nitions:

Corollary 2 (Necessary Conditions)

1. If social choice function f is iteratively materially implemented by mechanism M and SM

satis�es the ex post best response property, then f is robustly implemented byM.

2. If f is robustly implemented byM, then f is iteratively materially implemented by mechanism

M and SM satis�es the interim best response property.

The �material�quali�cation will only be used in the necessity part of Theorem 2 where we shall

invoke the above Corollary 2.2. There we shall use the �xed-point property of SM, stated earlier

in (1), to derive the robust monotonicity condition. In the su¢ ciency part of the proof, a non-

empty set SM is obtained in the augmented mechanism by virtue of ex post incentive compatibility.

Similarly, for the direct implementation results, a non-empty set SM exists by ex post incentive

compatibility and the �material� quali�cation is not needed at all. The following implication of

robust implementability will be used to establish robust monotonicity in Theorem 2.

Lemma 1 (Truthtelling as Best Response)

If f is iteratively materially implemented by mechanism M and SM satis�es the interim best

response property, then for all i and ��i 2 ��i, there exists �i 2 �
�
SM�i (��i)

�
,

ui (f (�i; ��i) ; (�i; ��i)) �
X
m�i

�i (m�i)ui (g (mi;m�i) ; (�i; ��i)) (3)

for all mi 2Mi and �i 2 �i.

Proof. Applying the de�nition of the interim best response property for i and the degenerate

distribution putting probability 1 on ��i, we have that there exists �i 2 �
�
SM�i (��i)

�
such that

? 6= argmax
mi

X
m�i;��i

�i (m�i)ui ((mi;m�i) ; (�i; ��i)) � SMi (�i) for all �i 2 �i.

12Our terminology mirrors the language of modal logic where proposition A materially implies B whenever A is

false, as well as when both A and B are true, see Hughes and Creswell (1996).
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But by iterative material implementability, m 2 SM (�)) g (m) = f (�). So

ui (f (�i; ��i) ; (�i; ��i)) �
X
m�i

�i (m�i)ui ((mi;m�i) ; (�i; ��i)) ;

for all mi 2Mi and �i 2 �i.
Lemma 1 shows how small the gap between the ex post and interim best response property is.

It establishes that truthtelling is a best response against some beliefs over messages m�i for any

given payo¤ type pro�le ��i.

5 Direct Implementation

We �rst characterize when robust direct implementation is possible. By "direct mechanism", we

mean the mechanism where each agent simply reports his payo¤ type �i, and so Mi = �i for all i

and g (�) = f (�) for all �. Thus we assume that agents do not report their "higher order belief"

types. "Truth-telling behavior" is the strategy of always truthfully reporting your payo¤ type.

De�nition 10 (Robust Direct Implementation)

SCF f is robustly directly implementable if truth-telling is an equilibrium of the direct mechanism,

and f is interim implementable on any type space T by the direct mechanism.

A deception is a pro�le � = (�1; ::; �I), where:

�i : �i ! 2�i
�
?;

with �i 2 �i (�i) for all i, �i.

De�nition 11 (Acceptable / Unacceptable Deception)

A deception is acceptable if �0 2 � (�) ) f
�
�0
�
= f (�). A deception is unacceptable if it is not

acceptable.

The inverse mapping of the deception �i represents the set of true type pro�les �i which could

lead to a deception �0i and we write

��1i
�
�0i
�
=
�
�i : �

0
i 2 �i (�i)

	
:

A deception is a message correspondence pro�le in the special case of a direct mechanism.

De�nition 12 (Ex Post Incentive Compatibility)

Social choice function f satis�es ex post incentive compatibility if

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
;

for all i, �i, �0i and ��i.
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De�nition 13 (Direct Robust Monotonicity)

Social choice function f satis�es direct robust monotonicity if, for every unacceptable deception �,

there exist i, �i, �0i 2 �i (�i) such that for all �
0
�i 2 ��i and �i 2 �

�
�0�i; �

�1
�i
�
�0�i
��
, there exists

�00i 2 �i such thatX
��i2��i

�i
�
�0�i; ��i

�
ui
�
f
�
�00i ; �

0
�i
�
; (�i; ��i)

�
>

X
��i2��i

�i
�
�0�i; ��i

�
ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
. (4)

We will show direct robust monotonicity is a necessary and su¢ cient condition for implemen-

tation in the direct mechanism. In consequence, the designer can only o¤er those rewards to agent

i which can be generated through the social choice function f by a report of agent i, say �00i . The

focus on rewards which can be generated through type reports in the direct mechanism implies

that the incentive compatibility condition for claiming the reward y in the correct circumstances

(if and only if the other agents deceive) is automatically satis�ed, provided that the social choice

function f satis�es ex post incentive compatibility.

Lemma 2 (Robust Implementation as Fixed Point)

f satis�es direct robust monotonicity if and only if � � b (�)) � acceptable.

Proof. ()) The proof is by contradiction. Thus suppose that f satis�es direct robust

monotonicity and that the deception � is a �xed point under the mapping b, but � is unacceptable.

In the direct mechanism, the set of messages isMi = �i for all i. Then by hypothesis of direct robust

monotonicity, there exists i, �i; �0i 2 �i (�i) such that for all �0�i 2 ��i and �i 2 �
�
�0�i; �

�1
�i
�
�0�i
��
,

there exists �00i 2 �i satisfying the strict inequality (4). But this implies that �0i =2 bi (�) [�i] which
contradicts the �xed point property of �.

(() The proof is again by contradiction. Thus suppose that the �xed point property � � b (�)

indeed implies that � is acceptable, but that f does not satisfy direct robust monotonicity. In other

words, let us suppose that there exists an unacceptable deception � for which we cannot �nd i; �i

and �0i 2 �i (�i) such that the inequality (4) can be satis�ed. By hypothesis, � is unacceptable, and
it follows that the premise of the hypothesis, namely the �xed point property cannot be satis�ed

by �. But this implies that there exists i and �0i with �
0
i =2 bi (�) [�i]. But the exclusion means that

for every �i 2 �
�
�0�i ���i

�
such that �i

�
�0�i; ��i

�
> 0) �0j 2 �j (�j) for each j 6= i, there exists

�00i such thatX
�0�i;��i

�i
�
�0�i; ��i

� �
ui
�
f
�
�00i ; �

0
�i
�
; (�i; ��i)

�
� ui

�
f
�
�0i; �

0
�i
�
; (�i; ��i)

��
> 0,

but this delivers the desired contradiction.
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Theorem 1 (Robust Direct Implementation)

Social choice function f is robustly directly implementable if and only if f satis�es EPIC and direct

robust monotonicity.

Proof. The existence of a truthtelling equilibrium on every type space is equivalent to EPIC (see

Bergemann and Morris (2004), Proposition 2). With the existence of a truthtelling equilibrium,

verifying robust implementation reduces to verifying iterative implementation by Proposition 1.

Iterative implementation requires that the largest �xed point of b is acceptable. But Lemma 2

shows that this is guaranteed by direct robust monotonicity.

6 Robust Implementation

A "robust monotonicity" condition is key to our main result. In the direct mechanism, where

agents other than i report themselves to be types ��i, agent i can obtain outcomes f
�
�0i; ��i

�
for

any �0i. But once we allow augmented mechanisms, we could conceivably o¤er agent i a larger set of

lotteries if he reports deviant behavior of his opponents. We need to identify, for any given report

��i, the set of lotteries with the property that whatever agent i�s actual type, he would never prefer

such an allocation to what he would obtain under the social choice function if other agents were

reporting truthfully. Thus:

Yi (��i) =
�
y 2 Y : ui

�
y;
�
�0i; ��i

��
� ui

�
f
�
�0i; ��i

�
;
�
�0i; ��i

��
for all �0i 2 �i

	
.

Henceforth, we refer to the set Yi (��i) as the reward set (for agent i).

To understand the robust monotonicity condition, it is useful to �rst think about agents playing

the direct mechanism. Suppose that it was common knowledge that in the direct mechanism, type

�i of player i will send a report �0i 2 �i (�i). If � is acceptable, we would know that f was being

implemented. But if � is unacceptable, we must �nd a type of some agent who is prepared to report

that other players are misreporting. But for the "whistle-blower" who is going to report that we

are in a bad equilibrium, we cannot know what he believes about the types of the other players,

nor can we know what message he expects to hear except that it is a message consistent with the

deception. Finally, the reward that he is o¤ered must not mess up the truth-telling behavior in the

good equilibrium. This gives the following condition:

De�nition 14 (Robust Monotonicity)

Social choice function f satis�es robust monotonicity if for every unacceptable deception �, there

exist i, �i, �0i 2 �i (�i) such that, for all �0�i 2 ��i and  i 2 �
�
��1�i

�
�0�i
��
, there exists y such that:X

��i2��i

 i (��i)ui (y; (�i; ��i)) >
X

��i2��i

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
, (5)
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while

ui
�
f
�
�00i ; �

0
�i
�
;
�
�i; �

0
�i
��
� ui

�
y;
�
�00i ; �

0
�i
��
; for all �00i 2 �i. (6)

Notice that this condition has a very similar form to the direct robust monotonicity condition.

We simply allow a richer set of rewards in an augmented mechanism. In addition, in the augmented

mechanism, agent i can propose an allocation conditional on the misreport �0�i of the other agents.

It therefore su¢ ces that the reward y agent i proposes in the event of report �0�i is successful for

all possible distributions  i (��i) over the set of types �
�1
�i
�
�0�i
�
which could have reported �0�i

under the deception ��i. In contrast, if we were to seek robust direct implementation, the report

of agent i has to lead to rewards which work for all possible misreports �0�i and underlying true

type pro�les ��i. In consequence, the expectation had to be taken both with respect to the reports

and the true types, i.e. �
�
��i; �

0
�i
�
.

If we compare the notion of robust monotonicity with the notion of Bayesian monotonicity

for a given type space (see De�nition 24), then three major di¤erences appear. First, the notion

of a deception is set-valued rather than point-valued. Second, the reward has to be successful

against all possible distributions  i (��i) over true payo¤ pro�le rather than a single distribution,

the posterior derived from the common prior. Third, the incentive constraints for the reward, (6),

have to be satis�ed ex post rather than interim. All three modi�cations directly stem from the

robustness concern. The deception has to be set valued as in a rich type, a given payo¤ type �i can

now generate di¤erent misreports �0i through distinct types ti who all share the same true payo¤

type. Similarly, in a rich type space, there might be many distributions over payo¤ types,  i (��i),

which adopt a given misreport �0i. Finally, the ex post incentive constraints regarding the reward

y are necessary to maintain the truthtelling equilibrium in the direct revelation segment of the

augmented mechanism. This is the robustness property of the ex post constraints in the direct

mechanism developed in Bergemann and Morris (2004).

Robust monotonicity is strictly stronger than both Maskin monotonicity and ex post monotonic-

ity (a necessary and almost su¢ cient condition for ex post implementation described in Bergemann

and Morris (2005)). To get a sense of the strength of the condition, we can return to the examples

of Section 3:

1. In the majority rule example, Maskin monotonicity and ex post monotonicity are both satis-

�ed, but robust monotonicity fails.

2. In the coordination example, robust monotonicity (and thus Maskin and ex post monotonic-

ity) are satis�ed.
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3. In the public goods example, robust monotonicity (and thus Maskin and ex post monotonic-

ity) are satis�ed if there is not too much interdependence of preferences. If there is too

much interdependence of preferences, robust monotonicity fails but both Maskin and ex post

monotonicity are satis�ed.

4. In the private good example, ex post monotonicity holds, but Maskin monotonicity (and thus

robust monotonicity) fails. However, in a perturbed version of this example, we again have

robust monotonicity satis�ed if only if there is not too much interdependence of preferences.

Although we will not use it extensively, notice that ifMi and �i are �nite, then standard duality

arguments imply the following alternative characterization: social choice function f satis�es robust

monotonicity if for every unacceptable deception �, there exist i, �i, �0i 2 �i (�i) such that, for all
�0�i 2 ��i, there exists y 2 Yi

�
�0�i
�
such that:

ui (y; (�i; ��i)) > ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
;

for all ��i such that �0�i 2 ��i (��i). Note that this characterization uses the requirement that Y
is a lottery space.

Finally, we need an extremely weak economic condition to ensure that it is always possible to

reward and punish each player independently of the others.

De�nition 15 (Bad Outcome)

The bad outcome property is satis�ed if, for each i, there exists y
i
2 Y such that, for all �i 2 �i,

 i 2 �(��i) and �0�i 2 ��i, there exists y 2 Yi
�
�0�i
�
such thatX

��i

 i (��i)ui (y; (�i; ��i)) >
X
��i

 i (��i)ui
�
y
i
; (�i; ��i)

�
.

This property says that there exists a bad outcome y
i
for each player i such that we can always

o¤er him a lottery that makes him better o¤ whatever his beliefs about other players�types and

whatever reports other players are making. The bad outcome property, together with the use of

lotteries, allows us to dispense with any no veto property which typically appear in the su¢ cient

conditions. In addition, we can omit the usual cardinality assumption of I � 3.

Theorem 2 (Robust Implementation)

1. If f is robustly implementable, then f satis�es EPIC and robust monotonicity;

2. if f satis�es EPIC, robust monotonicity and the bad outcome property, then f is robustly

implementable.
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Proof. (1.) We �rst prove that robust implementability implies EPIC and robust monotonicity.

We do so by appealing to the necessary conditions for robust implementation in Corollary 2.

We �rst establish EPIC. By Lemma 1, there exists �i 2 �
�
SM�i (��i)

�
,

ui (f (�i; ��i) ; (�i; ��i)) �
X
m�i

�i (m�i)ui (g (mi;m�i) ; (�i; ��i)) ;

for all mi 2Mi and �i 2 �i. If we choose mi 2 SMi
�
�0i
�
, iterative material implementation implies

that g (mi;m�i) = f
�
�0i; ��i

�
for all m�i 2 SM�i (��i). So

ui (f (�i; ��i) ; (�i; ��i)) � ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
;

for all �0i 2 �i.
We next establish robust monotonicity. Fix an unacceptable deception � and suppose that f

is iteratively materially implementable. There must exist a message correspondence pro�le S such

that

b (S) � S;

and

SMi
�
�0i
�
� Si (�i) ; (7)

for all i, �i and �0i 2 �i (�i); but
SMi

�
�0i
�
* bi (S) [�i] ; (8)

for all i, �i and �0i 2 �i (�i). The existence of such an S can be established constructively. Clearly S
satis�es (7). Iteratively apply the operator b. By iterative implementation, there exists k (perhaps

trans�nite) such that:

S , bk
�
S
�

(9)

satis�es (8). Thus there exists k such that bk
�
S
�
satis�es (7) and bk+1

�
S
�
satis�es (8).

By (8), simply pick

bmi 2 Si (�i) \ SMi
�
�0i
�

and bmi =2 bi (S) [�i] \ SMi
�
�0i
�
.

Since message bmi =2 bi (S) [�i], we know that for every �i 2 �(M�i ���i) such that

�i (m�i; ��i) > 0) mj 2 Sj (�j) for all j 6= i,

there exists m�
i such thatX

m�i;��i

�i (m�i; ��i)ui (g (m
�
i ;m�i) ; (�i; ��i)) >

X
m�i;��i

�i (m�i; ��i)ui (g (bmi;m�i) ; (�i; ��i)) .

(10)
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Next we identify a particular belief �i (m�i; ��i) for which the inequality (10) holds. By (3) in

Lemma 1, there exists �i 2 �
�
SM�i

�
�0�i
��
such thatX

m�i

�i (m�i)ui
�
g (mi;m�i) ;

�
�00i ; �

0
�i
��
� ui

�
f
�
�00i ; �

0
�i
�
;
�
�00i ; �

0
�i
��
; (11)

for all mi 2Mi and �00i 2 �i. Thus for any  i 2 �(��i), we can set

�i (m�i; ��i) = �i (m�i) i (��i) .

Applying the above claim (10), there exists m�
i such that:X

��i;m�i

 i (��i) �i (m�i)ui (g (m
�
i ;m�i) ; (�i; ��i)) >

X
��i;m�i

 i (��i) �i (m�i)ui (g (bmi;m�i) ; (�i; ��i)) .

But �i (m�i) > 0) (bmi;m�i) 2 SM
�
�0
�
, so by iterative material implementation:

g (bmi;m�i) = f
�
�0
�
:

We also observe that as we de�ned S to be the set obtained after the k � th iteration of the

operator b, see (9), if �0�i 2 ��i (��i), then �i (m�i) > 0 ) m�i 2 S�i (��i). Thus for every

 i 2 �
�
��1�i

�
�0�i
��
, there exists m�

i such thatX
��i;m�i

 i (��i) �i (m�i)ui (g (m
�
i ;m�i) ; (�i; ��i)) >

X
��i;m�i

 i (��i) �i (m�i)ui
�
f
�
�0
�
; (�i; ��i)

�
.

(12)

Now, the inequality (12) essentially establishes guarantees the reward inequality for robust monotonic-

ity. We can complete the argument by letting y be the lottery with

y (z) �
X
m�i

g (m�
i ;m�i) �i (m�i) :

We now have established that for each �0�i 2 ��i (��i) and  i 2 �
�
��1�i

�
�0�i
��
, there exists y such

that (by (11))

ui
�
y;
�
�00i ; �

0
�i
��
� ui

�
f
�
�00i ; �

0
�i
�
;
�
�00i ; �

0
�i
��
;

for all �00i 2 �i, and thus y 2 Yi
�
�0�i
�
.13 And by (12) we then have:X

��i

 i (��i)ui (y; (�i; ��i)) >
X
��i

 i (��i)ui
�
f
�
�0
�
; (�i; ��i)

�
.

13Note that this step implies that even if we had restricted attention to mechanisms with deterministic outcomes,

our robust monotonicity would only have established that there exists a lottery (not necessarily a deterministic

outcome) su¢ cient to reward a whistle-blower.
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(2.) We now prove that EPIC, robust monotonicity and the bad outcome property imply robust

implementation. We do so by explicitly constructing the implementing mechanism.

Each agent i sends a message mi =
�
m1
i ;m

2
i ;m

3
i ;m

4
i

�
, where m1

i 2 �i, m2
i 2 Z+,

m3
i : ��i ! �(Y ) with m3

i (��i) 2 Yi (��i), m4
i 2 Y . The outcome g (m) is determined by the

following rules.

Rule 1: If m2
i = 1 for all i, pick f

�
m1
�
.

Rule 2: If there exists j 2 I such that m2
i = 1 for all i 6= j and m2

j > 1, then pick m
3
j

�
m1
�j

�
with

probability 1� 1
m2
j+1

and y
i
with probability 1

m2
j+1
.

Rule 3: In all other cases, for each i, with probability 1
I

�
1� 1

m2
i+1

�
pick m4

i , and with probability

1
I

�
1

m2
i+1

�
pick y

i
.

We �rst show that it is never a best reply for type �i to send a message with m2
i > 1 (i.e.,

mi 2 bi
�
S
�
) m2

i = 1). Suppose that �i has conjecture �i 2 �(M�i ���i). We can partition the
messages of other players as follows:

M�
�i (��i) =

�
m�i : m

2
j = 1 for all j 6= i and m1

�i = ��i
	
;

and cM�i =
�
m�i : m

2
j > 1 for some j 6= i

	
.

By the bad outcome property, we know that there exists m4
i 2 Y such that, ifX

m�i2cM�i;��i2��i

�i (m�i; ��i) > 0,

then X
m�i2cM�i;��i2��i

�i (m�i; ��i)ui
�
m4
i ; �
�
>

X
m�i2cM�i;��i2��i

�i (m�i; ��i)ui
�
y
i
; �
�
.

And we know that there exists m3
i such that, ifX

m�i2M�
�i(�

0
�i);��i2��i

�i (m�i; ��i) > 0,

then X
m�i2M�

�i(�
0
�i);��i2��i

�i (m�i; ��i)ui
�
m3
i

�
�0�i
�
; �
�
>

X
m�i2M�

�i(�
0
�i);��i2��i

�i (m�i; ��i)ui
�
y
i
; �
�
.

Thus if
�
m1
i ;m

2
i ;m

3
i ;m

4
i

�
with m2

i > 1 were a best response, then
�
m1
i ;m

2
i + 1;m

3
i ;m

4
i

�
would be

an even better response, contradiction.
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Now �x any S with mi 2 Si (�i)) m2
i = 1. Let

�i (�i) =
�
�0i :

�
�0i; 1;m

3
i ;m

4
i

�
2 Si (�i) for some

�
m3
i ;m

4
i

�	
.

First observe that EPIC implies that �i 2 �i (�i). We will argue that if � is not acceptable, then
b (S) 6= S. By robust monotonicity, we know that there exists i, �i, �0i 2 �i (�i) such that, for all

�0�i 2 ��i and  i 2 �
�
��1�i

�
�0�i
��
, there exists y 2 Yi

�
�0�i
�
such thatX

��i2��i

 i (��i)ui (y; (�i; ��i)) >
X

��i2��i

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
.

But now for any conjecture �i 2 �
�n
(m�i; ��i) : m2

j = 1 for all j 6= i
o�
, there exists m3

i (with

m3
i (��i) 2 Yi (��i)) such thatX

m�i;��i

�i (m�i; ��i)ui
�
m3
i

�
m1
�i
�
; �
�
>

X
m�i;��i

�i (m�i; ��i)ui
�
f
�
�0i;m

1
�i
�
; (�i; ��i)

�
.

Thus message
�
�0i; 1;m

3
i ;m

4
i

�
is never a best response for type �i.

We conclude that if

�i (�i) =
�
�0i :

�
�0i; 1;m

3
i ;m

4
i

�
2 SMi (�i) for some

�
m3
i ;m

4
i

�	
,

then � is acceptable. Thus f is iteratively materially implemented.

Finally observe that SM must satisfy the ex post best response property, with type �i sending

a message of the form
�
�0i; 1;m

3
i ;m

4
i

�
, so robust implementation is possible by Corollary 2.

The proof directly uses the link between iterative and robust implementation for the necessity

as well as the su¢ ciency part. We brie�y sketch the idea of the necessity part of the proof. If

f is robustly implementable, then it is iteratively implementable by Corollary 2. From iterative

implementability, we then want to show that f satis�es strict robust monotonicity. We then consider

a given and unacceptable deception �. We start the process of iterative elimination and stop it

at a speci�c round, denoted by k. This round k is the �rst round at which we can �nd an agent

i, a true type pro�le �i and a report �0i 2 �i (�i), such that a message, denoted by bmi, which will

survive the process of iterated elimination for type �0i, fails to survive the k-th round of elimination

for type �i. We then show that the elimination of message bmi at round k implies that the social

choice function f satis�es strict robust monotonicity with respect to the deception �. Brie�y, ifbmi survives the process of elimination for type �0i, the message bmi acts in the mechanism so as to

report a payo¤ type �0i. If it is eliminated at round k for payo¤ type �i, then this means that for any

belief agent i has over the remaining agents, there exists a message m�
i which leads to an allocation

through g which is strictly preferred by agent i when he has a payo¤ type �i. The signi�cance of
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round k being the �rst round for which such an elimination relative to the deception � occurs, is

that at this round, there do not yet exist any restrictions about message and payo¤ type pro�le

regarding the other players deception. The fact then that bmi can be eliminated allows us to use

full strength of the elimination argument to establish robust monotonicity. In the context of the

proof it is interesting to note that the key step from iterative elimination to robust monotonicity

is an argument which involves the early stages of the elimination process rather than the limit of

iteration process.

The results of Theorem 2 rely both on allowing lotteries and the bad outcome property. In

Section 9.1, both assumptions are discussed and a simple example satisfying EPIC and robust

monotonicity but not robustly implementable without lotteries is described.

The novel di¢ culty in obtaining the necessary results for implementation arise from the ro-

bustness requirement. If f is robustly implemented, the mechanism which achieves implementation

could be badly behaved with respect to the existence of best responses against all possible beliefs

about action and type pro�les of the other agents. This di¢ culty did not appear in the direct

robust implementation as direct implementation guaranteed ex post incentive compatibility and

inside the direct mechanism the (non-empty) existence of SM. In Section 9.2 we reconsider the

robust implementation result by restricting attention to nice mechanisms, mechanisms in which

best responses always exist for all beliefs over payo¤ type and message pro�les.

Finally, in the Appendix we provide a direct proof that interim monotonicity on all type spaces

is equivalent to robust monotonicity. The result, contained in Proposition 6, explicitly constructs a

type space to show that if robust monotonicity fails then there also exists a type space T for which
Bayesian monotonicity fails.

7 Virtual Implementation

In this section, we extend our robustness analysis from interim to virtual implementation. This

section is more limited in scope than the previous sections. The notion of virtual Bayesian im-

plementation is widely considered to be much more permissive than interim implementation (see

Abreu and Matsushima (1992b), Duggan (1997) and Serrano and Vohra (2005)).

We shall de�ne a robust version of virtual implementation and then give a simple condition,

type indistinguishability, to obtain an impossibility result for robust virtual implementation. The

impossibility result will reappear in Section 8. There we consider an environment in which the

payo¤ types can be linearly aggregated with respect to the impact of the types on the utility of

each agent. In this linear environment, we will be able to derive an exact and sharp bound for the

possibility of robust implementation. Conversely, if robust implementation fails the bound, then
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robust virtual implementation will also be impossible. With respect to virtual implementation,

a message of the robustness analysis consequently will be that the di¤erence between interim

and virtual implementation shrinks substantially once we impose the robustness requirement on

implementation.

De�nition 16 (Virtual Implementation)

Social choice function f is " implementable by mechanism M on type space T , if there exists an
equilibrium of the game (T ;M) and every equilibrium � of the game (T ;M) satis�esX

m2M
g
�
f
�b� (t)� jm�� (mjt) � 1� ".

Social choice function f is virtually implementable if it is "�implementable for all " > 0.

We denote by g (y jm) the probability that the outcome y is realized conditional on receiving
message m. We next present the robust version of virtual implementation.

De�nition 17 (Virtual Robust Implementation)

Social choice function f is "�robustly implementable by mechanism M if, on every type space T ,
there exists an equilibrium of the game (T ;M) and every equilibrium � of the game (T ;M) satis�esX

m2M
g
�
f
�b� (t)� jm�� (mjt) � 1� ".

Social choice function f is virtually robustly implementable if it is "�robustly implementable for all
" > 0.

In this section, we restrict attention to mechanisms that satisfy a best response property.

De�nition 18 (Nice Mechanism)

MechanismM is nice if for all i and �i 2 �i,

SM (�i) 6= ?;

and argmax
mi

X
m�i;��i

�i (m�i; ��i)ui (g (mi;m�i) ; (�i; ��i)) 6= ?;

for all �i 2 �(M�i ���i).

Thus rationalizable sets are non-empty and best responses exist to all conjectures. This restric-

tion is related to restrictions studied in the complete information literature, such as the bounded
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mechanism condition of Jackson (1992), but we have not yet identi�ed the exact relation. Note

that this property is automatically satis�ed if message spaces are �nite. Next we present a su¢ cient

condition to obtain an impossibility result for robust virtual implementation.14

De�nition 19 (Indistinguishable Payo¤ Types)

Payo¤ types are indistinguishable if, for all i, there exists  i : �i ! �(��i) such that for all

�i; �
0
i 2 �i and y, y0 2 Y ,X

��i

ui (y; (�i; ��i)) i (��ij�i) �
X
��i

ui (y
0; (�i; ��i)) i (��ij�i)

,
X
��i

ui
�
y;
�
�0i; ��i

��
 i
�
��ij�0i

�
�
X
��i

ui
�
y0;
�
�0i; ��i

��
 i
�
��ij�0i

�
:

We note that any two types, �i and �0i, have to agree in their ranking of the alternatives

only for some speci�c posterior distribution,  i (��ij�i) and  i
�
��ij�0i

�
, but not for all posterior

distributions. On the other hand, the ranking has to be constant for any arbitrary pair, �i; �0i 2 �i.

Proposition 3 (Failure of Virtual Robust Implementation)

If types are indistinguishable, then f is virtually robustly implementable by a nice mechanism if and

only if it is constant.

Proof. Clearly f is virtually robustly implementable if it is constant. Suppose that types are

not indistinguishable. Then there exists vi : Y ! R such that type �i with beliefs  i (��i) prefers
y to y0 if and only if vi (y) � vi (y

0). We argue by induction that for all i and k, there exists mk
i

such that mk
i 2 Ski (�i) for all �i 2 �i. It is clearly true for k = 0 and to begin the inductive step

suppose it is true for k. Fix any i and �x

mk+1
i 2 argmax

mi

vi

�
g
�
mi;m

k
�i

��
,

for some mk
�i 2 Sk�i. Now mk+1

i 2 Sk+1i (�i) for all �i. Thus for each i there exists m�
i 2 SMi (�i)

for all �i. Thus for any mechanismM, there exists y 2 Y such that on any type space, outcome y

is always realized. Thus virtual robust implementation requires that for every " > 0, there exists

y 2 Y such that kf (�)� yk � ". This in turn requires that f is constant.

The same argument will imply that if types are indistinguishable, then a social choice function

cannot be implemented by iterated deletion of "weakly ex post dominated" messages, as in Chung

and Ely (2001).

14This condition can be further weakened with an iterative indistinguishability condition that is the robust analogue

of the measurability condition in Abreu and Matsushima (1992b):
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8 Linear Aggregation of Interdependent Types

In this section, we present a class of environments with interdependent preferences, for which we can

derive precise implementation results. The environment is de�ned to be the class of interdependent

preferences where the payo¤ types can be aggregated linearly for the utility representation. This

class of preferences allows us to clearly illustrate the link between iterative and robust implementa-

tion. With the linear aggregation of the payo¤ types, we obtain two very distinct implementation

results, separated by a sharp bound on the size of the interdependence in the valuations. If there is

not too much interdependence, then robust implementation is possible. Conversely, if there is too

much interdependence, then robust implementation will be impossible, but more surprisingly, even

robust virtual implementation is impossible.

Thus we consider preferences ui (y; �) which permit linear aggregation of the payo¤ types as

follows:

ui (y; �) , vi

0@y; �i + 
X
j 6=i

�j

1A ;

with 
 2 R and �i = [0; 1] for all i. We de�ne the value of the linear aggregator for agent i as �i:

�i : RI ! R;

and accordingly can write the preferences of agent i as a function of the allocation and the linear

aggregator �i, or vi (y; �i).

With the linear aggregation of the payo¤ types, we obtain two very distinct implementation

results, separated by a sharp bound on the size of the interdependence in the valuations. We begin

the impossibility result under �too much�interdependence.

Theorem 3 (Virtual Implementation)

If 
 > 1
I�1 , then types are indistinguishable and virtual robust implementation is impossible.

Proof. Suppose 
 > 1
I�1 . Let type �i always put probability 1 on a pro�le ��i withX

j 6=i
�j =

1




�
1

2
� �i

�
.

Then

�i + 

X
j 6=i

�j = �i + 


�
1




�
1

2
� �i

��
= �i +

1

2
� �i

=
1

2
:
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This implies that types are indistinguishable. While Proposition 3 is written for discrete types, it

extends straightforwardly to compact type spaces.

On the other hand, we have positive implementation results when there is not too much inter-

dependence in preferences. Before we can state the positive implementation results, we need to

make the usual assumptions regarding single crossing to guarantee ex post incentive compatibility

in the direct mechanism.

De�nition 20 (Single Crossing)

vi satis�es single crossing if vi (y0; �) = vi (y; �) and vi (y0; �0) > vi (y; �
0) imply vi (y0; e�) > vi (y; e�)

for all e� > � (if �0 > �) and for all e� < � (if �0 < �).

This condition requires that for any pair of lotteries y and y0, there is at most one value of the

aggregate of individual types, �, where preferences over the lotteries switch. We state the single

crossing condition in terms of the linear aggregator � as we do not make any ordering assumption

about the set of allocations Y .

De�nition 21 (Non-degeneracy)

vi is nondegenerate if for all y, � 6= �0, there exists y0 such that vi (y0; �) = vi (y; �) and vi (y0; �0) >

vi (y; �
0).

With robust implementation, we need to strengthen the ex post incentive constraints in the

direct mechanism to be strict inequalities.

De�nition 22 (Strict Ex Post Incentive Compatibility)

Social choice function f satis�es strict ex post incentive compatibility if f
�
�i; �

0
�i
�
6= f

�
�0i; �

0
�i
�
for

some �0�i implies

ui (f (�i; ��i) ; (�i; ��i)) > ui
�
f
�
�0i; ��i

�
; (�i; ��i)

�
for all i and ��i.

We can now establish the converse to Theorem 3.

Theorem 4 (Robust Implementation)

If 
 < 1
I�1 , strict EPIC holds and each vi satis�es single crossing and non-degeneracy, then robust

monotonicity is satis�ed.

Proof. Consider the deception �. Let

� = sup
i;�i;�

0
i2�i(�i)

���0i � �i�� .
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If � = 0, then the deception is acceptable and we are done. If � > 0, �x any 0 < " < 1� 
 (I � 1)
and

�
i; �i; �

0
i

�
with

���0i � �i�� > �(1� "). Fix any �0�i. By non-degeneracy of vi, there exists

y0 such that ui
�
y0; �0

�
= ui

�
f
�
�0
�
; �0
�
and ui

�
y0;
�
�i; �

0
�i
��

> ui
�
f
�
�0
�
;
�
�i; �

0
�i
��
. Let yn be a

lottery putting probability 1
n on y

0 and probability 1� 1
n on f

�
�0
�
. Now yn ! f

�
�0
�
, ui

�
yn; �0

�
=

ui
�
f
�
�0
�
; �0
�
and ui

�
yn;
�
�i; �

0
�i
��
> ui

�
f
�
�0
�
;
�
�i; �

0
�i
��
for all n.

We �rst establish that for su¢ ciently large n, yn 2 Y �i
�
�0�i
�
. If this wasn�t true, then for every

n, there would exist e�i such that
ui

�
yn;
�e�i; �0�i�� > ui

�
f
�e�i; �0�i� ;�e�i; �0�i�� .

By continuity, we must have

ui

�
f
�
�0
�
;
�e�i; �0�i�� � ui

�
f
�e�i; �0�i� ;�e�i; �0�i�� ;

for some e�i, contradicting strict EPIC.
Now suppose that �0�i 2 ��i (��i). Observe that0@�i + 
X

j 6=i
�j

1A�
0@�0i + 
X

j 6=i
�0j

1A =
�
�i � �0i

�
+ 


X
j 6=i

�
�0j � �j

�
.

But by hypothesis: ���i � �0i�� > �(1� ") > 
 (I � 1)�;

while




������
X
j 6=i

�
�0j � �j

������� � 

X
j 6=i

���0j � �j��
� 
(I � 1)�.

So the sign of 0@�i + 
X
j 6=i

�j

1A�
0@�0i + 
X

j 6=i
�0j

1A ;

equals the sign of

�i � �0i.

But now ui
�
yn; �0

�
= ui

�
f
�
�0
�
; �0
�
and ui

�
yn;
�
�i; �

0
�i
��
> ui

�
f
�
�0
�
;
�
�i; �

0
�i
��
implies, by single

crossing of vi, ui (yn; (�i; ��i)) > ui
�
f
�
�0
�
; (�i; ��i)

�
for all ��i such that �0�i 2 ��i (��i). This

establishes robust monotonicity.
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The proof of Theorem 4 use the following four types, �i;e�i; �ni ; �0i of agent i;ordered on the real
line:

�i e�i �ni �0i������������������������������!
R

The current implementation results were obtained within an environment of linear and sym-

metric aggregation:

�i = �i + 

X
j 6=i

�j .

We can generalize the implementation results in this section to a general, not necessarily symmetric

model of linear aggregation:

�i = �i +
X
j 6=i


ij�j .

The bound on the interdependence then comes through the eigenvalue of the interaction matrix


 =
�

ij
	
. We suspect that an appropriate linearization argument would extend the technique to

general non-linear environments.

Finally, if we impose some additional structure on the payo¤s as a function of the reports in

the direct mechanism, then we can use the same argument as in Theorem 4 to obtain direct robust

monotonicity results.

De�nition 23 (Strictly Concave Deviations)

For any �; ui
�
f
�e�i; ��i� ; (�i; ��i)� is strictly concave in e�i.

Proposition 4 (Direct Implementation)

If 
 < 1
I�1 , strict EPIC and strictly concave deviations hold and each vi satis�es single crossing,

non-degeneracy, then robust direct monotonicity is satis�ed.

Proof. The argument in the previous theorem goes through where we instead to de�ne yn =

f
�
�ni ; �

0
�i
�
with �ni ! �0i and the sign of �

n
i � �0i equal to the sign of �i � �0i. Since only the direct

mechanism messages are used, the proof then establishes direct robust monotonicity rather than

robust monotonicity.

9 Extensions, Variations and Discussion

9.1 Lotteries, Pure Strategies and Bayesian Implementation

In this section, we discuss how our main Theorem 2 is related to the classic literature on Bayesian

implementation developed by Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989)
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and Jackson (1991). These authors asked whether it was possible to implement a social choice

function in equilibrium on a �xed type space T .15 These authors analyzed the classic problem

where attention was restricted to pure strategy equilibria and deterministic mechanisms. Thus the

social choice function is a mapping f : �! Z.

Having �xed a type space, the natural notion of a pure strategy deception on the �xed type

space is a collection � = (�1; ::; �I), with each �i : Ti ! Ti. Thus � : T ! T is de�ned by

� (t) = (�i (ti))
I
i=1. The key monotonicity notion, translated into our language, was then the

following:

De�nition 24 (Bayesian Monotonicity)

Social choice function f satis�es Bayesian monotonicity on type space T if, for every deception �

with f
�b� (t)� 6= f

�b� (� (t))� for some t, there exists i, ti and h : T ! Z such that

X
t�i2T�i

ui

�
h (� (t)) ;b� (t)� b�i (t�i) [ti] > X

t�i2T�i

ui

�
f
�b� (� (t))� ;b� (t)� b�i (t�i) [ti] ; (13)

and X
t�i2T�i

ui

�
f
�b� �t0i; t�i�� ;b� �t0i; t�i�� b�i (t�i) �t0i� (14)

�
X

t�i2T�i

ui

�
h (�i (ti) ; t�i) ;b� �t0i; t�i�� b�i (t�i) �t0i� ; 8t0i:

Jackson shows that this condition is necessary for Bayesian implementation, and that a slight

strengthening, Bayesian monotonicity no veto, is su¢ cient.

In the Appendix (Section 11.3), we show that our robust monotonicity condition is equivalent

to the requirement that Bayesian monotonicity is satis�ed on all type spaces. Thus we have an

alternative way of showing the necessity of robust monotonicity for robust implementation. Figure

1 gave a graphical representation of how the results �t together.

But note that this line of argument would establish the necessity of robust implementation if the

planner is restricted to deterministic mechanisms (a disadvantage) but he can assume that players

follow pure strategies (an advantage). How do these assumptions matter?

First, observe that the advantage of restricting attention to pure strategies goes away completely

when we require implementation on all type spaces: if there is a mixed strategy equilibrium that

results in a socially sub-optimal outcome on some type space, we can immediately construct a larger

type space (purifying the original equilibrium) where the socially sub-optimal outcome is played in

15They allowed for more general social choice sets, but we restrict attention to functions for our comparison.
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a pure strategy equilibrium. Thus our robust analysis conveniently removes that unfortunate gap

between pure and mixed strategy implementation that has plagued the implementation literature.

We use the extension to stochastic mechanisms in just two places. Ex post incentive compati-

bility and robust monotonicity would remain necessary conditions even if we restricted attention to

deterministic mechanisms (the arguments would be unchanged). But, as we note in Footnote 13,

even if lotteries were not used in the implementing mechanism, the implied robust monotonicity con-

dition would involve lotteries (as rewards for whistle-blowers). But if lotteries were not allowed, our

su¢ ciency argument would then require a slightly strengthened version of the robust monotonicity

condition, with the lottery y replaced by a deterministic outcome. Our su¢ ciency argument also

uses lotteries under Rules 1 and 2. As in a recent paper by Benoit and Ok (2004) on complete

information implementation, we use lotteries to signi�cantly weaken the su¢ cient conditions, so

that we require only the "bad outcome" property in addition to EPIC and robust monotonicity. If

we did not allow lotteries in this part of the argument, we would require a much stronger economic

condition in the spirit of Jackson�s "Bayesian monotonicity no veto" condition. We have developed

combined robust monotonicity and economic conditions (not reported here) su¢ cient for interim

implementation on all full support types spaces. However, an additional complication is that,

without lotteries in the implementing mechanism, we cannot establish su¢ ciency on type spaces

where agents have disjoint supports.

It is possible to construct a simple example where EPIC and robust monotonicity are not

su¢ cient for robust monotonicity without lotteries by taking the coordination example of Section

3.2 but removing the outcomes e and f . As we show in the Appendix (Section 11.4), robust

implementation is then not possible in this example despite the fact that the social choice function

selects a unique strictly Pareto-dominant outcome at every type pro�le.

9.2 Nice Mechanisms

In our analysis of robust implementation, we deliberately allowed for very badly behaved in�nite

mechanisms in order to make a tight connection with the existing literature and to get tight

results. Many authors have argued that "integer game" constructions, like that we use in Theorem

2, should not be taken seriously (see, e.g., Abreu and Matsushima (1992a) and Jackson (1992)).

In our analysis of virtual robust implementation in Section 7, we restricted attention to "nice"

mechanisms with best responses always well de�ned. Much of our analysis of the relation between

iterative and robust implementation, and the characterization of robust implementation, would be

much simpler with the restriction to nice mechanisms. In fact with nice mechanisms we obtain the

following stronger necessary conditions for robust implementation.



Robust Implementation June 8, 2005 41

De�nition 25 (Strict Robust Monotonicity)

Social choice function f satis�es strict robust monotonicity if for every unacceptable deception �,

there exist i, �i, �0i 2 �i (�i) such that, for all �
0
�i 2 ��i and  i 2 �

�
��1�i

�
�0�i
��
, there exists y

such that X
��i2��i

 i (��i)ui (y; (�i; ��i)) >
X

��i2��i

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
, (15)

while

ui
�
f
�
�00i ; ��i

�
;
�
�0i; �

0
�i
��
> ui

�
y;
�
�00i ; �

0
�i
��
; 8�00i . (16)

The proof of the subsequent robust implementation result closely follows the proof of necessity

part of Theorem 2. But the existence of best responses in the de�nition of a nice mechanism allows

the necessary conditions to be strengthened to their strict versions.

Proposition 5 (Robust Implementation)

If f is robustly implementable by a nice mechanism, then f satis�es strict EPIC and strict robust

monotonicity.

Proof. See Appendix.

With the restriction to nice mechanisms, the relationship between iterative deletion and robust

implementation emerges more directly. Finally, we should mention that we do not have general

su¢ cient conditions for robust implementation by nice mechanisms, just instances where robust

implementation is possible in the direct mechanism and examples where it is possible in nice

augmented mechanisms (e.g., the coordination example of Section 3.2).

9.3 Extensions

The previous sections examined the importance of our assumptions about lotteries over outcomes

and restrictions on mechanisms. We also restricted attention in our main analysis to the case

of discrete but perhaps in�nite payo¤ types �i and types Ti, although our examples and linear

aggregation results dealt with compact �i.

Many of our results would extend easily to more general �i and Ti. This is true of the di-

rect implementation analysis, the necessary conditions for robust implementation and the virtual

implementation analysis. The su¢ ciency for robust implementation might be more delicate.

10 Conclusion

This paper examined the robustness of the classic implementation problem. We formalized robust-

ness by requiring that the implementation problem remains solvable as we gradually relax common
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knowledge among the agents and the designer. The weakening of common knowledge was achieved

by considering large type spaces in which the private information of the individual agents becomes

more prominent.

In contrast to our earlier results on truthful implementation, Bergemann and Morris (2004),

robust implementation is in general a more demanding notion of implementation than ex post

implementation. It remains an open question whether a systematic relationships between ex post,

interim and robust implementation do arise in speci�c environments such as single crossing or

supermodular environments. The analysis of the environment with interdependent values and

linear aggregation in Section 8 clearly suggests that a systematic relationship can be established

for many interesting environments. We also extended the robustness argument to the notion of

virtual implementation. While your analysis here was preliminary, it clearly o¤ered evidence that

the distance between interim and virtual implementation may shrink considerably after imposing

robustness on the implementation concept.



Robust Implementation June 8, 2005 43

11 Appendix

11.1 Virtual Implementation in the Single Unit Auction

We complete the iterative implementation argument for the single unit auction example of Section

3.4. We study the following symmetric "-e¢ cient allocation rule is the following:

x�i (�) = "
1

I
�i + (1� ")x��i (�) :

The corresponding essentially unique ex post transfer rule is:

yi (�) = "
1

I



0@X
j 6=i

�j

1A �i +
1

2I
" (�i)

2 + (1� ")

0@max
j 6=i

�j + 

X
j 6=i

�j

1Ax��i (�) :

Thus if the true type pro�le is � and agents report themselves to be type pro�le �0, agent i�s

expected utility is 0@�i + 
X
j 6=i

�j

1Ax�i
�
�0
�
� yi

�
�0
�
;

or 0@�i + 
X
j 6=i

�j

1A�"1
I
�0i + (1� ")x��i

�
�0
��

�"1
I



0@X
j 6=i

�0j

1A �0i �
1

2I
"
�
�0i
�2 � (1� ")

0@max
j 6=i

�0j + 

X
j 6=i

�0j

1Ax��i
�
�0
�

or

"
1

I
�0i

0@�i � 1
2
�0i + 


X
j 6=i

�
�j � �0j

�1A+ (1� ")
0@��i �max

j 6=i
�0j

�
+ 


X
j 6=i

�
�j � �0j

�1Ax��i
�
�0
�
:

The payo¤ gain to agent i of reporting himself to be type �i + x when his true type is �i is

"
1

I

0@(�i + x)
0@�i � 1

2
(�i + x) + 


X
j 6=i

�
�j � �0j

�1A� �i
0@1
2
�i + 


X
j 6=i

�
�j � �0j

�1A1A

+(1� ")

0BBBBBB@

0@��i �max
j 6=i

�0j

�
+ 


X
j 6=i

�
�j � �0j

�1Ax��i
�
�i + x; �

0
�i
�

�

0@��i �max
j 6=i

�0j

�
+ 


X
j 6=i

�
�j � �0j

�1Ax��i
�
�i; �

0
�i
�

1CCCCCCA ;
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which is equal to

"
1

I

0@x
X
j 6=i

�
�j � �0j

�
� 1
2
x2

1A
+(1� ")

0@��i �max
j 6=i

�0j

�
+ 


X
j 6=i

�
�j � �0j

�1A�x��i ��i + x; �0�i�� x��i ��i; �0�i�� :
Now, the �rst term is maximized by setting

x = 

X
j 6=i

�
�j � �0j

�
:

and the second term is maximized by choosing x > max
j 6=i

�0j � �i if

�i > max
j 6=i

�0j � 

X
j 6=i

�
�j � �0j

�
;

anything if

�i = max
j 6=i

�0j � 

X
j 6=i

�
�j � �0j

�
;

and x < max
j 6=i

�0j � �i if

�i < max
j 6=i

�0j � 

X
j 6=i

�
�j � �0j

�
.

Thus the whole expression is maximized setting

x = 

X
j 6=i

�
�j � �0j

�
.

This is exactly the same best response property as we obtained in the public good game. Therefore

we get robust implementation in the direct mechanism if 
 < 1
I�1 as in the example of the public

good in Section 3.3.

11.2 A Badly Behaved Mechanism

The example illustrates the gap between the necessary and su¢ cient conditions in Proposition 2.

Speci�cally, it shows that there can be an equilibrium for every type space T in a mechanism, yet

SM does not satisfy the ex post best response property.

In the example, there are two agents and there is complete information, so each agent has a

unique type. There are a �nite number of outcomes Z = fa; b; cg. The payo¤s are given by the
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following table:

a b c

agent 1 �1 0 +1

agent 2 0 0 0

The planner�s choice (in the unique payo¤ state) is a. Thus it is trivial to robustly implement the

social choice function. But suppose that the planner chooses the following (strange) mechanism:

M1 = f1; 2; 3; ::::g, M2 = f1; 2g and

g (m1;m2) =

8>><>>:
a, if m1 = 1

b; if m1 > 1 and m2 = 1h
1
m1
; b;
�
1� 1

m1

�
; c
i
; if m1 > 1 and m2 = 2

where
h
1
m1
; b;
�
1� 1

m1

�
; c
i
is the lottery putting probability 1

m1
on b and probability

�
1� 1

m1

�
on

c. Thus g (m1;m2) can be represented by the following table:

g 1 2

1 a a

2 b
�
1
2 ; b;

1
2 ; c
�

3 b
�
1
3 ; b;

2
3 ; c
�

...
...

...

k b
�
1
k ; b; 1�

1
k ; c
�

...
...

...

Thus the agents are playing the following complete information game:

m1=m2 1 2

1 0; 0 0; 0

2 �1; 0 1
2 ; 0

3 �1; 0 2
3 ; 0

...
...

...

k �1; 0 1� 1
k ; 0

...
...

...

Now on any type space, there is always an equilibrium where player 1 chooses action 1 and player

2 chooses action 1, and outcome a is chosen. Moreover, on any type space, in any equilibrium,

outcome a is always chosen: if player 1 ever has a best response not to play 1 then he has no best
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response. So he always plays 1 in equilibrium. Thus the trivial social choice function is robustly

implemented by this mechanism.

While only message 1 survives iterated deletion of never best responses for player 1, both

messages survive iterated deletion of never best responses for player 2. Thus we have SM1 = f1g
and SM2 = f1; 2g. Note that SM satis�es the interim best response property, see De�nition 6, but

not the ex post best response property, see De�nition 5. For we observe that

u1 (g (1; 2)) = u1 (a) = 0 <
1

2
= u1 (g (2; 2)) ,

violating the ex post best response property.

The insight of the example is that the quanti�er �for every type space T �does not necessarily
guarantee that all actions which will be chosen with positive probability in some equilibrium and

for some type space, will also be chosen with probability one in some equilibrium for some type

space. For this reason, the quanti�er �for every type space T �does not allow us to establish a

local, i.e. ex post best response property of every action in SM.

11.3 Bayesian Monotonicity

The next proposition establishes the equivalence between robust monotonicity and Bayesian monotonic-

ity on every type space by means of a constructive proof (via a speci�c type space). The constructive

element is the identi�cation of a type space on which Bayesian monotonicity is guaranteed to fail

if robust monotonicity fails. It is worthwhile to note that the speci�c type space is much smaller

than the universal type.

In some sense, the notion of robustness is more subtle in the context of full rather than par-

tial implementation. With partial implementation, i.e. truthtelling in the direct mechanism, the

universal type space is by de�nition the most di¢ cult type space to obtain truthtelling. In the

universal type space, every agent has the maximal number of possible misreports and hence the

designer faces the maximal number of incentive constraints. In the context of full implementation,

the trade-o¤ is ambiguous. As a larger type space contains by de�nition more types, it o¤ers every

agent more possibilities to misreport. But then, just as a larger type space made truthtelling more

di¢ cult to obtain, the other equilibria might also cease to exist after the introduction of addi-

tional types. This second part o¤ers the possibility that larger type spaces facilitate rather than

complicate the full implementation problem.

Proposition 6 (Equivalence)

Social choice function f satis�es Bayesian monotonicity on every type space if and only if it satis�es

robust monotonicity.
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Proof. ())We will show that if robust monotonicity fails, we can construct a type space where
Bayesian monotonicity fails. The argument will be constructive.

Fix an unacceptable deception �. Suppose that robust monotonicity fails. Then for each i, �i,

�0i 2 �i (�i), there exist

��i
�
�i; �

0
i

�
2 ��i and  i

�
�i; �

0
i

�
2 �

�
��1�i

�
��i
�
�i; �

0
i

���
(17)

such that:

ui
�
f
�
�00i ; ��i

�
�i; �

0
i

��
;
�
�00i ; ��i

�
�i; �

0
i

���
� ui

�
y;
�
�00i ; ��i

�
�i; �

0
i

���
; 8�00i 2 �i (18)

impliesX
��i2��i

 i (��i)
�
�i; �

0
i

�
ui
�
f
�
�0i; ��i

�
�i; �

0
i

��
; (�i; ��i)

�
�

X
��i2��i

 i (��i)
�
�i; �

0
i

�
ui (y; (�i; ��i)) .

(19)

Now we construct a type space around �i; �
0
i and  i

�
�i; �

0
i

�
given by (17) for which Bayesian

monotonicity fails. First, agent i has a set of "deception" types T 1i which are isomorphic to

�i =
��
�i; �

0
i

�
: �i 2 �i and �0i 2 �i (�i)

	
; thus there exists a bijection �1i : T

1
i ! �i. The type

responding to
�
�i; �

0
i

�
has payo¤ type �i and believes that the other agents are of type:��

�1j
��1 �

�j ; �ij
�
�i; �

0
i

���
j 6=i

with probability  i (��i)
�
�i; �

0
i

�
. Second, agent i has a set of "pseudo-complete information types"

T 2i , which are isomorphic to �; thus there exists a bijection �
2
i : T

2
i ! �. The type corresponding

to � has payo¤ type �i and he is convinced that each other agent j is type
�
�1j
��1

(�j ; �j).

Slightly more formally, we have

Ti = T 1i [ T 2i .

If ti 2 T 1i and �1i (ti) =
�
�i; �

0
i

�
, then b�i (ti) = �i;

if ti 2 T 2i and �2i (ti) = �, then b�i (ti) = �i.

If ti 2 T 1i and �1i (ti) =
�
�i; �

0
i

�
, then

��i (t�i) [ti] =

8<:  i (��i)
�
�i; �

0
i

�
; if t�i 2 T 1�i and ��i =

��
�1j
��1 �

�j ; �ij
�
�i; �

0
i

���
j 6=i

0; if otherwise
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If ti 2 T 2i and �2i (ti) = �, then

��i (t�i) [ti] =

8<: 1; if t�i 2 T 1�i and ��i =
��
�1j
��1 �

�j ; �ij
�
�i; �

0
i

���
j 6=i

0; if otherwise

Now consider the Bayesian deception on this type space where each type
�
�1i
��1 �

�i; �
0
i

�
reports

himself to be type
�
�1i
��1 �

�0i; �
0
i

�
, and all other types report their types truthfully. Thus

�i (ti) =

( �
�1i
��1 �

�0i; �
0
i

�
; if ti =

�
�1i
��1 �

�i; �
0
i

�
ti; if otherwise

.

Since � was unacceptable, we must have that f
�b� (t)� 6= f

�b� (� (t))� for some t. Thus the

Bayesian monotonicity condition (De�nition 24) for this type space requires that there exist i, ti

and h : T ! Z such thatX
t�i2T�i

ui

�
h (� (t)) ;b� (t)� b�i (t�i) [ti] > X

t�i2T�i

ui

�
f
�b� (� (t))� ;b� (t)� b�i (t�i) [ti] ; (20)

and X
t�i2T�i

ui

�
f
�b� �t00i ; t�i�� ;b� �t00i ; t�i�� b�i (t�i) �t00i �

�
X

t�i2T�i

ui

�
h (�i (ti) ; t�i) ;b� �t00i ; t�i�� b�i (t�i) �t00i � ; 8t00i : (21)

The ti cannot be an element of T 2i , because such a type does not expect any deviation from truth-

telling under the deception. So it must be an element of T 1i , with �
1
i (ti) =

�
�i; �

0
i

�
. Now condition

(20) becomesX
��i2��i
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�
h

��
�1i
��1 �

�0i; �
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�
;

���
�1j
��1 �

�ij
�
�i; �

0
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�
; �ij

�
�i; �

0
i

���
j 6=i

��
; (�i; ��i)

�
 i (��i)

�
�i; �

0
i

�
>

X
��i2��i
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�
f
�
�0i; ��i

�
�i; �

0
i

��
; (�i; ��i)

�
 i (��i)

�
�i; �

0
i

�
. (22)

But letting t00i in condition (21) be in T
2
i with �

2
i (t

00
i ) =

�
�00i ; ��i

�
�i; �

0
i

��
, we have

ui
�
f
�
�00i ; ��i

�
�i; �

0
i

��
;
�
�00i ; ��i

�
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0
i
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(23)

� ui

�
h

��
�1i
��1 �

�0i; �
0
i

�
;
��
�1j
��1 �

�ij
�
�i; �

0
i

�
; �ij

�
�i; �

0
i

���
j 6=i

�
;
�
�00i ; ��i
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0
i

���
for all �00i . Setting

z = h

��
�1i
��1 �
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���
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�ij
�
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; �ij
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j 6=i
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,
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condition (22) becomes X
��i2��i

ui (z; (�i; ��i)) i (��i)
�
�i; �

0
i

�
>

X
��i2��i

ui
�
f
�
�0i; ��i

�
�i; �

0
i

��
; (�i; ��i)

�
 i (��i)

�
�i; �

0
i

�
.

while condition (23) requires z 2 Yi
�
��i
�
�i; �

0
i

��
. But these latter claims contradict our initial

assumption that robust monotonicity fails (i.e., (18)). Thus Bayesian monotonicity fails for this

type space and the claim is proved.

(() Suppose f satis�es robust monotonicity. Fix any type space T and any deception � with

f
�b� (t)� 6= f

�b� (� (t))� for some t. De�ne � by
�i (�i) =

n
�0i : 9ti such that b�i (ti) = �i and b�i (�i (ti)) = �0i

o
.

Deception � is unacceptable, so by robust monotonicity, there exist i, �i, �0i 2 �i (�i) such that for
every �0�i 2 ��i and  i 2 �

�
��1�i

�
�0�i
��
, there exists y

�
�0�i;  i

�
2 Yi

�
�0�i
�
such thatX

��i2��i

 i (��i)ui
�
y
�
�0�i;  i

�
; (�i; ��i)

�
>

X
��i2��i

 i (��i)ui
�
f
�
�0i; �

0
�i
�
; (�i; ��i)

�
. (24)

Now choose any ti such that b�i (ti) = �i and b�i (�i (ti)) = �0i. For every (mis-)report �
0
�i, we now

derive a distribution over payo¤ types ��i which represents the likelihood that the report �0�i comes

from the true payo¤ type pro�le ��i, given the type space T . For each �0�i, de�ne  i
�
�0�i
�
2 �(��i)

by

 i (��i)
�
�0�i
�
,

P
ft�i:b�j(�j(tj))=�0j and b�j(tj)=�j ; 8j 6=ig b�i (t�i) [ti]P

ft�i:b�j(�j(tj))=�0j , 8j 6=ig b�i (t�i) [ti]
: (25)

Now let h satisfy

h
�
t0i; t�i

�
,

8<: y
hb��i (t�i) ;  i hb��i (t�i)ii if t0i = �i (ti)

f
�b� (t0i; t�i)� if otherwise

. (26)

To establish Bayesian monotonicity, it is enough to show that the two inequalities of Bayesian

monotonicity are satis�ed, or:X
t�i

ui

�
h (� (t)) ;b� (t)� b�i (t�i) [ti] >X

t�i

ui

�
f
�b� (� (t))� ;b� (t)� b�i (t�i) [ti] ; (27)

and X
t�i

ui

�
f
�b� �t0i; t�i�� ;b� �t0i; t�i�� b�i (t�i) �t0i� (28)

�
X
t�i

ui

�
h (�i (ti) ; t�i) ;b� �t0i; t�i�� b�i (t�i) [ti] ; 8t0i:
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By inserting the posterior beliefs  i and the rewards h (t
0
i; t�i), as de�ned above in (25) and (26)

respectively, we can rewrite the two sides of the inequality (27) as follows:X
t�i

ui

�
h (� (t)) ;b� (t)� b�i (t�i) [ti]

=
X
�0�i

0B@ X
ft�i:b�j(�j(tj))=�0j , 8j 6=ig

b�i (t�i) [ti]
1CAX
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��
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and X
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ui

�
f
�b� (� (t))� ;b� (t)� b�i (ti) [t�i]

=
X
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0B@ X
ft�i:b�j(�j(tj))=�0j ; 8j 6=ig

b�i (t�i) [ti]
1CAX

��i

 i (��i)
�
�0�i
�
ui
�
f
�
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; �
�

so (27) follows from (24). AlsoX
t�i

ui

�
h (�i (ti) ; t�i) ;b� �t0i; t�i�� b�i (t�i) �t0i�

=

8<:
P
t�i

ui

�
y
hb��i (t�i) ;  i hb��i (t�i)ii ;b� (t0i; t�i)� b�i (t�i) [t0i] if t0i = �i (ti)P

t�i
ui

�
f
�b� (t0i; t�i)� ;b� (t0i; t�i)� b�i (t�i) [t0i] ; if t0i 6= �i (ti)

Now y
hb��i (t�i) ;  i hb��i (t�i)ii 2 Yi �b��i (t�i)� implies (28).

The proof may appear rather intricate in its details. We next give a brief outline of the basic

steps to show how interim implies robust monotonicity. The proof proceeds by contrapositive. We

start with an unacceptable deception � which by hypothesis fails robust monotonicity and hence

satis�es the inequalities (18) and (19). For the given deception �, we then create a type space,

consisting of two components for every agent i. The �rst component for agent i is created by the

set of pairs of payo¤ types
�
�i; �

0
i

�
, where the �rst entry is the true payo¤ type and the second

entry is a feasible deception (under �), or �0i 2 �i (�i). For this reason, we refer to these types as
�deception types.�For every such pair

�
�i; �

0
i

�
there exists at least one particular payo¤ pro�le �0�i

which acts as a misreport. Under the deception �, this payo¤ pro�le �0�i could have been reported

by all true payo¤ pro�les which are in the support of  i. Consequently, the belief component of

type
�
�i; �

0
i

�
is given by simply adopting  i

�
�
���i; �0i �. The second component consists of �pseudo

complete information types�, described by ti = � 2 �. Each such type has a belief that assigns
probability one to the event that the true payo¤ pro�le is given by � and that all other agents

report the deception type (�j ; �j), and hence the �pseudo�in the labelling.
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Given this type space Ti, we then consider a particular deception �i : Ti ! Ti. The deception

�i is localized around the �deception types�and the �pseudo complete information types�report

truthfully. The deception �i consists of agent i always reporting his deception type rather than

his true type, or �i
�
�i; �

0
i

�
=
�
�0i; �

0
i

�
. We then verify whether f is interim monotone under �.

The existence of the pseudo complete information types � forces the interim incentive compatibility

conditions to reduce to ex post incentive compatibility conditions. This guarantees the hypothesis

in the robust monotonicity notion, namely inequality (18), and thus leads to the conclusion in form

of the inequalities (19). But then we obtain a contradiction to the reward condition of interim

monotonicity, unless the hypothesis for the interim monotonicity condition, namely f 6= f � �, is
not satis�ed, i.e. f = f � � holds, but of course this implies that � is acceptable.

11.4 Coordination Example 2

The next example is the pure coordination game, which we �rst considered in Section 3.2, without

the additional allocations, z and z0. It illustrates the importance of lotteries for robust imple-

mentation. The example will satisfy EPIC and robust monotonicity, yet it cannot be robustly

implemented without the use of lotteries. On the other hand if lotteries are allowed then the

lottery which selects each of the four possible outcomes with equal probability constitutes a bad

outcome, and hence the su¢ cient conditions for robust implementation would be satis�ed with

lotteries.

The examples has two agents, i = 1; 2 and each agent i has two possible types, �i and �0i. There

are four possible outcomes: Z = fa; b; c; dg. Agents�payo¤s are given by:

a �2 �02

�1 3; 3 0; 0

�01 0; 0 1; 1

b �2 �02

�1 0; 0 3; 3

�01 1; 1 0; 0

c �2 �02

�1 0; 0 1; 1

�01 3; 3 0; 0

d �2 �02

�1 1; 1 0; 0

�01 0; 0 3; 3

The social choice function f selects the e¢ cient outcome in every state:

f �2 �02

�1 a b

�01 c d

As in the example in Section 3.2, the social choice function is strictly ex post incentive compatible

but there is another equilibrium in the "direct mechanism" where each agent misreports his type,

and each agent gets a payo¤ of 1.

Robust monotonicity is clearly satis�ed even if the rewards y are restricted to be the determin-

istic allocations Z. We will show that robust implementation is not possible even in an in�nite
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mechanism if we restrict attention to deterministic mechanisms. Fix a mechanismM. Let

S�i (�i) = fmi : g (mi;mj) = f (�i; �j) for some mj ; �jg ,

be the set of messages for agent i which would select the allocation recommended by the social

choice function for some mj ; �j . Let Ski (�i) = bi
�
bk�1

�
S
��
[�i] (using trans�nite induction if

necessary). We now show by induction that, S�i (�i) � Ski (�i) for all k using the structure of

the payo¤s. Suppose that this is true for k. Then for any mi 2 S�i (�i) � Ski (�i), there exists

mj 2 S�j (�j) � Skj (�j) such that g (mi;mj) = f (�i; �j). Thus there does not exist �i 2 �(Mi)

such that X
m0
i

�i
�
m0
i

�
ui
�
g
�
m0
i;mj

�
; (�i; �j)

�
> ui (g (mi;mj) ; (�i; �j)) = 3.

So mi 2 Sk+1i (�i).

Thus we must have that (m1;m2) 2 S�1 (�1)�S�2 (�2) implies g (m1;m2) = f (�1; �2). Let m�
i (�)

be any selection from S�i (�). Now let k� be the lowest k such that, for some i,

m�
i

�
�0i
�
=2 Ski (�i) .

Without loss of generality, let i = 1. Note m�
2

�
�02
�
2 Sk�12 (�2) by de�nition of k�. If agent 1 was

type �1 and was sure his opponent were type �2 and choosing action m�
2

�
�02
�
, we know that he

could guarantee himself a payo¤ of 1 by choosing m�
1

�
�01
�
. Since m�

1

�
�01
�
is deleted for type �1 at

round k�, we know that there exists �1 2 �(M1) such thatX
m0
1

�1
�
m0
1

�
g1
�
m0
1;m

�
2

�
�02
��
> 1;

and thus there exists m0
1 such that g1

�
m0
1;m

�
2

�
�02
��
= f (�1; �2). This implies that m�

2

�
�02
�
2

S�2 (�2), a contradiction.

The example uses the fact that the social choice function always selects an outcome that is

strictly Pareto-optimal and - paradoxically - it is this feature which inhibits iterative implementa-

tion in the current example. Borgers (1995) proves the impossibility of complete information im-

plementation of non-dictatorial social choice functions in iteratively undominated strategies when

the set of feasible preference pro�les includes such unanimous preference pro�les and the argument

here is reminiscent of Borgers�argument.

11.5 Nice Mechanisms and Strict Robust Monotonicity

Proof of Proposition 5. The restriction to nice mechanisms ensures that SM is non-empty. It

follows that if mechanismM iteratively implements f , then, for each i, there exists m�
i : �i !Mi
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such that

g (m� (�)) = f (�) and m� (�) 2 SM (�) ,

we can simply let m�
i (�i) be any element of S

M
i (�i).

We �rst establish strict EPIC. Suppose strict EPIC fails. Then there exists i, � and �0i such

that f
�
�0i; ��i

�
6= f (�i; ��i) and

ui
�
f
�
�0i; ��i

�
; �
�
� ui (f (�) ; �) .

Now, for any message mi with

mi 2 argmax
m0
i

ui
�
g
�
m0
i;m

�
�i (��i)

�
; (�i; ��i)

�
,

since m�
�i (��i) 2 S1i (��i), we must have mi 2 S1i (�i) and thus g

�
mi;m

�
�i
�
�0�i
��
= f

�
�i; �

0
�i
�

for all �0�i. Thus let

m�
i

�
�0i
�
2 argmax

m0
i

ui
�
g
�
m0
i;m

�
�i (��i)

�
; (�i; ��i)

�
;

and f
�
�0i; �

0
�i
�
= g

�
m�
i

�
�0i
�
;m�

�i
�
�0�i
��
= f

�
�i; �

0
�i
�
for all �0�i, a contradiction.

Now we establish strict robust monotonicity. Fix an unacceptable deception �. Let bk be the
largest k such that such that for every i, �i and �0i 2 �i (�i),

S1i
�
�0i
�
� Ski (�i) .

We know that such a bk exists because S0i (�i) \ S1i ��0i� = S1i
�
�0i
�
and, sinceM iteratively imple-

ments f , we must have S1i (�i) \ S1i
�
�0i
�
= ?.

Now we know that there exists i and �0i 2 �i (�i) such that

S
bk+1
i (�i) \ S1i

�
�0i
�
6= S1i

�
�0i
�
.

Let bmi 2 S
bk
i (�i) \ S1i

�
�0i
�
,

and bmi =2 S
bk+1
i (�i) \ S1i

�
�0i
�
.

Since message bmi gets deleted for �i at round bk + 1, we know that for every �i 2 �(M�i ���i)
such that

�i (m�i; ��i) > 0) mj 2 S
bk
j (�j) for all j 6= i,
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there exists m�
i such thatX

m�i;��i

�i (m�i; ��i)ui (g (m
�
i ;m�i) ; (�i; ��i)) >

X
m�i;��i

�i (m�i; ��i)ui (g (bmi;m�i) ; (�i; ��i)) .

Let bmj 2 S1j
�
�0j
�

for all j 6= i. Now the above claim remains true if we restrict attention to distributions �i putting

probability 1 on bm�i. Thus for every  i 2 �(��i) such that

 i (��i) > 0) bmj 2 S
bk
j (�j) for all j 6= i,

there exists m�
i such thatX

��i

 i (��i)ui (g (m
�
i ; bm�i) ; (�i; ��i)) >

X
��i

 i (��i)ui (g (bmi; bm�i) ; (�i; ��i)) .

But bm 2 S1
�
�0
�
, so (since M iteratively implements f), g (bmi; bm�i) = f

�
�0
�
. Also observe that

if �0�i 2 ��i (��i), then bm�i 2 Sbk�i (��i). Thus for every  i 2 � ���1�i ��0�i��, there exists m�
i such

that X
��i

 i (��i)ui (g (m
�
i ; bm�i) ; (�i; ��i)) >

X
��i

 i (��i)ui
�
f
�
�0
�
; (�i; ��i)

�
,

which establishes the reward inequality, (15), of strict robust monotonicity.

Now suppose the incentive inequality, (16), are not satis�ed strictly, and hence:
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�
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i ; bm�i) ;
�e�i; �0�i�� � ui

�
f
�e�i; �0�i� ;�e�i; �0�i�� .

Now, for any

mi 2 argmax
m0
i

ui

�
g
�
m0
i; bm�i

�
;
�e�i; �0�i�� , (29)

since bm�i 2 S1i
�
�0�i
�
, we must have mi 2 S1i

�e�i� and thus g (mi; bm�i) = f
�
�i; �

0
�i
�
. Thus from

(29) we also know that m�
i achieves the maximum:

m�
i 2 argmax

m0
i

ui

�
g
�
m0
i; bm�i

�
;
�e�i; �0�i��

and, for all e�i, if
ui

�
g (m�

i ; bm�i) ;
�e�i; �0�i�� � ui

�
f
�e�i; �0�i� ;�e�i; �0�i�� ,

then g (m�
i ; bm�i) = f

�e�i; �0�i�.
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Now setting y � g (m�
i ; bm�i), we have established that for each �0�i 2 ��i (��i) and  i 2

�
�
��1�i

�
�0�i
��
, there exists y such that y 2 Y �i

�
�0�i
�
and

X
��i

 i (��i)ui (g (m
�
i ; bm�i) ; (�i; ��i)) >

X
��i

 i (��i)ui
�
f
�
�0
�
; (�i; ��i)

�
,

which concludes the proof. �
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12 Notation

�i (�i) deception

bi (S) [�i] never best response operator

�i (�i) deception correspondence

�k
i
; �
k
i lower and upper bound for best responses

f social choice function

g outcome function


 interdependence parameter

I number of agents

�i (��i;m�i) belief of agent i

�i linear aggregator of payo¤ types

�i (m�i) belief over messages

 i (��i) belief over payo¤ types

 i [�] speci�c belief in Bayesian monotonicity
�i (t�i) [ti] conditioning event

�
�
�0�i; ��i

�
belief over reports and types (in direct mechanism)

Si; S message correspondence

Ski strategies surviving k � th round of elimination
ti; t type (pro�le)

�i; � payo¤ type

��i [�; �] payo¤ type in Bayesian monotonicity
ui utility

vi utility with linear aggregator

y allocation

y [�; �] reward in Bayesian monotonicity
yi monetary transfer

Y = �(Z) extended outcome space

Yi (��i) incentive compatible reward set

Y �i (��i) strictly incentive compatible reward set

� message

Z outcome space
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