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Abstract

This paper considers the test of a unit root in transitional autoregressive mod-
els. In particular, we develop the asymptotic theory of the inf-t test for the
null hypothesis of a unit root in a wide class of nonlinear autoregressive models
having parameters that are identified only under the alternative of stationarity.
Our framework is very general and allows for virtually all potentially interest-
ing models with the threshold, discrete and smooth transition functions. The
specifications of shortrun dynamics used in the paper are also fully general, and
comparable to those used in the linear unit root models. Most importantly, our
asymptotics take it into consideration that the parameter space has a random
limit. This is an essential feature of the unit root test in transitional autore-
gressive models, which has been ignored in the literature. For this very general
class of transitional autoregressive models, we show that the inf-t test has well-
defined limit distribution depending only upon the transition function and the
limit parameter space. The critical values of the test are provided for some of
the commonly used models under the conventional specification of the param-
eter space. Our simulation study shows that the test has good size with the
power that is significantly higher than the usual ADF test even for samples of
relatively small sizes. We apply the test to various economic time series and
find strong evidence for the rejection of random walks in favor of stationary
transitional autoregressive models.
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1. Introduction

In many economic models, the economic agents face some types of costs that prevent an
instantaneous adjustment of variables toward their long-run equilibrium levels. As a result of
comparing the cost and benefit by the agents, the speed of adjustment naturally depends on
the size of deviation from the equilibrium. Empirically, such a partial adjustment dynamics
can be described by a nonlinear autoregressive (AR) model that allows transition from one
regime, with a mean-reverting behavior, to the other regime, lacking any force toward the
long-run level [see, for example, Balke and Fomby (1997)]. Since the behavior of the latter
regime is often characterized by a unit root, the partial adjustment model may be viewed as
a nonlinear AR model that contains a partial unit root. This nonlinear structure, however,
is known to be difficult to be discriminated from the full unit root case, i.e., the model
with no long-run equilibrium. In particular, the poor power performance of the standard
unit root test has been reported by many studies including Balke and Fomby (1997), Taylor
(2001), and Taylor, Peel and Sarno (2001) in various nonlinear transitional AR models.

In this paper, we consider the test for the null hypothesis of a unit root in general
transitional AR models having parameters that are identified only under the alternative
of stationarity. Distinctive features of our approach are as follows. First, our framework
is truly general, permitting virtually all potentially interesting models with the threshold,
discrete and smooth transition functions. It not only unifies into a single framework all the
transitional models studied previously in the literature, but also provides a new class of
more flexible and realistic models. Second, we only require very mild assumptions on the
shortrun dynamics. In particular, for the unit root test in models with smooth transition
functions, we specify the underlying time series to be generated as a linear process driven
by the martingale difference innovations with conditional heteroskedasticities. Third, we
propose the one-sided inf-t test, in place of the two-sided tests that have been used in the
existing literature introduced below. Our testing problem here is one-directional, i.e., the
test of the null of a unit root against the alternative of a stationary transitional model,
which can be more effectively dealt with by the one-sided test. Fourth, an arbitrary lag
delay is also permitted in the transition function.

Lastly and most importantly, we explicitly specify the parameter space to have a random
limit, and fully account its variation in deriving our null asymptotics. To test in transitional
AR models including parameters that are only identified under the alternative hypothesis,
the parameter space is routinely set as a function of the data, such as an interval with end
points given by some quantiles of the data or a fixed interval normalized by the sample
standard deviation. Under the null of a unit root, however, such a parameter space has
a random limit even under appropriate normalization. Therefore, it is well expected that
the null asymptotics are dependent upon the limit of the random parameter space. This
dependency on the limit parameter space of the asymptotic critical values has never been
properly addressed in the literature. The random parameter space poses an important
new technical problem that we have to deal with in obtaining the limit distribution of an
extremum test such as our inf-t test. In particular, the usual stochastic equicontinuity result
that is valid only on a fixed compact parameter space is no longer sufficient to derive the
required asymptotics.
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Under this very general and realistic setup, we derive the full asymptotics for the tran-
sitional AR models under the unit root hypothesis. The asymptotic results developed in
the paper can be used to analyze the limit behaviors of various statistics under the null hy-
pothesis of a unit root. In particular, we show that the proposed inf-t test has well-defined
limit null distribution, which is free of any nuisance parameters and depends only on the
type of transition function and the limit parameter space. The critical values of the test
can therefore be computed for each type of transition function and the specification of the
parameter space. In the paper, we provide the critical values of the test for the models
that are commonly employed in practice, including the threshold autoregression (TAR),
logistic smooth transition autoregression (LSTAR), exponential smooth transition autore-
gression (ESTAR), and their extensions such as double TAR (D-TAR) and double LSTAR
(D-LSTAR) that are often referred to as the three-regime TAR and LSTAR, respectively,
under the usual specification of the parameter space. The test for a unit root against the
transitional AR models can therefore be very easily implemented in practical applications.
Neither simulation nor bootstrap is necessary to calculate the critical values.

The test for a unit root in transitional AR models has recently been investigated by
many authors. Nevertheless, none of their tests and asymptotic theories is directly compa-
rable to ours. Caner and Hansen (2001) look at the test for a unit root against the TAR
model. However, their model has the stationary transition variables, and consequently,
their asymptotics differ vastly from ours. Kapetanios, Shin and Snell (2003) consider the
unit root test against the ESTAR model, but their methodology is based on the Taylor
approximation of the transition function which requires totally different asymptotic analy-
sis. Recent studies on the D-TAR model by Kapetanios and Shin (2003), Seo (2003), Bec,
Guay and Guerre (2004) and Bec, Ben Salem and Carrasco (2004a) are more closely related
to ours. Their null asymptotics are, however, derived under more stringent conditions and
thus have limited practical relevancy. The former two obtain the null asymptotics under
the assumption of a fixed compact parameter space, resulting in a null distribution that is
degenerate with respect to the threshold parameter. The latter two, though they allow the
parameter space to expand as the sample size grows, assume that the limit of the normalized
parameter space is nonrandom and compact.2 More recent work by Bec, Ben Salem and
Carrasco (2004b) on the D-LSTAR model uses the same framework as Bec, Ben Salem and
Carrasco (2004a), and has the same limitation.3

The performance of the inf-t test looks very promising. Through simulations, we find
that the test has good finite sample performance. The actual rejection probabilities are
indeed quite close to the nominal size for the samples of relatively small sizes in all the
transitional AR models considered in the simulations. Moreover, the test yields considerably
higher powers over the usual ADF test for a wide range of transitional AR models. The
power gain from the inf-t test is often quite substantial, relative to the usual ADF test. As
empirical illustrations, we conduct the test for a unit root in several economic and financial
time series using the inf-t test. The test results are generally in favor of the stationarity

2Their asymptotics rely on the stochastic equicontinuity in Bec, Guay and Guerre (2004, Lemma D.3),
which assumes that the parameter space is nonrandom and compact.

3This paper came to our attention after the first version of this paper was written. For the required
stochastic equicontinuity, they simply state that it can be established as in Bec, Guay and Guerre (2004).
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for all the time series we consider in the paper. This is much more so, if compared with
the results from the ADF test. In particular, our empirical results make it clear that, for
many economic and financial time series, the stationary transitional autoregressions can
be much more plausible alternatives to the random walk models than the usual stationary
linear autoregressions.

The rest of the paper is organized as follows. Section 2 provides some preliminaries. It
introduces the model and the hypotheses to be tested, which are followed by some important
discussions on the normalization and parameter space. The assumptions on the transition
functions and the preliminary asymptotic results are also given here. In Section 3, the
test statistic is presented with the relevant limit theories for the prototypical transitional
AR models. In particular, the asymptotic null distribution is obtained and its nuisance
parameter dependency is analyzed. The test consistency is also established. Section 4
extends the results in Section 3 to the models with general transition functions and data
generating processes. More specifically, we look at the models with the intercept term,
multiple transition functions and errors of unknown form. Section 5 summarizes the findings
from our Monte Carlo experiments. In Section 6, we present the empirical analyses of the
U.S. unemployment rate, purchasing power parity (PPP) and target zone model. Section 7
concludes the paper. All mathematical proofs are gathered in Appendix.

A word of notation. We use R (R+) to denote the set of (nonnegative) real numbers,
and Z the set of integers. As usual, →a.s.,→p,→d signify convergences almost surely,
in probability and in distribution, respectively, and =d the equality in distribution. The
standard Brownian motion is designated by W throughout the paper. Finally, ‖ · ‖ denotes
the usual Euclidean norm if applied to a vector, and the standard operator norm if applied
to a matrix. Therefore, we have ‖x‖ = (x2

1 + · · · + xn)1/2 for an n-vector x = (xi) and
‖A‖ = supx∈Rn ‖Ax‖/‖x‖ for an n × n matrix A = (aij).

2. Preliminaries

2.1 The Model and Hypothesis

We first look at the prototypical version of the transitional AR models that will be consid-
ered in the paper. Suppose that we are interested in modelling the transition between two
regimes given by the unit root regime

yt = yt−1 + ut (1)

and the mean-reverting regime
4yt = λyt−1 + ut (2)

with λ < 0, where (ut) is the zero mean sequence of errors that will be more precisely spec-
ified later. Typically, the unit root regime represents no adjustment movement, while the
mean-reverting regime represents linear adjustment towards long-run equilibrium. However,
as will be shown below, the model can also be viewed as a nonlinear AR model of nonlinear
mean-reversion with an appropriate choice of transition function.
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Now we introduce the transition function π(yt−d, θ) as a weight on the latter regime.
Here, yt−d is the transition variable with lag delay d ≥ 1, θ is an m-dimensional parameter,
and π is a real-valued function on R×R

m that usually takes values between zero and unity.4

The resulting model is then given by

yt = [1 − π(yt−d, θ)] yt−1 + π(yt−d, θ)(1 + λ)yt−1 + ut,

which reduces to
4yt = λyt−1π(yt−d, θ) + ut (3)

with λ < 0. Throughout the paper, we assume that d is arbitrary, but fixed.
With various choices of the transition function π, the model (3) can represent a very

wide class of nonlinear partial adjustment AR models with a state dependent speed of
adjustment. However, if λ = 0, there will be only a single regime with a unit root that
represents no adjustment towards long-run equilibrium. For this reason, in the model (3),
it is of interest to test the null hypothesis

H0: λ = 0 (4)

or no long-run equilibrium. Under the alternative hypothesis

H1: λ < 0, (5)

our model (3) encompasses a variety of nonlinear AR models with a long-run equilibrium.5

Some prototypical examples of the transition function π are given below.

Model Transition Function Parameter

TAR π(x, θ) = 1{x ≤ µ} θ = µ

LSTAR π(x, θ) =
[

1 + eκ(x−µ)
]−1

θ = (µ, κ)

ESTAR π(x, θ) = 1 − e−κ2x2

θ = κ

D-TAR π(x, θ) = 1{x ≤ µ1} + 1{x ≥ µ2} θ = (µ1, µ2)

D-LSTAR π(x, θ) =
[

1 + eκ1(x−µ1)
]−1

+
[

1 + e−κ2(x−µ2)
]−1

θ = (µ1, µ2, κ1, κ2)

The TAR model can be used to consider an abrupt transition at a certain level, say µ.
Several variations of this class of transitional autoregressive model were considered by Caner
and Hansen (2001), Kapetanios and Shin (2003) and Seo (2003). To introduce a smooth
transition, it can be replaced by the LSTAR model with a logistic transition function. The
TAR model is often considered as a limit case of the LSTAR model with κ → ∞, where
κ(> 0) is the scale parameter. The ESTAR model is often used when the economic agent can

4The range of this function, however, is not restricted to [0,1] in our subsequent theoretical development.
5The alternative hypothesis H1 : λ < 0 is neither sufficient nor necessary for the stationarity of (yt). See,

e.g., Chan, Petruccelli, Tong and Woolford (1985). In general, we need extra conditions to ensure that (yt)
is stationary. On the other hand, (yt) can be stationary even when λ = 0. However, we will mainly consider
in the paper stationary (yt) under the alternative hypothesis.
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Figure 1: Transition Functions for TAR, LSTAR and ESTAR Models

have arbitrage opportunities by facing deviation (x) from the long-run equilibrium in either
directions. In such a case, unit root regime becomes an inner regime, and mean-reverting
regime becomes two outer regimes. The leading example is the aggregate real exchange rate
dynamics under the purchasing power parity in the long-run [see, e.g., Michael, Nobay, and
Peel (1997), and Taylor, Peel, and Sarno (2001)]. The transition functions for the TAR,
LSTAR and ESTAR models are shown in Figure 1.6

If we are interested in the international difference in the price of a particular individual
good rather than the aggregate price index, it may be more appropriate to employ a trade
cost model with fixed trade cost, µ. In such a case, adjustment process of deviation (x)
from the long-run law of one price level is often estimated by a model with a transition
function given by π(x, θ) = 1{|x| ≥ µ}, θ = µ > 0 [see, for example, Obstfeld and Taylor
(1997)]. Similar discrete adjustment process can be also applied to the model of monetary
policy intervention, including exchange rate target zones, and spread between Fed Funds
rate and Discount rate (Balke and Fomby, 1997, p.628). Multiple threshold values can be
also incorporated by the transition function π(x, θ) = 1{x ≤ µ1}+ 1{x ≥ µ2}, θ = (µ1, µ2),
where µ1 < µ2. The D-TAR model with this type of transition function is sometimes
referred to as a three-regime TAR model.

Using the analogy to the relationship between the TAR and LSTAR models, a smoothed
version of the D-TAR model, the D-LSTAR model, can be also introduced. Such a model
is recently considered by van Dijk, Teräsvirta and Franses (2002) and Bec, Ben Salem
and Carrasco (2004b).7 Both transition functions for the D-TAR and D-LSTAR models
are shown in Figure 2.8 Finally, we note that the D-LSTAR model can be simplified by
introducing restrictions such as µ1 = −µ2 and κ1 = κ2, or by considering the limit case in
one of the two scale parameters, say, κ2 → ∞. In the latter case, we have a combination
of discrete and smooth transition with π(x, θ) = [1 + exp{κ1(x − µ1)}]−1 + 1{x ≥ µ2}. It
should be noted that our theory given in the next section will also allow such a hybrid-type
transition function.

6For the models in Figure 1, we set the location parameter µ to zero and the scale parameter κ to unity.
7An alternative approach to allow smooth transition in D-TAR model is to consider the second-order

LSTAR model with transition function π(x, θ) =
[

1 + exp{−κ2(x − µ1)(x − µ2)}
]

−1
, θ = (µ1, µ2, κ), where

µ1 < µ2 and κ > 0.
8For the models in Figure 2, the location and scale parameters are set to µ1 = −3, µ2 = 3 and κ1 = κ2 = 5.
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Figure 2: Transition Functions for D-TAR and D-LSTAR Models

2.2 Normalization and Parameter Space

Of course, the parameter θ in the transition function is not identified under the null hypoth-
esis (4). This would naturally lead us to use as the test statistic the infimum of the t-ratios
given for each of the possible values of the parameter θ, which we call the inf-t test in the
paper. In formulating the test, it is extremely important to properly select the parameter
space for θ. As we show below, it is not simply an empirical matter. An inappropriately
specified parameter space yields improper limit null distributions with incorrect asymptotic
critical values, and hence leads us to an invalid inference. This is mainly because the tran-
sition variable (yt) behaves rather distinctively under the null and alternative hypotheses.
Under the null of a unit root, (yt) has a stochastic trend and explodes as the sample size
increases. Under the alternative of stationarity, on the other hand, (yt) does not show such
a trending and explosive behavior. Needless to say, this differing behavior of the transi-
tion variable should be well taken into consideration, if the parameter space is set to be
data-dependent and given as a function of the data (y1, . . . , yn) for each n.

It has indeed been the usual convention in the related literature dealing with nonlinear
transition functions such as ours to set the parameter space to be randomly given by the
functions of the data. For the location parameter µ (or µ1 and µ2) in the transitional AR
models introduced earlier, it is customary to set the parameter space given by some fixed
percentiles in the range of (y1, . . . , yn) [see, e.g., Caner and Hansen (2001)]. Moreover, the
scale parameter κ (or κ1 and κ2) in those models is usually searched over some fixed interval
normalized by the sample standard deviation (

∑n
t=1 y2

t /n)1/2 of the data (y1, . . . , yn) [see,
e.g., van Dijk, Teräsvirta and Franses (2002)]. When (yt) is stationary, they yield parameter
spaces that are well defined in the limit. This is not so, however, if (yt) has a unit root. The
space for the location parameter expands at the rate of

√
n, while for the scale parameter

it shrinks towards the origin at the rate of
√

n. Therefore, the usual assumption on the
compactness of the parameter space is not appropriate in this case. The assumption simply
cannot be met for the location parameter, and yields degenerate asymptotics with respect
to the scale parameter. It is obvious that under the null hypothesis of a unit root we need to
redefine the parameter, or equivalently, normalize the transition variable before we require
the parameter space to be compact.

In the subsequent development of our asymptotic theories, we specify the transition
term in our model as

π

(

yt−d√
n

, θ

)

with θ ∈ Θn (6)
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and
π(yt−d, θ) with θ ∈ Θn (7)

respectively under the null and alternative hypotheses, and assume

Assumption 2.1 Θn →d Θ, where Θ is a compact subset of R
m a.s.

In general, (Θn) is a random sequence of parameter spaces given for each n as functions
of the sample (y1, . . . , yn). Naturally, Θn →d Θ implies that the limit parameter space Θ
is a random subset of R

m whose distribution is given by the distributional limit of such
functions. Our specification of the transition term in (6) and (7), of course, does not imply
that we have different transition functions under the null and alternative hypotheses. They
are meant to be the same function. We simply require that the condition in Assumption
2.1 apply to two different sets of parameters, one normalized and the other unnormalized,
depending upon whether we analyze our model under the null or alternative hypothesis.

Throughout the paper, we will denote more explicitly by θn the parameter in the nor-
malized transition function (6), whenever it is necessary to directly relate it to the original
unnormalized parameter θ in (7). For the location parameter µ (µ1 and µ2) in the TAR (D-
TAR) model, we have the relationship µn = µ/

√
n (µ1n = µ1/

√
n and µ2n = µ2/

√
n). Note

that µ (µ1 and µ2) lying in an interval given by certain percentiles of (y1, . . . , yn) is equiv-
alent to µn (µ1n and µ2n) belonging to an interval given by the corresponding percentiles
of (y1/

√
n, . . . , yn/

√
n). For the scale parameter κ (κ1 and κ2) in the LSTAR and ESTAR

(D-LSTAR), on the other hand, we have κn =
√

nκ (κ1n =
√

nκ1 and κ2n =
√

nκ2). There-
fore, requiring κ (κ1 and κ2) to be in a fixed interval normalized by (

∑n
t=1 y2

t /n)1/2 amounts
to assuming κn (κ1n and κ2n) to be in the same interval normalized by (

∑n
t=1 y2

t /n
2)1/2.

As we may easily see, the parameter space given by the percentiles of (y1/
√

n, . . . , yn/
√

n),
and any fixed interval normalized by (

∑n
t=1 y2

t /n
2)1/2 satisfy our condition in Assumption

2.1 for a general unit root process (yt). With our convention in (6) and (7), Assumption
2.1 is therefore met for a wide class of transitional AR models, including all the models
introduced in the previous section, under the null hypothesis of a unit root as well as under
the alternative hypothesis of stationarity.

Our convention in (6) and (7) is extremely important in deriving proper and nondegen-
erate asymptotics under the null hypothesis of a unit root. In the previous literature, none
of the limit null distributions is obtained under appropriate assumptions on the parameter
space. Kapetanios and Shin (2003) and Seo (2003) derive the limit null distribution of the
sup-Wald test in a D-TAR model under the assumption of the compact parameter space,
i.e., the condition comparable to that in Assumption 2.1 imposed on the unnormalized
transition function. Therefore, it is not applicable if the usual convention is followed to set
the parameter space. On the other hand, Bec, Ben Salem and Carrasco (2004a) allow the
location parameter space to expand in investigating the sup-Wald, LM and LR tests for
their D-TAR model. However, their derivations of the limit null distributions rely critically
on the stochastic equicontinuity result established in Bec, Guay and Guerre (2004, Lemma
D.3), which is valid only for a nonrandom and compact parameter space. As we have dis-
cussed earlier, the usual parameter space employed in the literature remains to be random
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in the limit and has the support on the entire real line under the null hypothesis, even
if appropriately normalized. The limit theory of the D-LSTAR model in Bec, Ben Salem
and Carrasco (2004b) is also based on Bec, Guay and Guerre (2004) for the stochastic
equicontinuity, and has a similar problem.9

2.3 Assumptions on Transition Functions

We now introduce the precise conditions for the transition function. To present the required
conditions for π, it will be convenient to introduce some preliminary regularity conditions.
These we will provide in Definitions 2.1 and 2.2 below.

Definition 2.1 A transformation υ on R is said to be regular if and only if, for any
compact subset K of R given, there exists a δ-sequence of continuous functions (υδ) and (υδ)
such that υδ(x) ≤ υ(y) ≤ υδ(x) for all |x−y| < δ on K, and such that

∫

K (υδ − υδ) (x) dx →
0 as δ → 0.

The regularity condition in Definition 2.1 is satisfied by a large class of functions including
all continuous and piecewise continuous functions as noted by Park and Phillips (2001), who
introduced it earlier in their study of nonlinear regressions with integrated time series.10

Definition 2.2 A functional $ on R × R
m is said to be regular if and only if

(a) for all θ0 ∈ R
m, $(·, θ0) is regular, and

(b) for each θ0 ∈ R
m given, there exists δ-sequence of regular functions ($δ) and ($δ) such

that $δ(x) ≤ $(x, θ) ≤ $δ(x) for all ‖θ − θ0‖ < δ, and such that $δ(x) − $δ(x) → 0 as
δ → 0 a.e. x ∈ R.

The regularity conditions in Definition 2.2 are comparable to those in Park and Phillips
(2001). Our conditions are, however, weaker than theirs, especially in that ours allow for
the functionals that are discontinuous in θ ∈ R

m. This is necessary to accommodate the
indicator type transition functions in our model.

Now we are ready to introduce the conditions required for π.

Assumption 2.2 We assume that
(a) π is bounded on R × R

m,
(b) π is regular on R × R

m,
(c) for any θ1, θ2 ∈ R

m, we have

∫

R

[π(x, θ1) − π(x, θ2)]
2e−x2/2ω2

dx < c ‖θ1 − θ2‖

9Bec, Ben Salem and Carrasco (2004b) simply refer for the proof of their stochastic equicontinuity to
Bec, Guay and Guerre (2004), which does not explicitly deal with the D-LSTAR model. However, we believe
that the required extension is possible as long as the normalized parameter space has a nonrandom limit.

10They also require that the regular function be continuous at infinity. This condition, however, is unnec-
essary and not invoked here.
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for some constant c > 0 and the constant ω that will be introduced later in (12).

The conditions in Assumption 2.2 are not stringent and satisfied for virtually all transition
functions that can possibly be used in practical applications.

They hold widely for π that is differentiable with respect to θ. Indeed, the conditions
(b) and (c) are satisfied for a large class of π’s that are differentiable with respect to θ. To
show this, we let π̇(x, θ) = (∂/∂θ)π(x, θ), and we assume there exists a regular function π̄ ·

on R such that
sup

θ∈Rm

|π̇(x, θ)| ≤ π̄·(x) (8)

for all x ∈ R, and such that
∫

R

π̄·2(x) e−x2/2ω2

dx < ∞. (9)

Now it follows immediately that the existence of a regular function π̄ · satisfying (8) and (9)
imply the regularity condition (b) of Definition 2.2. To see this, note that we have

|π(x, θ1) − π(x, θ2)| ≤ π̄·(x) ‖θ1 − θ2‖

for all θ1, θ2 ∈ R
m. Therefore, if we choose θ0 ∈ R

m arbitrarily and let

πδ(x) = π(x, θ0) − δπ̄·(x) and πδ(x) = π(x, θ0) + δπ̄·(x),

then we have πδ(x) ≤ π(x, θ) ≤ πδ(x) for all ‖θ − θ0‖ < δ and πδ(x) − πδ(x) → 0 for all
x ∈ R, as required to satisfy condition (b) of Definition 2.2. Clearly, (8) and (9) together
imply condition (c) of Assumption 2.2.

The conditions in Assumption 2.2 also hold for a variety of π that is discontinuous with
respect to θ. In particular, they allow for indicator type functions, including the ones used
in the TAR and D-TAR models. For example, it is easy to see that they are satisfied for
π(x, θ) = 1{x ≤ θ}. Clearly, such function π is bounded (by unity) for all x, θ ∈ R. Also, the
function 1{· ≤ θ0} is piecewise continuous for all θ0 ∈ R and therefore regular. Moreover, if
we fix θ0 ∈ R and define

πδ(x) = inf
|θ−θ0|<δ

1{x ≤ θ} = 1{x ≤ θ0 − δ}

πδ(x) = sup
|θ−θ0|<δ

1{x ≤ θ} = 1{x < θ0 + δ}

then we have πδ(x) ≤ π(x, θ) ≤ πδ(x) for all ‖θ − θ0‖ < δ and πδ(x) − πδ(x) → 0 for all
x ∈ R except x = θ0. Therefore, π is regular. Finally, we have for any θ1, θ2 ∈ R

∫

R

[1{x ≤ θ1} − 1{x ≤ θ2}]2e−x2/2ω2

dx

≤
∫

R

[1{x ≤ θ1} − 1{x ≤ θ2}]2dx ≤ |θ1 − θ2|.

Our model can therefore be seen as generalizations of the models with indicator transition
functions considered earlier by many authors.
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2.4 Preliminary Asymptotic Results

For the subsequent development of our asymptotic theories, we make the following assump-
tions for the innovations (εt) generating the errors (ut) in (3).

Assumption 2.3 (εt,Ft) is a martingale difference sequence, with some filtration (Ft),
such that

(a) E ε2
t = σ2 for all t ∈ Z,

(b) sup
t∈Z

E|εt|r < ∞ for some r ≥ 4, and

(c) sup
1≤i≤n

1

n

i
∑

t=1

[

E(ε2
t |Ft−1) − σ2

]

→p 0 as n → ∞.

Assumption 2.3 is quite general, and allows for the conditional heteroskedasticity in the
innovation sequence (εt). In the unit root literature, it is routinely assumed that the fourth
conditional moment of the innovation sequence is bounded. See, e.g., Stock (1994) and Park
and Phillips (2001). We do not impose this uniform boundedness of the conditional fourth
moment, which is not satisfied for instance by the usual ARCH processes. Our assumption
here holds for a wide class of ARCH-type processes.

As is well expected, the usual (infeasible) variance estimator σ2
n = (1/n)

∑n
t=1 ε2

t is
consistent under Assumption 2.3, as we show in the following lemma.

Lemma 2.1 Under Assumption 2.3, we have σ2
n →p σ2 as n → ∞.

The result in Lemma 2.1 is essential for the consistent estimation of the error variance.
Moreover, conditions (a) and (b) of Assumption 2.3 are sufficient to ensure that (εt)

satisfies an invariance principle, as shown in, e.g., Hall and Heyde (1980, Theorem 4.1,
p99). A properly constructed partial sum process of (εt) would therefore weakly converge
to a Brownian motion. For our subsequent theory, however, it would be more convenient
to use a more direct method of embedding a distributionally equivalent copy of the partial
sum process of (εt) into a Brownian motion. We achieve this using the so-called Skorokhod
embedding, which we state below as a lemma.

Lemma 2.2 Under Assumption 2.3, there exists a probability space supporting a Brown-
ian motion U with variance σ2 and a time change (i.e., a nondecreasing sequence of stopping
times) τi such that

1√
n

i
∑

t=1

εt =d U
(τi

n

)

for i = 1, . . . , n, and that

sup
1≤i≤n

∣

∣

∣

∣

τi

n
− i

n

∣

∣

∣

∣

→p 0 (10)

as n → ∞.
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The reader is referred to Hall and Heyde (1980, Appendix) for the Skorokhod embedding
introduced in Lemma 2.1, and to Park and Phillips (1999, 2001) for its application to the
analysis of nonlinear models with integrated processes. In what follows, we set τ0 ≡ 0.

We set ut = 4yt. Under the null hypothesis (4), we have

α(L)ut = εt, (11)

where α(z) = 1 −∑p
k=1 αkz

k. Assume

Assumption 2.4 α(z) has roots outside the unit circle.

Then it follows that
1√
n

i
∑

t=1

ut =
1√

nα(1)

i
∑

t=1

εt + op(1)

uniformly in 1 ≤ i ≤ n, as shown in, e.g., Phillips and Solo (1992). Consequently, if we
define a Brownian motion V by

V (r) =
1

α(1)
U(r),

i.e., V is a Brownian motion with variance ω2, where

ω2 =
σ2

α(1)2
, (12)

then we have
1√
n

i
∑

t=1

ut =d V
(τi

n

)

+ op(1)

uniformly in 1 ≤ i ≤ n. In what follows, we denote by Vn the process defined as

Vn(r) =

n
∑

i=1

V
(τi−1

n

)

1
{τi−1

n
≤ r <

τi

n

}

+ V
(τn

n

)

1
{

r ≥ τn

n

}

(13)

with the convention τ0 = 0 a.s. Clearly, Vn →d V on [0, 1] as n → ∞, due in particular to
our result in (10).

We now establish a functional central limit theory for the nonlinear transformation of
integrated time series that can be applied to a class of transition functions introduced in
this section. The main results of this section are given below. In what follows, we let

Mn(r, θ) =

∫ r

0
π(Vn(s), θ) dU(s)

M(r, θ) =

∫ r

0
π(V (s), θ) dU(s)

be the stochastic processes defined on (r, θ) ∈ [0, 1] × R
m.
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Theorem 2.3 Under Assumptions 2.1, 2.2, 2.3 and 2.4, we have

Mn →d M

jointly with Vn →d V , as n → ∞.

Proposition 2.4 M has a modification which is almost surely continuous.

The functional central limit theory established in Theorem 2.3 is crucial in developing our
subsequent asymptotic theories. It implies, in particular, that

f(Mn, Vn) →d f(M,V ) (14)

for any continuous functional f , as follows from the continuous mapping theorem (CMT).
Due to Proposition 2.4, we may assume without loss of generality that the limit process M
has a.s. continuous sample paths on [0, 1] ×R

m, by taking such a modification if necessary.
This convention will be made throughout the paper. As a consequence, the weak conver-
gence in (14) holds for any functional f that is continuous on C([0, 1]) × C([0, 1] × R

m),
where C(D) denotes the set of continuous functions defined on D endowed with the uniform
norm. It is very important to note that the space for the parameter θ in the processes Mn

and M is not restricted to be a compact space. This is crucial for our asymptotic theories,
which allow for the parameter space that remains to be random in the limit.

3. Test Statistics and Asymptotic Theory

The hypothesis (4) can be tested in the regression

4yt = λwt(θ) +

p
∑

i=1

αi4yt−i + εt, (15)

where wt(θ) is defined as
wt(θ) = yt−1π(yt−d, θ), (16)

due in particular to our assumption on the error sequence (ut) in (11).11 To define the test
more explicitly, we first consider the least squares regression

4yt = λ̂n(θ)wt(θ) +

p
∑

i=1

α̂ni(θ)4yt−i + ε̂t(θ) (17)

fitted for each value of θ ∈ Θn. The usual t-ratio for λ in regression (17) is then defined as

Tn(θ) =
λ̂n(θ)

s(λ̂n(θ))
, (18)

11We may consider the model 4yt = λ
[

yt−1 +
∑p

i=1
αi4yt−i

]

π(yt−d, θ) + εt, similarly as in Bec, Ben
Salem and Carrasco (2004a). Indeed, our subsequent theory can be easily modified to allow for such a model.
This, however, will not be pursued in the paper.
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where s(λ̂n(θ)) is the standard error of the estimate λ̂n(θ). If we define

An(θ) =

n
∑

t=1

wt(θ)4yt −
n
∑

t=1

wt(θ)x′
t

(

n
∑

t=1

xtx
′
t

)−1 n
∑

t=1

xt4yt (19)

Bn(θ) =

n
∑

t=1

w2
t (θ) −

n
∑

t=1

wt(θ)x′
t

(

n
∑

t=1

xtx
′
t

)−1 n
∑

t=1

xtwt(θ), (20)

where
xt = (4yt−1, . . . ,4yt−p)

′,

then we have λ̂n(θ) = An(θ)/Bn(θ) and s(λ̂n(θ)) = σ̂n(θ)/
√

Bn(θ). Here and elsewhere in
the paper, we denote by σ̂2

n(θ) the error variance estimate given by σ̂2
n(θ) = (1/n)

∑n
t=1 ε̂2

t (θ).
The inf-t test may now simply be defined as

Tn = inf
θ∈Θn

Tn(θ), (21)

i.e., the infimum of Tn(θ) in (18) taken over all values of θ ∈ Θn. Naturally, the parameter
θ may be estimated by

θ̂n = argmin
θ∈Θn

Tn(θ),

and we may also define the inf-t test as Tn = Tn(θ̂n). The estimator θ̂n is in general not
identical to the nonlinear least squares estimator θ̃n, say, of θ. As is well known, θ̃n is given
by θ̃n = argmax

{

T 2
n(θ)

∣

∣ θ ∈ Θn

}

. In contrast, we may define θ̂n by

θ̂n = argmax
{

T 2
n(θ)

∣

∣

∣λ̂n(θ) < 0, θ ∈ Θn

}

,

as long as the set of θ ∈ Θn for which λ̂n(θ) < 0 is nonempty. Under the alternative of
stationarity and with suitable regularity conditions, it is well expected that both θ̂n and θ̃n

are consistent. The former, however, will be more efficient than the latter, if the true value
of λ is negative.12

The test defined in (21) can be directly applied to the TAR, LSTAR and ESTAR models
introduced in Section 2.1. For the location parameter µ in these models, we follow, e.g.,
Caner and Hansen (2001), and suggest to set the parameter space as

[Qn(15), Qn(85)], (22)

where Qn(15) and Qn(85) are, respectively the 15th and 85th percentiles of (y1, . . . , yn).
On the other hand, we recommend the scale parameter κ to be searched over the interval
given by

[10−1Pn, 103Pn], (23)

where Pn = (
∑n

t=1 y2
t /n)−1/2, as in, e.g., van Dijk, Teräsvirta and Franses (2002) for their

study of stationary smooth transition AR models. In the subsequent development of our

12We will not further study the properties of these estimators in the paper, since our main purpose is to
test the unit root hypothesis.
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theory for the TAR, LSTAR and ESTAR models, we will assume that the specification of
the parameter space is given by (22) and (23). The other specifications are, of course, also
possible, and we may easily modify our results to accommodate them.

To develop the null asymptotics, we now let wt(θ) in (16) be defined with the normalized
transition function (6) in place of (7). This is according to our specification of the transition
term under the null hypothesis of a unit root. To distinguish them from the unnormalized
original parameters, we let µn and κn be respectively the location and scale parameters
in the normalized transition function for the TAR, LSTAR and ESTAR models. As noted
earlier in Section 2.2, we may easily deduce that µn = µ/

√
n and κn =

√
nκ. Consequently,

the parameter spaces for µn and κn corresponding to (22) and (23) become

n−1/2[Qn(15), Qn(85)] and n1/2[10−1Pn, 103Pn].

Moreover, under the null hypothesis of a unit root, we have

n−1/2[Qn(15), Qn(85)] →d [Q(15), Q(85)], (24)

where Q is the quantile function for V over r ∈ [0, 1], i.e.,
∫ 1
0 1{V (r) ≤ Q(100s)} dr = s for

s ∈ [0, 1], and
n1/2[10−1Pn, 103Pn] →d [10−1P, 103P ], (25)

where P = (
∫ 1
0 V (r)2dr)−1/2. The limit parameter spaces for µn and κn are therefore

given respectively by [Q(15), Q(15)] and [10−1P, 103P ]. These are random intervals that
are compact a.s., as we assume in Assumption 2.1.

To obtain the limit null distribution of our test statistic Tn, we first show

Lemma 3.1 Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then, under the null hypothesis
(4), we have

sup
θ∈K

∣

∣

∣

∣

∣

1

n

n
∑

t=1

ut−i
yt−1√

n
π

(

yt−d√
n

, θ

)

∣

∣

∣

∣

∣

→p 0 (26)

as n → ∞, i = 1, . . . , p, for any compact subset K of R
m.

The result in Lemma 3.1 establishes the asymptotic orthogonality of the leading transition
term and the lagged differences. This is not surprising and indeed well expected from the
regression theory for the unit root models. Note that the orthogonality in Lemma 3.1
applies uniformly in θ ∈ K for any compact subset K of R

m. The inclusion of the lagged
differences would thus have no effect on the testing for the transition term over all possible
values of the transition parameter θ ∈ Θn. It simply washes away the serial correlation in
the innovations.

The limit distribution of our inf-t statistic in (21) may now be easily deduced from
Theorem 2.3 and Lemma 3.1. As mentioned earlier, W signifies the standard Brownian
motion here and elsewhere in the paper.
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Theorem 3.2 Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold, and let Tn be defined as in
(21). Under the null hypothesis (4), we have

Tn = inf
θ∈Θn

Tn(θ) →d T = inf
θ∈Θ

T (θ)

as n → ∞, where T (θ) is a stochastic process defined by

T (θ) =

∫ 1

0
Π(ωW (r), θ) dW (r)

(∫ 1

0
Π2(ωW (r), θ) dr

)1/2
(27)

with Π(x, θ) = xπ(x, θ).

The distribution of T , in general, depends upon the nuisance parameter ω, which is the
long-run variance of (ut) introduced in (12), as well as the transition function π and the
limit parameter space Θ. The dependency of the distribution of T on ω, however, is very
simple to deal with and we may easily get rid of it for most of the transition functions used
in practical applications. This is shown in the following corollary.

Corollary 3.3 Suppose that π(ωx, θ) = π(x, θ∗(ω, θ)) for some θ∗, which does not depend
upon x ∈ R. If we let Θ∗ = {θ∗|θ∗ = θ∗(ω, θ), θ ∈ Θ}, then we have T = infθ∗∈Θ∗ T ∗(θ∗),
where

T ∗(θ∗) =

∫ 1

0
Π(W (r), θ∗) dW (r)

(
∫ 1

0
Π2(W (r), θ∗) dr

)1/2
(28)

with Π defined as in Theorem 3.2.

If the conditions in Corollary 3.3 are met, the asymptotic critical values of our inf-t test
based on Tn depend only upon the transition function π and the limit parameter space
Θ. Especially, the dependency of the distribution of T on the long-run variance of (ut)
disappears. The conditions hold virtually all the transition functions used in practical
applications. For the TAR, LSTAR and ESTAR models introduced in Section 2.1 with
parameters θ = µ, θ = (µ, κ) and θ = κ, we may easily see that they are satisfied for
θ∗ = µ∗, θ∗ = (µ∗, κ∗) and θ∗ = κ∗, respectively, with µ∗ = µ/ω and κ∗ = ωκ.

The actual implementation of our test in the TAR, LSTAR and ESTAR models is fairly
simple, due in particular to the result in Corollary 3.3. Let W be the standard Brownian
motion given by V = ωW , and define Q∗ and P ∗ from W similarly as Q and P introduced
in (24) and (25), i.e., Q∗ is the quantile function for W and P ∗ = (

∫ 1
0 W (r)2dr)−1/2. Then

we may easily deduce that

[Q(15), Q(85)] = ω[Q∗(15), Q∗(85)]
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and
[10−1P, 103P ] = (1/ω)[10−1P ∗, 103P ∗].

Therefore, if we denote by µ∗ and κ∗ the redefined location and scale parameters that are
given by µ∗ = µ/ω and κ∗ = ωκ, their parameter spaces are given by [Q∗(15), Q∗(85)] and
[10−1P ∗, 103P ∗], respectively, for the TAR, LSTAR and ESTAR models. Consequently, the
limit null distribution of the inf-t test depends only upon the transition function and the
limit parameter space. The critical values for the inf-t test with the parameter spaces in
(22) and (23) are tabulated in Table 1 for the TAR, LSTAR and ESTAR models. It may be
worth emphasizing once again that they are invariant with respect to the long-run variance
of (ut), but dependent upon the limit parameter space in a very critical manner.

We now establish the consistency of our inf-t test, which is given in the following propo-
sition.

Proposition 3.4 Suppose that (yt) is a stationary process with finite second moment,
and that there exists a sequence θn ∈ Θn such that plimn→∞λ̂n(θn) < 0 and the conditional
variance of (yt−1π(yt−d, θn)) given (4yt−1, . . . ,4yt−p) is nonzero. Moreover, let σ̂n(θ) be
bounded away from zero a.s. uniformly in θ ∈ Θn and all large n. Then we have

Tn →p −∞

as n → ∞.

The conditions in Proposition 3.4 are of course satisfied if (yt) is indeed a stationary process
generated by the transitional AR model (3) with the error sequence given by (11). In this
case, we have in particular λ̂n(θ0) →p λ0 < 0, where we denote by θ0 and λ0 the true values
of θ and λ, respectively. Proposition 3.4 shows that the inf-t test is also consistent against
other stationary models as long as for all large n there are parameter values θn ∈ Θn to fit
them with transitional AR models (3) with some λ̂(θn) < 0.

4. Extensions

Our theories developed in earlier sections can be used to analyze the transitional AR models
with more complicated (and more realistic) transition dynamics. In this section, we will
show how the necessary extensions can actually be made. The extended theories presented
in this section are applicable, in particular, for a wide variety of the transitional AR models
with the errors driven by a general linear process of unknown order.

4.1 Models with General Transition Functions

Here we consider the transitional AR model given by

4yt = λ

[

∑̀

i=1

ρi(yt−1 − νi)πi(yt−di
, θi)

]

+ ut, (29)
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Figure 3: Transition Dynamics for D-TAR Models with No-intercept and Intercept

which is much more general than (3) and includes as special cases the D-TAR and D-
LSTAR models introduced in Section 2. The model in (29) allows for nonzero intercepts,
as well as multiple transition functions. As a result, it provides much more plausible and
realistic transition dynamics for the AR models. The parameter νi can be interpreted as
the intercept parameter. In many applications, continuous transition dynamics are often
preferable to discontinuous ones. However, the models without the intercept parameters
generally imply the transition dynamics that are discontinuous. See, for instance, Figure 3
for the transition dynamics for the D-TAR models without and with the intercept term.13

On the other hand, the parameter ρi allows us to consider asymmetric transition dynamics.
It is indeed simple to note that we have asymmetry in the transition dynamics unless ρi = 1
for all i = 1, . . . , `. For the D-TAR and D-LSTAR models, we mainly consider them with
the symmetry restriction ρ1 = ρ2 = 1 in the paper.

The null hypothesis (4) in model (29) can be tested based on the regression (15) with
wt(θ) replaced by

wt(ρ, ν, θ) =
∑̀

i=1

ρi(yt−1 − νi)πi(yt−d, θi). (30)

We let ρ = (ρ1, . . . , ρ`)
′, ν = (ν1, . . . , ν`)

′ and θ = (θ′1, . . . , θ
′
`)

′, and set ρ1 = 1 for identi-
fication and ρi ≥ 0 for all i = 1, . . . , `. Also, we denote by Φn, Λn and Θn the sequences
of random parameter spaces given respectively for ρ, ν and θ as functions of (y1, . . . , yn).
Following our earlier convention made in (6) and (7), we define the transition term (30) as

∑̀

i=1

ρi

(

yt−1√
n

− νi

)

πi

(

yt−d√
n

, θi

)

with (ρ, ν, θ) ∈ (Φn,Λn,Θn) (31)

and
∑̀

i=1

ρi(yt−1 − νi)πi(yt−d, θi) with (ρ, ν, θ) ∈ (Φn,Λn,Θn), (32)

respectively, under the null and alternative hypothesis. We assume

13In Figure 3, the transition dynamics are drawn for the D-TAR models given by 4yt = −0.7[yt−11{yt−1 ≤
−3} + yt−11{yt−1 ≥ 3}] + ut and 4yt = −0.7[(yt−1 + 3)1{yt−1 ≤ −3} + (yt−1 − 3)1{yt−1 ≥ 3}] + ut.
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Assumption 4.1 (Φn,Λn,Θn) →d (Φ,Λ,Θ), where (Φ,Λ,Θ) is a compact subset of R
`
+×

R
` × R

m` a.s.

Assumption 4.1 is entirely analogous to Assumption 2.1 with the same notation used for
the distributional convergence of the sequence of random parameter spaces. The motivation
for the definition of the transition term in (31) and (32) is precisely the same as the one
given for (6) and (7). If we denote by νin and ρin the parameters normalized under the null
hypothesis of a unit root as in (31), then they are given by νin = νi/

√
n and ρin =

√
nρi in

terms of the unnormalized original parameters νi and ρi, for i = 1, . . . , `.

Assumption 4.2 πi satisfies the conditions in Assumption 2.2 for i = 1, . . . , `.

Like the parameter θ, the parameters ρ and ν are identified only under the alternative
hypothesis. Therefore, the infimum of the t-ratio should now be taken with respect to ρ
and ν, as well as θ. If we let An(ρ, ν, θ) and Bn(ρ, ν, θ) be defined similarly as in (19) and
(20) with wt(θ) replaced by wt(ρ, ν, θ), then the t-ratio is given for each value of (ρ, ν, θ) by

Tn(ρ, ν, θ) =
λ̂n(ρ, ν, θ)

s(λ̂n(ρ, ν, θ))
,

where λ̂n(ρ, ν, θ) = An(ρ, ν, θ)/Bn(ρ, ν, θ) and s(λ̂n(ρ, ν, θ)) = σ̂n(θ)/
√

Bn(ρ, ν, θ) with the
usual error variance estimate σ̂2

n(θ) introduced earlier. The inf-t test may then be defined
as

Tn = inf
(ρ,ν,θ)∈Φn×Λn×Θn

Tn(ρ, ν, θ) (33)

in place of (21).
Our test here is applicable in particular to the D-TAR and D-LSTAR models with

no intercept, and also to the TAR, LSTAR, ESTAR, D-TAR and D-LSTAR models with
intercept. For the D-TAR and D-LSTAR models with no intercept, we have parameters
θ = (µ1, µ2) and θ = (µ1, µ2, κ1, κ2) respectively. The parameter spaces for the location
parameters µi’s and the scale parameters κi’s may be set as in (22) and (23) for these
models. For the TAR, LSTAR, ESTAR, D-TAR and D-LSTAR models with intercept, we
need to set the parameter spaces for the parameters νi’s and ρi’s. Unless there are reasons
to specify otherwise, it seems natural to also set the parameter spaces for the parameters
νi’s and ρi’s to be exactly as those for the parameters µi’s and κi’s, respectively, in (22)
and (23). Note that νi’s and ρi’s also designate the location and scale of the transition
functions. We use these parameter spaces in our simulations and empirical applications.

Theorem 4.1 Let Assumptions 2.3, 2.4, 4.1 and 4.2 hold, and let Tn be defined as in
(33). Under the null hypothesis (4), we have

Tn = inf
(ρ,ν,θ)∈Φn×Λn×Θn

Tn(ρ, ν, θ) →d T = inf
(ρ,ν,θ)∈Φ×Λ×Θ

T (ρ, ν, θ)

as n → ∞, where T (ρ, ν, θ) is a stochastic process defined similarly as in (27) with Π(ωW (r), θ)
replaced by Π(ωW (r), ρ, ν, θ) for Π(x, ρ, ν, θ) =

∑`
i=1 ρi(x − νi)π(x, θi).
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The results in Theorem 4.1 are comparable to those in Theorem 3.2. The distribution of T
given in Theorem 4.1 depends upon the nuisance parameter ω, just as that of T in Theorem
3.2, as well as the transition function π and the limit parameter space Φ × Λ × Θ. The
dependency on ω of the limit distribution of T , however, can easily be dealt with similarly
as in Corollary 3.3. The following corollary extends our results in Corollary 3.3.

Corollary 4.2 Suppose that π(ωx, θ) = π(x, θ∗(ω, θ)) for some θ∗, which does not depend
upon x ∈ R. If we let Θ∗ = {θ∗|θ∗ = θ∗(ω, θ), θ ∈ Θ}, Λ∗ = {ν∗|ν∗ = ν/ω, ν ∈ Λ} and
Φ∗ = {ρ∗|ρ∗ = ωρ, ρ ∈ Φ}, then we have T = inf (ρ∗,ν∗,θ∗)∈Φ∗×Λ∗×Θ∗ T ∗(ρ∗, ν∗, θ∗), where
T ∗(ρ∗, ν∗, θ∗) is a stochastic process defined similarly as in (28) with Π(W (r), θ∗) replaced
by Π(W (r), ρ∗, ν∗, θ∗) for Π defined as in Theorem 4.1.

Corollary 4.2 implies that the critical values of our inf-t test are only dependent upon the
transition function and the limit parameter space for a wide class of transitional AR models.
This is exactly identical to what is implied by Corollary 3.3.

For the D-TAR and D-LSTAR models with the parameters given by θ = (µ1, µ2) and
θ = (µ1, µ2, κ1, κ2), the conditions in Corollary 4.2 are satisfied for θ∗ = (µ∗

1, µ
∗
2) and

θ∗ = (µ∗
1, µ

∗
2, κ

∗
1, κ

∗
2), respectively, with µ∗

i = µi/ω and κ∗
i = ωκi, i = 1, 2. For the TAR,

LSTAR, ESTAR, D-TAR and D-LSTAR models with intercept, we have additional param-
eters ν (νi’s) and ρ (ρi’s), for which the conditions in Corollary 4.2 hold with the redefined
parameters ν∗ (ν∗

i ’s) and ρ∗ (ρ∗i ’s) given by ν∗ = ν/ω (ν∗
i = νi/ω) and ρ∗ = ωρ (ρ∗i = ωρi),

similarly as µ∗ (µ∗
i ’s) and κ∗ (κ∗

i ’s), respectively. The critical values of the inf-t test in all
these models are therefore invariant with respect to the long-run variance of (ut). The crit-
ical values of the inf-t test are tabulated in Table 1 for the D-TAR and D-LSTAR models,
and in Table 2 for the TAR, LSTAR, ESTAR, D-TAR and D-LSTAR models with intercept.
All the critical values are computed using (22) and (23) as the parameter spaces respectively
for the location and scale parameters in these models.

Finally, the consistency of the inf-t test can be established for the general models exactly
as in Proposition 3.4. It is, however, trivial, and we do not state it as a separate proposition
to save the space.

4.2 Models with Errors of Unknown Form

It is possible to further accommodate a broader class of transitional autoregressive models
in many other directions. In particular, we may show that our tests are valid for the models
with (ut) driven by a general linear process. Now we specify (ut) as

ut = ϕ(L)εt =

∞
∑

i=1

ϕiεt−i, (34)

where we assume that

Assumption 4.3 Let ϕ(z) 6= 0 for all |z| ≤ 1, and ϕk = O(k−s−δ) for some s ≥ 2 and
δ > 0.
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With the coefficient summability condition in Assumption 4.3, condition (a) of Assumption
2.3 implies that (ut) is weakly stationary. Moreover, condition (b) of Assumption 2.3
guarantees that the r-th moment of (ut) exists and is uniformly bounded for all t ∈ Z, due
to the Marcinkiewicz-Zygmund inequality in, e.g., Sout (1974, Theorem 3.3.6).

Due to the so-called the Beveridge-Nelson decomposition, we may write (ut) given in
(34) as

ut = ϕ(1)εt + (ũt−1 − ũt) ,

where

ũt =

∞
∑

i=0

ϕ̃iεt−i, ϕ̃i =

∞
∑

j=i+1

ϕj .

Under Assumption 4.3, we have
∑∞

i=0 |ϕ̃i| < ∞ as shown in Phillips and Solo (1992), and
therefore (ũt) is well defined both in a.s. and Lr sense [see Brockwell and Davis (1991)].
Moreover, we have

1√
n

i
∑

t=1

ut = ϕ(1)
1√
n

i
∑

t=1

εt + op(1)

uniformly in 1 ≤ i ≤ n. Therefore, the asymptotics in Theorem 2.3 hold also in this case
with the definition of V by V (r) = ϕ(1)U(r) and ω2 = σ2ϕ(1)2.14

Under Assumptions 2.3 and 4.3, we may let α(L)ut = εt with α(z) = 1−
∑∞

i=1 αiz
i, and

approximate (ut) in r-th mean by a finite order AR process

ut = α1ut−1 + · · · + αput−p + εt,p

with

εt,p = εt +

∞
∑

i=p+1

αiut−i.

As is well known [see, e.g., Brillinger (1975)], the condition in Assumption 4.3 implies that
αk = O(k−s−δ), and we have

∑∞
i=p+1 |αi| = o(p−(s−1)). Given the existence of the r-th

moment of (ut) implied by Assumptions 2.3 and 4.1, we therefore have

E|εp,t − εt|r ≤ E|ut|r




∞
∑

i=p+1

|αi|





r

= o(p−r(s−1)).

The approximation error thus becomes small as p gets large.
It is now well expected that our tests are valid for the models driven by general linear

processes of unknown order under suitable conditions, if we let the order of fitted autore-
gression increase as the sample size gets large. This is what we will show below. We start by
introducing assumptions on the order of fitted autoregression and the transition function.
For the order of fitted autoregression, we write p = pn to make it explicit that p is a function
of the sample size n and assume

14Now we require that part (c) of Assumption 2.2 holds with this newly defined ω2 in place of the one
given in (12).
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Assumption 4.4 Let pn → ∞ and pn = o(n1/2) as n → ∞.

The condition in Assumption 4.4 is very mild and the same as the one used in Chang and
Park (2002) to derive the asymptotics for the ADF unit root t-test.

We now consider the model (29) with the transition function satisfying the conditions
in

Assumption 4.5 πi(·, θ) is differentiable for all θ ∈ R
m with derivatives bounded uni-

formly in θ on any compact subset K of R
m, for i = 1, . . . , `.

The conditions in Assumption 4.5 are stronger and less general than those introduced origi-
nally in Assumption 2.2. In particular, they do not hold for threshold autoregressive models
like TAR. However, they are satisfied for all smooth transition autoregressive models such
as LSTAR and ESTAR.

Lemma 4.3 Let Assumptions 2.1, 2.3, 4.3, 4.4 and 4.5 hold. Then, under the null hy-
pothesis (4), we have

sup
θ∈K

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

ut−i
yt−1√

n
πj

(

yt−d√
n

, θ

)

∣

∣

∣

∣

∣

= Op(1) (35)

as n → ∞, i ≥ 1 and j = 1, . . . , `, for any compact subset K of R
m.

The result in Lemma 4.3 ensures the asymptotic orthogonality between the transition term
and all of the lagged differences, the number of which increases as the sample size gets
large. It is comparable to the result in Lemma 3.1. However, the obtained bound for the
cross product of the transition function and the differenced lag terms is tighter in Lemma
4.3, compared with the one given in Lemma 3.1. This is to allow for the number of the
lagged differences to increase. The tighter bound obtained in Lemma 4.3 requires the
differentiability of the transition function introduced in Assumption 4.5.

Theorem 4.4 Under Assumptions 2.3, 4.1, 4.3, 4.4 and 4.5, Theorem 4.1 holds.

Under appropriate conditions, our previous results on the inf-t tests are therefore applicable
for the models driven by general linear processes of unknown order.

5. Monte Carlo Experiment

In this section, we conduct simulation experiments to investigate the finite sample perfor-
mance of our tests in comparison with that of the conventional ADF test. In particular, the
inf-t tests are examined in three transition functions, namely, (a) TAR, (b) LSTAR, and (c)
ESTAR models, using the asymptotic critical values provided in Table 1. Our simulations
are based on the AR model given by

∆yt = λyt−1π(yt−1, θ) + α4yt−1 + εt, (36)
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where (εt) is iid N(0, 1). We consider the samples of the sizes n = 50, 100 and 200. All
the results reported in this section are based on 10,000 replications and for the nominal 5%
tests. The order p of the AR model is assumed to be known and set to 1. The parameter
spaces are set according to (22) and (23) respectively for the location and scale parameters.

5.1 Sizes

To investigate the sizes of the inf-t tests, the time series are generated from the model (36)
with λ = 0 and α ∈ {−0.5,−0.2, 0, 0.2, 0.5}. Table 3 reports the actual rejection frequencies
of the inf-t tests and compares them with those of the ADF test. In general, the inf-t tests
have reasonable size properties and are comparable to the ADF test. In particular, they
seem to work reasonably well and have acceptable size properties for the sample sizes that
are typical in practice. When the sample size is very small, however, the size distortions
can be substantial. In this case, it seems desirable to make the finite sample adjustments
and use the size-corrected critical values, based on the fitted AR models. For some of the
models that are used in our empirical applications, we find that the size-corrected critical
values can be moderately different from the asymptotic critical values provided in Tables 1
and 2.

Of the three transitional AR models that we consider in our simulations, the TAR model
yields the most noticeable small sample size distortions for the inf-t test. The distortions
of the inf-t tests are less significant in the LSTAR model, and much less so in the ESTAR
model. In both the TAR and LSTAR models, the inf-t tests tend to under-reject the null
hypothesis of a unit root, especially when the AR coefficient is negative and the generated
time series have negative autocorrelations. The under-rejections, however, appear to become
less frequent as the sample size increases. In contrast, the inf-t test somewhat over-rejects
the null hypothesis of a unit root in the ESTAR models for all values of AR coefficients,
though the over-rejection is fairly mild at all sample sizes.

5.2 Powers

To evaluate the powers of the inf-t tests, we set λ < 0 in the same model (36) to generate
the time series. We fix α = 0, but vary the parameters λ and θ. To avoid the effects of
the size distortions on our evaluations of the powers, we compute the size-corrected critical
values and calculate the size-adjusted powers. Our simulation results for the size-adjusted
powers of the inf-t tests are given in Tables 4 and 5.

Table 4 reports the results for the TAR model with the ranges of parameter values
λ ∈ {−1,−0.5,−0.3,−0.1} and µ ∈ {−1,−0.5, 0, 0.5, 1}. In general, the powers of all
the tests become larger when the location parameter µ becomes larger in absolute value.
When the stationary regime has less persistent roots, including λ = −1 and −0.5, the inf-t
test outperforms the ADF test substantially regardless of the sample size and the location
parameter. When the root becomes close to unity with λ = −0.1, the power of the inf-t
test in the TAR model is less than that of the ADF test with a small sample size. However,
even in such a case, the power of the inf-t test eventually becomes larger as the sample size
increases.
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Table 5 reports the results for the LSTAR and ESTAR models with λ ∈ {−1,−0.5,−0.3,−0.1}.
The upper panel provides the results for the LSTAR model with (µ, κ) = (0, 1), (1, 1), (0, 20),
and (1, 20). For both the inf-t test and ADF test, the powers are generally higher when the
location parameter µ is large (i.e., µ = 1) and when the scale parameter κ is small (i.e.,
κ = 1). The comparison between the inf-t test and the ADF test in these cases is very simi-
lar to that in the TAR case in the sense that the inf-t test eventually outperforms the ADF
test as the sample size increases, even if the stationary regime contains a root near unity.
When the scale parameter becomes as large as κ = 20, the results for the LSTAR model are
almost identical to those for the TAR model. This is reasonable and well expected, since
the transition function of the LSTAR model approaches that of the TAR model as the scale
parameter gets large.

The lower panel of Table 5 presents the results for the ESTAR model with the scale
parameter κ ∈ {0.10, 0.15, 0.20}. These are the values of κ, for which the difference in the
power properties of the inf-t test and the ADF test are most apparent. The finite sample
powers of both tests depend crucially on the value of κ. When the parameter κ takes small
values such as those chosen above for our simulations, the inf-t test clearly outperforms the
ADF test. However, when κ becomes large, the powers of both tests quickly approach 100%
as the sample size increases. In this sense, the advantage of the inf-t test in the ESTAR
model is not as obvious as in the TAR and LSTAR models, and can vary widely across the
models with different parameter values. For this reason, it would be more informative to
assess the powers of the tests in each empirical application, using the models with estimated
parameters or the parameter values that seem to be relevant.

6. Empirical Results

For the purpose of illustration, we apply in this section the inf-t tests to several economic
time series based on the transitional AR models. In our empirical applications, the pa-
rameter spaces are set according to (22) and (23), respectively for the location and scale
parameters, precisely as in our simulations. Throughout this section, the lag length p is
selected based either on the previous studies or on the selection procedures such as AIC
and BIC under the null hypothesis. The lag delay d is not identified under the null, and
therefore, we follow Caner and Hansen (2001) and select d that minimizes the inf-t test
statistic.

6.1 Unemployment Rates

Our first application is to the U.S. unemployment rate, which has been often investigated
using transitional AR models in the literature. Among others, Rothman (1998) and Caner
and Hansen (2001) considered the TAR model and van Dijk, Terasvirta and Franses (2002)
estimated the LSTAR model. The data we use in our application here are seasonally
adjusted monthly U.S. unemployment rates among males of 20 years and over, from January
1948 to December 2001 (n = 636), and obtained from the Bureau of Labor Statistics.
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In particular, we employ the inf-t test for the TAR model given by

4yt = λ(yt−1 − ν)1{yt−d ≤ µ} +

p
∑

i=1

αi4yt−i + εt.

One possible interpretation of this model is to consider the transition between a traditional
‘natural rate’ hypothesis and the ‘hysteresis’ hypothesis of Blanchard and Summers (1987),
since the former dynamics are often described by reversion to the long-run level or the
natural rate of unemployment, while the latter predict high persistence or random walk-like
behavior. In the current context, the unemployment rate reverts to the natural rate ν as
long as the lagged unemployment rate is below the threshold point µ, but it is characterized
by the unit root process if it exceeds the threshold level. In addition to the TAR model, we
also consider the LSTAR model

4yt = λ(yt−1 − ν) [1 + exp{κ(yt−d − µ)}]−1 +

p
∑

i=1

αi4yt−i + εt,

which implies a smooth transition. In both the TAR and LSTAR models, we set p = 12.
This is to make our results directly comparable to those in Caner and Hansen (2001).15

The results based on both the ADF tests and inf-t tests are reported in Table 6. The
values of the ADF tests are -2.74 and -2.82, respectively, with a constant (ADF-µ) and with
a trend (ADF-τ). Since the 5% asymptotic critical values of the two tests are -2.86 and
-3.41, respectively, neither of them rejects the null hypothesis. The unit root hypothesis is
therefore supported unambiguously. The conclusion, however, is sharply reversed when the
inf-t tests are used. The inf-t test yields the value -3.72 if based on the TAR model, and the
value -3.72 if based on the LSTAR. Since the 5% asymptotic critical values of the two tests
are -3.39 and -3.45, respectively, both tests significantly reject the unit root hypothesis. In
particular, it seems clear from our results that the transitional AR models are much more
plausible alternatives to the random walk model, compared with the linear stationary AR
model.

Taking into account the possible small sample biases in sizes and powers that we ob-
served in the simulations, we also consider the tests more explicitly based on the estimated
models. The time series are therefore generated directly from the estimated models, i.e., the
models given by the estimated parameters and the actual sample size, under both the null
and alternative hypotheses, and subsequently use them to obtain the size-corrected critical
values and calculate the finite sample powers. In each case, we replicate the computation
2,000 times to get the reported results. In sum, the use of the size-corrected critical values
does not change the results of the ADF and inf-t tests. Only the inf-t tests reject the null
hypothesis of a unit root. The comparison of the size-adjusted powers reported in the lower
half of Table 6, however, shows a clear advantage of the inf-t test over the ADF test at least
for this particular example.

15We also get this choice of lag order if AIC is used. On the other hand, BIC selects p = 3.
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6.2 Purchasing Power Parity

We next consider the ESTAR model for the real exchange rate. The presence of various
types of transaction costs generally implies slower adjustment for a larger deviation of the
current aggregate price from the equilibrium level predicted by the purchasing power parity.
To describe such a continuous nonlinear speed of adjustment in the aggregate real exchange
rate in two directions, the ESTAR model has been popularly used in many studies including
Michael, Nobay and Peel (1997) and Taylor, Peel and Sarno(2001). Here we follow Taylor,
Peel and Sarno (2001) and consider the ESTAR model given by

4yt = λ(yt−1 − ν)[1 − exp{−κ2(yt−d − ν)2}] +

p
∑

k=1

αk4yt−k + εt.

The lag order is chosen by BIC and set at p = 1. 16 The seasonally adjusted monthly
U.K./U.S. (log) real exchange rate series is constructed from the U.K. sterling pound and
the U.S. dollar nominal exchange rates, as well as the consumer price indexes of the U.K.
and U.S. Each series is obtained from the International Monetary Fund’s International
Financial Statistics, and the sample period is from January 1973 to July 2004 (n = 379).

The results are reported in Table 7. As in the case of the unemployment rate, the null
hypothesis of a unit root is not rejected based on the ADF tests at the 5% significance level.
The test value is -2.61 or -2.87 depending upon whether we include a constant or linear
time trend. The unit root hypothesis is, however, rejected against the ESTAR model, if
based on our inf-t test. The test yields the value -3.35, while the asymptotic critical value is
given by -3.30. The conclusion does not change even if we employ the size-adjusted critical
values instead of the asymptotic critical values. Moreover, the power comparison based on
the estimated models shows the superior power property of the inf-t test compared to the
ADF test. Once again, it seems that the nonlinear transitional AR model is a very plausible
and convincing alternative to the random walk model.

6.3 Target Zone Model

Our third empirical example is an application of the D-TAR and D-LSTAR-based inf-t
tests to the target zone exchange rate model. During the 1980s and 1990s, the exchange
rates within the European Monetary System (EMS) were subject to intervention by central
banks based on the bands set at ±2.25% around the central parity in most of the member
countries. As pointed out by Balke and Fomby (1997, p.628), the target zone systems may
well be characterized by the D-TAR model with a partial unit root in the inner regime,
since the exchange rates are allowed to fluctuate freely within the band. While the official
band is set at ±2.25% around the central parity, it is likely that intervention begins before
the rate actually hits ±2.25% points. Therefore, it seems reasonable to consider unknown
threshold values µ1 and µ2 in the transitional AR models. In particular, we consider the

16It also corresponds to the lag order selected by AIC.
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D-TAR and D-LSTAR models specified as

4yt = λ [(yt−1 − ν1)1{yt−d ≤ µ1} + (yt−1 − ν2)1{yt−d ≥ µ2}] +

p
∑

k=1

αk4yt−k + εt

4yt = λ

[

yt−1 − ν1

1 + eκ(yt−d−µ1)
+

yt−1 − ν2

1 + e−κ(yt−d−µ2)

]

+

p
∑

k=1

αk4yt−k + εt.

The lag order is chosen by BIC and set at p = 5. 17 For the empirical analysis here, we
use the daily French franc/Deutschemark exchange rates measured in log deviations from
the central parity. The sample period is from 1979/3/13 to 1993/7/30 (n = 3645), during
which the central rate was realigned six times.

The results are reported in Table 8. For this series, both the ADF tests with a constant
and with a trend reject the unit root hypothesis at the 5% significance level. At the same
time, the inf-t tests reject the null hypothesis against both the D-TAR and D-LSTAR
models. The tests yield the values -5.94 and -5.75, which are far below their asymptotic 5%
critical values that are given by -3.04 and -3.13, respectively for the D-TAR and D-LSTAR
models. The test results do not change even if we use the size-adjusted critical values. We
draw the same conclusions that are in favor of the transitional AR models. It appears that
our conclusions here are strong and unambiguous. The size-adjusted powers of our tests
are almost perfect. They are indeed 100% in all cases. However, these results are not very
surprising given the fact that the series is by definition confined within a band, as well as
the availability of the series with a large sample size.

Interestingly, the conclusion can differ drastically from the above if we consider subsam-
ples of smaller sizes. To demonstrate such a possibility, we consider a subsample based on
the series only up to the time of the third realignment (in 1982) in the total of six realign-
ments. The results from this experiment are also provided in Table 8. For this subsample
(n = 819), the ADF tests fail to reject the null hypothesis of a unit root. On the other
hand, both the inf-t tests applied to the D-TAR and D-LSTAR models yield the values -
4.26 and -4.53, respectively, and reject the unit root hypothesis rather strongly. The higher
size-adjusted powers of the inf-t tests, in comparison with those of the ADF tests, are also
consistent with the fact that only the inf-t tests can reject the unit root in this subsample
case.

7. Conclusion

In this paper, we consider the test of a unit root against the transitional AR models. Our
framework is truly general, allowing for a wide range of AR models with threshold, discrete
and smooth transition dynamics. The models that we study in the paper include all the
transitional AR models considered previously in the literature. Moreover, we only impose
very mild conditions on the innovation sequence, which are minimal in the sense that they
are also required for the validity of standard unit root tests in the linear AR models. Under

17If AIC is used, p = 6 is selected.
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this very general and flexible specification, we investigate the inf-t test that can be used
to effectively discriminate the unit root model from the stationary transitional AR models.
Such a test is motivated by the fact that the parameters in the transitional AR models are
not identified under the null hypothesis of a unit root. The full asymptotic theory for the
inf-t test is developed in the paper. In particular, we show that the test has well defined
limit distribution that is free of any nuisance parameters and depends only on the transition
function and the limit parameter space. The critical values of the transitional AR models
that are used most frequently in practical applications are tabulated in the paper.

The small sample performance of the inf-t test is very encouraging. The test has a
reasonably good size property with sample sizes typically available in practice. It also
has a rather satisfactory power property in finite samples. While the power performance
somewhat depends on the range of parameters when the sample size is small, the inf-t test
generally has significantly better power than the usual ADF test. The power gain is often
very substantial, for some of the empirically relevant cases. For illustrations, we examine
several economic time series and test of a unit root against some popular transitional AR
models. The results are quite surprising. The unit root model is unambiguously rejected
for all the series that we investigated, in favor of the stationary transitional AR models.
The evidence is either reversed or becomes much weaker, if the standard unit root test is
used. It seems apparent that the transitional AR models are much more promising than the
linear AR models, in explaining the data generating process of many economic time series.
Most of all, the ubiquitous unit root in many economic time series disappears, as we allow
for the nonlinear transition dynamics.
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Appendix: Mathematical Proofs

The proofs of some of our theorems and lemmas utilize the local time of Brownian motion
V , which is defined by

`(r, x) = lim
δ→0

1

2δ

∫ r

0
1{|V (s) − x| ≤ δ} ds (37)

The reader is referred to, e.g., Chung and Williams (1990) for an elementary introduction
to the local time, and to Park and Phillips (1999, 2001) for its application in the study of
nonlinear models with integrated time series. The local time L yields the occupation times
formula

∫ r

0
υ(V (r)) dr =

∫

R

υ(x)`(r, x) dx, (38)

which holds for any nonnegative measurable function υ on R.

Useful Lemmas and Their Proofs

Lemma A1 (a) If π is regular on R × R
m, then so are |π| and π2.

(b) If π is regular on R × R
m and υ is regular on R, then the functional υπ, defined by

(υπ)(x, θ) = υ(x)π(x, θ), is regular on R × R
m.

Proof of Lemma A1 Fix θ0 ∈ R
m arbitrarily and let πδ and πδ be the regular functions

on R such that πδ ≤ π(x, θ) ≤ πδ(x) for all ‖θ−θ0‖ < δ, and such that πδ(x)−πδ(x) → 0 a.e.
x ∈ R as δ → 0. For the proof of part (a), we may assume π ≥ 0 without loss of generality.
As in the proof of Lemma A1 in Park and Phillips (2001), we may write π = π+ − π−,
where π+ and π− are respectively the positive and negative parts of π, and consider them
separately. Under this convention, the stated result for |π| is trivial. For π2, we consider
π2

δ and π2
δ . It is obvious that π2

δ ≤ π2(x, θ) ≤ π2
δ for all ‖θ − θ0‖. Also, they are regular, as

shown in Lemma A1 of Park and Phillips (2001). Moreover, we have

π2
δ(x) − π2

δ(x) = (πδ(x) + πδ(x)) (πδ(x) − πδ(x)) → 0

as δ → 0 a.e. x ∈ R, since being regular πδ and πδ are bounded uniformly in δ > 0 for any
x ∈ R. The proof of (a) is therefore complete. To prove part (b), we look at υπδ and υπ2

δ ,
for which the rest of the proof goes entirely analogously as for part (a). �

Lemma A2 Let Assumptions 2.1, 2.3 and 4.1 hold. If $ is regular on R × R
m, then

∫ 1

0
$(Vn(r), θ) dr →a.s

∫ 1

0
$(V (r), θ) dr

uniformly in θ ∈ K, as n → ∞, where K is any compact subset of R
m.
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Proof of Lemma A2 Choose θ0 ∈ K arbitrarily. Since $ is regular on R × R
m, there

exists a δ-sequence of regular functions ($δ) and ($δ) such that

$δ(x) ≤ $(x, θ) ≤ $δ(x) (39)

for all ‖θ − θ0‖ < δ, and
$δ(x) − $δ(x) → 0 (40)

a.e. x ∈ R.
Since $δ and $δ are regular, we have

∫ 1

0
$δ(Vn(r)) dr →a.s.

∫ 1

0
$δ(V (r)) dr (41)

∫ 1

0
$δ(Vn(r)) dr →a.s.

∫ 1

0
$δ(V (r)) dr (42)

as shown in Park and Phillips (2001). Moreover,

∫ 1

0
$δ(V (r)) dr −

∫ 1

0
$δ(V (r)) dr =

∫ 1

0
[$δ(V (r)) − $δ(V (r))] dr

=

∫

R

[$δ(x) − $δ(x)] `(1, x) dr →a.s. 0 (43)

as δ → 0, due to (40) and dominated convergence. Now the stated result follows from (39),
(41) and (42) as in Park and Phillips (2001). �

Lemma A3 Let Assumptions 2.1, 2.2, 2.3 and 4.1 hold, and let (vt) be a time series
satisfying (1/n)

∑n
t=1 v2

t = Op(1) for all n ∈ N. Then we have

sup
θ∈K

∣

∣

∣

∣

∣

1

n

n
∑

t=1

vt

[

yt√
n

π

(

yt√
n

, θ

)

− yt−1√
n

π

(

yt−1√
n

, θ

)]

∣

∣

∣

∣

∣

→p 0

as n → ∞, for any compact subset K of R
m.

Proof of Lemma A3 Since

yt√
n

π

(

yt√
n

, θ

)

− yt−1√
n

π

(

yt−1√
n

, θ
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=
ut√
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yt√
n

, θ
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+
yt−1√

n

[
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(

yt√
n

, θ

)
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n

, θ
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,

it suffices to show that

sup
θ∈K

∣

∣

∣

∣

∣

1

n

n
∑

t=1

vt
ut√
n

π

(

yt√
n

, θ

)

∣

∣
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∣

→p 0 (44)

sup
θ∈K

∣

∣

∣

∣

∣

1

n

n
∑

t=1

vt
yt−1√

n

[

π

(

yt√
n

, θ

)

− π

(

yt−1√
n

, θ

)]

∣

∣

∣

∣

∣

→p 0 (45)
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as n → ∞, for any compact subset K of R
m.

It is easy to show (44), since we have by Cauchy-Schwarz inequality and the boundedness
of π

∣

∣

∣

∣

∣

1

n

n
∑

t=1

vt
ut√
n

π

(

yt√
n

, θ

)

∣

∣

∣

∣

∣

≤ c√
n

(

1

n

n
∑

t=1

v2
t

)(

1

n

n
∑

t=1

u2
t

)

for all θ ∈ R
m, with some constant c > 0. To prove (45), we use Cauchy-Schwarz inequality

to obtain
∣

∣

∣

∣

∣

1

n

n
∑

t=1

vt
yt−1√

n

[

π

(

yt√
n

, θ

)

− π

(

yt−1√
n

, θ

)]

∣

∣

∣

∣

∣

≤
(

1

n

n
∑

t=1

v2
t

)1/2(

1

n

n
∑

t=1

(

yt−1√
n

)2 [

π

(

yt√
n

, θ

)

− π

(

yt−1√
n

, θ

)]2
)1/2

(46)

and show that

sup
θ∈K

1

n

n
∑

t=1

(

yt−1√
n

)2 [

π

(

yt√
n

, θ

)

− π

(

yt−1√
n

, θ

)]2

→p 0 (47)

as n → ∞, for any compact subset K of R
m.

We now set out to prove (47). As in the proof of Lemma A1, we may assume without
loss of generality that π ≥ 0. For θ0 ∈ R

m chosen arbitrarily, we let πδ and πδ be the
regular functions such that πδ(x) ≤ π(x, θ) ≤ πδ(x) for all ‖θ − θ0‖ < δ, and

πδ(x) − πδ(x) → 0 (48)

as δ → 0 a.e. x ∈ R. The existence of such functions is warranted by the regularity of π.
Then we have

sup
‖θ−θ0‖<δ

∣

∣

∣

∣

π

(

yt√
n

, θ

)

− π

(

yt−1√
n

, θ

)∣

∣

∣

∣

≤ πδ

(

yt√
n

)

− πδ

(

yt−1√
n

)

and it follows that

sup
‖θ−θ0‖<δ

1

n

n
∑

t=1

(

yt−1√
n

)2 [

π

(

yt√
n

, θ

)

− π

(

yt−1√
n

, θ

)]2

≤ 1

n

n
∑

t=1

(

yt−1√
n

)2 [

πδ

(

yt√
n

)

− πδ

(

yt−1√
n

)]2

→d

∫ 1

0
V (r)2 [πδ(V (r)) − πδ(V (r))]2 dr

as n → ∞. However, we may deduce from the occupation times formula (38) and (48) that

∫ 1

0
V (r)2 [πδ(V (r)) − πδ(V (r))]2 dr =

∫

R

x2 [πδ(x) − πδ(x)]2 `(1, x) dx →a.s. 0

as δ → 0. The proof for (47) is therefore complete. �
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Lemma A4 Let Assumptions 2.1, 2.3, 4.1 and 4.4 hold, and let (vt) be a time series
satisfying (1/n)

∑n
t=1 v2

t = Op(1) for all n ∈ N. Then, under the null hypothesis (4), we
have

sup
θ∈K

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

vt

[

yt√
n

π

(

yt√
n

, θ

)

− yt−1√
n

π

(

yt−1√
n

, θ

)]

∣

∣

∣

∣

∣

= Op(1)

as n → ∞, for any compact subset K of R
m.

Proof of Lemma A4 Similarly as in the proof of Lemma A3, it suffices to show that

sup
θ∈K

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

vt
ut√
n

π

(

yt√
n

, θ

)

∣

∣

∣

∣

∣

= Op(1) (49)

sup
θ∈K

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

vt
yt−1√

n

[

π

(

yt√
n

, θ

)

− π

(

yt−1√
n

, θ

)]

∣

∣

∣

∣

∣

= Op(1) (50)

as n → ∞, for any compact subset K of R
m. It is straightforward to establish (49), since

if follows from Cauchy-Schwarz inequality and the boundedness of π that

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

vt
ut√
n

π

(

yt√
n

, θ

)

∣

∣

∣

∣

∣

≤ c

(

1

n

n
∑

t=1

v2
t

)(

1

n

n
∑

t=1

u2
t

)

for all θ ∈ R
m, with some constant c > 0.

To prove (50), we use Cauchy-Schwarz inequality to obtain

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

vt
yt−1√

n

[

π

(

yt√
n

, θ

)

− π

(

yt−1√
n

, θ

)]

∣

∣

∣

∣

∣

≤
(

1

n

n
∑

t=1

v2
t

)1/2(

1

n

n
∑

t=1

(

yt−1√
n

)2

n

[

π

(

yt√
n

, θ

)

− π

(

yt−1√
n

, θ

)]2
)1/2

, (51)

where
1

n

n
∑

t=1

v2
t ,

1

n

n
∑

t=1

(

yt−1√
n

)2

= Op(1).

The result in (50) can now be easily deduced from (51), since we have from Assumption 4.5

sup
θ∈K

[

π

(

yt√
n

, θ

)

− π

(

yt−1√
n

, θ

)]

≤ c
|ut|√

n

for some c > 0 and any compact subset K of R
m. The proof is therefore complete. �
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Proofs of Theorems and Lemmas

Proof of Lemma 2.1 We write

ε2
t − σ2 =

[

ε2
t −E(ε2

t |Ft−1)
]

+
[

E(ε2
t |Ft−1) − σ2

]

.

As in the proof of Lemma 4.4 in Hall and Heyde (1980), we may show that

sup
1≤i≤n

1

n

i
∑

t=1

[

ε2
t −E(ε2

t |Ft−1)
]

→p 0

under condition (b) of Assumption 2.3. Therefore, it follows from condition (c) of Assump-
tion 2.3 that

sup
1≤i≤n

1

n

i
∑

t=1

(

ε2
t − σ2

)

→p 0.

The stated result is now immediate from condition (a) of Assumption 2.3. �

Proof of Lemma 2.2 The stated result follows directly from condition (c) of Assumption
2.3 and Lemma 4.4 of Hall and Heyde (1980, p106). �

Proof of Theorem 2.3 We prove the convergence of finite dimensional distributions and
the tightness. The former is trivial. We will establish the latter below. For the required
tightness, it suffices to show that

E[Mn(r1, θ1) − Mn(r2, θ2)]
4 ≤ c

[

(r1 − r2)
2 + ‖θ1 − θ2‖2

]

(52)

for all (r1, θ1), (r2, θ2) ∈ [0, 1] × R
m. This is due to Kolmogorov’s criterion in, e.g., Revuz

and Yor (1994, p489).
To prove (52), we first let (r1, θ1) and (r2, θ2) be chosen arbitrarily in [0, 1] × R

m and
define

Cn = Mn(r1, θ1) − Mn(r2, θ2).

Then it follows that
Cn = An + Bn,

where

An =

∫ r1

r2

π(Vn(s), θ1) dU(s)

Bn =

∫ r2

0
[π(Vn(s), θ1) − π(Vn(s), θ2)] dU(s)

as one may easily check.
We have

EC4
n ≤ 8

(

EA4
n + EB4

n

)

(53)
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Moreover, it follows from the Burkholder-Davis-Gundy inequality [see, e.g., Revuz and Yor
(1994, p153)]

EA4
n ≤ c

(

E

∫ r1

r2

π2(Vn(s), θ1) ds

)2

(54)

and

EB4
n ≤ c

(

E

∫ r2

0
[π(Vn(s), θ1) − π(Vn(s), θ2)]

2 ds

)2

(55)

for some absolute constant c > 0.
Due to (53) - (55), we now only need to show that

E

∫ r1

r2

π2(Vn(s), θ1) ds ≤ c |r1 − r2| (56)

E

∫ r2

0
[π(Vn(s), θ1) − π(Vn(s), θ2)]

2 ds ≤ c‖θ1 − θ2‖ (57)

for some constant c > 0 to establish (52). It is straightforward to deduce (56), since π is
bounded on [0, 1] × R

m. To establish (57), we first note that

∫ r2

0
[π(Vn(s), θ1) − π(Vn(s), θ2)]

2 ds

is bounded and
∫ r2

0
[π(Vn(s), θ1) − π(Vn(s), θ2)]

2 ds →d

∫ r2

0
[π(V (s), θ1) − π(V (s), θ2)]

2 ds,

from which we have

E

∫ r2

0
[π(Vn(s), θ1) − π(Vn(s), θ2)]

2 ds → E

∫ r2

0
[π(V (s), θ1) − π(V (s), θ2)]

2 ds. (58)

Then we apply the occupation times formula introduced in (38) and the Fubini’s theorem
to deduce that

E

∫ r2

0
[π(V (s), θ1) − π(V (s), θ2)]

2 ds = E

∫

R

[π(x, θ1) − π(x, θ2)]
2`(r2, x) dx

=

∫

R

[π(x, θ1) − π(x, θ2)]
2
E`(r2, x) dx (59)

However, it follows as shown in, e.g., Park (2004) that

E`(r, x) = 2[φ(x/ω) − |x/ω|Φ(−|x/ω|)],

where φ and Φ are respectively the standard normal density function and distribution
function. We may now readily obtain (57) from (58), (59) and condition (d) of Assumption
2.2. The proof is therefore complete. �
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Proof of Proposition 2.4 Due to the Kolmogorov’s criterion [see, e.g., Revuz and Yor
(1994, p.18)], it suffices to show that

E[M(r1, θ1) − M(r2, θ2)]
4 ≤ c

[

(r1 − r2)
2 + ‖θ1 − θ2‖2

]

(60)

for all (r1, θ1), (r2, θ2) ∈ [0, 1] × R
m. The proof of (60) is entirely analogous to that of (52)

in the proof of Theorem 2.3. We let (r1, θ1) and (r2, θ2) be chosen arbitrarily in [0, 1]×R
m,

and write C = A + B, where C = M(r1, θ1) − M(r2, θ2), A =
∫ r1

r2
π(V (s), θ1) dU(s) and

B =
∫ r2

0 [π(V (s), θ1) − π(V (s), θ2)] dU(s). As in (52), we have EC4 ≤ 8
(

EA4 + EB4
)

.
Furthermore, due to the Burkholder-Davis-Gundy inequality, we have

EA4 ≤ c

(

E

∫ r1

r2

π2(V (s), θ1) ds

)2

EB4 ≤ c

(

E

∫ r2

0
[π(V (s), θ1) − π(V (s), θ2)]

2 ds

)2

exactly as in (53) and (54), for some absolute constant c > 0. Now (60) follows immediately
from the boundedness of π and (59), and the proof is complete. �

Proof of Lemma 3.1 We may assume d = 1, without loss of generality. This is because

1

n

n
∑

t=1

ut−i
yt−1√

n
π

(

yt−d√
n

, θ

)

=
1

n

n
∑

t=1

ut−i
yt−d√

n
π

(

yt−d√
n

, θ

)

+
1

n

n
∑

t=1

ut−i

(

yt−1√
n

− yt−d√
n

)

π

(

yt−d√
n

, θ

)

,

and, due to Cauchy-Schwarz inequality and the boundedness of π, we have
∣

∣

∣

∣

∣

1

n

n
∑

t=1

ut−i

(

yt−1√
n

− yt−d√
n

)

π

(

yt−d√
n

, θ

)

∣

∣

∣

∣

∣

≤ c√
n

(

1

n

n
∑

t=1

u2
t−i

)1/2(

1

n

n
∑

t=1

(yt−1 − yt−d)
2

)1/2

uniformly in θ ∈ R
m, for some constant c > 0.

We will first look at the case i = 1. Write

1

n

n
∑

t=1

ut−1
yt−1√

n
π

(

yt−1√
n

, θ

)

=
1

n

n
∑

t=1

ut−1
yt−2√

n
π

(

yt−2√
n

, θ

)

+
1

n

n
∑

t=1

ut−1

[

yt−1√
n

π

(

yt−1√
n

, θ

)

− yt−2√
n

π

(

yt−2√
n

, θ

)]

,

and note that

1

n

n
∑

t=1

ut−1

[

yt−1√
n

π

(

yt−1√
n

, θ

)

− yt−2√
n

π

(

yt−2√
n

, θ

)]

= op(1)



35

uniformly in θ ∈ K, for any compact subset K of R
m, which follows from Lemma A3. We

therefore have

1

n

n
∑

t=1

ut−1
yt−1√

n
π

(

yt−1√
n

, θ

)

=
1

n

n
∑

t=1

ut−1
yt−2√

n
π

(

yt−2√
n

, θ

)

+ op(1) (61)

uniformly in θ ∈ K.
Due to (61), it now suffices to show that

1

n

n
∑

t=1

ut−1
yt−2√

n
π

(

yt−2√
n

, θ

)

= op(1) (62)

uniformly in θ ∈ K. To show (62), we write

1

n

n
∑

t=1

ut−1
yt−2√

n
π

(

yt−2√
n

, θ

)

=
1

nα(1)

n
∑

t=1

εt−1
yt−2√

n
π

(

yt−2√
n

, θ

)

+
1

n

n
∑

t=1

(ũt−2 − ũt−1)
yt−2√

n
π

(

yt−2√
n

, θ

)

, (63)

where

ũt =
1

α(1)

p
∑

i=1





p
∑

j=i

αj



ut−i+1.

Note in particular that we have (1/n)
∑n

t=1 ũ2
t = Op(1) for the process (ũt).

As shown in Theorem 2.3, we have

1√
n

n
∑

t=1

εt−1
yt−2√

n
π

(

yt−2√
n

, θ

)

= Op(1) (64)

uniformly in θ ∈ K. Moreover, it follows from summation by parts that

1

n

n
∑

t=1

(ũt−2 − ũt−1)
yt−2√

n
π

(

yt−2√
n

, θ

)

=
1

n

n
∑

t=1

ũt−1

[

yt−1√
n

π

(

yt−1√
n

, θ

)

− yt−2√
n

π

(

yt−2√
n

, θ

)]

+ op(1) = op(1) (65)

uniformly in θ ∈ K, due once again to Lemma A3. We may thus readily deduce (62) from
(63) - (65).

For the case i = 2, we write

1

n

n
∑

t=1

ut−2
yt−1√

n
π

(

yt−1√
n

, θ

)

=
1

n

n
∑

t=1

ut−2
yt−2√

n
π

(

yt−2√
n

, θ

)

+
1

n

n
∑

t=1

ut−2

[

yt−1√
n

π

(

yt−1√
n

, θ

)

− yt−2√
n

π

(

yt−2√
n

, θ

)]

,
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and deduce from Lemma A3 that

1

n

n
∑

t=1

ut−2
yt−1√

n
π

(

yt−1√
n

, θ

)

=
1

n

n
∑

t=1

ut−2
yt−2√

n
π

(

yt−2√
n

, θ

)

+ op(1), (66)

which holds uniformly in θ ∈ K. We may therefore establish (26) using the proof for the
case i = 1. Obviously, our result in (66) easily extends to the case with general i, and the
proof is therefore complete. �

Proof of Theorem 3.2 As in the proof of Lemma 3.1, we let d = 1 without loss of
generality. Let

wnt(θ) =
yt−1√

n
π

(

yt−1√
n

, θ

)

.

Under the null hypothesis (4), An and Bn in (19) and (20) reduce to

An(θ)

n
=

1√
n

n
∑

t=1

wnt(θ)εt −
(

1

n

n
∑

t=1

wnt(θ)x′
t

)(

1

n

n
∑

t=1

xtx
′
t

)−1(

1√
n

n
∑

t=1

xtεt

)

Bn(θ)

n2
=

1

n

n
∑

t=1

w2
nt(θ) −

(

1

n

n
∑

t=1

wnt(θ)x′
t

)(

1

n

n
∑

t=1

xtx
′
t

)−1(

1

n

n
∑

t=1

xtwnt(θ)

)

.

Furthermore, we have

σ̂2
n(θ) =

1

n

n
∑

t=1

ε2
t −

1

n

(

1√
n

n
∑

t=1

εtx
′
t

)(

1

n

n
∑

t=1

xtx
′
t

)−1(

1√
n

n
∑

t=1

xtεt

)

− 1

n





1√
n

n
∑

t=1

wnt(θ)εt −
(

1√
n

n
∑

t=1

εtx
′
t

)(

1

n

n
∑

t=1

xtx
′
t

)−1(

1

n

n
∑

t=1

xtwnt(θ)

)





2

·





1

n

n
∑

t=1

w2
nt(θ) −

(

1

n

n
∑

t=1

wnt(θ)x′
t

)(

1

n

n
∑

t=1

xtx
′
t

)−1(

1

n

n
∑

t=1

xtwnt(θ)

)





−1

under the null hypothesis (4).
Note that

(

1

n

n
∑

t=1

xtx
′
t

)−1

,
1√
n

n
∑

t=1

xtεt = Op(1). (67)

Moreover, we have

1√
n

n
∑

t=1

wnt(θ)εt = Op(1) and
1

n

n
∑

t=1

xtwnt(θ) = op(1) (68)
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uniformly in θ ∈ Θ, due respectively to Theorem 2.3 and Lemma 3.1. Finally, as shown in
Park and Phillips (2001), we have as n → ∞

1

n

n
∑

t=1

w2
nt(θ) =d

∫ 1

0
Vn(r)2π2(Vn(r), θ) dr + op(1) →a.s.

∫ 1

0
V (r)2π2(V (r), θ) dr (69)

uniformly in θ ∈ Θ.
Under the null hypothesis (4), it follows from (67) - (69) that

An(θ)

n
=

1√
n

n
∑

t=1

wnt(θ)εt + op(1) (70)

Bn(θ)

n2
=

1

n

n
∑

t=1

w2
nt(θ) + op(1) (71)

uniformly in θ ∈ Θ, and that

σ̂2
n =

1

n

n
∑

t=1

ε2
t + op(1) (72)

uniformly in θ ∈ Θ. However, we have from Theorem 2.3, Proposition 2.4 and the CMT
that

1√
n

n
∑

t=1

wnt(θ)εt =d

∫ 1

0
Vn(r)Mn(dr, θ) + op(1) →d

∫ 1

0
V (r)M(dr, θ) (73)

as n → ∞. We may now easily deduce the stated result from (70), (71), (72) and Assumption
2.1, using (69), (73) and Lemma 2.1. �

Proof of Corollary 3.3 Obvious and omitted. �

Proof of Proposition 3.4 Let wt(θ) be defined as in (16). For the sequence θn ∈ Θ, we
have plimn→∞λ̂n(θn) < 0, and

plim
n→∞

Bn(θn)

n
> 0,

due to our assumption that the conditional variance of (yt−1π(yt−d, θn)) given (4yt−1, . . . ,4yt−p)
is nonzero. Therefore, we have

Tn ≤ Tn(θn) =
√

n
λ̂n(θn)

σ̂n(θn)

√

Bn(θn)

n
→p −∞

as n → ∞. This was to be shown. �
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Proof of Theorem 4.1 The proof is quite similar to that of Theorem 3.2. For instance,
if we let

wnt(ρ, ν, θ) =
∑̀

i=1

ρi

(

yt−1√
n

− νi

)

πi

(

yt−1√
n

, θi

)

,

then we may show under the null hypothesis of a unit root that

An(ρ, ν, θ)

n
=

1√
n

n
∑

t=1

wnt(ρ, ν, θ)εt + op(1)

Bn(ρ, ν, θ)

n2
=

1

n

n
∑

t=1

w2
nt(ρ, ν, θ) + op(1)

uniformly in (ρ, ν, θ) ∈ Φ × Λ × Θ. Moreover, it can also be readily deduced that

1√
n

n
∑

t=1

wnt(ρ, ν, θ)εt =d

∫ 1

0

[

∑̀

i=1

ρi(Vn − νi)Mni(dr, θi)

]

+ op(1)

→d

∫ 1

0

[

∑̀

i=1

ρi(V − νi)Mi(dr, θi)

]

where Min and Mi are defined exactly as Mn and M , respectively, with πi for i = 1, . . . , `,
and

1

n

n
∑

t=1

w2
nt(ρ, ν, θ) =d

∫ 1

0

[

∑̀

i=1

ρi(Vn(r) − νi)πi(Vn(r), θi)

]2

dr + op(1)

→d

∫ 1

0

[

∑̀

i=1

ρi(V (r) − νi)πi(V (r), θi)

]2

dr

as n → ∞. The further details of the proof are not provided, since they are essentially the
same as those of Theorem 3.2. �

Proof of Corollary 4.2 Obvious and omitted. �

Proof of Lemma 4.3 The result can be obtained by using the similar argument used in
the proof of Lemma 3.1 and by using the result from Lemma A4 instead of Lemma A3. �

Proof of Theorem 4.4 Here we consider the simpler model in (3) for expositional con-
venience. The extension for the model in (29) is straightforward, and can be done as shown
in the proof of Theorem 4.1. Let us again redefine An and Bn in (19) and (20) by

An(θ) =
n
∑

t=1

yt−1πt(θ)εp,t −
(

n
∑

t=1

yt−1πt(θ)x′
p,t

)(

n
∑

t=1

xp,tx
′
p,t

)−1( n
∑

t=1

xp,tεp,t

)

Bn(θ) =
n
∑

t=1

y2
t−1πt(θ)2 −

(

n
∑

t=1

yt−1πt(θ)x′
p,t

)(

n
∑

t=1

xp,tx
′
p,t

)−1( n
∑

t=1

xp,tyt−1πt(θ)

)

,
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where
πt(θ) = π(yt−d/

√
n, θ) and xp,t = (∆yt−1, ...,∆yt−p)

′.

First, note that,

An(θ)

n
=

1

n

n
∑

t=1

yt−1πt(θ)εp,t + op(1)

uniformly in θ ∈ Θ, since

∣

∣

∣

∣

∣

∣

(

n
∑

t=1

yt−1πt(θ)x′
p,t

)(

n
∑

t=1

xp,tx
′
p,t

)−1( n
∑

t=1

xp,tεp,t

)

∣

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

n
∑

t=1

xp,tyt−1πt(θ)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

n
∑

t=1

xp,tx
′
p,t

)−1
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

t=1

xp,tεp,t

∥

∥

∥

∥

∥

= op(n).

uniformly in θ ∈ Θ. To show the last equality,
∥

∥

∥

(

(1/n)
∑n

t=1 xp,tx
′
p,t

)−1
∥

∥

∥ = Op(1) and

‖∑n
t=1 xp,tεp,t‖ = op(np−1/2) directly follows from Lemma 3.2 (a) and (c), respectively, in

Chang and Park (2002). ‖∑n
t=1 xp,tyt−1πt(θ)‖ = Op(np1/2) uniformly in θ ∈ Θ follows from

Lemma 3.4.
In addition,

n
∑

t=1

yt−1πt(θ)εp,t =
n
∑

t=1

yt−1πt(θ)εt +
n
∑

t=1

yt−1πt(θ)(εp,t − εt).

The second term can be decomposed as

n
∑

t=1

yt−1πt(θ)(εp,t − εt)

= ϕ(1)
n
∑

t=1

πt(θ)
t−1
∑

k=1

εk(εp,t − εt) + ũ0

n
∑

t=1

πt(θ)(εp,t − εt) −
n
∑

t=1

πt(θ)ũt−1(εp,t − εt)

= R1n(θ) + R2n(θ) + R3n(θ) = op(n) + op(n) + op(n) = op(n)

uniformly in θ ∈ Θ. To show this, let us write

εp,t − εt =

∞
∑

k=p+1

αkut−k =

∞
∑

k=p+1

ϕp,kεt−k

where
∞
∑

k=p+1

ϕ2
p,k ≤ c

∞
∑

k=p+1

α2
k = o(p−2s)
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as in Berk (1974, Proof of Lemma 2, p492). Also, denote by δij the usual Kronecker delta.
To show that R1n(θ) = op(n), we write

n
∑

t=1

πt(θ)

t−1
∑

k=1

εk(εp,t − εt)

=

n
∑

t=1

πt(θ)

(

t−1
∑

i=1

εi

)

∞
∑

j=p+1

ϕp,jεt−j

=

∞
∑

j=p+1

ϕp,j

n
∑

t=1

πt(θ)

t−1
∑

i=1

εt−iεt−j

=

∞
∑

j=p+1

ϕp,j

n
∑

t=1

πt(θ)ε2
t−j +

∞
∑

j=p+1

ϕp,j

n
∑

t=1

πt(θ)

t−1
∑

i=1,i6=j

εt−iεt−j

=

∞
∑

j=p+1

ϕp,j

n
∑

t=j

πt(θ)σ2 +

∞
∑

j=p+1

ϕp,j

n
∑

t=1

πt(θ)(ε2
t−j − σ2) +

∞
∑

j=p+1

ϕp,j

n
∑

t=1

πt(θ)

t−1
∑

i=1,i6=j

εt−iεt−j

= σ2
∞
∑

j=p+1

ϕp,j

n
∑

t=j

πt(θ) +

∞
∑

j=p+1

ϕp,j

n
∑

t=1

πt(θ)

t−1
∑

i=1

(εt−iεt−j − σ2δij)

The first term is op(np−s), since



E





∞
∑

j=p+1

ϕp,j

n
∑

t=j

πt(θ)





2



1/2

≤



E





∞
∑

j=p+1

|ϕp,j|
n
∑

t=j

|πt(θ)|





2



1/2

= nc

∞
∑

j=p+1

|ϕp,j| = o(np−s)

for some constant c > 0 where the last inequality follows from the boundedness of π. The
second term is op(np−s), since



E





∞
∑

j=p+1

ϕp,j

n
∑

t=1

πt(θ)

t−1
∑

i=1

(εt−iεt−j − σ2δij)





2



1/2

≤
∞
∑

j=p+1

|ϕp,j|



E

[

n
∑

t=1

πt(θ)

t−1
∑

i=1

(εt−iεt−j − σ2δij)

]2




1/2

≤ c

∞
∑

j=p+1

|ϕp,j|
n
∑

t=1



E

[

t−1
∑

i=1

(εt−iεt−j − σ2δij)

]2




1/2

≤ c′n





∞
∑

j=p+1

|ϕp,j|




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for some constant c, c′ > 0 where the third inequality follows from the boundedness of π
and the last inequality follows from the fourth moment condition in Assumption 2.3. It
now follows immediately that R1n(θ) = op(n).

The result R2n(θ) = op(n) can be deduced from



E

[

n
∑

t=1

πt(θ)(εp,t − εt)

]2




1/2

≤
(

E

[

n
∑

t=1

πt(θ)2
n
∑

t=1

(εp,t − εt)
2

])1/2

≤
(

ncE

[

n
∑

t=1

(εp,t − εt)
2

])1/2

=



ncE





n
∑

t=1





∞
∑

k=p+1

ϕp,kεt−k





2







1/2

=



n2cσ2
∞
∑

k=p+1

ϕ2
p,k





1/2

= o(np−s)

for some constant c > 0 where the second inequality follows from the boundedness of π.
Finally, to show that R3n(θ) = op(n), we write

n
∑

t=1

πt(θ)ũt−1(εp,t − εt) =

n
∑

t=1

πt(θ)

(

∞
∑

i=0

ϕ̃iεt−i

)





∞
∑

j=p+1

ϕp,jεt−j





=
∞
∑

i=0

∞
∑

j=p+1

ϕ̃iϕp,j

n
∑

t=1

πt(θ)εt−iεt−j

= σ2
∞
∑

j=p+1

ϕ̃j−1ϕp,j

n
∑

t=1

πt(θ)

+

∞
∑

i=0

∞
∑

j=p+1

ϕ̃iϕp,j

n
∑

t=1

πt(θ)(εt−iεt−j − σ2δi,j).

The first term is of order op(np−s), since



E





∞
∑

j=p+1

ϕ̃j−1ϕp,j

n
∑

t=1

πt(θ)





2



1/2

≤



E





∞
∑

j=p+1

|ϕ̃j−1ϕp,j|
n
∑

t=j

|πt(θ)|





2



1/2

≤ nc
∞
∑

j=p+1

|ϕ̃j−1ϕp,j|

≤ nc





∞
∑

k=p+1

ϕ̃2
k−1





1/2



∞
∑

k=p+1

ϕ2
p,k





1/2

= o(np−s)
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for some constant c > 0 where the second inequality follows from the boundedness of π and
the last equality follows from

∑∞
k=p+1 ϕ2

p,k = o(p−2s) and

∞
∑

k=p+1

ϕ̃2
k−1 ≤

∞
∑

k=1

ϕ̃2
k−1 < ∞.

The second term is op(np−s), since



E





∞
∑

i=0

∞
∑

j=p+1

ϕ̃iϕp,j

n
∑

t=1

πt(θ)(εt−iεt−j − σ2δij)





2



1/2

≤
∞
∑

i=0

∞
∑

j=p+1

|ϕ̃iϕp,j |



E

[

n
∑

t=1

πt(θ)(εt−iεt−j − σ2δij)

]2




1/2

≤ c
∞
∑

i=0

∞
∑

j=p+1

|ϕ̃iϕp,j|
n
∑

t=1

(

E
[

(εt−iεt−j − σ2δij)
]2
)1/2

≤ c′n





∞
∑

i=0

∞
∑

j=p+1

|ϕ̃iϕp,j|



 ≤ c′n





∞
∑

k=p+1

ϕ̃2
k−1





1/2



∞
∑

k=p+1

ϕ2
p,k





1/2

= o(np−s)

for some constant c, c′ > 0 where the second inequality follows from the boundedness of π
and the third inequality follows from the fourth moment condition in Assumption 2.3.

Combining these results yields

An(θ)

n
=

1√
n

n
∑

t=1

yt−1√
n

πt(θ)εt + op(1)

uniformly in θ ∈ Θ.
Using the similar argument, we have

Bn(θ)

n2
=

1

n2

n
∑

t=1

y2
t−1πt(θ)2 + op(1),

since
∣

∣

∣

∣

∣

∣

(

n
∑

t=1

yt−1πt(θ)x′
p,t

)(

n
∑

t=1

xp,tx
′
p,t

)−1( n
∑

t=1

xp,tyt−1πt(θ)

)

∣

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

n
∑

t=1

xp,tyt−1πt(θ)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

n
∑

t=1

xp,tx
′
p,t

)−1
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

t=1

xp,tyt−1πt(θ)

∥

∥

∥

∥

∥

= Op(np1/2)Op(n
−1)op(np1/2) = op(np) = op(n

2)
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uniformly in θ ∈ Θ.
Finally,

σ̂2
n(θ) =

1

n

n
∑

t=1

ε2
p,t −

1

n

(

1√
n

n
∑

t=1

εp,tx
′
p,t

)(

1

n

n
∑

t=1

xp,tx
′
p,t

)−1(

1√
n

n
∑

t=1

xp,tεp,t

)

− 1

n

(

An(θ)2Bn(θ)−1
)

=
1

n

n
∑

t=1

ε2
p,t + op(p

−1) + Op(1/n)

=
1

n

n
∑

t=1

ε2
t + op(1)

= σ2 + op(1)

uniformly in θ ∈ Θ where the second equality follows from
∥

∥

∥

(

(1/n)
∑n

t=1 xp,tx
′
p,t

)−1
∥

∥

∥ =

Op(1), ‖
∑n

t=1 xp,tεp,t‖ = op(np−1/2) and An(θ)2Bn(θ)−1 = Op(1) uniformly in θ ∈ Θ, the
third equality follows from Lemma 3.1 (c) of Chang and Park (2002), and the last equality
follows form Lemma 2.1. The desired results follows from combining the results for An(θ),
Bn(θ) and σ̂2

n(θ) and using the limiting distribution in the proof of Theorem 3.2. �
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Table 1. Asymptotic Critical Values of Unit Root Tests

Transition Probability of a smaller value

function 1% 5% 10% 25% 50% 75% 90% 95% 99%

(a) TAR -3.23 -2.67 -2.38 -1.94 -1.44 -0.75 0.14 0.49 1.11
(b) LSTAR -3.21 -2.66 -2.37 -1.93 -1.44 -0.81 -0.02 0.34 0.96
(c) ESTAR -2.85 -2.27 -1.98 -1.51 -1.01 -0.38 0.33 0.76 1.52
(d) D-TAR -3.30 -2.71 -2.40 -1.92 -1.35 -0.67 0.18 0.67 1.48

(e) D-LSTAR -3.29 -2.70 -2.40 -1.92 -1.35 -0.67 0.17 0.65 1.47

Note: Based on discrete approximation to the Brownian motion by partial sums of standard normal
random variable with 1,000 steps and 10,000 replications.

Table 2. Asymptotic Critical Values of Unit Root Tests with Intercepts

Transition Probability of a smaller value

function 1% 5% 10% 25% 50% 75% 90% 95% 99%

(a) TAR -3.92 -3.39 -3.11 -2.65 -2.20 -1.77 -1.39 -1.10 -0.33
(b) LSTAR -3.99 -3.45 -3.16 -2.72 -2.26 -1.85 -1.49 -1.28 -0.75
(c) ESTAR -3.86 -3.30 -3.03 -2.59 -2.16 -1.76 -1.42 -1.25 -0.94
(d) D-TAR -3.63 -3.04 -2.77 -2.28 -1.75 -1.16 -0.32 0.25 1.14

(e) D-LSTAR -3.73 -3.13 -2.86 -2.38 -1.83 -1.24 -0.41 0.14 1.02

Note: Based on discrete approximation to the Brownian motion by partial sums of standard normal
random variable with 1,000 steps and 10,000 replications.

Table 3. Size of Unit Root Tests

α
test n −0.5 −0.2 0 0.2 0.5

(a) TAR 50 3.4 3.5 3.5 4.1 4.1
100 3.9 4.1 4.2 4.4 4.7
200 3.8 4.0 4.3 4.5 4.7

(b) LSTAR 50 4.0 4.4 4.1 4.9 5.0
100 4.5 4.7 4.8 5.2 5.1
200 4.2 4.4 4.7 4.8 5.1

(c) ESTAR 50 5.2 5.1 5.1 5.2 5.2
100 5.4 5.3 5.4 5.4 5.6
200 5.0 5.0 5.3 5.1 5.1

(d) ADF 50 4.7 4.8 4.8 4.9 4.9
100 5.3 5.4 5.4 5.4 5.4
200 4.9 4.9 4.8 4.9 4.8

Note: Empirical rejection rate of 5% level tests based on asymptotic critical values. Results are
based on 10,000 replications.
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Table 4. Size-Adjusted Power of Unit Root Tests Against TAR Model

λ = −1.0 −0.5 −0.3 −0.1
n inf-t ADF inf-t ADF inf-t ADF inf-t ADF

(a) TAR µ = −1.0
50 51.9 19.3 37.9 22.7 25.9 23.7 10.6 12.5
100 57.2 15.3 46.9 18.6 36.8 20.7 15.5 20.3
200 57.3 12.9 54.3 15.1 47.6 17.0 26.0 21.9

(a) TAR µ = −0.5
50 49.6 16.5 35.5 20.3 24.8 22.1 10.8 12.6
100 53.7 12.9 44.8 16.2 35.1 18.1 15.4 19.8
200 52.6 11.0 51.7 13.5 45.5 15.7 25.0 21.1

(a) TAR µ = 0
50 46.3 15.2 34.0 19.0 24.0 21.4 10.7 12.5
100 50.5 11.7 42.4 15.3 34.0 18.1 15.1 19.6
200 49.1 10.2 49.3 12.8 43.9 15.0 24.7 20.6

(a) TAR µ = 0.5
50 54.2 18.1 38.5 21.1 26.0 22.9 10.9 12.8
100 58.5 14.1 47.4 17.0 36.6 19.3 15.4 20.0
200 56.7 11.9 54.2 14.1 47.2 16.0 25.3 21.1

(a) TAR µ = 1.0
50 73.9 31.7 50.8 29.5 31.5 27.8 11.7 13.8
100 77.5 25.7 61.9 24.1 45.4 23.9 16.6 21.4
200 75.1 20.7 67.7 19.4 57.3 19.6 27.7 22.6

Note: Empirical rejection rate of 5% level tests based on size-adjusted critical values. Results are
based on 10,000 replications. The value of inf-t test is shown in bold font if it is greater than that
of ADF test.
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Table 5. Size-Adjusted Power of Unit Root Tests Against STAR Model

λ = −1.0 −0.5 −0.3 −0.1
n inf-t ADF inf-t ADF inf-t ADF inf-t ADF

(b) LSTAR (µ, κ) = (0.0, 1.0)
50 76.5 52.1 48.7 37.5 30.6 31.3 11.1 13.8
100 85.9 52.2 62.7 36.1 45.8 30.9 17.3 22.5
200 89.2 48.2 73.4 31.8 59.0 26.8 29.9 25.4

(b) LSTAR (µ, κ) = (1.0, 1.0)
50 96.1 84.7 67.1 57.4 40.2 42.5 12.3 16.0
100 98.4 87.4 83.0 59.6 60.6 44.8 20.1 26.4
200 98.6 86.1 90.2 57.1 74.8 41.1 35.5 29.5

(b) LSTAR (µ, κ) = (0.0, 20.0)
50 46.0 15.3 34.4 19.1 25.1 21.5 11.1 12.5
100 50.5 11.8 41.2 15.3 33.5 18.1 15.6 19.6
200 50.4 10.2 49.0 12.8 42.9 15.0 26.1 20.6

(b) LSTAR (µ, κ) = (1.0, 20.0)
50 74.1 32.3 50.7 29.7 33.0 27.9 11.9 13.9
100 78.1 26.6 60.7 24.3 44.5 24.0 17.3 21.5
200 76.4 21.4 67.5 19.6 56.4 19.6 29.9 22.6

(c) ESTAR κ = 0.1
50 38.7 23.8 17.1 11.6 10.5 8.3 6.3 6.0
100 93.9 85.6 64.0 43.7 37.6 22.8 11.3 9.0
200 100.0 100.0 99.7 99.6 94.8 89.7 41.3 30.3

(c) ESTAR κ = 0.15
50 74.7 59.2 38.9 25.1 20.9 14.1 8.1 7.2
100 99.9 99.7 93.7 86.7 71.8 55.1 21.6 14.9
200 100.0 100.0 100.0 100.0 99.8 99.9 72.8 63.1

(c) ESTAR κ = 0.2
50 92.0 87.8 61.8 46.6 35.2 24.1 10.8 8.9
100 100.0 100.0 99.3 98.8 90.5 83.4 33.0 23.1
200 100.0 100.0 100.0 100.0 100.0 100.0 88.4 85.6

Note: Empirical rejection rate of 5% level tests based on size-adjusted critical values. Results are
based on 10,000 replications. The value of inf-t test is shown in bold font if it is greater than that
of ADF test.
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Table 6. US Unemployment Rate

(1) Unit root test

Transition function n p d λ̂ inf-t ADF-µ ADF-τ

(a) TAR 636 12 9 -0.04 -3.72* -2.74 -2.82
(b) LSTAR 636 12 9 -0.04 -3.72* -2.74 -2.82

(2) Size-adjusted power

inf-t ADF-µ ADF-τ

(a) TAR 85.5 51.9 46.1
(b) LSTAR 84.3 51.8 46.0

Note: (*)Significant at 5% level. Sample period is 1948:1-2001:12. Size-adjusted power results are
based on 2,000 replications. The value of inf-t test is shown in bold font if it is greater than that
of ADF test.

Table 7. UK Sterling/US Dollar Real Exchange Rate

(1) Unit root test

Transition function n p d λ̂ inf-t ADF-µ ADF-τ

(c) ESTAR 379 1 1 -0.80 -3.35* -2.61 -2.87

(2) Size-adjusted power

inf-t ADF-µ ADF-τ

(c) ESTAR 57.3 38.6 22.5

Note: (*)Significant at 5% level. Sample period is 1973:1-2004:7. Size-adjusted power results are
based on 2,000 replications. The value of inf-t test is shown in bold font if it is greater than that
of ADF test.

Table 8. French Franc/Deutschemark Exchange Rate:
Deviation from Central Parity

(1) Unit root test

Transition Function Sample n p d λ̂ inf-t ADF-µ ADF-τ

(d) D-TAR Full Sample 3645 5 2 -0.03 -5.94* -4.68* -5.87*
Subsample 819 5 2 -0.07 -4.26* -2.26 -2.39

(e) D-LSTAR Full Sample 3645 5 2 -0.03 -5.75* -4.68* -5.87*
Subsample 819 5 2 -0.09 -4.53* -2.26 2.39

(2) Size-adjusted power

inf-t ADF-µ ADF-τ

(d) D-TAR Full Sample 100.0 100.0 100.0
Subsample 76.3 71.4 45.9

(e) D-LSTAR Full Sample 100.0 100.0 100.0
Subsample 67.8 56.8 36.0

Note: (*)Significant at 5% level. Sample periods are 1979/3/13-1993/7/30 for full sample and
1979/3/13-1982/6/11 for subsample. Size-adjusted power results are based on 2,000 replications.
The value of inf-t test is shown in bold font if it is greater than that of ADF test.


