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1 Introduction

Many people fall under the spell of the “gambler’s fallacy,” expecting outcomes in random sequences

to exhibit systematic reversals. When observing flips of a fair coin, for example, people believe that

a streak of heads makes it more likely that the next flip will be a tail.1 On the other hand,

people also sometimes predict that random sequences will exhibit excessive persistence rather than

reversals. While several studies have shown the belief to be fallacious, basketball fans believe that

players have significant “hot hands,” being more likely to make a shot following a successful streak.2

At first blush, the hot-hand fallacy appears to directly contradict the gambler’s fallacy because

it involves belief in excessive persistence rather than reversals. Several researchers have, however,

suggested that the two fallacies might be related, with the hot-hand fallacy arising as a consequence

of the gambler’s fallacy.3 Consider an investor who believes that the performance of a mutual fund

is a combination of the manager’s ability and luck. Convinced that luck should revert, the investor

underestimates the likelihood that a manager of average ability will exhibit a streak of above- or

below-average performances. Following good or bad streaks, therefore, the investor will over-infer

that the current manager is above or below average, and so in turn will predict continuation of

unusual performances.

In this paper we examine the relationship between the gambler’s and hot-hand fallacies. We

show that an individual who is subject to the gambler’s fallacy but otherwise updates rationally

tends to develop a fallacious belief in the hot hand, confirming the above intuition. At the same

time, our model qualifies this intuition. We show that while the individual ends up believing in

excessive time-variation of an underlying state—e.g., ability of a fund manager—this belief does

not always lead to predictions of excessive persistence for the observable outcomes—e.g., fund

returns. Under some conditions, this belief simply offsets the gambler’s fallacy, and the individual

predicts the outcomes correctly. Under other conditions, however, predictions are incorrect, and

we characterize when they involve excessive persistence or reversals. The model and techniques we

develop provide a flexible framework for applying the gambler’s fallacy to economic and finance

settings.
1The gambler’s fallacy is commonly interpreted as deriving from a fallacious belief in the “law of small numbers,”

namely that a small sample should resemble closely the underlying population. In coin-flipping experiments, for
example, subjects seem to believe that heads and tails should balance even in small samples. Evidence for the gam-
bler’s and law-of-small-numbers fallacies comes from experiments where subjects must predict, evaluate, or generate
random sequences, as well as from settings outside the laboratory, such as high-stakes lottery play. See Rabin (2002)
for a review of some of the evidence. In coining the term “law of small numbers,” Tversky and Kahneman (1971)
relate it to the broader bias of the representativeness heuristic.

2See, for example, Gilovich, Vallone, and Tversky (1985) and Tversky and Gilovich (1989a, 1989b). See also
Camerer (1989) who shows that betting markets for basketball games exhibit a small hot-hand bias.

3See, for example, Camerer (1989) and Rabin (2002). Rabin also summarizes evidence from Edwards (1961) that
suggests a causal link from the gambler’s to the hot-hand fallacy.
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In Section 2 we present the model. An individual observes a sequence of signals whose proba-

bility distribution depends on an underlying state. The signal st in Period t = 1, 2, .. is

st = θt + εt,

where θt is the state and εt an i.i.d. normal shock. For example, the signal can be interpreted as

the return on a mutual fund, the state as the ability of the fund manager, and the shock εt as the

manager’s luck in period t. We model the gambler’s fallacy as the mistaken belief that the sequence

{εt}t≥1 is not i.i.d. but exhibits systematic reversals: according to the individual,

εt = ε̃t − α

∞∑

k=0

δkεt−1−k,

where the sequence {ε̃t}t≥1 is i.i.d. and normal, and α, δ ∈ [0, 1) are exogenous parameters. The

parameter α characterizes the strength of the belief in the gambler’s fallacy. When α = 0, the

individual is an error-free Bayesian. When α > 0, however, the individual believes that a high

realization of εt′ for t′ < t implies a low expected realization of εt. Thus, the investor believes that

if a fund manager was lucky in Period t′ < t, luck should reverse in Period t. The parameter δ

characterizes the memory duration of the gambler’s fallacy: the smaller is δ, the more quickly the

investor believes luck should reverse. For expositional ease, from now on we follow the convention

in the literature of referring to an individual subject to the gambler’s fallacy (α > 0) as “Freddy,”

and to a Bayesian (α = 0) as “Tommy.”

We study Freddy’s inference in environments where the state evolves according to the auto-

regressive process

θt = µ + ρ(θt−1 − µ) + ηt,

where µ is the long-run mean, ρ the persistence parameter, and ηt an i.i.d. normal shock. Suppose,

for example, that a fund is run by a team of managers. Then, θt can be interpreted as the average

ability within the team, and could change over time as managers leave or join the fund. The

parameter 1 − ρ can be interpreted as the rate of managerial turnover, and the variance of ηt as

the extent of heterogeneity in managerial ability.

In Section 3 we examine how Freddy uses the sequence of past signals to make inferences about

the underlying parameters and to predict future signals. We assume that Freddy infers as a fully

rational Bayesian and fully understands the structure of his environment, except for a mistaken

and dogmatic belief that α > 0. From observing the signals, Freddy infers both the underlying state

θt and the values of parameters of his model about which he is uncertain. For example, he can

learn about a fund-manager’s ability (θt), and about the extent to which ability changes over time
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(σ2
η ≡ V ar(ηt)) and is persistent (ρ). In fact, the case of parameter uncertainty is central to our

theory. For example, if ability is constant—i.e., σ2
η = 0—and Freddy knows this, then he cannot

develop a belief in the hot hand. But if Freddy initially assigns non-zero probability to σ2
η > 0,

we show that after a long sequence of signals he always ends up believing falsely that σ2
η > 0.

Moreover, this belief can lead him to predict excessive persistence of fund returns.

When Freddy is certain about all model parameters, his inference about unobservable variables

can be treated using standard tools of recursive (Kalman) filtering, where the gambler’s fallacy

essentially expands the state vector to include not only the state θt but also a statistic of past luck

realizations. When Freddy is initially uncertain about parameters, recursive filtering can be used

to evaluate the likelihood of signals conditional on parameters. An appropriate version of the law

of large numbers then implies that after observing many signals, Freddy converges with probability

one to parameter values that maximize a limit likelihood. While the maximum likelihood when

α = 0 leads Tommy to limit posteriors corresponding to the true parameter values, Freddy’s abiding

belief that α > 0 leads him generally to false limit posteriors. Identifying when and how these limit

beliefs are wrong is the crux of our analysis.

In Section 4 we consider the case where the state is constant over time (σ2
η = 0), and hence

signals are i.i.d. If Freddy is initially uncertain about the values of all parameters, he converges to

the false belief that σ2
η > 0. Freddy ends up believing, however, that the state’s time-variation tends

to increase streaks of signals in a way that exactly offsets the reversals induced by the gambler’s

fallacy. As a result, he converges to the correct belief that signals are i.i.d. Consider, for example,

Freddy’s predictions after a high signal. Because he believes that the state has increased, he

expects the future signals to be high and to converge back to the mean according to the persistence

parameter ρ. At the same time, because he attributes the high signal partly to luck, he expects

the future signals to be low and to converge to the mean according to the memory parameter δ.

We show that Freddy ends up believing that the persistence is ρ̃ = δ − α, under which the two

convergence rates are equal and the effects exactly offset.

Ironically, Freddy cannot develop a false model that offsets his belief in the gambler’s fallacy

when he knows with certainty the correct values of some parameters. For example, when he knows

that σ2
η = 0, he clearly cannot develop a belief in the time-varying state, so he always predicts

signals under the spell of the gambler’s fallacy. This case corresponds to the experiments where

subjects know that they are dealing with fair coins.

A more interesting but less straightforward case is when Freddy knows the true value of ρ but is

uncertain about σ2
η. For example, he might observe the turnover of fund managers but be uncertain

about whether managers differ in ability. We show that if ρ > δ − α, then the gambler’s fallacy

dominates for short streaks of signals, but the hot-hand fallacy dominates for longer streaks. That
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is, Freddy predicts a low signal following a short streak of high signals, but a high signal following a

longer streak. Intuitively, a high signal has a long-lasting impact on Freddy’s estimate of the state

because when ρ is large, Freddy knows the state to be very persistent. Therefore, a long streak

of high signals has a large cumulative impact—and this belief in the increased state eventually

overtakes the gambler’s fallacy, leading Freddy to predict a high signal. This result seems to reflect

the intuition of previous researchers that the hot-hand fallacy arises when believers in the gambler’s

fallacy attempt to rationalize long streaks. Note, however, that the opposite result is possible: if

ρ < δ − α, then a long streak of signals leads Freddy to expect a large cumulative reversal of luck.

Thus, the intuition is correct in our model only under the (perhaps plausible) assumption that

individuals believe the state to be persistent, but expect luck to reverse quickly.

In Section 5 we consider the case where signals are serially correlated. We show that unlike the

i.i.d. case, Freddy cannot predict the signals correctly even when he is initially uncertain about the

values of all parameters. The intuition is that in the i.i.d. case, Freddy gets around the gambler’s

fallacy by taking the state’s persistence to be ρ̃ = δ − α rather than the true value ρ. When the

state is time-varying, the persistence parameter influences the signal process, and a discrepancy

between ρ̃ and ρ leads Freddy to incorrect predictions.

Freddy’s prediction errors turn out not to depend on the comparison between ρ and δ − α:

he always under-predicts the next signal after a short streak of high signals, over-predicts after a

longer streak, and under-predicts again after a very long streak. The intuition is easier to see when

ρ > δ − α, i.e., Freddy expects luck to reverse quickly and yet sees highly persistent signals. To

explain the absence of quick reversals, Freddy believes that shocks to the state are large but short-

lived. Thus, he underestimates the persistence parameter, converging to a value ρ̃ between δ − α

and ρ. Because ρ̃ > δ−α, Freddy’s estimate of the state after a long streak overtakes the gambler’s

fallacy, which is why the initial under-prediction is followed by over-prediction. The subsequent

under-prediction is because Freddy underestimates the state’s persistence, and does not update as

much as Tommy after a very long streak.4 In generating over-prediction, our model shows that the

hot-hand fallacy can arise even when individuals infer the persistence parameter from the data.

In that case, however, there must be true serial correlation, and under-prediction after very long

streaks.

Our model derives a number of implications from the single psychological bias of the gambler’s
4The intuition when ρ < δ − α is somewhat different. In that case, Freddy expects luck to reverse slowly, and

the positive correlation in the signals is mainly in the short run. To explain the absence of slow reversals, Freddy
overestimates the persistence parameter, converging to a value ρ̃ between ρ and δ−α. Because δ−α exceeds ρ̃ and ρ,
the gambler’s fallacy overtakes any updating on the state after a very long streak, thus generating under-prediction.
The effects of the gambler’s fallacy are weaker after shorter streaks, and Freddy over-predicts relative to Tommy
because he overestimates the state’s persistence. Finally, the initial under-prediction is because Tommy updates
heavily after short streaks due to the high short-run correlation in the signals.
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fallacy and provides a flexible framework for studying further implications.5 In fact, we conclude

this paper in Section 6 by sketching some potential applications of the model. An intriguing broad

implication is that people might end up believing in predictability even in i.i.d. environments.

Thus, even when asset returns are i.i.d., investors might be willing to pay for information about

past market movements, or hire financial experts who are assumed to observe these movements.

This could help explain why people invest in actively-managed funds in spite of the evidence that

these funds do not outperform the market. Our model could also speak to other finance puzzles

such as the equity-premium puzzle or the momentum/reversals in stock returns.

2 The Model

We assume that an individual observes a sequence of signals whose probability distribution depends

on an underlying state. The signal st in Period t = 1, 2, .. is

st = θt + εt, (1)

where θt is the state and εt is an i.i.d. normal shock with mean zero and variance σ2
ε > 0. The

state evolves according to the auto-regressive process

θt = µ + ρ(θt−1 − µ) + ηt, (2)

where ρ ∈ [0, 1) is the reversion rate to the long-run mean µ, and ηt is an i.i.d. normal shock with

mean zero, variance σ2
η, and independent of εt. The signal can be interpreted, for example, as the

return on a mutual fund, the state as the fund manager’s ability, the shock εt as the manager’s luck,

and the parameter ρ as the extent to which ability is persistent. Alternatively, if the fund consists of

multiple managers with heterogeneous abilities, 1−ρ can be interpreted as the managerial turnover.

We model the gambler’s fallacy as the mistaken belief that the sequence {εt}t≥1 is not i.i.d.,

5The tractability and applicability of our model is an important advantage over Rabin’s (2002) related model of
the law of small numbers. In Rabin, Freddy draws from an urn with replacement but believes falsely that the urn is
replenished only every odd period. Thus, the law of small numbers applies every even period. Our model eliminates
the artificial distinction between odd and even periods, allows all variables to be continuous rather than two-valued,
and characterizes beliefs explicitly for general sequences of signals. More importantly, by allowing for a time-varying
state our model is suitable for analyzing the hot-hand fallacy, which involves precisely a belief in the state’s time-
variation. Our work is also related to the theory of momentum and reversals in Barberis, Shleifer and Vishny (1998).
In BSV, individuals observe a random walk but believe incorrectly that innovations are drawn either from a regime
with excess reversals or from one with excess streaks. If the reversal regime is the more common, individuals under-
react to short streaks because they expect a reversal. They over-react, however, to longer streaks because they take
them as sign of a switch to the streak regime. To provide a psychological foundation for their assumptions, BSV
appeal to a combination of biases: the conservatism bias for the reversal regime and the representativeness bias for the
streak regime. Our model, by contrast, not only derives such biases from the single underlying bias of the gambler’s
fallacy, but in doing so provides predictions as to which biases are the more relevant in different informational settings.
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but exhibits systematic reversals. More specifically, we assume that according to the individual,

εt = ε̃t − α

∞∑

k=0

δkεt−1−k, (3)

where the shocks ε̃t are i.i.d. and normal with mean zero and variance σ̃2
ε , and α, δ ∈ [0, 1) are

exogenous parameters.6 The parameter α characterizes the strength of the belief in the gambler’s

fallacy. When α = 0, the individual is an error-free Bayesian (Tommy) treating the sequence

{εt}t≥1 correctly as i.i.d.. When α > 0, however, the individual (Freddy) has the wrong model

of how signals are generated. To see how this corresponds to the gambler’s fallacy, we take the

expectation of both sides of Equation (3) conditional on Freddy’s information as of Period t− 1:

Et−1(εt) = −α
∞∑

k=0

δkEt−1(εt−1−k). (4)

If Freddy believes that all shocks up to t − 1 have been positive, then he expects the shock εt to

be negative because α > 0 and δ ≥ 0. Thus, consistent with the gambler’s fallacy, Freddy believes

that if a fund manager was lucky up to Period t− 1, luck should reverse in Period t.

The parameter δ characterizes the memory duration of the gambler’s fallacy. When δ = 0,

Freddy believes that the shock εt ought to counteract only the shock in Period t− 1. By contrast,

when δ is close to one, Freddy believes that εt ought to counteract the average of all past shocks.

The size of δ relative to α affects the precise manifestation of the gambler’s fallacy, as shown in the

following lemma:

Lemma 1 Freddy’s expectation as of Period t− 1 of a future shock is

Et−1(εt′) = −α(δ − α)t′−t
∞∑

k=0

δkEt−1(εt−1−k).

Lemma 1 generalizes Equation (4) to Freddy’s prediction of all future shocks rather than only

εt. Suppose that Freddy believes that all shocks up to t − 1 have been positive. When δ > α,

he expects all future shocks to be negative, in line with the gambler’s fallacy. By contrast, when

δ < α, he expects future shocks to follow an oscillating pattern: the shock in Period t will be

negative to compensate for the positive shocks up to t−1, the shock in Period t+1 will be positive

to compensate for the negative shock in Period t, and so on. In the intermediate case δ = α, the

gambler’s fallacy lasts exactly one period: Freddy expects the shock in Period t to be negative and

all future shocks to be zero on average.7

6We set εt = 0 for t ≤ 0, so that all terms in the infinite sum are well defined.
7Intuitively, sufficient memory rules out oscillation by preventing the predicted counter-shocks from looming too
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To our knowledge, the issue of whether the gambler’s fallacy generates oscillatory patterns

has not been raised in the psychology literature. Because such patterns seem somewhat counter-

intuitive, however, we focus on the case δ ≥ α in the remainder of this paper. Appendix A contains

a brief discussion of the case δ < α.

Notice that we are allowing Freddy to perceive correctly the sequence {ηt}t≥1 as i.i.d. Thus,

we are assuming that the gambler’s fallacy applies to the relationship between the signals and the

underlying states (i.e., the sequence {εt}t≥1), but not to the relationship between the states and

their long-run average. Since signals are observable but states are not, the former relationship

represents an aspect of randomness that is more salient to Freddy, and perhaps more conducive to

biases. But although we find the gambler’s fallacy more compelling for {εt}t≥1, our formalism can

easily cover the case where the fallacy applies also to {ηt}t≥1. We sketch this extension in Appendix

A and show that most of our results carry through.

A final note concerning our model is in order. While to our knowledge, the gambler’s fallacy is

discussed in the psychology literature solely in i.i.d. environments (e.g., coin flips), we are applying

it to environments that are potentially not i.i.d. We believe that doing so in a psychologically

compelling way is important for understanding the fallacy’s implications. Indeed, our derivation of

the hot-hand fallacy from the gambler’s fallacy involves agents coming to believe (perhaps wrongly)

that the environment is not i.i.d.. This requires a theory of how the gambler’s fallacy would manifest

itself in such environments. Moreover, in many economic and finance applications of our model, it

is reasonable to assume that the true environment is not i.i.d.

3 Freddy Infers

In this section we formulate Freddy’s inference problem, and establish some general results that

serve as the basis for the more specific results of Sections 4 and 5. The inference problem consists

in using the signals to learn about the underlying state θt, and possibly about the parameters of the

model. Freddy’s model is characterized by the variance σ2
η of the shocks to the state, the persistence

ρ, the variance σ̃2
ε of the noise in the signal (where the noise refers to the shocks ε̃t rather than εt),

the long-run mean µ, and the gambler’s fallacy parameters (α, δ). We assume that Freddy does

not question his belief in the gambler’s fallacy, i.e., has a dogmatic point prior on (α, δ). He can,

however, learn about the other parameters. From now on, we reserve the notation (σ2
η, ρ, µ) for the

true parameter values, and denote generic values by (σ̃2
η, ρ̃, µ̃). Thus, Freddy can learn about the

parameter vector p̃ ≡ (σ̃2
η, ρ̃, σ̃2

ε , µ̃).

large relative to the initial shock as to force predictions back in the other direction.
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3.1 No Parameter Uncertainty

We start our analysis with the case where Freddy is certain about all model parameters. This case

is relatively simple and serves as an input for the parameter-uncertainty case. Freddy’s inference

problem can be formulated as one of recursive (Kalman) filtering. Recursive filtering is a technique

for solving inference problems where (i) inference concerns a “state vector” evolving according to

a stochastic process, (ii) a noisy signal of the state vector is observed in each period, (iii) the

stochastic structure is linear and normal.8

To formulate the recursive-filtering problem, we must define the state vector, the equation

according to which the state vector evolves, and the equation linking the state vector to the signal.

The state vector must include not only the state θt, but also some measure of the past realizations of

luck since according to Freddy luck reverses predictably. It turns out that all past luck realizations

can be condensed into an one-dimensional statistic. This statistic can be appended to the state

θt, and therefore, recursive filtering can be used even in the presence of the gambler’s fallacy. We

define the state vector as

xt ≡
[
θt − µ̃, εδ

t

]′
,

where the statistic of past luck realizations is

εδ
t ≡

∞∑

k=0

δkεt−k,

and v′ denotes the transpose of the vector v. Equations (2) and (3) imply that the state vector

evolves according to

xt = Axt−1 + wt, (5)

where

A ≡
[

ρ̃ 0
0 δ − α

]

and

wt ≡ [ηt, ε̃t]′.

Equations (1)-(3) imply that the signal is related to the state vector through

st = µ̃ + Cxt−1 + vt, (6)
8For textbooks on recursive filtering see, for example, Anderson and Moore (1979) and Balakrishnan (1987). We

are using the somewhat cumbersome term “state vector” because we are reserving the term “state” for θt, and the
two concepts differ in our model.
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where

C ≡ [ρ̃,−α]

and vt ≡ ηt + ε̃t. To start the recursion, we must specify Freddy’s prior beliefs for the initial state

x0. We denote the mean and variance of θ0 by θ0 and σ2
θ,0, respectively. Since εt = 0 for t ≤ 0, the

mean and variance of εδ
0 are both zero. Proposition 1 determines Freddy’s beliefs about the state

in Period t, conditional on the history of signals Ht ≡ {st′}t′=1,..,t up to that period.

Proposition 1 Conditional on Ht, xt is normal with mean xt given recursively by

xt = Axt−1 + Gt [st − µ̃− Cxt−1] , x0 = [θ0 − µ̃, 0]′, (7)

and covariance matrix Σt given recursively by

Σt = AΣt−1A
′ − [

CΣt−1C
′ + V

]
GtG

′
t + W, Σ0 =

[
σ2

θ,0 0
0 0

]
, (8)

where

Gt ≡ 1
CΣt−1C ′ + V

[
AΣt−1C

′ + U
]
, (9)

V ≡ E(v2
t ), W ≡ E(wtw

′
t), and U ≡ E(vtwt).

Freddy’s conditional expectation evolves according to Equation (7). This is simply a regression

equation: the state vector in Period t is regressed on that period’s signal, conditional on the history

up to Period t − 1. The regression coefficient Gt depends on Freddy’s conditional variance of the

state Σt−1. Proposition 2 shows that when t goes to ∞, this variance converges to a limit that is

independent of the initial value Σ0.

Proposition 2 Limt→∞Σt = Σ, where Σ is the unique solution in the set of positive matrices of

Σ = AΣA′ − 1
CΣC ′ + V

[
AΣC ′ + U

] [
AΣC ′ + U

]′ + W. (10)

Proposition 2 implies that there is convergence to a steady state where the conditional variance

Σt is equal to the constant Σ, the regression coefficient Gt is equal to the constant

G ≡ 1
CΣC ′ + V

[
AΣC ′ + U

]
, (11)

and the conditional expectation of the state vector xt evolves according to a linear equation with

constant coefficients. The steady state plays an important role in our analysis: it is also the limit in

the case of parameter uncertainty because Freddy eventually becomes certain about the parameter

9



values. In Sections 4 and 5 we rely on the steady state when, for example, considering the effect

of a signal on Freddy’s future predictions. The linearity result of Proposition 1 implies that the

effect is deterministic and independent of the history of past signals. The convergence result of

Proposition 2 implies that the effect is time-independent.

3.2 Parameter Uncertainty

We next allow Freddy to be uncertain about the parameters of his model. Parameter uncertainty is

a natural assumption in many settings. For example, Freddy might be uncertain about the extent

to which the ability of fund managers varies over time (σ2
η) or is persistent (ρ). Alternatively, under

the managerial-turnover interpretation, Freddy might be unsure about whether managers differ in

ability.

Because parameter uncertainty eliminates the normality that is necessary for recursive filtering,

Freddy’s inference problem threatens to be less tractable. Recursive filtering can, however, be

used as part of a two-stage procedure. In a first stage, we fix each model parameter to a given

value, and compute the likelihood of a history of signals conditional on these values. Because the

conditional probability distribution is normal, the likelihood can be computed using the recursive-

filtering formulas of Section 3.1. In a second stage, we combine the likelihood with Freddy’s prior

beliefs, through Bayes’ law, and determine Freddy’s posteriors on the parameters. We show, in

particular, that Freddy’s limit posteriors when t goes to ∞ can be derived by maximizing a limit

likelihood over all possible parameter values.

We assume that Freddy’s prior beliefs over parameter vectors p̃ ≡ (σ̃2
η, ρ̃, σ̃2

ε , µ̃) have support P ,

and to avoid technicalities, we restrict P to be finite. We denote by π0(p̃) Freddy’s prior probability

of p̃. As we show below, π0(p̃) affects Freddy’s limit posteriors only through its support.

The likelihood function Lt(Ht|p̃) associated to a parameter vector p̃ and historyHt = {st′}t′=1,..,t

is the probability density of observing the signals conditional on p̃. From Bayes’ law, this density

is

Lt(Ht|p̃) = Lt(s1 · · · st|p̃) =
t∏

t′=1

`t′(st′ |s1 · · · st′−1, p̃) =
t∏

t′=1

`t′(st′ |Ht′−1, p̃),

where `t(st|Ht−1, p̃) denotes the density of st conditional on p̃ and Ht−1. The latter density can be

computed using the recursive-filtering formulas of Section 3.1. Indeed, Proposition 1 shows that

conditional on p̃ and Ht−1, xt−1 is normal. Since st is a linear function of xt−1, it is also normal
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with a mean and variance that we denote by st(p̃) and σ2
s,t(p̃), respectively. Thus:

`t(st|Ht−1, p̃) =
1√

2πσ2
s,t(p̃)

exp

[
− [st − st(p̃)]2

2σ2
s,t(p̃)

]
,

and

Lt(Ht|p̃) =
1√

(2π)t
∏t

t′=1 σ2
s,t′(p̃)

exp

[
−

t∑

t′=1

[st′ − st′(p̃)]2

2σ2
s,t′(p̃)

]
. (12)

Freddy’s posterior beliefs over parameter vectors can be derived from his prior beliefs and the

likelihood through Bayes’ law. Denoting the posterior probability of p̃ in Period t by πt(p̃), we have

πt(p̃) =
π0(p̃)Lt(Ht|p̃)∑

p̃′∈P π0(p̃′)Lt(Ht|p̃′) . (13)

To determine Freddy’s posterior beliefs in the limit when t goes to ∞, we need to determine the

asymptotic behavior of the likelihood function Lt(Ht|p̃). Intuitively, this behavior depends on how

well Freddy can fit the data (i.e., the history of signals) using the model corresponding to p̃. To

evaluate the fit of a model, we consider the true model according to which the data are generated.

The true model is characterized by α = 0 and the true parameters p ≡ (µ, ρ, σ2
η, σ

2
ε ). We denote by

s∗t and σ∗2s,t, respectively, the true mean and variance of st conditional on Ht−1, and by P ∗ and E∗,

respectively, the true probability measure and expectation operator.

Theorem 1

lim
t→∞

log Lt(Ht|p̃)
t

= −1
2

[
log

[
2πσ2

s(p̃)
]
+

σ∗2s + e(p̃)
σ2

s(p̃)

]
≡ F (p̃) (14)

almost surely, where

σ2
s(p̃) ≡ lim

t→∞σ2
s,t(p̃),

σ∗2s ≡ lim
t→∞σ∗2s,t,

e(p̃) ≡ lim
t→∞E∗ [s∗t − st(p̃)]2 .

Theorem 1 implies that the likelihood function is asymptotically equal to

Lt(Ht|p̃) ∼ exp [tF (p̃)] ,

thus growing exponentially at the rate F (p̃). Note that F (p̃) does not depend on the specific

history Ht of signals, and is thus deterministic. That the likelihood function becomes deterministic

for large t follows from the law of large numbers, which is the main result that we need to prove the

11



theorem. The appropriate large-numbers law in our setting is one applying to non-independent and

non-identically distributed random variables. Non-independence is because the expected values s∗t
and st(p̃) involve the entire history of past signals, and non-identical distributions are because at

any finite time we are not at the steady state.

The growth rate F (p̃) can be interpreted as the fit of the model corresponding to p̃. A straight-

forward corollary of Theorem 1 is that when t goes to ∞, Freddy gives positive probability only to

values of p̃ that maximize F (p̃) over the set P . We denote the set of these values by m(P ).

Corollary 1 If p̃ /∈ m(P ) ≡ argmaxp̃∈P F (p̃), then limt→∞ πt(p̃) = 0 almost surely.

To solve the fit-maximization problem, we ignore discreteness issues from now on and allow the

set P to be continuous. Proposition 3 characterizes the solution to the problem.

Proposition 3 Suppose that P satisfies the cone property

(σ̃2
η, ρ̃, σ̃2

ε , µ̃) ∈ P ⇒ (λσ̃2
η, ρ̃, λσ̃2

ε , µ̃) ∈ P, ∀λ > 0.

Then, p̃ ∈ m(P ) if and only if

1. e(p̃) = minp̃′∈P e(p̃′) ≡ e(P )

2. σ2
s(p̃) = σ∗2s + e(p̃).

The characterization of Proposition 3 is very intuitive. The function e(p̃) is the expected squared

difference between the true conditional mean of st, and the mean that Freddy computes under the

model corresponding to p̃. Thus, e(p̃) measures the error in Freddy’s predictions relative to those

of the true model, and a model maximizing the fit must minimize this error.

A model maximizing the fit must also generate the right measure of uncertainty about the

future signals. Freddy’s uncertainty under the model corresponding to p̃ is measured by σ2
s(p̃), the

conditional variance of st. This must equal to the true error in Freddy’s predictions, which is the

sum of two orthogonal components: the error e(p̃) relative to the predictions of the true model,

and the error in the true model’s predictions, i.e., the true conditional variance σ∗2s .

The cone property in Proposition 3 ensures that in maximizing the fit, there is no conflict

between minimizing e(p̃) and setting σ2
s(p̃) = σ∗2s + e(p̃). Indeed, e(p̃) depends on σ̃2

η and σ̃2
ε only

through their ratio s̃2
η ≡ σ̃2

η/σ̃2
ε because only s̃2

η affects the vector G of regression coefficients. The

cone property ensures that given any feasible ratio s̃2
η, we can scale σ̃2

η and σ̃2
ε to make σ2

s(p̃) equal

12



to σ∗2s + e(p̃). The cone property is satisfied, in particular, when the set P includes all parameter

values:

P = P0 ≡
{
(σ̃2

η, ρ̃, σ̃2
ε , µ̃) : σ̃2

η ∈ R+, ρ̃ ∈ [0, 1), σ̃2
ε ∈ R+, µ̃ ∈ R}

.

Maximizing the fit is potentially complicated. Indeed, the function e(p̃) depends on the vector G

of regression coefficients, which in turn depends on p̃ in a complicated fashion through the recursive-

filtering formulas of Section 3.1. In the Appendix (Lemma 4), however, we derive an expression for

e(p̃) that we can easily minimize numerically. Moreover, in Sections 4 and 5 we derive closed-form

characterizations of the solution to the minimization problem when Freddy is close to rational (α

small).

We conclude this section by determining Tommy’s limit posteriors. We examine, in particular,

whether Tommy converges to the true parameter values when he initially entertains all values, i.e.,

P = P0. Since Tommy is a Bayesian, his limit posteriors solve the fit-maximization problem for

α = 0.

Proposition 4 Suppose that α = 0.

• If σ2
η > 0 and ρ > 0, then m(P0) = {(σ2

η, ρ, σ2
ε , µ)}.

• If σ2
η = 0 or ρ = 0, then m(P0) =

{
(σ̃2

η, ρ̃, σ̃2
ε , µ) : [σ̃2

η = 0, ρ̃ ∈ [0, 1), σ̃2
ε = σ2

η + σ2
ε ]

or [σ̃2
η + σ̃2

ε = σ2
η + σ2

ε , ρ̃ = 0]

}
.

Proposition 4 shows that Tommy converges to the true parameter values if σ2
η > 0 and ρ > 0.

If σ2
η = 0 or ρ = 0, however, then he remains undecided between the true model and a set of

other models. The intuition is that when the state is constant over time (σ2
η = 0) or not persistent

(ρ = 0), signals are i.i.d., and Tommy cannot identify which of the two parameters is zero. Of

course, Tommy’s failure to converge to the true model is inconsequential because all models that

he converges to predict correctly that signals are i.i.d.

4 Independent Signals

In this section we consider Freddy’s inference problem when the signals are i.i.d. As pointed out in

the previous section, i.i.d. signals can be generated when the state is constant over time (σ2
η = 0)

or not persistent (ρ = 0). We first study Freddy’s “free-form” inference when he initially entertains

all parameter values (P = P0). We next allow for prior knowledge, i.e., assume that Freddy knows

with certainty the true values of some parameters.

13



4.1 No Prior Knowledge

Proposition 5 characterizes Freddy’s convergent beliefs.

Proposition 5 Suppose that α > 0, and σ2
η = 0 or ρ = 0. Then m(P0) consists of the two elements

p̃1 ≡
(

α(1− δ(δ − α))
δ

(
σ2

η + σ2
ε

)
, δ − α,

δ − α

δ

(
σ2

η + σ2
ε

)
, µ

)

and

p̃2 ≡ (σ2
η + σ2

ε , 0, 0, µ).

Moreover, e(P0) = 0.

Since e(P0) = 0, Freddy ends up predicting the signals correctly despite being subject to the

gambler’s fallacy. To explain the intuition for this surprising result, consider the models that

Freddy converges to. Under the first model, he believes that the state θt exhibits time-variation

(since σ̃2
η = α(1−δ(δ−α))

δ

(
σ2

η + σ2
ε

)
> 0) and persistence (since ρ̃ = δ − α ≥ 0). While this belief is

obviously erroneous, it exactly offsets the erroneous belief in the gambler’s fallacy. Indeed, consider

the impact of a high signal in Period t on Freddy’s forecast of the subsequent signals. Because

of the linearity of our model, we can characterize the impact simply by considering a marginal

increase in the Period t signal.

Lemma 2 In steady state,

dEt(st′)
dst

= CAt′−t−1G = ρ̃t′−tG1 − α(δ − α)t′−t−1G2,

where G1 and G2 are the components of the regression-coefficient vector G, and t′ > t.

Following a unit increase in the Period t signal, Freddy believes that the state has increased by

the regression coefficient G1. He then expects the signal in Period t′ > t to be higher by ρ̃t′−tG1

because the state reverts to its long-run mean at the rate ρ̃k. This belief in the time-varying state

is counteracted by the gambler’s fallacy which corresponds to the term α(δ − α)t′−t−1G2. Freddy

attributes the high signal in Period t partly to luck through the regression coefficient G2. He then

expects the future signals to be lower because luck reverses. As shown in Lemma 1, this effect

decays over time at the rate (δ − α)k.

Since Freddy converges to the persistence parameter ρ̃ = δ−α, the two erroneous beliefs decay

at the same rate. Therefore, they cancel each other if they have the same amplitude. This occurs
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when the ratio s̃2
η ≡ σ̃2

η/σ̃2
ε , which controls the relative size of the regression coefficients G1 and G2,

takes the value in Proposition 5.

Freddy’s erroneous belief in the time-varying state resembles to a hot-hand fallacy: Freddy

believes that the state varies in a serially correlated manner while in fact it is constant. This

belief, however, does not constitute a hot-hand fallacy in the conventional sense because it does not

manifest itself in the predictions of the signals, being offset by the gambler’s fallacy. Freddy can

be thought of, for example, as a basketball fan convinced that a player is going through hot and

cold periods that are exactly offset by quick reversals of luck. If the player makes a shot, Freddy

thinks, then probably his skill level is temporarily heightened - but having made a shot also means

(even as a hot player) that he is “due” for a miss.

The second model that Freddy converges to is simpler than the first. Under this model, the state

θt exhibits no persistence (since ρ̃ = 0) and is equal to the signal (since σ̃2
ε = 0). Freddy then treats

the state as i.i.d., and predicts correctly i.i.d. signals. Note, however, that the success of this model

relies on the assumption that the gambler’s fallacy does not apply to the relationship between the

states and their long-run mean (i.e., Freddy treats the sequence {ηt}t≥1 correctly as i.i.d.). One

motivation for this assumption, given in Section 2, is that this relationship is not observable. When

the signal is equal to the state, however, the relationship becomes observable and the plausibility

of the assumption is stretched. In Appendix A we show that when the gambler’s fallacy applies to

both {εt}t≥1 and {ηt}t≥1, Freddy can only converge to a model very similar to the first model of

Proposition 5.

Note that under both models of Proposition 5, Freddy converges to the true long-run mean

µ. This result is general, holding also for serially correlated signals as shown in Section 5. The

intuition is that the long-run mean determines the average value of the signal, and inferring this

average can be separated from inferring properties of the fluctuations around the average.

4.2 Prior Knowledge

The possibility that Freddy can develop a belief in the time-varying state that offsets the gambler’s

fallacy relies crucially on the unrestricted nature of his priors. For example, under the first model

of Proposition 5, both σ̃2
η and ρ̃ differ from their true values σ2

η and ρ (except in the knife-edge

case where ρ = δ − α). Therefore, if Freddy knows with certainty what the true values are, then

he cannot converge to that model. In other words, more knowledge can hurt Freddy because it

reduces his flexibility to come up with the incorrect model that offsets the gambler’s fallacy.

The most straightforward example of prior knowledge is when Freddy is aware that the state

is constant (σ2
η = 0). The prototypical occurrence of this is when people observe the flips of a coin
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they know is fair. The state can then be defined as the probability of heads or tails, and it is known

and constant.

When Freddy knows that σ2
η = 0, he obviously cannot develop a belief in the time-varying

state. Therefore, his predictions are influenced only by the gambler’s fallacy. This is consistent

with the experimental evidence: when, for example, subjects know that they are dealing with fair

coins they tend to predict reversals. Of course, our model matches the evidence by construction,

but we believe that this is a strength of our approach (in taking the gambler’s fallacy as a primitive

bias and examining whether the hot-hand fallacy can follow as an implication). Indeed, one could

argue that the hot-hand fallacy is a primitive bias, either unconnected to the gambler’s fallacy or

perhaps even generating it. But then, one would have to explain why such a primitive bias does

not arise in experiments involving fair coins.

The hot-hand fallacy tends to arise in settings where people are uncertain about the mechanism

generating the data, and where a belief in serially correlated variation is plausible a priori. Such

settings are common when human skill is involved. For example, it is plausible - and often true -

that the performance of a basketball player can fluctuate systematically over time because of mood,

well-being, etc. Consistent with the evidence, our approach can generate the hot-hand fallacy in

such settings. Indeed, we show below that Freddy’s predictions can exhibit excessive persistence

precisely when he allows for the possibility that the state can vary in a serially correlated manner,

i.e., σ2
η > 0 and ρ > 0.

We next consider an example where Freddy’s prior knowledge does not rule out serially corre-

lated variation in the state. We assume that the state is constant, and that while Freddy is unsure

about this, he knows the persistence parameter ρ > 0. This example involves an assumption about

counterfactuals: if the state did fluctuate (which it does not), it would be persistent, and Freddy

knows what the persistence is. To motivate the example, we return to the managerial-turnover

interpretation of our model. Suppose that a mutual-fund’s performance is determined by the av-

erage ability within the team of its managers, each manager’s ability is constant over time, and a

fraction of managers turn over in each period. Then, the state is time-varying if managers differ

in ability because turnover can alter the average ability within the team. Suppose that in reality

all managers are identical but Freddy is unsure about this. Freddy could, however, observe the

turnover, in which case he knows with confidence what the state’s persistence would be if there is

time-variation. Proposition 6 characterizes Freddy’s convergent beliefs:

Proposition 6 Suppose that α > 0, σ2
η = 0, ρ > 0, and Freddy considers parameter values in the

set

Pρ ≡
{
(σ̃2

η, ρ̃, σ̃2
ε , µ̃) : σ̃2

η ∈ R+, ρ̃ = ρ, σ̃2
ε ∈ R+, µ̃ ∈ R}

.
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Then, any element of m(Pρ) satisfies σ̃2
η > 0, σ̃2

ε > 0, and µ̃ = µ. Moreover, e(Pρ) = 0 only when

ρ = δ − α.

Freddy ends up predicting the signals correctly (e(Pρ) = 0) only in the knife-edge case where

ρ = δ−α. Indeed, recall that in the absence of prior knowledge, Freddy gets around the gambler’s

fallacy by assuming that the state is time-varying with persistence parameter ρ̃ = δ − α. This

belief is consistent with the prior knowledge of ρ only when ρ = δ − α. When ρ 6= δ − α, Freddy

still develops a belief in the time-varying state (σ̃2
η > 0) to explain why the signals do not exhibit

systematic reversals. This belief, however, cannot fully offset the gambler’s fallacy. Note that

Freddy always converges to the true long-run mean µ.

To sharpen our characterization of Freddy’s convergent beliefs, we consider the case where he

is close to rational, i.e., α is small. Proposition 7 determines the convergent beliefs in closed form.

Proposition 7 Suppose that σ2
η = 0 and ρ > 0. When α converges to zero, the set

{(
σ̃2

η

ασ̃2
ε

, σ̃2
ε

)
:
(
σ̃2

η, ρ, σ̃2
ε , µ

) ∈ m(Pρ)

}

converges (in the set topology) to the point (z, σ2
ε ), where

z ≡ (1− ρ2)2

ρ(1− ρδ)
. (15)

Proposition 7 implies that when α is small, Freddy ends up believing that the variance of the

shocks to the state is σ̃2
η ≈ αzσ2

ε . Using this result, we can characterize Freddy’s errors in predicting

the signals. We examine, in particular, how Freddy predicts a signal that follows a streak of similar

signals. We assume that the streak is between Periods t and t′− 1, and all signals in the streak are

identical.

Proposition 8 Suppose that α is small, σ2
η = 0, ρ > 0, and Freddy considers parameter values in

the set Pρ. If ρ > δ, then in steady state

t′−1∑

t′′=t

dEt′−1(st′)
dst′′

is negative for t′ = t + 1 and becomes positive as t′ increases. If ρ < δ, then the opposite is true.

When ρ > δ, Freddy predicts a low signal following a short streak of high signals, but a high

signal following a longer streak. Thus, the gambler’s fallacy dominates for short streaks but the

17



hot-hand fallacy dominates for longer ones. Intuitively, a high signal has a long-lasting impact

on Freddy’s estimate of the state because when ρ is large, Freddy knows the state to be very

persistent. Therefore, a long streak of high signals has a large cumulative impact—and this belief

in the increased state eventually overtakes the gambler’s fallacy, leading Freddy to predict a high

signal. At the same time, Freddy cannot predict a high signal after any streak of high signals

because he would then be overcompensating for the gambler’s fallacy: by adopting a smaller value

of σ̃2
η, he would hold a weaker belief in positive correlation, and his predictions would match the

i.i.d. signals more closely. Therefore, the gambler’s fallacy must dominate for short streaks. The

results are reversed when ρ < δ: the gambler’s fallacy dominates for long streaks because Freddy

believes in a large cumulative reversal of luck, and the hot-hand fallacy appears after short streaks.

Proposition 8 makes use of the closed-form solutions derived for small α. For general α, the fit-

maximization problem can be solved through a simple numerical algorithm. The numerical results

confirm the Proposition, with δ − α taking the place of δ.

Summarizing, when signals are i.i.d., our model confirms the intuition of previous researchers

that the hot-hand fallacy can arise as a consequence of the gambler’s fallacy. At the same time,

we qualify this intuition in important ways. We find that the hot-hand fallacy can arise only

when individuals have strong priors on the state’s persistence but are open to learning about time-

variation. We also show that the hot-hand fallacy does not always appear after long streaks: this

requires the additional assumption that individuals expect the state to be persistent but luck to

reverse quickly. Finally, we show that the endogenous belief in the hot hand cannot be so strong

to always dominate the gambler’s fallacy: otherwise individuals could improve their predictions by

adopting a weaker such belief.

5 Serially Correlated Signals

In this section we consider Freddy’s inference problem when the signals are serially correlated.

Serial correlation arises when the state varies over time (σ2
η > 0) and is persistent (ρ > 0). To

highlight the new effects relative to the i.i.d. case, we assume that Freddy is initially uncertain

about the values of all parameters. Proposition 9 shows that unlike the i.i.d. case, Freddy can

predict the signals correctly only when ρ = δ − α.

Proposition 9 Suppose that α > 0, σ2
η > 0, and ρ > 0. Then, e(P0) = 0 only when ρ = δ − α.

The intuition is that in the i.i.d. case, Freddy gets around the gambler’s fallacy by taking the

state’s persistence to be ρ̃ = δ − α rather than the true value ρ. When the state is time-varying,

the persistence parameter influences the signal process, and a discrepancy between ρ̃ and ρ leads
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Freddy to incorrect predictions. Formally, consider the impact of a high signal in Period t on

Freddy’s forecast of the subsequent signals. From Lemma 2, this is

dEt(st′)
dst

= ρ̃t′−tG1 − α(δ − α)t′−t−1G2. (16)

In the i.i.d. case, Freddy’s predictions are correct because this expression can be made equal to

zero for all t′ > t, by setting ρ̃ = δ − α. When signals are serially correlated, the same expression

must be made equal to the impact of st under the true model

dE∗
t (st′)
dst

= ρt′−tG∗
1, (17)

where G∗
1 > 0 because the state is time-varying. Equality is possible only in the knife-edge case

where ρ = δ − α. Thus, although Freddy can develop a model that gets him around the gambler’s

fallacy when signals are i.i.d., this is not feasible in a more complicated environment.

To determine Freddy’s convergent beliefs when ρ 6= δ−α, we consider the case where he is close

to rational, i.e., α is small. As in Section 4, this case allows for closed-form solutions that convey

the main intuitions. In addition to α, we take the variance σ2
η of the shocks to the state to be

small, meaning that signals are close to i.i.d. Formally, we assume that both α and σ2
η converge to

zero, holding their ratio constant, and we set ω ≡ σ2
η/(ασ2

ε ).
9 As we explain later in this section,

our closed-form results are consistent with the numerical solutions derived in the general case.

When Freddy is close to rational, he converges to a model that generates predictions close

to the true model’s. Freddy might not, however, converge to the correct belief that the state is

almost constant (σ2
η small). Indeed, recall that i.i.d signals are generated either because the state is

constant (σ2
η = 0) or not persistent (ρ = 0). Therefore, when Freddy predicts that signals are close

to i.i.d., this might be because he converges to a model where ρ̃, and not σ̃2
η, is small. Under this

model, Freddy treats the state as approximately i.i.d. (ρ̃ small) and the signal as approximately

equal to the state (σ̃2
ε small). This model is, in fact, similar to the second model of Proposition 5 that

gets around the gambler’s fallacy by taking the sequence {ε̃t}t≥1 to have zero variance. Condition

1 rules out convergence to the small-ρ̃ model, thus ensuring that Freddy converges correctly to the

small-σ̃2
η model.

Condition 1 Either

ρ >
δ

1 +
√

1− δ2
(18)

9The case where σ2
η remains constant when α goes to zero can be derived by setting ω = ∞ in our solutions, but

the case ω < ∞ is the more interesting.
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or

ωρ2
√

1− δ2 >
(
1− ρ2

) 3
2 . (19)

The intuition behind Condition 1 is that the small-ρ̃ model does a good job in getting around

the gambler’s fallacy but a poor one in explaining the serially correlated signals. Therefore, it is

dominated by the small-σ̃2
η model when the serial correlation is significant, which occurs when σ2

η

and ρ are large. Condition 1 is indeed satisfied (through Equation (18)) when ρ is larger than δ,

and also when it is not much smaller. It is also satisfied (through Equation (19)) for any value of

ρ when the ratio ω ≡ σ2
η/(ασ2

ε ) is large enough. We assume Condition 1 from now on because the

small-ρ̃ model seems somewhat unappealing: its success relies heavily on the assumption that the

gambler’s fallacy does not apply to the sequence {ηt}t≥1. Proposition 10 solves the fit-maximization

problem.

Proposition 10 Suppose that σ2
η > 0, ρ > 0, and Condition 1 is met. When α and σ2

η converge

to zero, holding ω constant, the set

{(
σ̃2

η

ασ̃2
ε

, ρ̃, σ̃2
ε , µ̃

)
:
(
σ̃2

η, ρ̃, σ̃2
ε , µ̃

) ∈ m(P0)

}

converges (in the set topology) to the point (z, r, σ2
ε , µ), where

z ≡ (1− r2)2

r(1− rδ)
+

ωρ(1− r2)2

r(1− ρ2)(1− ρr)
(20)

and r is the solution to
r − δ

(1− rδ)2
+

ωρ(r − ρ)
(1− ρ2) (1− ρr)2

= 0. (21)

Equation (21) implies that r is between ρ and δ. Therefore, when α and σ2
η are small, Freddy

converges over time to a persistence parameter ρ̃ that is between the true value ρ and the memory

parameter δ. Consider, for example, the case where ρ > δ, i.e., Freddy expects luck to reverse

quickly and yet sees highly persistent signals. To explain the absence of quick reversals, Freddy

believes that shocks to the state are large but short-lived. Thus, he underestimates the persistence,

tilting ρ̃ towards the value δ that characterizes the speed of the reversals. Of course, he tilts ρ̃ only

partially towards δ because he must also account for the true persistence of the observed signals.

In the opposite case where ρ < δ, Freddy overestimates the persistence to explain the absence of

slow reversals.

Proposition 10 implies that when α and σ2
η are small, Freddy believes that the variance of the

shocks to the state is σ̃2
η ≈ αzσ2

ε = (z/ω)σ2
η. One might expect the ratio z/ω to be greater than
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one because the gambler’s fallacy can lead Freddy to overestimate the state’s time-variation. When

ρ > δ, z/ω is indeed greater than one, and so is the ratio z(1−ρ2)
ω(1−r2)

. Thus, Freddy overestimates

both the variance of the shocks to the state (σ̃2
η > σ2

η) and the state’s unconditional variance

( σ̃2
η

1−ρ̃2 >
σ2

η

1−ρ2 ). Somewhat surprisingly, however, Freddy can underestimate both variances when ρ

is sufficiently smaller than δ. Indeed, when ρ < δ, Freddy overestimates the state’s persistence, and

this can compensate for the gambler’s fallacy more effectively than overestimating the variance.

The intuition for the above results, and for some of the subsequent ones, can be seen through a

graphical representation of the fit-maximization problem. In the proof of Proposition 10 we show

that the error e(p̃) is approximately equal to

e(p̃) ≈ σ2
ε

∞∑

k=1

(
s̃2
η

1− ρ̃2
ρ̃k − αδk−1 − s2

η

1− ρ2
ρk

)2

+ (µ̃− µ)2, (22)

where s2
η ≡ σ2

η/σ2
ε and s̃2

η ≡ σ̃2
η/σ̃2

ε . The infinite sum in Equation (22) has an intuitive interpretation.

Recall from Equations (16) and (17) that following a high signal in Period t, Freddy’s forecast of

the signal in Period t′ = t + k, k ≥ 1, differs from the true forecast by

dEt(st+k)
dst

− dE∗
t (st+k)
dst

= ρ̃kG1 − α(δ − α)k−1G2 − ρkG∗
1. (23)

The regression coefficient G∗
1 measures the signal’s impact on the true forecast of the state. When

the state is almost constant (σ2
η small), this coefficient is small and approximately equal to s2

η/(1−
ρ2). Likewise, when σ̃2

η is small, the regression coefficient G1 under Freddy’s model is approximately

equal to s̃2
η/(1−ρ̃2). Finally, when α is small, (δ−α)k ≈ δk. Therefore, the infinite sum in Equation

(22) concerns the “term structure” of Freddy’s forecast errors as of Period t: it is the sum of squared

differences between Freddy’s forecast and the true forecast, over all forecast horizons k ≥ 1.10

Figure 1 plots the two forecasts as a function of the horizon k ≥ 1. The thin solid line represents

the true (Tommy’s) forecast, which decays at the rate ρk. The thick solid line represents Freddy’s

forecast, which is derived by subtracting the effect of the gambler’s fallacy (represented by the thin

dashed line and decaying at the rate δk) from the belief in the time-varying state (represented by

the thick dashed line and decaying at the rate ρ̃k). The optimization problem consists in choosing

the parameters σ̃2
η and ρ̃ that characterize the amplitude and decay rate of the belief in the time-

varying state. The objective is to bring the two solid lines as close as possible in terms of the sum

of squared differences.
10The definition of e(p̃) in Theorem 1 concerns only the forecast of next period’s signal, and not of all future signals.

Because of linearity, however, the forecast error can be broken into independent errors generated by each of the past
signals. Moreover, for small σ2

η, σ̃2
η, and α, the error generated by the Period t−k signal on the forecast of the Period

t signal is approximately equal to the error that the Period t signal induces on the forecast of the Period t + k signal.
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Figure 1: Effect of a high signal in Period t on the forecasts of future signals. The
x-axis represents the forecast horizon k ≥ 1, and the y-axis the forecast of the Period
t + k signal. The figure is drawn for ρ > δ.

Figure 1 confirms that Freddy tilts his persistence estimate away from the true value ρ and

towards δ. Indeed, the figure is drawn for ρ > δ, and shows that Freddy’s belief in the time-varying

state must decay faster than Tommy’s (ρ̃ < ρ) to better counter the gambler’s fallacy. At the same

time, Freddy’s belief must have a larger initial amplitude, meaning that Freddy overestimates the

variance.11

Figure 1 reveals the time-pattern of Freddy’s forecast errors: Freddy forecasts below Tommy for

short horizons, above for intermediate horizons, and below again for long horizons. This pattern

is, in fact, general, holding also for ρ < δ. The intuition is similar as for our next result, which

concerns Freddy’s prediction of a signal that follows a streak of similar signals. To state the result,

we assume that the streak is between Periods t and t′−1, and all signals in the streak are identical.

Proposition 11 Suppose that α and σ2
η are small, σ2

η > 0, ρ /∈ {0, δ}, Condition 1 is met, and

11Freddy’s belief in the time-varying state has a larger initial amplitude than Tommy’s if
s̃2

η ρ̃

1−ρ̃2 >
s2

ηρ

1−ρ2 . Since ρ̃ < ρ

and σ̃2
ε ≈ σ2

ε , this implies that
σ̃2

η

1−ρ̃2 >
σ2

η

1−ρ2 and σ̃2
η > σ2

η, i.e., Freddy overestimates the variance.
The intuition why Freddy can underestimate the variance when ρ < δ can be seen graphically as follows. Suppose

that Freddy estimates the state’s unconditional variance correctly, i.e.,
σ̃2

η

1−ρ̃2 =
σ2

η

1−ρ2 . Then, Equations ρ̃ > ρ and

σ̃2
ε ≈ σ2

ε imply that
s̃2

η ρ̃k

1−ρ̃2 >
s2

ηρk

1−ρ2 , meaning that the thick dashed line is above the thin solid line. Suppose now
that α is small but δ is close to one, in which case the thin dashed line is close to zero but decays slowly. Then,
Freddy’s forecasts are above Tommy’s for short horizons (because the thin dashed line is close to zero), and below
for long horizons (because the thin dashed line decays more slowly than all others). If σ̃2

η is increased, this will
barely reduce Freddy’s under-prediction in the long term because the thick dashed line has decayed to zero. Freddy’s
over-prediction in the short term, however, will worsen significantly. Therefore, the sum of squared differences can
be reduced by reducing σ̃2

η, meaning that Freddy underestimates the variance.
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Freddy initially entertains all parameter values (P = P0). Then, in steady state

t′−1∑

t′′=t

dEt′−1(st′)
dst′′

−
t′−1∑

t′′=t

dE∗
t′−1(st′)
dst′′

is negative for t′ = t + 1, becomes positive as t′ increases, and then becomes negative again.

Proposition 11 shows that Freddy under-predicts the next signal after a short streak of high

signals, over-predicts after a longer streak, and under-predicts again after a very long streak. While

this result holds both for ρ > δ and ρ < δ, the intuition is different in the two cases.

0 5 10 15
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Time-varying state

Gambler's fallacy

Streak length

Figure 2: Effect of a streak of high signals on the forecast of the signal following the
streak. The x-axis represents the streak’s length, and the y-axis the forecast of the
next signal. The figure is drawn for ρ > δ and the same parameter values as Figure 1.

Figure 2 considers the case ρ > δ. The thin solid line represents Tommy’s forecast of the signal

following a streak of high signals, and the thick solid line represents Freddy’s forecast. The latter

is generated by Freddy’s belief in the increased state (thick dashed line), and his expectation of

a reversal in luck (thin dashed line).12 Because Freddy expects luck to reverse quickly, he under-

predicts the signal following a short streak. The belief in quick reversals, however, leads him to

assume that the reversal following a streak is mainly generated by the streak’s last signals, thus

not increasing substantially with the streak’s length. On the other hand, Freddy’s forecast of the

state increases more substantially with streak length: since he believes that the state mean-reverts

relatively slowly (ρ̃ > δ), he assumes that even the early signals in a long streak are informative

about the current state. (In terms of Figure 2, the thin dashed line levels off faster than the thick
12The thick dashed line is Freddy’s forecast when the regression-coefficient vector G = (G1, G2)

′ is replaced by
(G1, 0)′, and the thin dashed line is the forecast when G is replaced by (0, G2)

′.
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dashed line.) Therefore, after a long streak, Freddy’s belief in the increased state overtakes the

gambler’s fallacy, leading to over-prediction of the next signal. Finally, Freddy under-predicts after

a very long streak because he underestimates the state’s persistence: because the true persistence

is high, Tommy’s forecast increases even after very long streaks, overtaking Freddy’s.

Figure 3 considers the case ρ < δ. Recall that in this case, Freddy compensates for the gambler’s

fallacy mainly by overestimating the state’s persistence rather than the variance. Therefore, after

a short streak, his belief in the increased state is not much higher than Tommy’s (and can even

be lower when Freddy underestimates the variance). In combination with the gambler’s fallacy,

this generates under-prediction. Because Freddy overestimates the state’s persistence, however,

his forecast of the state increases faster than Tommy’s as the streak gets longer. This generates

over-prediction after a long streak. Finally, because Freddy believes that luck reverses slowly, he

expects a large cumulative reversal after a very long streak, thus under-predicting the next signal.

0 5 10 15
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Freddy

Time-varying state

Gambler's fallacy

Streak length

Figure 3: Effect of a streak of high signals on the forecast of the signal following the
streak. The x-axis represents the streak’s length, and the y-axis the forecast of the
next signal. The figure is drawn for ρ < δ.

Proposition 11 makes use of the closed-form solutions derived for small α. Our numerical results

for general α confirm the under/over/under-prediction pattern of the proposition.

The analysis of prior knowledge has the same flavor as in the i.i.d case. In particular, the results

are identical when Freddy knows the state’s persistence parameter (ρ) but is uncertain about the

extent of time-variation (σ2
η): when ρ > δ − α, Freddy under-predicts after a short streak and

over-predicts after a longer streak, while the opposite holds when r < δ − α.

Summarizing, under serially correlated signals, the hot-hand fallacy can arise even when indi-

viduals infer the persistence parameter from the data. In that case, however, our model generates
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under-prediction after very long streaks. Our model has also the general implication that as the

environment becomes more complicated (from i.i.d. to serial correlation), individuals have greater

difficulty to develop the false model that gets them around the gambler’s fallacy.

6 Conclusion

This paper develops a model of belief in the gambler’s fallacy, and explores the link with the

seemingly opposite bias of the hot hand. We show that an individual who updates rationally except

for the gambler’s fallacy tends to overestimate the time-variation of an underlying state. This error,

however, does not always generate a hot hand: in some cases it offsets the gambler’s fallacy, leading

to correct predictions. We show that a hot hand can develop—overtaking the gambler’s fallacy—

when the individual knows confidently the state’s persistence parameter or when signals are serially

correlated. In each case we determine whether the hot hand arises after long or short streaks of

signals.

Our model takes the gambler’s fallacy as the only primitive bias. This parsimony allows us to

determine endogenously what other biases arise in a variety of environments and under a variety of

assumptions about individuals’ knowledge of the environment. Our model’s tractable normal-linear

structure allows the use of recursive-filtering techniques, and can provide a flexible framework for

studying the gambler’s fallacy in a range of economic and finance settings.

Indeed, we believe that our model’s implication that people may come to believe in predictability

even in i.i.d. environments has consequences in a broad range of settings. Consider, for example, a

financial market where returns are i.i.d. Because rational Tommies will eventually learn the i.i.d.

property, they will share a common expectation of future returns. But because Freddies believe that

past returns help predict future returns, they will differ in their predictions if they observe different

subsets of the return history. Combined with a theory of how trade based on different beliefs

arising from statistical errors might occur, such intrinsic differences of opinion among investors

who observe only asset returns could be relevant for understanding the large volume of trade in

actual markets.

More interesting than the implications of “passive observation” are possible implications for

how investors choose to acquire financial information based on erroneous beliefs about the value

of that information. When Freddy believes that past returns are useful for predicting the future,

he believes technical analysis is useful, even when returns are truly i.i.d. Moreover, he might be

willing to pay for real-time price information, or keep observing prices for the “right time” to enter

or exit a market.13 Perhaps the main implication of “fallacious predictability” is the potential
13Of course, information on current prices is useful whenever an investor’s portfolio strategy depends on wealth.
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role in explaining exaggerated belief in financial expertise. Investors often seem to rely heavily

on the opinions of experts, such as stockbrokers or managers of actively-managed funds. This

seems somewhat puzzling: for example, it is well-documented that actively-managed funds do not

outperform their market benchmarks on average.14 Our model can readily generate a belief in non-

existent expertise. If Freddy falsely believes in predictability but does not have the time to observe

the detailed history of returns, he would treat agents who specialize in observing the market as

useful experts.

Additional implications would follow if Freddies constitute a big enough fraction of a market

as to affect prices. Suppose, for example, that the signal consists of a firm’s i.i.d. earnings growth,

and Freddies know that ρ > δ − α. Then, because they will base their investment behavior on

the under-prediction of earnings after short streaks of good news and over-prediction after longer

streaks, expected returns would be high after short streaks and low after longer streaks. This is

consistent with the evidence of short-run momentum and long-run reversals in the stock market.15

Finally, some interesting implications may follow from Freddy’s false belief about variance.

When Freddy predicts the signals erroneously, he also overestimates their variance (Proposition 3)

because he attributes his prediction error to signal noise. With i.i.d. signals, the belief in excess

variance arises because of—and, surprisingly, in spite of—a false belief in predictability. Thus,

when returns are truly i.i.d., Freddy can hold both a false belief in predictability and a belief that

the market is excessively volatile. Because of the latter, Freddy can require a high expected return

to enter the market. This could perhaps speak to the equity-premium puzzle (Mehra and Prescott

(1985)) that stocks’ expected return is high relative to risk.

We believe that the gambler’s fallacy may help provide a unified behavioral explanation for

the diverse phenomena listed above. Moreover, our model and techniques could provide a flexible

framework for pursuing the implications of the gambler’s fallacy.

Our point is that investors might be willing to pay for such information for purely speculative reasons.
14This holds both for the performance of the average fund in a given year, and for the performance of a given fund

over time. See Fama’s (1991) survey.
15Of course, our model would not make this prediction for all parameter values. For references to the empirical

literature on momentum and reversals, see Barberis, Shleifer and Vishny (1998). Our explanation of momentum and
reversals is similar in spirit with the one in BSV, although we rely only on the gambler’s fallacy to derive other biases
endogenously rather than the exogenous amalgam of context-specific biases they base their model on.
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A Extensions

A.1 The Case δ < α

When signals are i.i.d., Freddy cannot get around the gambler’s fallacy by developing a belief in a

time-varying and persistent state. Indeed, under such a belief, Freddy would interpret a high signal

as evidence that the state has increased, and would expect future signals to be high. Under the

gambler’s fallacy, however, Freddy expects a high signal to be followed by an oscillatory pattern

of low and high signals because δ < α. These patterns obviously cannot offset. Formally, the first

model p̃1 of Proposition 5 is not feasible because it requires ρ̃ = δ − α, which is inconsistent with

δ − α < 0 ≤ ρ̃ ∈ [0, 1). The second model p̃2 of Proposition 5 leads to correct predictions, and is

the unique model that Freddy converges to. Under this model, the gambler’s fallacy is not present

because Freddy attributes all of the signal’s variation to the state. Moreover, Freddy assumes that

the state is not persistent (ρ̃ = 0), and this leads him to predict correctly that signals are i.i.d.

When Freddy knows confidently the value of ρ > 0, he develops a belief in a time-varying

and persistent state. To determine his predictions after streaks of signals, recall from Section 4.2

that when ρ > δ − α, the gambler’s fallacy dominates after short streaks and the hot-hand fallacy

dominates after longer ones. One might conjecture the same to hold when δ − α < 0 since ρ still

exceeds δ − α. Our numerical results confirm this conjecture when δ − α > −ρ, i.e., when δ − α

is not too negative. When δ − α < −ρ, however, the hot-hand fallacy dominates after streaks of

any length. The intuition is similar as for model p̃2: Freddy attempts to minimize the effects of

the gambler’s fallacy by attributing most of the signal’s variation to the state. A difference with

p̃2 is that Freddy’s predictions are incorrect because he takes the state to be persistent. However,

predictions are more accurate than when Freddy attributes most of the signal’s variation to luck

because he has difficulty explaining the oscillatory pattern implied by the gambler’s fallacy.

When signals are serially correlated, the results have the same flavor. When δ − α is not too

negative, predictions after streaks are as in Section 5: Freddy under-predicts after a short streak,

over-predicts after a longer streak, and under-predicts again after a very long streak. When δ − α

is sufficiently negative, however, the first under-prediction disappears: Freddy over-predicts after

all but very long streaks.
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A.2 Gambler’s Fallacy on State Variation

Our formalism can be easily extended to the case where the gambler’s fallacy applies to both {εt}t≥1

and {ηt}t≥1. Suppose that according to Freddy,

ηt = η̃t − α

∞∑

k=0

δkηt−1−k, (A.1)

where the shocks η̃t are i.i.d. and normal with mean zero and variance σ̃2
η. The assumption that α, δ

are common to both {εt}t≥1 and {ηt}t≥1 is for simplicity and can easily be dropped. To formulate

the recursive-filtering problem, we expand the state vector to

xt ≡
[
θt − µ̃, ηδ

t , ε
δ
t

]′
,

where

ηδ
t ≡

∞∑

k=0

δkηt−k.

We also set

A ≡



ρ̃ −α 0
0 δ − α 0
0 0 δ − α


 ,

wt ≡ [η̃t, η̃t, ε̃t]′,

C ≡ [ρ̃,−α,−α],

and vt ≡ η̃t + ε̃t. Under these definitions, the analysis of Freddy’s inference in Section 3 carries

through identical.

When signals are i.i.d. and Freddy initially entertains all parameter values, he converges to the

unique model

p̃0 ≡
(

α(1− δ(δ − α))
δ

(
σ2

η + σ2
ε

)
, δ,

δ − α

δ

(
σ2

η + σ2
ε

)
, µ

)
,

predicting the signals correctly. This model is very similar to model p̃1 of Proposition 5: Freddy

gets around the gambler’s fallacy by developing a belief in a time-varying and persistent state. The

difference with Proposition 5 is that model p̃2 no longer leads to correct predictions. Indeed, under

that model, the state is i.i.d. and equal to the signal. Under the gambler’s fallacy for {ηt}t≥1,

however, Freddy expects the i.i.d. state to exhibit reversals.

When Freddy knows confidently the value of ρ > 0, he ends up believing that σ̃2
η > 0. Further-

more, when α is small, σ̃2
η is small relative to σ̃2

ε . Therefore, the effects of the gambler’s fallacy

for {ηt}t≥1 are small relative to {εt}t≥1, and the analysis is the same as when the gambler’s fallacy
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applies only to {εt}t≥1. In particular, Freddy’s limit beliefs are given by Proposition 7, and his

predictions after streaks by Proposition 8. Moreover, our numerical results confirm the patterns of

Proposition 8 for general values of α.

When signals are serially correlated, we can show as in Proposition 9 that Freddy’s predictions

differ from those of the true model, except in knife-edge cases. When α is small, Freddy converges to

a model where σ̃2
η is small (and Condition 1 is no longer needed to rule out the small-ρ̃ model because

the gambler’s fallacy for {ηt}t≥1 invalidates model p̃2). Therefore, the effects of the gambler’s

fallacy for {ηt}t≥1 are small relative to {εt}t≥1, and the analysis becomes identical to the case

where the gambler’s fallacy applies only to {εt}t≥1. In particular, Freddy’s limit beliefs are given

by Proposition 10, and his predictions after streaks by Proposition 11. Our numerical results

confirm the pattern of Proposition 11 for general values of α, except in a parameter region where

the pattern reverses to over/under/over-prediction. Intuitively, Freddy can over-predict after very

long streaks because his estimate ρ̃ of the state’s persistence can exceed both ρ and δ. Freddy

can exaggerate the persistence to compensate for his belief that shocks to the state should exhibit

reversals.

B Proofs

Proof of Lemma 1: Define xt and εδ
t as in Section 3.1. Equation (5) implies that Et(xt′) =

AEt(xt′−1) for t′ > t. Iterating between t′ and t, we find

Et(xt′) = At′−tEt(xt). (B.1)

Equation (B.1) implies that Et−1(εδ
t′−1) = (δ − α)t′−tEt−1(εδ

t−1). Therefore,

Et−1(εt′) = Et−1(ε̃t′ − αεδ
t′−1) = −αEt−1(εδ

t′−1) = −α(δ − α)t′−tEt−1(εδ
t−1).

Proof of Proposition 1: Our formulation of the recursive-filtering problem is as in standard

textbooks. For example, Equations (5) and (6) follow from (4.1.1) and (4.1.4) in Balakrishnan

(1987) if xn+1 is replaced by xt, xn by xt−1, An by A, Un by 0, N s
n by wt, vn by st − µ, Cn by

C, and N0
n by vt. Equation (7) follows from (4.6.14), if the latter is written for n + 1 instead of

n, and xn+1 is replaced by xt, xn by xt−1, and AKn + Qn by Gt. That Gt so defined is given

by Equation (9), follows from (4.1.29) and (4.6.12) if Hn−1 is replaced by Σt−1, GnG′
n by V , and

Jn by U . Equation (8) follows from (4.6.18) if the latter is written for n + 1 instead of n, Pn is

substituted from (4.1.30), and FnF ′
n is replaced by W .
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Proof of Proposition 2: It suffices to show (Balakrishnan, p.182-184) that the eigenvalues of

A− UV −1C have modulus smaller than one. This matrix is




σ̃2
ε

σ̃2
η+σ̃2

ε
ρ̃

σ̃2
η

σ̃2
η+σ̃2

ε
α

− σ̃2
ε

σ̃2
η+σ̃2

ε
ρ̃ δ − σ̃2

η

σ̃2
η+σ̃2

ε
α


 .

The characteristic polynomial is

λ2 − λ

[
σ̃2

ε

σ̃2
η + σ̃2

ε

ρ̃ + δ − σ̃2
η

σ̃2
η + σ̃2

η

α

]
+

σ̃2
ε

σ̃2
η + σ̃2

ε

ρ̃δ

≡ λ2 − λb + c

Suppose that the roots λ1, λ2 of this polynomial are real, in which case λ1 + λ2 = b and λ1λ2 = c.

Since c > 0, λ1 and λ2 have the same sign. If λ1 and λ2 are negative, they are both greater than

-1, since b > −1 from α < 1 and ρ̃, δ ≥ 0. If λ1 and λ2 are positive, then at least one is smaller

than 1, since b < 2 from ρ̃, δ < 1 and α ≥ 0. But since the characteristic polynomial for λ = 1

takes the value

(1− δ)
(

1− σ̃2
ε

σ̃2
η + σ̃2

ε

ρ̃

)
+

σ̃2
η

σ̃2
η + σ̃2

ε

α > 0,

both λ1 and λ2 are smaller than 1. Suppose instead that λ1, λ2 are complex. In that case, they are

conjugates and the modulus of each is c < 1.

Lemma 3 determines s∗t , the true mean of st conditional on Ht−1, and st(p̃), the mean that

Freddy computes under the parameter vector p̃. These are expressed as a function of the sequence

of orthogonalized signals {ζt′}t′=1,..,t−1, where ζt′ ≡ st′ − s∗t′ . This sequence contains the same

information as {st′}t′=1,..,t−1, but has the advantage that the elements are uncorrelated. Using

Lemma 3, we determine the error e(p̃) ≡ limt→∞E∗ [s∗t − st(p̃)]2 in Lemma 4. To state both

lemmas, we define the matrices Dt ≡ A−GtC, D ≡ A−GC, and

Jt,t′ ≡
{∏t

k=t′ Dk for t′ = 1, .., t,
I for t′ > t.

We also use the superscript ∗ for the matrices A, C, G, and Σ in the recursive-filtering problem

under the true model. Finally, for simplicity we set the initial condition x0 = 0.

Lemma 3 The true mean s∗t is given by

s∗t = µ +
t−1∑

t′=1

C∗(A∗)t−t′−1G∗
t′ζt′ (B.2)
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and Freddy’s mean st(p̃) by

st(p̃) = µ̃ +
t−1∑

t′=1

CMt,t′ζt′ + CMµ
t (µ− µ̃), (B.3)

where

Mt,t′ ≡ Jt−1,t′+1Gt′ +
t−1∑

k=t′+1

Jt−1,k+1GkC
∗(A∗)k−t′−1G∗

t′ ,

Mµ
t ≡

t−1∑

t′=1

Jt−1,t′+1Gt′ .

Proof: Consider the recursive-filtering problem under the true model, and denote by x∗t the mean

of xt conditional on Ht. Equation (6) implies that

s∗t = µ + C∗x∗t−1. (B.4)

Equation (7) then implies that

x∗t = A∗x∗t−1 + G∗
t (st − s∗t ) = A∗x∗t−1 + G∗

t ζt.

Iterating between t− 1 and zero, we find

x∗t−1 =
t−1∑

t′=1

(A∗)t−t′−1G∗
t′ζt′ . (B.5)

Plugging into Equation (B.4), we find Equation (B.2).

Consider next Freddy’s recursive-filtering problem under p̃. Equation (7) implies that

xt = (A−GtC)xt−1 + Gt(st − µ̃).

Iterating between t− 1 and zero, we find

xt−1 =
t−1∑

t′=1

Jt−1,t′+1Gt′(st − µ̃) (B.6)

=
t−1∑

t′=1

Jt−1,t′+1Gt′(ζt + µ− µ̃ + C∗x∗t−1),

where the second step follows from st = ζt + s∗t and Equation (B.4). Substituting x∗t′−1 from
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Equation (B.5), and grouping terms, we find

xt−1 =
t−1∑

t′=1

Mt,t′ζt′ + Mµ
t (µ− µ̃).

Combining this with Equation

st(p̃) = µ̃ + Cxt−1 (B.7)

(which follows from (6)), we find (B.3).

Lemma 4 The error e(p̃) is given by

e(p̃) ≡ lim
t→∞E∗ [s∗t − st(p̃)]2 = σ∗2s

∞∑

k=0

N2
k + (Nµ)2(µ− µ̃)2, (B.8)

where

Nk ≡ C∗(A∗)kG∗ − C

[
DkG +

k−1∑

k′=0

Dk−1−k′GC∗(A∗)k′G∗
]

, (B.9)

Nµ ≡ 1− C
∞∑

k=0

DkG.

Proof: Lemma 3 implies that

s∗t − st(p̃) =
t−1∑

t′=1

Nt,t′ζt′ + Nµ
t (µ− µ̃), (B.10)

where

Nt,t′ ≡ C∗(A∗)t−t′−1G∗
t′ − CMt,t′ ,

Nµ
t ≡ 1− CMµ

t .

Therefore,

[s∗t − st(p)]2 =
t−1∑

t′,t′′=1

Nt,t′Nt,t′′ζt′ζt′′ + (Nµ
t )2(µ− µ̃)2 + 2

t−1∑

t′=1

Nt,t′N
µ
t ζt′(µ− µ̃). (B.11)

Since the sequence {ζt′}t′=1,..,t−1 is independent with mean zero under the true measure P ∗, we

have

E∗ [s∗t − st(p)]2 =
t−1∑

t′=1

N2
t,t′σ

∗2
s,t′ + (Nµ

t )2(µ− µ̃)2. (B.12)
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We first determine the limit of
∑t−1

t′=1 N2
t,t′σ

∗2
s,t′ . We can write this as

t−1∑

t′=1

N2
t,t′σ

∗2
s,t′ =

t−1∑

k=1

N2
t,t−kσ

∗2
s,t−k =

∞∑

k=1

φk,t,

defining the double sequence {φk,t}k,t≥1 as

φk,t ≡
{

N2
t,t−kσ

∗2
s,t−k for k = 1, .., t− 1,

0 for k > t− 1.

To determine the limit of
∑∞

k=0 φk,t when t goes to ∞, we determine the limit of φk,t for given k

and then apply the dominated convergence theorem. The definitions of Nt,t′ and Mt,t′ imply that

Nt,t−k = C∗(A∗)k−1G∗
t−k − C

[
Jt−1,t−k+1Gt−k +

k−1∑

k′=1

Jt−1,t−k+k′+1Gt−k+k′C
∗(A∗)k′−1G∗

t−k

]
.

(B.13)

Equation (6) applied to the recursive-filtering problem under the true model implies that

σ∗2s,t = C∗Σ∗t−1(C
∗)′ + V ∗.

When t goes to ∞, G∗
t goes to G∗, Gt to G, Σ∗t to Σ∗, and Jt,t−k to Dk+1. Therefore,

lim
t→∞Nt,t−k = C∗(A∗)k−1G∗ − C

[
Dk−1G +

k−1∑

k′=1

Dk−k′−1GC∗(A∗)k′−1G∗
]

= Nk−1,

lim
t→∞σ∗2s,t−k = C∗Σ∗(C∗)′ + V ∗ = C∗Σ∗(C∗)′ + σ∗2η + σ∗2ε ≡ σ∗2s , (B.14)

implying that

lim
t→∞φk,t = N2

k−1σ
∗2
s .

The dominated convergence theorem will imply that

lim
t→∞

∞∑

k=1

φk,t =
∞∑

k=1

lim
t→∞φk,t = σ∗2s

∞∑

k=0

N2
k , (B.15)

if there exists a sequence {φk}k≥1 such that
∑∞

k=1 φk < ∞ and |φk,t| ≤ φk for all k, t ≥ 1. To

construct such a sequence, we note that the eigenvalues of A∗ have modulus smaller than one,

and so do the eigenvalues of D ≡ A − GC (Balakrishnan, Theorem 4.2.3, p.111). Denoting by

a < 1 the maximum of the moduli, we can construct a dominating sequence {φk}k≥1 that decays

geometrically at the rate a2k.
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We next determine the limit of Nµ
t . We can write this as

Nµ
t = 1− C

t−1∑

k=1

Jt−1,t−k+1Gt−k = 1− C
∞∑

k=1

χk,t,

defining the double sequence {χk,t}k,t≥1 as

χk,t ≡
{

Jt−1,t−k+1Gt−k for k = 1, .., t− 1,
0 for k > t− 1.

It is easy to check that the dominated convergence theorem applies for the sequence {χk,t}k,t≥1 as

well, and thus

lim
t→∞Nµ

t = 1− C lim
t→∞

[ ∞∑

k=1

χk,t

]
= 1− C

∞∑

k=1

lim
t→∞χk,t = 1− C

∞∑

k=0

DkG = Nµ. (B.16)

The lemma follows by combining Equations (B.12), (B.15), and (B.16).

Proof of Theorem 1: Equation (12) implies that

2 log Lt(Ht|p̃)
t

= − log(2π)−
∑t

t′=1 log σ2
s,t′(p̃)

t
− 1

t

t∑

t′=1

[st′ − st′(p̃)]2

σ2
s,t′(p̃)

. (B.17)

To determine the limit of the second term, we note that Equation (6) applied to Freddy’s

recursive-filtering problem under p̃ implies that

σ2
s,t(p̃) = CΣt−1C

′ + V.

Therefore,

lim
t→∞σ2

s,t(p̃) = CΣC ′ + V ≡ σ2
s(p̃), (B.18)

lim
t→∞

∑t
t′=1 log σ2

s,t′(p̃)

t
= lim

t→∞ log σ2
s,t = log σ2

s(p̃). (B.19)

To determine the limit of the third term, we write it as

1
t

t∑

t′=1

ζ2
t′

σ2
s,t′(p̃)

︸ ︷︷ ︸
X

+
1
t

t∑

t′=1

2ζt′ [s∗t′ − st′(p̃)]
σ2

s,t′(p̃)
︸ ︷︷ ︸

Y

+
1
t

t∑

t′=1

[s∗t′ − st′(p̃)]2

σ2
s,t′(p̃)

︸ ︷︷ ︸
Z

.

The terms (X, Y, Z) are averages of random variables, and to determine their limits we apply a law

of large numbers (LLN). An appropriate LLN in our setting is that of McLeish (1975) because it

deals with random variables that are non-independent and non-identically distributed. To apply
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McLeish’s LLN, we must define a probability space (Ω,F , P ), a sequence {Ft}t∈Z of σ-algebras,

and a sequence {Ut}t≥1 of random variables. The pair ({Ft}t∈Z, {Ut}t≥1) is a mixingale (McLeish,

Definition 1.2, p.830) if and only if there exist sequences {ct}t≥1 and {ψk}k≥0 of nonnegative

constants, with limk→∞ ψk = 0, such that for all t ≥ 1 and k ≥ 0:

‖Et−kUt‖2 ≤ ψkct, (B.20)

‖Ut − Et+kUt‖2 ≤ ψk+1ct, (B.21)

where ‖.‖2 denotes the L2 norm, and Et′Ut the expectation of Ut conditional on Ft′ . McLeish’s

LLN (Corollary 1.9, p.832) states that if ({Ft}t∈Z, {Ut}t≥1) is a mixingale, then

lim
t→∞

1
t

t∑

t′=1

Ut′ = 0

almost surely, provided that
∑∞

t=1 c2
t /t2 < ∞ and {ψk}k≥0 is of size −1/2. A sufficient condition

for a monotone sequence {ψk}k≥0 to be of size −1/2 is (p.831) that
∑∞

k=1 ψk < ∞.

In our model, we take the probability measure to be the true measure P ∗, and define the

sequence {Ft}t∈Z as follows: for t ≤ 0, Ft = {Ω, ∅}, and for t ≥ 1, Ft is the σ-algebra generated by

Ht. We first show that ({Ft}t∈Z, {Xt}t≥1) is a mixingale, where

Xt ≡ ζ2
t

σ2
s,t(p̃)

− E∗
[

ζ2
t

σ2
s,t(p̃)

]
=

ζ2
t

σ2
s,t(p̃)

− σ∗2s,t

σ2
s,t(p̃)

.

Equation (B.21) trivially holds since E∗
t+kXt = Xt. To show Equation (B.20), we note that E∗

t Xt =

Xt, and E∗
t−kXt = E∗Xt = 0 for k ≥ 1 since the sequence {ζt}t≥1 is independent. Therefore,

Equation (B.21) holds with ψ0 = 1, ψk = 0 for k ≥ 1, and ct = supt≥1 ‖Xt‖2 for t ≥ 1. McLeish’s

LLN implies that

lim
t→∞

1
t

t∑

t′=1

Xt′ = 0

almost surely. Therefore,

lim
t→∞X = lim

t→∞
1
t

[
t∑

t′=1

Xt′ +
t∑

t′=1

σ∗2s,t′

σ2
s,t′(p̃)

]
= lim

t→∞
σ∗2s,t

σ2
s,t(p̃)

=
σ∗2s

σ2
s(p̃)

(B.22)

almost surely.
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We next show that ({Ft}t∈Z, {Yt}t≥1) is a mixingale, where

Yt ≡ 2ζt[s∗t − st(p̃)]
σ2

s,t(p̃)
.

Equation (B.21) trivially holds since E∗
t+kYt = Yt. To show Equation (B.20), we note that E∗

t Yt =

Yt, and

E∗
t−kYt =

E∗
t−k [ζt[s∗t − st(p̃)]]

σ2
s,t(p̃)

=
E∗

t−k[ζt]E∗
t−k [s∗t − st(p̃)]
σ2

s,t(p̃)
= 0

for k ≥ 1, where the second step follows because s∗t − st(p̃) depends only on Ht−1 and thus

is independent on ζt. Therefore, Equation (B.21) holds with ψ0 = 1, ψk = 0 for k ≥ 1, and

ct = supt≥1 ‖Yt‖2 for t ≥ 1. McLeish’s LLN implies that

lim
t→∞Y = lim

t→∞
1
t

t∑

t′=1

Yt′ = 0 (B.23)

almost surely.

We finally show that ({Ft}t∈Z, {Zt}t≥1) is a mixingale, where

Zt ≡ [s∗t − st(p̃)]2

σ2
s,t(p̃)

−E∗
[

[s∗t − st(p̃)]2

σ2
s,t(p̃)

]
.

Equation (B.21) trivially holds since E∗
t+kZt = Zt. To show Equation (B.20), we note that

‖E∗
t−kZt‖2 =

[
V ar∗

[
E∗

t−k[s
∗
t − st(p̃)]2

]] 1
2

σ2
s,t(p̃)

, (B.24)

where V ar∗ denotes the variance under the true measure P ∗. Equation (B.11) implies that

E∗
t−k[s

∗
t−st(p̃)]2 =

t−1∑

t′=t−k+1

N2
t,t′σ

∗2
s,t′+

t−k∑

t′,t′′=1

Nt,t′Nt,t′′ζt′ζt′′+(Nµ
t )2(µ−µ̃)2+2

t−k∑

t′=1

Nt,t′N
µ
t ζt′(µ−µ̃).

Since

[V ar(U1 + U2)]
1
2 ≤ [V ar(U1)]

1
2 + [V ar(U2)]

1
2

for any two random variables (U1, U2), we have

[
V ar∗

[
E∗

t−k[s
∗
t − st(p)]2

]] 1
2 ≤

t−k∑

t′,t′′=1

|Nt,t′Nt,t′′ | [V ar∗(ζt′ζt′′)]
1
2 +2

t−k∑

t′=1

|Nt,t′N
µ
t (µ− µ̃)| [V ar∗(ζt′)]

1
2 .

Denoting by a < 1 the maximum of the moduli of the eigenvalues of A∗ and D, it is easy to show
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that
∑t−k

t′=1 |Nt,t′ | is bounded by a sequence φk that decays geometrically at the rate ak. The same is

true for
[
V ar∗

[
E∗

t−k[s
∗
t − st(p)]2

]] 1
2 and ‖E∗

t−kZt‖2. Therefore, we can choose ψk = φk and ct = 1.

McLeish’s LLN implies that

lim
t→∞

1
t

t∑

t′=1

Zt′ = 0

almost surely. Therefore,

lim
t→∞Z = lim

t→∞
1
t

[
t∑

t′=1

Zt′ +
t∑

t′=1

E∗[s∗t′ − st′(p̃)]2

σ2
s,t′(p̃)

]
= lim

t→∞
E∗[s∗t − st(p̃)]2

σ2
s,t(p̃)

=
e(p̃)
σ2

s(p̃)
(B.25)

almost surely. The proposition follows from Equations (B.17) (B.22), (B.23), and (B.25).

Proof of Corollary 1: Consider p̃ /∈ m(P ), and p̂ ∈ P such that F (p̂) > F (p̃). Equation (13)

implies that

πt(p̃) =
π0(p̃)Lt(Ht|p̃)∑

p̃′∈P π0(p̃′)Lt(Ht|p̃′) <
π0(p̃)Lt(Ht|p̃)
π0(p̂)Lt(Ht|p̂)

.

Since from Theorem 1
Lt(Ht|p̃)
Lt(Ht|p̂)

∼ exp [t [F (p̃)− F (p̂)]] → 0,

πt(p̃) → 0 almost surely.

Proof of Proposition 3: Consider p̃ ∈ P such that e(p̃) = e(P ) and σ2
s(p̃) = σ∗2s + e(p̃). We

will show that F (p̃) ≥ F (p̂) for any p̂ = (σ̂2
η, ρ̂, σ̂2

ε , µ̂) ∈ P . Denote by Σ̂ and Ĝ the steady-state

variance and regression coefficient for the recursive-filtering problem under p̂, and by Σ̂λ and Ĝλ

those under p̂λ ≡ (λσ̂2
η, ρ̂, λσ̂2

ε , µ̂) for λ > 0. It is easy to check that λΣ̂ solves Equation (10) for p̂λ.

Since this equation has a unique solution, Σ̂λ = λΣ̂. Equation (9) then implies that Ĝλ = Ĝ, and

Equations (B.8) and (B.18) imply that e(p̂λ) = e(p̂) and σ2
s(p̂λ) = λσ2

s(p̂). Therefore,

F (p̂λ) = −1
2

[
log

[
2πλσ2

s(p̂)
]
+

σ∗2s + e(p̂)
λσ2

s(p̂)

]
. (B.26)

Since this function is maximized for

λ∗ =
σ∗2s + e(p̂)

σ2
s(p̂)

,

we have

F (p̂) ≤ F (p̂λ∗) =
1
2

[
log

[
2π

[
σ∗2s + e(p̂)

]]
+ 1

] ≤ 1
2

[
log

[
2π

[
σ∗2s + e(p̃)

]]
+ 1

]
= F (p̃),

where the second inequality follows from e(p̃) = e(P ) and the second equality from σ2
s(p̃) = σ∗2s +

e(p̃). The proof of the converse is along the same lines.

Lemma 5 shows that any convergent model must satisfy µ̃ = µ.
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Lemma 5 For all p̃ ∈ m(P ), µ̃ = µ.

Proof: It suffices to show that Nµ > 0: Lemma 4 will then imply that if µ̃ 6= µ, e(p̃) can be

reduced by setting µ̃ = µ. From the definition of Nµ it follows that

Nµ = 1− C(I −D)−1G = 1− C(I −A + CG)−1G.

Replacing A and C by their values, and denoting the components of G by G1 and G2, we find after

some algebra

1− C(I −A + CG)−1G =
(1− ρ̃)(1− δ + α)

[1− ρ̃(1−G1)](1− δ + α)− α(1− ρ̃)G2
.

This is non-zero since ρ̃, α, δ ∈ [0, 1).

Lemma 6 determines when a model can predict the signals equally well as the true model.

Lemma 6 The error e(p̃) is zero if and only if µ̃ = µ and

CAkG = C∗(A∗)kG∗ (B.27)

for all k ≥ 0.

Proof: From Lemmas 4 and 5 it suffices to show that {Nk}k≥0 = 0 if and only if CAkG =

C∗(A∗)kG∗ for all k ≥ 0. Setting ak ≡ C∗(A∗)kG∗ − CAkG and

uk ≡ AkG−
[
DkG +

k−1∑

k′=0

Dk−1−k′GC∗(A∗)k′G∗
]

,

we can write Nk = ak + Cuk. Simple algebra shows that

uk = Duk−1 −Gak−1.

Iterating between k and zero, and using the initial condition u0 = 0, we find

uk = −
k−1∑

k′=0

Dk−1−k′Gak′ .

Therefore,

Nk = ak −
k−1∑

k′=0

CDk−1−k′Gak′ . (B.28)

Equation (B.28) implies that{Nk}k≥0 = 0 if and only if {ak}k≥0 = 0.
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Proof of Proposition 4: Tommy can achieve minimum error e(P0) = 0 by using the vector of

true parameters p. Since e(P0) = 0, Proposition 3 and Lemma 6 imply that p̃ ∈ m(P0) if and only

if (i) µ̃ = µ, (ii) CAkG = C∗(A∗)kG∗ for all k ≥ 0, and (iii) σ2
s(p̃) = σ∗2s . Since α = 0 for Tommy,

we can write Condition (ii) as

ρ̃k+1G1 = ρk+1G∗
1. (B.29)

We can also write the element (1,1) of Equation (10) as

Σ11 =
(ρ̃2Σ11 + σ̃2

η)σ̃
2
ε

ρ̃2Σ11 + σ̃2
η + σ̃2

ε

, (B.30)

Σ∗11 =
(ρ2Σ∗11 + σ2

η)σ
2
ε

ρ2Σ∗11 + σ̃2
η + σ̃2

ε

, (B.31)

and the first element of Equation (11) as

G1 =
ρ̃2Σ11 + σ̃2

η

ρ̃2Σ11 + σ̃2
η + σ̃2

ε

, (B.32)

G∗
1 =

ρ2Σ∗11 + σ2
η

ρ2Σ∗11 + σ2
η + σ2

ε

, (B.33)

where the first equation in each case is for p̃ and the second for p. Using Equations (B.18) and

(B.14), we can write Condition (iii) as

ρ̃2Σ11 + σ̃2
η + σ̃2

ε = ρ2Σ∗11 + σ2
η + σ2

ε . (B.34)

Suppose that ρσ2
η > 0, and consider p̃ that satisfies Conditions (i)-(iii). Equation (B.33) implies

that G∗
1 > 0. Since Equation (B.29) must hold for all k ≥ 0, we have ρ = ρ∗ and G1 = G∗

1. We

next write Equations (B.30)-(B.33) in terms of the normalized variables s̃2
η ≡ σ̃2

η/σ̃2
ε , S11 ≡ Σ11/σ̃2

ε ,

s2
η ≡ σ2

η/σ2
ε , and S∗11 ≡ Σ∗11/σ2

ε . Equations (B.30) and (B.31) then imply that S11 = g(s̃2
η) and

S∗11 = g(s2
η) for the same function g, and Equations (B.32), (B.33), and G1 = G∗

1 imply that s̃2
η = s2

η.

Equation (B.34) then implies that σ̃2
ε = σ2

ε , and thus p̃ = p.

Suppose next that ρσ2
η = 0, and consider p̃ that satisfies Conditions (i)-(iii). If ρ = 0, Equation

(B.29) implies that ρ̃k+1G1 = 0, and Equation (B.34) that ρ̃2Σ11 + σ̃2
η + σ̃2

ε = σ2
η + σ2

ε . If σ2
η = 0,

the same implications follow because Σ∗ = 0 and G∗ = [0, 1]′ from Equations (10) and (11).

Equation ρ̃k+1G1 = 0 implies that either ρ̃ = 0, or G1 = 0 in which case σ̃2
η = 0. If ρ̃ = 0, then

σ̃2
η + σ̃2

ε = σ2
η + σ2

ε . If σ̃2
η = 0, then σ̃2

ε = σ2
η + σ2

ε . Therefore, p̃ is as in the proposition. Showing

that all p̃ in the proposition satisfy Conditions (i)-(iii) is obvious.

Proof of Proposition 5: We determine the parameter vectors p̃ that belong to m(P0) and satisfy
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e(p̃) = 0. From Proposition 3 and Lemma 6, these must satisfy (i) µ̃ = µ, (ii) CAkG = C∗(A∗)kG∗

for all k ≥ 0, and (iii) σ2
s(p̃) = σ∗2s . Since ρσ2

η = 0, we can write Condition (ii) as

ρ̃k+1G1 − α(δ − α)kG2 = 0, (B.35)

and Condition (iii) as

CΣC ′ + V = σ2
η + σ2

ε . (B.36)

Suppose first that G2 6= 0. Equation (B.35) then implies that ρ̃ = δ− α. Multiplying Equation

(11) by an arbitrary 1× 2 vector v, and noting that vA = (δ − α)A, we find

vG =
(δ − α)vΣC ′ + vU

CΣC ′ + V
. (B.37)

Writing Equation (10) as

Σ = AΣA−G(CΣA + U ′) + W,

multiplying by v, and noting that vA = (δ − α)A, we find

vΣ =
[−vG(CΣA + U ′) + vW

]
[I − (δ − α)A]−1. (B.38)

Substituting vΣ into Equation (B.37), we find

vG

[
1 +

(δ − α)(CΣA + U ′)[I − (δ − α)A]−1C ′

CΣC ′ + V

]
=

(δ − α)vW [I − (δ − α)A]−1C ′ + vU

CΣC ′ + V
. (B.39)

If v satisfies vG = 0, then Equation (B.39) implies that

(δ − α)vW [I − (δ − α)A]−1C ′ + vU = 0. (B.40)

Since CG = 0 from Condition (ii), Equation (B.40) holds for v = C:

(δ − α)CW [I − (δ − α)A]−1C ′ + CU = 0. (B.41)

Since CG = 0, Equations (B.36) and (B.38) imply that

CW [I − (δ − α)A]−1C ′ + V = σ2
η + σ2

ε . (B.42)

Substituting for ρ̃ = δ − a, A, C, V , W , and U , we find that the solution (σ̃2
η, σ̃

2
ε ) to the system of

(B.41)-(B.42) is p̃ = p̃1.

Suppose next that G2 = 0. Equation (B.40) then holds for v ≡ (0, 1) since vA = (δ − α)v and
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vG = 0. Solving this equation, we find σ̃2
ε = 0. The unique solution of Equation (10) then is Σ = 0,

and Equation (B.36) implies that σ̃2
η = σ2

η + σ2
ε . Equation (11) implies that G1 = 1, and Equation

CG = 0 implies that ρ̃ = 0. Therefore, p = p2.

Summarizing, the only parameter vectors that can satisfy Conditions (i)-(iii) are p̃1 and p̃2.

Showing that p̃2 indeed satisfies (i)-(iii) is straightforward. Showing the same for p̃1 follows by

retracing the previous steps and noting that the term in brackets in Equation (B.39) is non-zero.

Since p̃1 and p̃2 are the only parameter vectors to satisfy (i)-(iii), the proposition follows.

Proof of Lemma 2: Equations (6) and (B.1) imply that

Et(st′) = µ̃ + CEt(xt′−1) = µ̃ + CAt′−t−1Et(xt)

for t′ > t. Therefore,
dEt(st′)

dst
= CAt′−t−1 dEt(xt)

dst
= CAt′−t−1G,

where the second step follows from the steady-state version of (7).

Proof of Proposition 6: Proposition 5 implies that when ρ /∈ {0, δ − α}, e(Pρ) > 0. Lemma

5 implies that any element of m(Pρ) satisfies µ̃ = µ. Therefore, the proposition will follow if we

show that the error e(p̃) is not minimized for s̃2
η ≡ σ̃2

η/σ̃2
ε ∈ {0,∞}. To compute e(p̃), we note

that the assumption σ2
η = 0 generates the following sequence of implications: Σ∗ = 0, G∗ = [0, 1]′,

C∗(A∗)kG∗ = 0 for all k ≥ 0, Nk = −CDkG for all k ≥ 0, and

e(p̃) = (σ∗s)
2
∞∑

k=0

(CDkG)2.

Consider the behavior of e(p̃) at s̃2
η = 0. Since Σ = 0 and G = [0, 1]′,

D ≡ A−GC =
[

ρ 0
−ρ δ

]
,

Dk =

[
ρk 0

−ρρk−δk

ρ−δ δk

]
,
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and CDkG = −αδk. Therefore, the derivative of e(p̃) w.r.t. s̃2
η at s̃2

η = 0 is

de(p̃)
ds̃2

η

= 2(σ∗s)
2
∞∑

k=0

CDkG

(
C

dDk

ds̃2
η

G + CDk dG

ds̃2
η

)

= 2(σ∗s)
2
∞∑

k=0

CDkG

(
−

k−1∑

k′=0

CDk′ dG

ds̃2
η

CDk−1−k′G + CDk dG

ds̃2
η

)

= −2(σ∗s)
2
∞∑

k=0

αδk

(
k−1∑

k′=0

CDk′ dG

ds̃2
η

αδk−1−k′ + CDk dG

ds̃2
η

)
.

The error e(p̃) is not minimized for s̃2
η = 0 if the derivative is negative. Since

CDk dG

ds̃2
η

=
(

ρk+1 + αρ
ρk − δk

ρ− δ

)
dG1

ds̃2
η

− αδk dG2

ds̃2
η

,

the derivative is negative if dG1/ds̃2
η > 0 and dG2/ds̃2

η < 0. To show these inequalities, we

differentiate Equations (10) and (11), after writing them in terms of s̃2
η and S ≡ Σ/σ̃2

η. Dividing

both sides by σ̃2
ε , we can write Equation (10) as

S = ASA′ − 1
CSC ′ + 1 + s̃2

η

[
ASC ′ + (s̃2

η, 1)′
] [

ASC ′ + (s̃2
η, 1)′

]′ +
[

s̃2
η 0
0 1

]
. (B.43)

Likewise, we can write Equation (11) as

G ≡ 1
CSC ′ + 1 + s̃2

η

[
ASC ′ + (s̃2

η, 1)′
]
. (B.44)

Differentiating Equation (B.43) w.r.t. s̃2
η at s̃2

η = 0, we find

dS11

ds̃2
η

=
1

1− ρ2
,

dS12

ds̃2
η

= − 1
(1− ρ2)(1− ρδ)

,

dS22

ds̃2
η

=
1 + ρδ

(1− ρ2)(1− ρδ)(1− δ2)
.

Differentiating Equation (B.44), we then find

dG1

ds̃2
η

=
1− ρ(δ − α)

(1− ρ2)(1− ρδ)
> 0, (B.45)

dG2

ds̃2
η

= −(1 + ρα)(1− δ2) + δα(1 + ρδ)
(1− ρ2)(1− ρδ)(1− δ2)

< 0.
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Consider next the behavior of e(p̃) at s̃2
η = ∞. Since Σ = 0 and G = [1, 0]′,

D ≡ A−GC =
[

0 α

0 δ − α

]
,

Dk =
[

0 α(δ − α)k−1

0 (δ − α)k

]
,

CG = ρ, and CDkG = 0 for k > 0. The derivative of e(p̃) w.r.t. y ≡ 1/s̃2
η at y = 0 is

de(p̃)
dy

= 2(σ∗s)
2CGC

dG

dy
= 2(σ∗s)

2ρ

(
ρ
dG1

dy
− α

dG2

dy

)
.

The error e(p̃) is not minimized for s̃2
η = ∞ if the derivative is negative, which is ensured by

dG1/dy < 0 and dG2/dy > 0. To show these inequalities, we write Equations (10) and (11) in

terms of y and Y ≡ S/σ̃2
ε , and differentiate w.r.t. y.

Proof of Proposition 7: Consider a sequence {αn}n∈N converging to zero, and an element

p̃n ≡ ((σ̃2
η)n, ρ, (σ̃2

ε )n, µ) from the set m(Pρ) corresponding to αn. The proposition will follow

if we show that (s̃2
η)n

αn
≡ (σ̃2

η)n

αn(σ̃2
ε )n

converges to z and (σ̃2
ε )n converges to σ2

ε . Denoting the limits

of ((σ̃2
η)n, (σ̃2

ε )n,
(s̃2

η)n

αn
) by (`η, `ε, `s), the point (`η, ρ, `ε, µ) belongs to Tommy’s m(Pρ). (If the

sequences do not converge, we can extract converging subsequences.) Tommy’s m(Pρ) consists of

the unique element (0, ρ, σ2
ε , µ) because only this element belongs in both m(P0) (Proposition 4,

case σ2
η = 0) and Pρ. Therefore, `η = 0 and `ε = σ2

ε .

Recall from Proposition 6 that when s̃2
η converges to zero, G converges to [0, 1]′, CDkG converges

to −αδk, and G1/s̃2
η converges to 1−ρ(δ−α)

(1−ρ2)(1−ρδ)
(Equation (B.45)). Therefore, when v ≡ (α, σ̃2

η, σ̃
2
ε ,

s̃2
η

α )

converges to `v ≡ (0, 0, σ2
ε , `s), CDkG converges to zero and G1/s̃2

η converges to 1
1−ρ2 . Since

ak

α
= −CAkG

α
= −ρk+1G1 − α(δ − α)kG2

α
= (δ − α)kG2 − ρk+1

s̃2
η

α

G1

s̃2
η

,

we have

lim
v→`v

ak

α
= δk − `s

1− ρ2
ρk+1.

Equation (B.28) and limv→`v CDkG = 0 then imply that

lim
v→`v

Nk

α
= lim

v→`v

ak

α
= δk − `s

1− ρ2
ρk+1, (B.46)

and thus

lim
n→∞

e(p̃n)
α2

n

= lim
v→`v

e(p̃)
α2

= lim
v→`v

[
σ2

s(p̃)
∑∞

k=0 N2
k

α2

]
= σ2

ε

∞∑

k=0

(
δk − `s

1− ρ2
ρk+1

)2

≡ σ2
ε F (`s).
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Since p̃n minimizes the error e(p̃n), `s must minimize the function F (`s). The first-order condition

is ∞∑

k=0

ρk

(
δk − `s

1− ρ2
ρk+1

)
= 0

and implies `s = z.

Proof of Proposition 8: Equations (B.6) and (B.7) imply that in steady state

st′(p̃) ≡ Et′−1(st) = µ̃ + C
t−1∑

t′=1

Dt′−t−1G(st − µ̃),

and thus
t′−1∑

t′′=t

dEt′−1(st′)
dst′′

= C
t′−t−1∑

k=0

DkG. (B.47)

When σ2
η = 0, CDkG = −Nk. Equation (B.46) then implies that

lim
α→0

CDkG

α
=

(
z

1− ρ2
ρk+1 − δk

)
≡ ∆k,

and thus
t′−1∑

t′′=t

dEt′−1(st′)
dst′′

= αΓt′−t−1 + o(α),

where

Γk ≡
k∑

k′=0

∆k′ .

Using Equation (15) to substitute z, we find

∆0 = Γ0 =
ρ(δ − ρ)
1− ρδ

,

Γ∞ =
ρ− δ

(1− ρδ)(1− δ)
.

When ρ > δ, the function ∆k is negative for k = 0 and positive for large k. Since it can change sign

only once, it is negative and then positive. The function Γk is negative for k = 0, then decreases

(∆k < 0), then increases (∆k > 0), and is eventually positive (Γ∞ > 0). Therefore, Γk is negative

and then positive. When ρ < δ, the opposite conclusions hold.

Proof of Proposition 9: Suppose that ρ 6= δ − α, and consider p̃ such that e(p̃) = 0. Lemma 6

implies that for all k ≥ 0, CAkG = C∗(A∗)kG∗, i.e.,

ρ̃k+1G1 − α(δ − α)kG2 = ρk+1G∗
1. (B.48)
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Since ρ 6= δ − α, Equation (B.48) can hold only if one of (δ − α)k and ρk has a zero coefficient.

Since α, ρ, G∗
1 > 0 (the latter because σ2

η > 0), this is possible only if G2 = 0. Proceeding as in

Proposition 5, we can then show that σ̃2
ε = 0, and thus G1 = 1. Moreover, Equation (B.48) can

hold only if ρ̃ = ρ and G1 = G∗
1, which is a contradiction since σ2

ε > 0 implies G∗
1 ∈ (0, 1).

Suppose next that ρ = δ−α. We can then proceed as in Proposition 5 to construct p̃ such that

e(p̃) = 0.

Proof of Proposition 10: Lemma 5 implies that µ̃ = µ. Consider a sequence {αn}n∈N converging

to zero, and an element p̃n ≡ ((σ̃2
η)n, ρ̃n, (σ̃2

ε )n, µ) from the set m(P0) corresponding to αn and

(σ2
η)n = ωαn. The proposition will follow if we show that (s̃2

η)n

αn
converges to z, ρ̃n converges to

r, and (σ̃2
ε )n converges to σ2

ε . Denoting the limits of ((σ̃2
η)n, ρ̃n, (σ̃2

ε )n,
(s̃2

η)n

αn
) by (`η, `ρ, `ε, `s), the

point (`η, `ρ, `ε, µ) belongs to Tommy’s m(P0) (Proposition 4, case σ2
η = 0).

Suppose that `ρ > 0. Since the only element of Tommy’s m(P0) with persistence parameter `ρ

is (0, `ρ, σ
2
ε , µ), we have `η = 0 and `ε = σ2

ε . Since

ak

α
=

C∗(A∗)kG∗ − CAkG

α
=

ρk+1G∗
1 + α(δ − α)kG2 − ρ̃k+1G1

α
= ρk+1ω

G∗
1

s2
η

+(δ−α)kG2−ρ̃k+1
s̃2
η

α

G1

s̃2
η

,

the same argument as in the proof of Proposition 7 implies that

lim
n→∞

e(p̃n)
α2

n

= σ2
ε

∞∑

k=0

(
ω

1− ρ2
ρk+1 + δk − `s

1− `2
ρ

`k+1
ρ

)2

≡ σ2
ε H(`ρ, `s).

Since p̃n minimizes the error e(p̃n), (`ρ, `s) minimizes the function H(`ρ, `s). Treating this function

as one in (`ρ, `s/(1− `2
ρ)), the first-order condition w.r.t. the second argument is

∞∑

k=0

`k
ρ

(
ω

1− ρ2
ρk+1 + δk − `s

1− `2
ρ

`k+1
ρ

)
= 0 (B.49)

and w.r.t. the first is

∞∑

k=0

(k + 1)`k
ρ

(
ω

1− ρ2
ρk+1 + δk − `s

1− `2
ρ

`k+1
ρ

)
= 0. (B.50)

Computing the infinite sums, we can write Equation (B.49) as

ωρ

(1− ρ2)(1− ρ`ρ)
+

1
1− `ρδ

− `s`ρ

(1− `ρ)2
= 0 (B.51)
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and Equation (B.50) as

ωρ

(1− ρ2)(1− ρ`ρ)2
+

1
(1− `ρδ)2

− `s`ρ

(1− `ρ)3
= 0. (B.52)

Eliminating `s from Equations (B.51) and (B.52), we find `ρ = r. Substituting into Equation

(B.51), we find `s = z. Thus, if `ρ > 0, the limits (`ρ, `ε, `s) equal (r, σ2
ε , z).

We next show that `ρ cannot be zero. Suppose, by contradiction, that `ρ = 0. Denoting the

limits of (ρ̃n(G1)n/αn, (G2)n) by (`φ, `G), we have

lim
n→∞

e(p̃n)
α2

n

= σ2
ε

(
ω

1− ρ2
ρ + `G − `φ

)2

+ σ2
ε

∞∑

k=1

(
ω

1− ρ2
ρk+1 + `Gδk

)2

≥ σ2
ε

∞∑

k=1

(
ω

1− ρ2
ρk+1 + `Gδk

)2

≥ σ2
ε

∞∑

k=1

(
ω

1− ρ2
ρk+1

)2

,

where the last step follows because G ≥ 0 for Tommy. Since p̃n minimizes the error, we have

H(`ρ, `s) ≥
∞∑

k=1

(
ω

1− ρ2
ρk+1

)2

≡ ψ,

for all (`ρ, `s). Simple algebra shows that Equations

H(ρ, ω) ≥ ψ

and (19) are inconsistent, and so are Equations

min
`s

H(δ, `s) ≥ ψ

and (18).

Proof of Proposition 11: Equation (B.47) implies that

t′−1∑

t′′=t

dEt′−1(st′)
dst′′

−
t′−1∑

t′′=t

dE∗
t′−1(st′)
dst′′

= C

t′−t−1∑

k=0

DkG− C∗
t′−t−1∑

k=0

(D∗)kG∗.

Writing that Nk = 0 for the true model, and subtracting this equation from (B.9), we find

CDkG− C∗(D∗)kG∗ =

[
C∗

k−1∑

k′=0

(D∗)k−1−k′G∗ − C

k−1∑

k′=0

Dk−1−k′G

]
C∗(A∗)k′G∗ −Nk.
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Since CDkG and C∗(D∗)kG∗ converge to zero, while C∗(A∗)kG∗/α converges to a finite limit, we

have

lim
α→0

CDkG− C∗(D∗)kG∗

α
= − lim

α→0

Nk

α
= − lim

α→0

ak

α
=

(
z

1− r2
rk+1 − δk − ω

1− ρ2
ρk+1

)
≡ ∆k

and thus
t′−1∑

t′′=t

dEt′−1(st′)
dst′′

= αΓt′−t−1 + o(α),

where

Γk ≡
k∑

k′=0

∆k′ .

For k = 0, the functions ∆0 and Γ0 take the value

∆0 = Γ0 =
zr

1− r2
− 1− ωρ

1− ρ2

=
1− r2

1− rδ
+

ωρ(1− r2)
(1− ρ2)(1− ρr)

− 1− ωρ

1− ρ2

=
r2(δ − r)(ρ− δ)

(1− rδ)2
< 0,

where the second step follows from Equation (20), the third from (21), and the last because r is

between ρ and δ. A similar calculation shows that

Γ∞ =
zr

(1− r2)(1− r)
− 1

1− δ
− ωρ

(1− ρ2)(1− ρ)

=
(1− r)(δ − r)(ρ− δ)

(1− rδ)2(1− δ)(1− ρ)
< 0.

Since r is between ρ and δ, ∆k is negative for large k. Since Equation (B.49) can be written as

∞∑

k=0

rk

(
ω

1− ρ2
ρk+1 + δk − z

1− r2
rk+1

)
= 0 ⇔

∞∑

k=0

rk∆k = 0, (B.53)

∆k has to be positive for some k. Therefore, ∆k is negative, then positive, and then negative again,

because it can change sign at most twice. (The latter is because the derivative of ∆k/ρk can change

sign at most once, and thus ∆k/ρk can change sign at most twice.)

The function Γk is negative for k = 0, then decreases (∆k < 0), then increases (∆k > 0), then

decreases again (∆k < 0), and is eventually negative (Γ∞ < 0). Therefore, Γk can either be (i)

always negative or (ii) negative, then positive, and then negative again. To rule out (i), we write
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Equation (B.53) as

Γ0 +
∞∑

k=1

(Γk − Γk−1) rk = 0 ⇔
∞∑

k=0

Γk

(
rk − rk+1

)
= 0.
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