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". . . professional investment may be likened to those newspaper competitions in which the 
competitors have to pick out the six prettiest faces from a hundred photographs, the prize being 
awarded to the competitor whose choice most nearly corresponds to the average preferences of 
the competitors as a whole; so that each competitor has to pick, not those faces which he himself 
finds prettiest, but those which he thinks likeliest to catch the fancy of the other competitors, all 
of whom are looking at the problem from the same point of view. It is not a case of choosing 
those which, to the best of one's judgment, are really the prettiest, nor even those which average 
opinion genuinely thinks the prettiest. We have reached the third degree where we devote our 
intelligences to anticipating what average opinion expects the average opinion to be. And there 
are some, I believe, who practice the fourth, fifth and higher degrees." 

—John Maynard Keynes, The General Theory of Employment, Interest, and Money 
 

This paper reports an experiment that elicits subjects' initial responses to 16 dominance-

solvable two-person guessing games. The structure is publicly announced except for varying 

payoff parameters, to which subjects are given free access. Varying the parameters allows very 

strong separation of the behavior implied by leading decision rules. Subjects' decisions and 

searches show that most understood the games and sought to maximize payoffs, but that many 

had simplified models of others' decisions that led to systematic deviations from equilibrium. 

The predictable component of their deviations is well explained by a structural non-equilibrium 

model of initial responses based on level-k thinking. 

Keywords: noncooperative games, experimental economics, guessing games, bounded 

rationality, cognition, information search (JEL C72, C92, C51) 

                                                 
*Costa-Gomes: Department of Economics, University of York, Heslington, York YO10 5DD, United Kingdom, e-
mail mcg6@york.ac.uk; Crawford: Department of Economics, University of California, San Diego, 9500 Gilman 
Drive, La Jolla, California, 92093-0508, e-mail vcrawfor@dss.ucsd.edu. We thank Bruno Broseta, Colin Camerer, 
Yan Chen, Graham Elliott, Jerry Hausman, Nagore Iriberri, Eric Johnson, Rosemarie Nagel, Matthew Rabin, 
Tatsuyoshi Saijo, Jason Shachat, Joel Sobel, and two referees for helpful discussions and comments; Herbert 
Newhouse, Steven Scroggin, and Yang Li for research assistance; the U.K. Economic & Social Research Council 
(Costa-Gomes) and the U.S. National Science Foundation (Crawford and Costa-Gomes) for financial support; and 
the California Institute of Technology and the Institute for Social and Economic Research, Osaka University (Costa-
Gomes) and the University of Canterbury, New Zealand (Crawford) for their hospitality. Our experiments were run 
in the University of California, San Diego's Economics Experimental and Computational Laboratory (EEXCL), with 
technical assistance from lab administrators Kevin Sheppard and Maximilian Auffhammer; and in the University of 
York's Centre for Experimental Economics (EXEC). One pilot session was run at Hong Kong University of Science 
and Technology with the help of Benjamin Hak-Fung Chiao. Appendices A-H posted on the journal's website 
provide supplementary materials as indicated in the text. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7280679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Most applications of game theory assume equilibrium even in predicting initial responses 

to games played without clear precedents. However, there is substantial experimental evidence 

that initial responses often deviate systematically from equilibrium, especially when the 

reasoning that leads to it is not straightforward. This evidence also suggests that a structural 

model in which some players follow certain kinds of boundedly rational decision rules, in lieu of 

equilibrium, can out-predict equilibrium in applications involving initial responses. 

Modeling initial responses more accurately promises several benefits. It can establish the 

robustness of the conclusions of equilibrium analyses in games where boundedly rational rules 

mimic equilibrium. It can challenge the conclusions of applications to games where equilibrium 

is implausible without learning, and resolve empirical puzzles by explaining the systematic 

deviations from equilibrium such games often evoke. More generally, it can yield insights into 

cognition that elucidate many other aspects of strategic behavior. A leading example is learning, 

where assumptions about cognition determine which analogies between current and previous 

games players recognize and also sharply distinguish reinforcement from beliefs-based and more 

sophisticated rules, thereby influencing implications for convergence and equilibrium selection. 

The potential for improving on equilibrium models of initial responses is vividly illustrated 

by Rosemarie Nagel's (1995) and Teck-Hua Ho, Colin Camerer, and Keith Weigelt's (1998; 

"HCW") "guessing" or "beauty contest" experiments, inspired by Keynes' analogy quoted in our 

epigraph. In their games, n subjects (n = 15-18 in Nagel, n = 3 or 7 in HCW) made simultaneous 

guesses between lower and upper limits (0 and 100 in Nagel, 0 and 100 or 100 and 200 in 

HCW). The subject who guessed closest to a target (p = 1/2, 2/3, or 4/3 in Nagel; p = 0.7, 0.9, 

1.1, or 1.3 in HCW) times the group average guess won a prize. There were several treatments, 

each with identical targets and limits for all players and games. The structures were publicly 

announced, to justify comparing the results with predictions based on complete information. 

Although Nagel's and HCW's subjects played a game repeatedly, their first-round guesses 

can be viewed as initial responses if they treated their own influences on future guesses as 

negligible, which is plausible for all but HCW's 3-subject groups. With complete information, in 

all but one treatment the game is dominance-solvable in a finite (limits 100 and 200) or infinite 

(limits 0 and 100) number of rounds, with a unique equilibrium in which all players guess their 

lower (upper) limit when p < 1 (p > 1). As a result, equilibrium predictions depend only on 

rationality, in the decision-theoretic sense, and beliefs based on iterated knowledge of rationality. 
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Yet Nagel's subjects never made equilibrium guesses initially, and HCW's rarely did so. 

Most initial guesses respected from 0 to 3 rounds of iterated dominance, in games where 3 to an 

infinite number are needed to reach equilibrium (Nagel, Figure 1; HCW, Figures 2A-H and 3A-

B). Nagel's and HCW's data resemble neither "equilibrium plus noise" nor "equilibrium taking 

noise into account" as in quantal response equilibrium ("QRE"; Richard McKelvey and Thomas 

Palfrey (1995)). Their data do suggest that subjects' deviations from equilibrium have a coherent 

structure. In Nagel's games, for example, the distributions of guesses have spikes that track 50pk 

for k = 1, 2, 3 across the different targets p in her treatments (Nagel, Figure 1). Like the 

spectrograph peaks that foreshadow the existence of chemical elements, these spikes are 

evidence of a partly deterministic structure, one that is discrete and individually heterogeneous. 

Similarly structured initial responses have been found in matrix games by Dale Stahl and 

Paul Wilson (1994, 1995; "SW"), Miguel Costa-Gomes, Vincent Crawford, and Bruno Broseta 

(1998, 2001; "CGCB"), and Costa-Gomes and Georg Weizäsacker (2005); in other normal-form 

games by Camerer, Ho, and Juin-Kuan Chong (2004; "CHC"); and in extensive-form bargaining 

games by Camerer, Eric Johnson, Talia Rymon, and Shankar Sen (1993, 2002; "CJ"). As in the 

guessing games, subjects usually make undominated decisions; but they rely less often on 

dominance for others (T. Randolph Beard and Richard Beil (1994)), and reliance on iterated 

dominance seldom goes beyond three rounds.  

The main difficulty in analyzing the data from such experiments is identifying subjects' 

decision rules, or types, within the enormous set of possibilities. The above studies assume that 

each subject's decisions follow one of a small set of a priori plausible types, with error, and 

estimate which type best fits each subject's decisions econometrically. Leading types include L1 

(Level 1), which best responds to a uniform prior over its partner's decisions; L2 (or L3), which 

best responds to L1 (L2); D1 (Dominance 1), which does one round of deletion of dominated 

decisions and best responds to a uniform prior over its partner's remaining decisions; D2, which 

does two rounds of iterated deletion and best responds to a uniform prior over the remaining 

decisions; Equilibrium, which makes its equilibrium decision; and Sophisticated, which best 

responds to the distribution of other subjects' responses, and is included to test whether any 

subject has a prior understanding of others' decisions that transcends the other simple rules. 

Like Equilibrium, Lk and Dk types are rational, with perfect models of the game, and 

general in that they are applicable to any game. They are usually defined, as we shall do here, to 
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satisfy subsidiary assumptions of self-interest and risk-neutrality. Thus their only essential 

departure from Equilibrium is replacing its perfect model of others' decisions with a simple non-

equilibrium model.2 Lk's and Dk-1's guesses both survive k rounds of iterated elimination of 

dominated decisions and so in two-person games are k-rationalizable (B. Douglas Bernheim 

(1984)). These types mimic equilibrium in games that are dominance-solvable in small numbers 

of rounds, but deviate systematically in some more complex games, where their decisions can 

differ significantly, especially for the low values of k that are empirically plausible. Dk types are 

closer to how theorists analyze games, and Nagel's results are often taken as evidence of explicit 

finitely iterated dominance. But Lk types have larger estimated frequencies and predominate in 

applications (Crawford (2003); CHC; and Crawford and Nagore Iriberri (2005a, 2005b)).  

Successful applications depend on correctly specifying the structure of initial responses, 

but previous experiments leave considerable room for doubt on this issue. Previous designs—in 

which each subject repeatedly plays a single game with a large strategy space as in Nagel and 

HCW, or a series of different games with small strategy spaces as in SW and CGCB—only 

weakly separate the types included in the specification from each other and nearby types. Nagel's 

and HCW's games with p < 1 and limits 0 and 100 are an extreme example, where Lk's guesses 

[(0+100)/2]pk and Dk-1's guesses ([0+100pk-1]/2)p both track the spikes at 50pk. The freedom to 

specify the possible types also raises doubts about omitted types and overfitting via accidental 

correlations with included but irrelevant types. Thus, SW's, CHC's, and CGCB's high estimated 

numbers of L1 and L2 subjects might be no more than proxies for altruistic, spiteful, risk-averse, 

or confused Dk or Equilibrium subjects; or other, entirely different omitted types.3 

Our experiment resolves many of these doubts by eliciting subjects' responses to a series of 

16 guessing games designed for this purpose, and using a novel specification test to detect 

omitted types or overfitting. Like previous designs, ours suppresses learning and repeated-game 
                                                 
2Compare Reinhard Selten (1998): "Basic concepts in game theory are often circular in the sense that they are based 
on definitions by implicit properties…. Boundedly rational strategic reasoning seems to avoid circular concepts. It 
directly results in a procedure by which a problem solution is found." Lk makes precise predictions without closing 
the loop as for equilibrium by anchoring its beliefs in a uniform prior and adjusting them by iterating best responses. 
Dk does so by invoking a uniform prior after finitely iterated deletion of dominated decisions. Keynes' wording in 
our epigraph connotes Lk's finite iteration of best responses, anchored by true preferences rather than uniform priors, 
as is natural in a beauty contest. The informal literature on deception also features finite iteration of best responses, 
anchored by truthfulness or credulity (Crawford (2003, p. 139)).  
3For example, SW (1994) found large numbers of L1 and L2 subjects in an econometric analysis that did not include 
SW's (1995) Worldly type, which best responds to an estimated mixture of a noisy L1 and a noiseless Equilibrium; 
but SW's (1995) data analysis from a closely related experiment almost completely rejected L2 in favor of Worldly. 
Our specification analysis suggests that SW's rejection of L2 may have been incorrect (Section II.D).     
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effects to justify an analysis of subjects' guesses as initial responses, game by game. Unlike 

Nagel's and HCW's games, ours have only two players, who make simultaneous guesses within 

limits. Each player has a lower limit (100 or 300), an upper limit (500 or 900), and a target (0.5, 

0.7, 1.3, or 1.5). A player's payoff is higher, the closer his guess is to his target times his partner's 

guess.4 The resulting games are asymmetric and, with complete information, dominance-solvable 

in from 3 to 52 rounds, with essentially unique equilibria determined by players' lower (upper) 

limits when the product of targets is less (greater) than one. Within this structure, which is 

publicly announced, the targets and limits vary independently across players and games, with 

targets either both less than one, both greater than one, or mixed. The targets and limits are 

normally hidden, but subjects can search for them, game by game, through a computer interface. 

Low search costs then make the structure effectively public knowledge. Varying the targets and 

limits makes it impossible for subjects to recall them from previous games and so makes 

monitoring information search a powerful additional tool for studying cognition.  

In our design a subject's sequence of guesses yields a strategic "fingerprint" that often 

reveals his type with great clarity. Of the 88 subjects in our main treatments, 43 made guesses 

that comply exactly (within 0.5) with one of our type's guesses in from 7 to 16 of the games (20 

L1, 12 L2, 3 L3, and 8 Equilibrium; Figures 1-4). These compliance levels are far higher than 

could plausibly occur by chance, given how strongly types' guesses are separated (Figure 5) and 

that guesses could take from 200 to 800 different rounded values in each game. Because our 

types specify precise, well-separated guess sequences in a very large space, these subjects' 

guesses allow one intuitively to "accept" the hypothesis that they followed their apparent types, 

and so rule out alternative interpretations of their behavior. In particular, because the accepted Lk 

and Equilibrium types build in risk-neutral, self-interested rationality and perfect models of the 

game, the deviations from equilibrium of the 35 subjects whose apparent types are Lk can be 

confidently attributed to non-equilibrium beliefs rather than irrationality, risk aversion, altruism, 

                                                 
4A subject's guess is not required to be between his limits, but guesses outside his limits are automatically adjusted 
up to the lower or down to the upper limit as necessary; and payoffs are determined by players' adjusted guesses 
(Section I.B). Two-person guessing games allow us to focus on the central game-theoretic problem of predicting the 
decisions of others who view themselves as a non-negligible part of one's own environment. Brit Grosskopf and 
Nagel (2001) report experiments with a different class of two-person guessing games, in which all subjects have the 
same limits and targets, the targets are less than one, and subjects are rewarded for guessing closer to a target times 
the pair's average guess. Guessing the lower limit is a weakly dominant strategy in their games, which therefore do 
not fully address the issue of predicting others' decisions.   
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spite, or confusion.5 By contrast, with SW's or CGCB's coarse strategy spaces even a perfect fit 

does not distinguish a subject's apparent type from nearby omitted types; and in Nagel's and 

HCW's designs, with each subject playing a single game, the ambiguity is even more severe. 

Our other 45 subjects' fingerprints are less clear. But for all but 14 of them, violations of 

simple dominance were comparatively rare (less than 20%, versus 38% for random guesses), 

suggesting that their behavior was coherent, even though less well described by our types. We 

study all 88 subjects' behavior in more detail via a maximum likelihood error-rate analysis, 

following SW and CGCB. We assume each subject's behavior in the 16 games is determined, 

with error, by one of the leading types listed above. Estimates based on guesses strongly reaffirm 

our type identifications for the 43 subjects whose fingerprints are clear, and assign several more 

subjects each to L1, L2, and Equilibrium, plus a few to D1 and Sophisticated (Tables 1 and 7). 

For these 45 subjects, our econometric type estimates suffer from the same ambiguity of 

interpretation as the estimates in previous analyses. To learn whether any subjects' guesses could 

be better explained by types omitted from our specification, or whether any estimated types are 

artifacts of accidental correlations with irrelevant included types, we conduct a new specification 

test that compares the likelihood of our estimated types, subject by subject, with those of 

estimates based on 88 pseudotypes, each constructed from one of our subject's guesses in the 16 

games. This test reaffirms most of our identifications of L1, L2, or Equilibrium subjects, but calls 

into question all but one each of our identifications of L3, D1, or Sophisticated subjects (Table 

1). It also supports our a priori specification of possible types by giving no indication of 

significant numbers of SW's Worldly type or any other type omitted from our specification. 

Information search adds another dimension to our econometric analysis.6 Following 

CGCB, we link search to guesses by taking a procedural view of decision-making, in which a 

subject's type determines his search and guess, possibly with error. Each of our types is naturally 

associated with algorithms that process information about targets and limits into decisions. We 

use those algorithms as models of subjects' cognition, making conservative assumptions about 

how it is related to search that allow a tractable characterization of types' search implications. 

                                                 
5For these subjects our design is thus an antidote to Jörgen Weibull's (2004) argument that rejections of equilibrium 
in experiments that do not independently measure preferences are "usually premature." 
6A companion paper, Costa-Gomes and Crawford (2006; "CGC"), will analyze our subjects' search behavior in 
more detail, studying the relations between cognition, search, and guesses. 

 5



The types then provide a kind of basis for the enormous space of possible guesses and searches, 

imposing enough structure to make it meaningful to ask if they are related in a coherent way. 

Our design separates types' search implications much more strongly than previous designs, 

while making them almost independent of the game. This allows some subjects' types to be read 

from their searches alone (Appendix E, CGC); but most subjects' searches less clearly identify 

their types. We therefore generalize our error-rate analysis to re-estimate subjects' types using 

search as well as guesses. Taking both into account, 55 of 88 subjects are reliably identified as 

one of our types, 45 of them non-Equilibrium (Table 1). This analysis reaffirms the absence of 

significant numbers of types other than L1, L2, Equilibrium, or hybrids of L3 and/or Equilibrium. 

These results are consistent with previous analyses, but significantly refine and sharpen them. 

Thus, to the extent that our subjects' deviations from equilibrium can be predicted, they 

appear to be based almost entirely on level-k thinking. Given the definitions of level-k types, our 

results strongly affirm subjects' rationality and ability to comprehend games and reason about 

others' responses to them. Although they challenge the use of equilibrium as a universal model of 

initial responses to games, the simplicity of the alternative non-equilibrium model they suggest 

should help to allay the common fear that if equilibrium is not assumed, "anything can happen."  
 
I. Experimental Design 

To test theories of strategic behavior, an experimental design must identify clearly the 

games to which subjects are responding. This is usually done by having a "large" subject 

population repeatedly play a given stage game, with new partners each period to suppress 

repeated-game effects, viewing the results as responses to the stage game. Such designs allow 

subjects to learn the structure from experience, which reduces noise; but they make it difficult to 

disentangle learning from cognition, because even unsophisticated learning may converge to 

equilibrium in the stage game. Our design, by contrast, seeks to study cognition in its purest form 

by eliciting subjects' initial responses to 16 different games, with new partners each period and 

no feedback to suppress repeated-game effects, experience-based learning, and experimentation. 

This section describes the overall structure of our design, the games, and how they are presented. 

A. Overall structure 

Our sessions were run at the University of California, San Diego's (UCSD) Economics 

Experimental and Computational Laboratory (EEXCL) or the University of York's Centre for 

Experimental Economics (EXEC). Subjects were recruited from undergraduates and graduate 
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students, with completely new subjects for each session.7 Table 2 summarizes the overall 

structure of our experiment, which included four Baseline sessions, B1-B4, with a total of 71 

UCSD subjects; one Open Boxes session, OB1, with 17 UCSD subjects; and 15 Robot/Trained 

Subjects sessions, R/TS1-R/TS15, with a total of 148 subjects, 37 UCSD and 111 York. 

All treatments used the same 16 games, presented in the same randomized order (Table 3). 

The games consist of eight pairs that are symmetric across player roles, so that subjects can be 

paired without dividing them into subgroups. One pair consists of two symmetric games. 

We first describe the Baseline and then explain how our other treatments differed. After the 

instructions and an understanding test, groups of 13 to 21 subjects were randomly paired to play 

the 16 games, with new partners each period.8 Subjects received no feedback during play and 

could proceed independently at their own paces, but were not allowed to change their guesses 

once confirmed. Although these features suppress experience-based learning, introspective 

learning may still occur. However, tests reveal no significant difference between subjects' pooled 

guesses in the symmetric game when played third and twelfth in the sequence, suggesting that 

the effects of introspective learning were limited (Appendices C and D).9 Accordingly, we 

analyze subjects' guesses as initial responses to each game, without considering order of play. 

To control subjects' preferences, they were paid for their game payoffs as follows. After the 

session each subject returned in private and was shown his own and his partners' guesses and his 

point earnings in each game. He then drew five game numbers randomly and was paid $0.04 per 

point for his payoffs in those games.10 With possible payoffs of 0 to 300 points per game, this 

yielded payments from $0 to $60, averaging about $33. Including the $8 fee for showing up at 

least five minutes early (which almost all subjects received) or the $3 fee for showing up on 

                                                 
7Appendix A gives instructions and Appendix B describes our pilots and how they influenced the design. To reduce 
noise we sought subjects in quantitative courses; but to avoid subjects with theoretical preconceptions we excluded 
graduate students in economics, political science, cognitive science, or psychology, and disqualified subjects who 
revealed that they had participated in game experiments or (except for a few who had been briefly exposed in an 
undergraduate course) studied game theory. We allowed roughly four non-faculty university community members.  
8Some pairings among the 13 subjects in session B1 were repeated once, in a game unknown to them. The games 
took subjects 1-3 minutes each. Adding 1½ to 2 hours for checking in, seating, instructions, and screening yielded 
sessions of 2¼ to 2¾ hours, near our estimate of the limit of subjects' endurance for a task of this difficulty. 
9Even so, our analysis of clusters (Appendix F) suggests introspective learning by two of our 88 Baseline and OB 
subjects, who appeared to have switched from L1 to L2 after the first few games.    
10It is theoretically possible to control risk preferences using the binary lottery procedure, in which a subject's payoff 
is his probability of winning a given monetary prize. We avoid this complication because payment directly in money 
usually yields similar results, and risk preferences do not affect iterated dominance or pure-strategy equilibrium. 
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time, this made Baseline (OB) subjects' average total earnings $41.21 ($40.68). Subjects never 

interacted directly, and their identities were kept confidential. 

The structure of the environment, except the games' targets and limits, was publicly 

announced via instructions on subjects' handouts and computer screens. During the session, 

subjects had free access, game by game, to their own and their partners' targets and limits via a 

MouseLab interface (Figure 6, Section I.C). This made the games' structures effectively public 

knowledge, and so we compare the data with predictions that assume complete information.11

Subjects were taught the mechanics of looking up targets and limits and entering guesses, 

but not information-search strategies. The instructions took care to avoid suggesting particular 

guesses or decision rules. Subjects were given ample opportunity for questions, and were then 

required to pass an Understanding Test to continue. Subjects who failed were dismissed, and the 

remaining subjects were told that all subjects remaining had passed.12 Before playing the 16 

games, subjects were also required to participate in four unpaid practice rounds, after which they 

were publicly shown the frequencies of subjects' practice-round guesses in their session and told 

how they could use them to evaluate the consequences of their own practice-round guesses.13 

After playing the 16 games, subjects were asked to fill out a debriefing questionnaire, in which 

they were asked how they decided what information to search for and which guesses to make.    

Our OB treatment addresses the concern that making subjects look up the targets and limits 

might distort their responses, reducing comparability between our results and those from more 

conventional designs. The OB treatment is identical to the Baseline except that the games are 

presented with the targets and limits continually visible, in "open boxes." We find insignificant 

differences between Baseline and OB subjects' guesses (Appendix C).14 Accordingly, we pool 

the data from the Baseline and OB treatments except when search is involved. 

                                                 
11The possible values of the targets and limits were not revealed, to strengthen subjects' incentives to look up the 
ones they thought relevant to their guesses. Even so, free access still makes the structures public knowledge.           
12The dismissal rates (including a few voluntary withdrawals) were 20% for Baseline subjects, 11% for OB subjects, 
and 20% overall for R/TS subjects.  
13The practice rounds used two player-symmetric pairs of games, in an order that made their symmetries non-salient, 
so that the guess frequencies could be generated within each session. The variation in frequencies across sessions 
appears to have had a negligible effect on subjects' behavior in the 16 games. The practice games had a balanced 
mix of structures, with different targets and limits than in the 16 games to avoid implicitly suggesting guesses. 
14There are nonetheless hints that OB subjects made high numbers of types' exact guesses less often: OB subjects 
made up 19% of the subject pool, but only 11% of those who made 14-16 exact guesses and 7% of those who made 
10-13. Possibly our design, which makes models of others easy to express as functions of the targets and limits, 
more strongly encourages Baseline than OB subjects to substitute such models for less structured strategic thinking. 
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Our R/TS treatments address the concern that we might fail to recognize an empirically 

important decision rule simply because of subjects' cognitive limitations or unfamiliarity with the 

setting. For example, a subject who regularly uses equilibrium logic to make strategic decisions 

in the field, but has trouble applying it in our abstract decision problems, might not show up as 

an Equilibrium subject. Our R/TS treatments are identical to the Baseline except that each 

subject plays against the computer ("Robot") and the computer plays according to a pre-specified 

decision rule. The subject is given the standard Baseline instructions, informed of the computer's 

rule, trained to identify the guesses it yields in our games, and motivated by being paid for the 

game payoffs determined by his own guesses against the computer's. There are six different 

kinds of R/TS treatment, in each of which a subject is trained and motivated to follow one of our 

leading types: L1, L2, L3, D1, D2, or Equilibrium. In an L2 R/TS treatment, for instance, a 

subject is informed that the computer makes L1 guesses (as in L2's beliefs) and trained to 

identify them. In an Equilibrium R/TS treatment, a subject is informed that the computer makes 

Equilibrium guesses and trained to identify them.15 To the extent that Equilibrium R/TS subjects 

make their own equilibrium guesses, there is reason for confidence that our Baseline subjects' 

failures to make equilibrium guesses are due not to cognitive limitations or the unfamiliar 

setting, but to non-equilibrium beliefs or other factors (possibly including lack of training). 

CGC's (2006) analysis of our R/TS data confirms that a large majority of subjects can 

identify the guesses of any of our leading types, including Equilibrium, when they are trained 

and motivated to do so. However, Lk types appear to be cognitively far less difficult than 

Equilibrium, and Equilibrium appears less difficult than Dk types. These differences are probably 

part of the reason Lk types predominate among Baseline subjects' non-equilibrium responses.  

B. Two-person guessing games 

Our guessing games have two players, i and j (for "not i"), who make simultaneous 

guesses, xi and xj. Each player i has a lower limit, ai, and an upper limit, bi, but players are not 

required to guess between their limits; guesses outside the limits are automatically adjusted up to 

                                                 
15Equilibrium subjects were taught each of the three main ways to identify equilibrium guesses: direct checking for 
pure-strategy equilibrium, best-response dynamics, and iterated dominance. The R/TS treatments also replace the 
Baseline's practice rounds with a second Understanding Test of how to identify the assigned type's guesses. Subjects 
were paid an extra $5 or £2.50 for passing this test, and those who failed were dismissed. York R/TS subjects were 
paid early and on-time show-up fees of £1 and £2, but only £0.02 rather than $0.04 per point, 70% of the UCSD 
rates. The average total earnings figures were $45.22, $62.03, $51.74, and $50.93 for UCSD R/TS L1, L2, D1, and 
Equilibrium subjects who finished the experiment, and £23.00, £29.76, £28.50, £27.08, £24.12, and £27.65 (with the 
pound averaging $1.63) for York R/TS L1, L2, L3, D1, D2, and Equilibrium subjects who finished the experiment. 
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the lower limit or down to the upper limit. Player i's adjusted guess, yi ≡ R(ai,bi;xi) ≡ xi if xi
 ε 

[ai
,bi], yi ≡ ai if xi

 < ai, or yi ≡ bi if xi
 > bi. Each player i also has a target, pi, and his payoff is 

higher, the closer his adjusted guess is to his target times his partner's adjusted guess. Writing ei 

≡ |R(ai,bi;xi) – piR(aj,bj;xj)| for the distance between player i's adjusted guess and his target times 

player j's adjusted guess, player i's point payoff, si, is given by: 

(1)    si
 ≡ max{0,200 – ei} + max{0,100 – ei/10} 

≡ max{0,200 – |R(ai,bi;xi) – piR(aj,bj;xj)|} + max{0,100 – |R(ai,bi;xi) – piR(aj,bj;xj)|/10}. 

With or without adjustment, the payoff function in (1) is quasiconcave in player i's guess 

for any given distribution of player j's guess; and without adjustment the payoff function is 

symmetric about ei
 = 0.16 The relationship between a player's guess and point payoff is not one-

to-one because guesses that lead to the same adjusted guess yield the same outcome. We deal 

with this ambiguity by using a player's adjusted guess as a proxy for all guesses that yield it, and 

we call a prediction essentially unique if it implies a unique adjusted guess.17

We vary the targets and limits independently across players and games within this class of 

games to make the design as informative as possible, given the need for a balanced mix of 

strategic structures with no obvious patterns. Table 3 summarizes our games, ordered in a way 

that emphasizes their structural relationships; it also lists the randomized order in which subjects 

played the games. We identify a player's lower and upper limits by: α for 100 and 500, β for 100 

and 900, γ for 300 and 500, and δ for 300 and 900; and a player's target by: 1 for 0.5; 2 for 0.7; 3 

for 1.3; and 4 for 1.5. The combination β1γ2, for example, identifies the game in which player i 

has limits 100 and 900 and target 0.5, and player j has limits 300 and 500 and target 0.7. 

The games in our design are dominance-solvable in 3 to 52 rounds. Observation 1 

characterizes their equilibria, assuming complete information.18 If, as in our design, players' 

                                                 
16Thus, unlike in Nagel's and HCW's games, a player's guess determines a continuous payoff rather than whether he 
wins an all-or-nothing prize, as a function of his partner's guess rather than a group average. Like Nagel's and 
HCW's games, ours limit the effects of altruism, spite, and risk aversion. The point payoff function is not concave in 
player i's guess because the weight on ei in the second term is smaller in absolute value than in the first term; this 
strengthens payoff incentives near i's best response while keeping them positive elsewhere despite a lower bound of 
0 on a game's payoff. In exceptional cases like game α4β1 (Table 3), it is theoretically possible for a player to guess 
more than 1000 units from his target times the other's guess, in the flat part of his payoff function. 
17This ambiguity could be eliminated by requiring players to guess between their limits. We do not do so because 
automatic adjustment enhances the separation of types' search implications. With quasiconcave payoffs a subject can 
enter the ideal guess that would be optimal given his beliefs, ignoring his limits, and know without checking his 
limits that his adjusted guess will be optimal; our instructions explain this, and most subjects understood it (CGC). 
18Guesses are in equilibrium if each player's guess maximizes his expected payoff, given the other player's. A 
player's guess dominates (is dominated by) another of his guesses if it yields a strictly higher (lower) payoff for each 
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limits and targets are positive and pipj
 ≠ 1, their equilibrium adjusted guesses are determined by 

their lower limits when pipj  < 1, or their upper limits when pipj > 1. (When pipj
 = 1, the 

equilibrium correspondence is discontinuous and there are multiple equilibria.) In game γ2β4, for 

instance, the product of targets is 0.7×1.5 = 1.05 > 1, player i's equilibrium guess is at his upper 

limit 500, and player j's is at his best response to 500 of 750 (below his upper limit). In game 

δ2β3 the product of targets is 0.7×1.3 = 0.91 < 1, player i's equilibrium guess is at his lower limit 

300, and player j's is at his best response to 300 of 390, above his lower limit.  

 

Observation 1: Unless pipj= 1, each guessing game in the above class has an essentially unique 

equilibrium, in pure strategies, with adjusted guesses as follows: 

If pipj < 1, 

(a) yi ≡ R(ai,bi;xi) = ai if piaj ≤ ai, and yi = min{piaj,bi} if piaj > a i; and 

(b) yj ≡ R(aj,bj;xj) = aj if pjai  ≤ aj, and yj = min{pjai,bj} if pjai> a j.  

Further, although i's ideal guess is piyj and j's is pjyi, when pipj < 1, i can enter piaj, or j can enter 

pjai, in lieu of his ideal guess and still be sure that his adjusted guess will be optimal. 

If pipj > 1, 

(c) yi ≡ R(ai,bi;xi) = bi if pib j ≥ bi, and yi = max{ai,pibj} if pibj < bi; and 

(d) yj ≡ R(aj,bj;xj) = bj if pjb i ≥ bj, and yj = max{aj,pjbi} if pjbi < bj. 

Further, although i's ideal guess is piyj and j's is pjyi, when pip j > 1, i can enter pibj, or j can enter 

pjbi, in lieu of his ideal guess and still be sure that his adjusted guess will be optimal. 

  

 Observation 1 can be verified by direct checking or by noting that if, say, pipj < 1, 

iterating best responses drives adjusted guesses down until one player's hits his lower limit and 

the other's is at or above his lower limit. We give a formal proof in Appendix H, where the 

details play an important role in our analysis of Equilibrium's information search implications.   

                                                                                                                                                             
of the other player's possible guesses. A player's guess is iteratively undominated if it survives iterated elimination 
of dominated guesses. A round of iterated dominance eliminates all dominated guesses for both players. A game is 
dominance-solvable (in k rounds) if each player has a unique iteratively undominated adjusted guess (identifiable in 
k rounds of iterated dominance). Those iteratively undominated adjusted guesses are players' unique equilibrium 
adjusted guesses. We distinguish the numbers of rounds players need to identify their own iteratively undominated 
adjusted guesses; the number of rounds in which the game is dominance-solvable is the higher of these numbers.    
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Table 3 summarizes the games' structural relationships, which add greatly to the power of 

our design. For instance, the only important difference between the above-mentioned games 

γ2β4 (game 13 in Figures 1-5) and δ2β3 (game 11) is whether the product of targets is greater or 

less than one. Observation 1 shows that Equilibrium responds strongly to this subtle difference, 

but low-level Lk or Dk types, whose guesses vary continuously with the targets, respond much 

less. Further, games with mixed targets (games 9 to 16 in Figures 1-5) are especially well suited 

to separating types' guesses and help us diagnose the causes of some subjects' deviations from 

equilibrium (Section II.A). Finally, moving some of Equilibrium and other types' guesses away 

from the limits and the other structural variations in Table 3 stress-test types' predictions, and 

with our games' large strategy spaces allow us to "reverse-engineer" some deviations and thereby 

distinguish cognitive errors from "random" behavior (Appendix F). For example, Figure 7 shows 

the pattern of iterated dominance and how it converges to equilibrium in game γ4δ3, where the 

product of targets is 1.5×1.3 > 1, player i's equilibrium guess is at his upper limit 500, and player 

j's equilibrium guess is at his best response to 500 of 650 (below his upper limit). Here 

dominance for player j occurs initially at both his limits, which stress-tests Equilibrium and Dk 

types. None of these features are shared by Nagel's, HCW's, SW's, or CGCB's games. 

Observation 2 simplifies the characterization of types' adjusted guesses. It shows that for 

guessing games in the class, a player's best responses to uniform beliefs on an interval like those 

in the definitions of types L1, D1, and D2, and indirectly L2 and L3, equal his target times the 

midpoint of the interval, adjusted if necessary to lie within his limits. This certainty-equivalence 

result is independent of risk preferences, but it depends on symmetry and uniform beliefs.19

Observation 2: Suppose the point payoff function of a guessing game in the class is a 

symmetric, continuous, almost everywhere differentiable function s(x-pz) that is weakly 

decreasing in |x- pz|, where x is a player's guess; p is his target; and z, his partner's guess, is a 

random variable uniformly distributed on [a,b]. Then for any player with a continuous, almost 

everywhere differentiable von Neumann-Morgenstern utility function u(·) that values only 

money (risk-neutral, risk-averse, or risk-loving), his expected-utility maximizing choice is x* = 

pEz = p(a+b)/2, and his expected-utility maximizing choice s.t. x є [c,d] is R(c,d; p(a+b)/2).  
                                                 
19Observation 2 shows that in our games, Lk guesses are k-point-rationalizable (Bernheim (1984)), but it also shows 
that our design is not well-suited to distinguishing k-point-rationalizable types from those that are k-rationalizable in 
the usual sense, which allows non-deterministic beliefs. 
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Proof: We show that x* = p(a+b)/2 solves (ignoring the positive factor 

[1/(b-a)]). The integral in the maximand is differentiable because u(s(x - pz)) is continuous. Its 

derivative with respect to x, evaluated at x*, is (ignoring points of nondifferentiability) 

∫ −
b

ax dzpzxsu ))((max

(2)   ∫∫ +

+
=−−+−−

b

ba

ba

a
dzpzxspzxsudzpzxspzxsu

2/)(

2/)(
,0)*('))*((')*('))*(('

where the equality holds for x* = p(a+b)/2 by symmetry. Because u(·) is increasing and s(·) is 

weakly decreasing in |x - pz|, raising x above x* lowers the derivative below 0, and lowering x 

below x* raises it above 0; thus, the integral in the maximand is quasiconcave in x. Because x* = 

p(a+b)/2 satisfies the first-order condition for maximizing the integral, x* is optimal ignoring the 

constraint x ε [c,d] and R(c,d; p(a+b)/2) is optimal respecting the constraint.                       

     

In deriving our types' implications, we assume that each player maximizes the expected 

utility of his total money payment over the 16 games. Each type then implies an essentially 

unique adjusted guess in each game, which maximizes its expected payoff given beliefs based on 

some model of others' decisions.20 The key to the derivations is a type's ideal guess, the one that 

would be optimal given its beliefs, ignoring its limits. A type's ideal guess determines its 

adjusted guess in a game via the adjustment function R(ai,bi;xi) ≡ min{bi, max{ai,xi}}. We 

estimate Sophisticated's ideal guesses as risk-neutral best responses to the pooled distribution of 

Baseline and OB subjects' adjusted guesses, game by game, rounded to the nearest integer for 

simplicity.21 Equilibrium's ideal guesses follow immediately from Observation 1, and L1's, L2's, 

L3's, D1's, and D2's follow immediately from Observation 2. 

The left-hand side of Table 4 lists the general formulas for types' ideal guesses as functions 

of the targets and limits. Table 5 lists types' adjusted guesses and the guesses that survive 1 to 4 

                                                 
20A type's adjusted guesses are all that matters about its choices, and all that our types determine. Because a player's 
total payment is proportional to his point payoffs in five randomly chosen games, a first-order stochastic dominance 
argument shows that when guesses have known consequences, the player must maximize his point payoff in any 
given game. When guesses have uncertain consequences, risk preferences are potentially relevant. But Observation 
1 shows that our games have essentially unique equilibria in pure strategies, so risk preferences do not affect 
Equilibrium adjusted guesses. And Observation 2 shows that best responses to uniform beliefs are certainty-
equivalent, so risk preferences do not affect L1, D1, or D2 adjusted guesses, or the best responses that define L2 or 
L3 adjusted guesses. For Sophisticated adjusted guesses, which may best respond to non-uniform beliefs and so not 
be covered by Observation 2, we must assume that players are risk-neutral to justify the statement in the text. Even 
so, Sophisticated adjusted guesses are only generically unique because their beliefs allows ties in optimal guesses. 
21Because we also rounded subjects' guesses to the nearest integer, and few subjects made exact Sophisticated 
guesses, this does not lead to misclassification. 
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rounds of iterated dominance in each game. Figure 5 summarizes the separation of types' 

adjusted guesses in the 16 games. No two types are separated in less than 8 games; the number of 

games in which two given types are separated averages 11 2/3 out of 16 (73%), which is hard to 

improve upon within a simple overall structure like ours; and L2 and D1 are separated in 13 

games, much more strongly than in any previous experiment (Appendix G). 

The right-hand side of Table 4 lists types' minimal implications for information search, 

which are used in Section II.E's econometric analysis, in general notation and in the box numbers 

in which searches are recorded. Our derivation of these implications in Appendix H and CGC 

(2006) is based on a procedural view of decision-making in which the algorithms that can be 

used to process payoff information into a type's guesses determine its searches as well. Types' 

minimal search implications are based on their ideal guesses, because (with our quasiconcave 

payoffs) a subject can enter his ideal guess and know that his adjusted guess will be optimal 

without checking his own limits. As suggested by our R/TS treatments and CJ's and CGCB's 

experiments, we assume that subjects perform the most basic operations needed to identify the 

ideal guess one at a time via adjacent (consecutive in the sequence) look-ups, in any order, 

remembering their results, and otherwise relying on repeated look-ups rather than memory. Basic 

operations will then be represented by adjacent look-up pairs that can appear in any order, but 

cannot be separated by other look-ups. Other operations will be represented by the associated 

look-ups, in any order, possibly separated by other look-ups. We call a minimal look-up 

sequence that satisfies these requirements for a type the type's relevant look-ups. 

We close this subsection by discussing the strength of our subjects' incentives to follow 

particular types. Given the enormous set of possible types in our design, we approach this issue 

by estimating how costly it would be for a subject of a given type, with its beliefs, to behave 

according to a different type if he still had the given type's beliefs. By this standard, Equilibrium, 

L2, and L3 subjects all have strong incentives to make their type's guesses (Appendix G). 

Equilibrium's expected earnings would be $46.05 in our 16 games if its partners made 

equilibrium guesses, $12.05 more than its earnings would be with L3 guesses, and even more 

than its earnings would be with our other types' guesses. The analogous earnings differences for 

L2 and L3 are $10.25 and $6.90. But our other leading types have weaker incentives: analogous 

differences of $1.29 for D2, $1.22 for L1, $0.85 for D1, and $0.46 for Sophisticated.22    

                                                 
22Among our types, only L1 and Equilibrium are not fairly close substitutes for Sophisticated, given its beliefs. 
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C. Using MouseLab to present guessing games 

The games were displayed on subjects' screens via a computer interface called MouseLab.23 

To suppress framing effects, a subject was called "You" and his partner was called "S/He," etc. A 

subject could look up a payoff parameter by using his mouse to move the cursor into its box and 

left-clicking; in Figure 6 the subject has opened the box that gives his own ("Your") lower limit, 

100. Before he could open another box or enter his guess, he had to close the box by right-

clicking; a box could be closed after the cursor had been moved out of it. Thus both opening and 

closing a box required a conscious choice. Subjects were not allowed to write during the main 

part of the experiment. A subject could enter and confirm his guess by moving the cursor into the 

box labeled "Keyboard Input," clicking, typing the guess, and then moving the cursor into the 

box at the bottom of the screen and clicking. A subject could move on to the next game only 

after confirming his guess; after an intermediate screen, the cursor returned to the top-center. 

MouseLab automatically records subjects' look-up sequences, look-up durations, and guesses. 

II. Analysis of Subjects' Guesses and Information Searches 

This section analyzes subjects' guesses and information searches, starting with those of 

our subjects whose types are apparent from guesses alone and continuing with all subjects' 

compliance with iterated dominance and equilibrium, an econometric analysis of subjects' 

guesses and specification test, and an econometric analysis of their guesses and information 

search.24 Table 1 summarizes each phase's conclusions regarding the numbers of subjects of each 

estimated type, and Table 7 summarizes the results subject by subject.   

A. Subjects whose types are apparent from guesses alone 

 Figures 1-4 graph the actual against predicted adjusted guesses of the 43 subjects whose 

types are apparent from guesses alone, with games ordered to emphasize structural relationships 

as in Table 3. Figures 1-3 graph 20 apparent L1 subjects, 12 apparent L2 subjects and 3 apparent 

L3 subjects, each with Equilibrium guesses for comparison; and Figure 4 graphs 8 apparent 

Equilibrium subjects, with L3 guesses for comparison. Only deviations from subjects' apparent 

                                                 
23MouseLab was developed to study individual decisions (Payne, Bettman, and Johnson (1993, Appendix) and 
http://www.cebiz.org/mouselab.htm). CJ pioneered the use of MouseLab in games by studying backward induction 
in alternating-offers bargaining games in which subjects could look up the sizes of the "pies" in each period. CGCB 
used MouseLab to study matrix games in which subjects could look up their own and their partners' payoffs.  
24Appendix D graphs the aggregate game-by-game frequency distributions of subjects' adjusted guesses. Appendix E 
gives the complete data on subjects' guesses and the order (but not duration) of their look-up sequences.  
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types are shown; the 20 L1 subjects in Figure 1, for example, who made a total of 320 guesses in 

16 games, deviated from L1 guesses a total of 104 times, each identified by the subject's mark.  

Section II.C's econometric analysis confirms that in likelihood-based type inferences, 

subjects' rates of exact (within 0.5) compliance with types' guesses are far more important than 

the magnitudes of their deviations. Thus the most important message of Figures 1-4 is that these 

43 subjects' rates of exact compliance were very high, despite our large strategy spaces. A 

second message is that these subjects' guesses usually varied only slightly across the two 

symmetric games, 7 and 8, suggesting that the effects of introspective learning were limited. 

There are systematic differences between subjects' responses to games with (9-16, right 

sides of Figures 1-4) and without (1-8) mixed targets: Apparent L2, L3, and Equilibrium subjects 

all deviate from their types' predictions much more often in games with mixed targets. This is 

surprising, because L2 and L3 guesses are determined by simple formulas in which a subject's 

own and his partner's targets play similar roles (Table 4) and all of the standard methods for 

identifying Equilibrium decisions (direct checking, best-response dynamics, and iterated 

dominance) work equally well with and without mixed targets. Apparent L1 subjects, whose 

ideal guesses do not depend on their partner's target, making the distinction between games with 

and without mixed targets irrelevant, do not deviate more often in games with mixed targets.25   

The details of apparent Equilibrium and L3 subjects' guesses deepen the puzzle. Our 8 

apparent Equilibrium subjects' 44 deviations from Equilibrium when it is separated from L3 (out 

of a possible 72 = 9 games × 8 subjects) are all in the direction of (and sometimes beyond) L3 

guesses. And our apparent L3 subjects' deviations from L3 when it is separated from Equilibrium 

are usually in the direction of Equilibrium and often coincide with it—even in game 1, our only 

such game without mixed targets. Thus, many of these subjects appear to be using hybrid rules 

that blend Equilibrium (especially in games without mixed targets) with L3. This illustrates the 

potential empirical importance of the subtlety of identifying equilibrium decisions in our games. 

B. Subjects' compliance with iterated dominance and equilibrium 

    Table 6 reports Baseline and OB subjects' compliance with 1 or more, 2 or more, 3 or 

more, and 4 or more rounds of iterated dominance—equivalently, levels of k-rationalizability—

and exact compliance with Equilibrium, overall and game by game, with random compliance as 
                                                 
25There are no clear patterns in the magnitudes of deviations or with respect to other aspects of the games' structures. 
Only one of our 29 Equilibrium R/TS subjects came close to the apparent Equilibrium subjects' patterns in the 
Baseline; the rest made just as many exact guesses with as without mixed targets (Appendix E, CGC (2006)).   
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a benchmark.26 Subjects make undominated guesses at a rate well above random in each of the 

13 games in which subject i has any dominated guesses, with an overall rate of 90%, typical for 

initial responses and far higher than random (62%). Only 14 subjects make undominated guesses 

in less than 80% of the games, which suggests that the behavior of a large majority of our 

subjects was coherent. Compliance with iterated dominance is always higher than random when 

this is possible, and usually far higher. It varies widely across games, but with no clear effect of 

structure beyond what determines random compliance. Compliance with Equilibrium is lower in 

games with mixed targets but otherwise shows no clear effect of structure. Because our games 

with mixed targets coincide with those with many rounds of iterated dominance, in this respect 

our results correspond to those for CGCB's (2001, Table II) matrix games. 

C. Econometric analysis of Baseline and OB subjects' guesses 

Although 43 of our 88 Baseline and OB subjects' types are apparent from their guesses, the 

remaining 45 subjects' guesses are not immediately clear. In this subsection we estimate all 88 

subjects' types econometrically, via a maximum likelihood error-rate analysis of their guesses. 

Our goals are to summarize the implications of the data in a comprehensible way, to assess the 

strength of the evidence in favor of our types, and to identify those subjects whose guesses are 

not well explained by our types and guide the search for better explanations of their behavior.   

We assume that each subject's behavior is determined, possibly with error, by a single type, 

which determines his guesses and searches in all games. The types we allow were chosen a priori 

from general principles of strategic decision-making that have played important roles in the 

literature, with the goal of specifying a set large and diverse enough to do justice to the 

heterogeneity of subjects' behaviors but small enough to avoid overfitting. We include L1, L2, 

L3, D1, D2, and Equilibrium as defined in the Introduction, and add CGCB's Sophisticated to 

test whether any subjects have a prior understanding of others' decisions that transcends these 

simple rules. In theory, Sophisticated best responds to the probability distributions of its partners' 

decisions; but those distributions are part of a behavioral game theory that is not yet fully 

developed. We therefore operationalize Sophisticated using the best available predictions of 

those distributions in our setting: the population frequencies of our own subjects' guesses.27  

                                                 
26The differences between Baseline and OB subjects are unimportant here. Appendix G's tables give the analogous 
results for types other than Equilibrium. 
27An ad hoc type could perfectly mimic a subject's decision history, but would have no explanatory power. It is 
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Index types k = 1,…,K and games g = 1,…,G. In game g, denote subject i's lower and upper 

limits  and , his unadjusted and adjusted guess  and , 
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We analyze the data subject by subject.28 Interpreting a pattern of deviations from types' 

guesses requires an error structure. We assume that, conditional on a subject's type, his errors are 

independent across games. Because our subjects so often made types' exact guesses, we use a 

simple "spike-logit" error structure in which, in each game, a subject has a given probability of 
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hard to dispense with a priori specification because the space of possible types is enormous and the leading types 
have no simple, unifying structure. Further, there are multiple rationales for any given history of guesses, but we 
link guesses and search via a procedural model whose implications depend not only on what guesses a type implies, 
but why. Our L1 corresponds to SW's Level 1 or CGCB's Naïve, and is related to Level 1 or Step 1 in Nagel, Stahl, 
HCW, and CHC. Our L2 (L3) corresponds to CGCB's L2 (L3), and is related to L2 (L3) in SW, Nagel, Stahl, HCW, 
and CHC. Earlier work suggests that types beyond L3 or D2 are empirically unimportant, and there is no evidence of 
them in our data. We also omit three types CGCB found empirically unimportant: Pessimistic (maximin), Optimistic 
(maximax), and Altruistic. Pessimistic and Optimistic do not distinguish clearly among guesses in our games; and 
we judged the effects of own guesses on others' payoffs too weak and non-salient for Altruistic to be plausible. 
28CGCB (2001) used an aggregate mixture model that imposed stronger restrictions on subjects' type distributions, 
and studied cognition at the individual level by conditioning on individual histories. CGCB (1998) estimated subject 
by subject using the same dataset, with similar results. Estimating subject by subject seems better suited to studying 
cognition and more robust to misspecification; but the results are unlikely to differ much from a mixture model.  
29In our design entered guesses are restricted to the interval [0, 1000], which includes all possible limits. There is no 
need to allow the error rate and precision to depend on type, because all three are estimated jointly. 
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Let , the set of subject i's possible adjusted guesses in 

game g that are within 0.5 of type k's adjusted guess , and let , the 
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The precision λ is inversely related to the dispersion of a subject's erroneous guesses: 

As ∞→λ  they approach a noiseless best response to his type's beliefs, and as 0→λ  they 

approach uniform randomness between his limits, excluding exact guesses. For a given value of 

λ, the dispersion declines with the strength of payoff incentives, evaluated for the type's beliefs. 

Because unadjusted guesses that lead to the same adjusted guess yield the same payoffs, the 

error structure treats them as equivalent, and the likelihood can be expressed entirely in terms of 

a subject's adjusted guesses. For subject i, let be the set of games g for which , 
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where products with no terms (if  = 0 or G) are taken to equal 1. Letting  

denote the vector of prior type probabilities, weighting by , summing over k, and taking 
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30The conditional density could be allowed to extend to as well as , but our specification is simpler, and 

approximately equivalent given the near-constancy of payoffs within the narrow interval of exact guesses .    
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It is clear from (6) that the maximum likelihood estimate of p sets = 1 for the 

(generically unique) k that yields the highest , given the estimated ε and λ. The 

maximum likelihood estimate of ε can be shown from (5) to be /G, the sample frequency with 

which subject i's adjusted guesses fall in . The maximum likelihood estimate of λ is the 

standard logit precision, restricted to guesses in . 
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When  = 0, the maximand reduces to 0; and when = G, the maximand reduces to the 

sum over g on the right-hand side of (7). 
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The likelihood takes the separation of types' guesses across games into account, favoring a 

type only to the extent that it explains a subject's guesses better than other types. It treats a guess 

as stronger evidence for a type the closer it is to the type's guess, because the payoff function is 

quasiconcave and the logit term increases with payoff; and it treats a guess that exactly matches a 

type's guess as the strongest possible evidence for the type, discontinuously stronger than one 

that is close but not within 0.5. If is near 0 for only one k, that k is usually the estimated type. 

If is nearly the same for all k, the estimated type is mainly determined by the logit term; and if 

is near G for all k, the type estimate is close to the estimate from a standard logit model. 

ikn
ikn

ikn

Table 1 (column 3) reports the aggregate frequencies of subjects' type estimates based on 

(7). Table 7 (left-hand side) reports each Baseline or OB subject's number of dominated guesses 

and the estimates of his type k, precision λ, number of exact type-k guesses (= 16(1 – ε), where ε  

is the error rate), with subjects ordered by type, in decreasing order of likelihood within type. 

The joint restriction ε ≈ 1 and λ = 0, which approximates a completely random model of guesses, 

cannot be rejected at the 5% (and 1%) level for 10 subjects (6 estimated L1, 2 D1, 1 Equilibrium 

and 1 Sophisticated, with type indicators superscripted † in Table 7); Table 1 (column 4) reports 

the aggregate type frequencies excluding these subjects as "unclassified."  

Likelihood ratio tests reject the hypothesis ε ≈ 1, which approximates a standard logit 

model, at the 5% (1%) level for all but 7 (2) of our 88 subjects (110 and 213 at the 1% level, plus 
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109, 113, 212, 421, and 515 at the 5% level), so the spike in our specification is necessary.31 The 

hypothesis λ = 0 is rejected at the 1% (5%) level for the 21 (34) subjects whose estimates are 

superscripted ** (*) in Table 7, so the logit model's payoff-sensitive errors significantly improve 

the fit over a spike-uniform model such as CGCB's for only about a third of our subjects. This 

suggests that many of our subjects' deviations are due to cognitive errors rather than insufficient 

motivation or lack of effort; and this view is reinforced by Appendix F's analysis of clusters. 

D. Specification test and analysis 

As explained in the Introduction, our a priori specification might omit empirically relevant 

types and/or include irrelevant ones, and this leaves some room for doubt regarding our 45 

subjects whose types are not apparent from their guesses. To learn whether any of their guesses 

could be better explained by omitted types, or whether any of their type estimates are due to 

accidental correlations with included irrelevant types, we conduct a new specification test. 

To understand the logic of the test, imagine that we had estimated subjects' types as before, 

but using a specification that omitted an empirically relevant type, say L2. Then the patterns of 

guesses across games of subjects whose behavior is best described by L2 would tend to resemble 

one another more than any included type. We search for such clusters of subjects by reëstimating 

Section II.C's model, subject by subject, with the original list of possible types augmented by 88 

pseudotypes, one constructed from each of our subject's guesses in the 16 games.32 We then 

compare the likelihood of each subject's original type estimate with the likelihoods of the 87 

other subjects' pseudotypes. Define a cluster as a group of two or more subjects such that: (i) 

each subject's original estimated type has smaller likelihood than the pseudotypes of all other 

subjects in the group; and (ii) all subjects in the group make "sufficiently similar" guesses.33 

Finding such a cluster should lead us to diagnose an omitted type, and studying the common 

                                                 
31We report these tests only as a simple way to gauge the strength of the evidence provided by our data. Their 
standard justifications are unavailable, here and below, because the null hypotheses involve boundary 
parameter values. We approximated the test for ε = 1 using a non-boundary value of ε just below one. 
32We are grateful to Jerry Hausman for suggesting the idea of this test. We allow spike-logit errors for pseudotypes 
to avoid biasing the tests against them. The logit term's dependence on expected payoffs means that to define a 
pseudotype's error density we must infer beliefs, because pseudotypes do not come with built-in models of others. 
We do this as simply as possible, by assuming that the pseudotypes' guesses are best responses and inferring point 
beliefs, game by game, from their subjects' guesses. For a dominated guess, or a guess at a limit that is a best 
response to multiple beliefs, we infer the beliefs that bring the pseudotype's guess closest to maximizing payoff.  
33Not requiring significantly higher likelihood in (i) avoids ruling out cluster candidates because their pseudotypes 
offer only slight improvements in fit; few of the comparisons are very close. The "sufficiently similar" in (ii) could 
be made more precise, but it is more informative to consider possible clusters on a case by case basis (Appendix F). 
Although the logic of our definition allows overlapping but non-nested clusters, that problem does not arise here.  
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elements of its subjects' guesses may help to reveal its decision rule. Conversely, not finding a 

cluster suggests that there are no empirically important omitted types.34

Similarly, we can diagnose overfitting via accidental correlations with included irrelevant 

types if a subject's estimated type performs no better than random against the pseudotypes other 

than his own. For a pseudotype to have higher likelihood than the subject's estimated type it must 

come first among our 7 possible types plus itself. If the likelihoods of the subject's estimated type 

and of our types and pseudotypes are approximately independent and identically distributed 

("i.i.d."), this has probability approximately 1/8. We therefore diagnose overfitting if a subject's 

estimated type does not have higher likelihood than all but at most 87/8 ≈ 11 of the pseudotypes. 

Appendix F summarizes the results of our search for clusters, identifying five, involving 11 

subjects, indicated in Table 7 by superscript cluster labels A, B, C, D, and E on their type 

identifiers. Table 7 also identifies 15 subjects whose estimated types have lower likelihoods than 

12 or more pseudotypes, indicated in Table 7 by superscripts + on their type identifiers. Table 1 

(column 5) reports the aggregate type frequencies excluding these 26 subjects, and 4 others 

previously excluded, as "unclassified". Each of the remaining 58 subjects' estimated types, in 

bold with no superscripts in Table 7: (i) does better at the 1% level than a random model of 

guesses within our specification; (ii) has a higher likelihood than all but at most a random 

number of pseudotypes; and (iii) is not a member of any cluster.  

Despite the differences between our games and those in previous studies, our type 

classification is close to Nagel's, HCW's, CGCB's, and SW's. There are two main differences. 

We find more Equilibrium subjects than all previous studies except SW's. And we find no 

significant numbers of types other than L1, L2, Equilibrium, and L3/Equilibrium hybrids, in 

contrast to SW's (1995) classification of many subjects as Worldly, almost to the exclusion of L2. 

Our analysis also sheds light on the specification of level-k models. We stress that the issue 

here is how best to describe subjects' decision rules empirically, not how an analyst would model 

other subjects' behavior. However tempting it may be to assume that subjects use sophisticated 

econometric specifications, it might not be the best way to describe their behavior. 

                                                 
34The qualification "empirically important" is necessary because there may be subjects who follow rules that differ 
from our types but are unique in our dataset. Such subjects are unlikely to repay the cost of constructing theories of 
their behavior, and it seems difficult to test for them. Our test makes the search for omitted types manageable within 
the enormous space of possible types, while avoiding judgment calls about possible types by focusing on patterns of 
guesses like those subjects actually made. Our notion of cluster is similar in spirit to notions that have been proposed 
elsewhere, but it imposes much more structure, in a way that seems appropriate here.    
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Our Lk best responds to a noiseless Lk-1, while SW define it as best responding to an Lk-1 

with decision noise—as in QRE, but with non-equilibrium beliefs. (The issue here is not whether 

subjects' own decisions are noisy, but whether the deterministic part of their guesses responds to 

others' decision noise.) SW's and CHC's definition of L1 as a best response to uniform beliefs is 

identical to ours. SW's Worldly best responds to an estimated mixture of L1 and a noiseless 

Equilibrium; and CHC's Lk best responds to an estimated mixture of noiseless Lk-1 and lower-

level Lk types.  Our results favor our Lk definition over SW's Lk with regard to decision noise, 

and suggest that SW's Worldly is misspecified. SW's L2 best responds to a noisy L1, which 

depending on the noise parameter ranges from L0 (uniform random) to our noiseless L1. By a 

kind of "median-voter" result, our not-everywhere-differentiable payoff function (Section I.B) 

makes it optimal to best respond to the median type in the population as if it were the only type.35 

Thus in our games Worldly ignores Equilibrium when its frequency is less than 0.5—as in all 

published estimates—and is then equivalent to SW's noisy L2. Because our payoff function is 

quasiconcave, SW's L2 and Worldly guesses between our L1 and L2—strictly except for extreme 

parameter values. Yet only one of our 88 subjects made guesses between our L1 and L2 in as 

many as 10 games, one in 9, and 2 in 8, while 43 made exact guesses for our L1, L2, L3, or 

Equilibrium in 7 or more games (Appendix E).36  

Our results are inconclusive with regard to our Lk definition versus CHC's definition of Lk 

types as best responses to estimated Poisson mixtures of noiseless lower-level Lk types. Because 

CHC's mixture parameter depends on others' behavior, which subjects do not observe, their 

definition implicitly assumes that subjects have prior understandings of it; similar assumptions 

are implicit in SW's definitions of L2 and Worldly. CGCB (2001, Section 3.A) argued that the 

Sophisticated type tests for such prior understandings more cleanly, without imposing structural 

restrictions, than types that depend on estimated parameters like CHC's Lk or SW's Worldly. 

More evidence on this would be useful, but in our games CHC's L2 and L3 both make the same 

guesses as our L2.37 Thus, our results do not discriminate between CHC's and our Lk definitions. 

                                                 
35The derivative of our payoff function to the left (respectively, right) of its peak is positive (negative), and the two 
are equal in magnitude. Thus the sign of the expected derivative is determined by the median type in the distribution.   
36On average, random guesses would fall in the range in 4.14 games. The 3 subjects with 8 or 9 guesses (115, 501, 
and 506) gave no useful information in their questionnaires, but the subject with 10 (517) stated a homemade rule 
inconsistent with Worldly: "I took the midpt of my bound times his/her target, avg'd that with his/her midpt, then 
mult'd that number by my target, and finally avg'd that result with my midpt." The prevalence of OB subjects in this 
group may seem significant, but there were no OB subjects among the 5 subjects with 7 guesses in the range. 
37CHC's L2 best responds to a mixture of L0 and L1 in the proportions 1:τ, which for τ > (<) 1 puts more weight on 
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E. Econometric analysis of Baseline subjects' guesses and information searches 

In this section we generalize Section II.C's model of guesses to obtain an error-rate model 

of guesses and information searches, and use it to reëstimate Baseline subjects' types. The model 

follows Section II.C's model, avoiding unnecessary differences in the treatment of guesses and 

search. Our main goals are to summarize the implications of the search data and to assess the 

extent to which monitoring search modifies the view of behavior suggested by subjects' guesses. 

The assumptions about how cognition drives information search and decisions that 

underlie our econometric analysis are supported by the search behavior of our Baseline subjects 

whose types are apparent from their guesses and of our R/TS subjects (Appendix E). The main 

new issue is measuring compliance with types' search implications, which we propose to define 

as the density of the type's relevant look-ups (Table 4) in the look-up sequence. 

 Two aspects of the look-up data (Appendix E) are important here. First, many subjects 

(e.g. 202 and 210) usually start with "123456" or some variation, and many end with an optional 

"13," checking their own limits even if their type does not require it (e.g. 101 and 206). We do 

not filter out these patterns because subjects may use the information they yield, and the choice 

of how to filter would involve hidden degrees of freedom. 

Second, subjects' look-up patterns are heterogeneous in timing: Many Baseline subjects 

whose types are apparent from their guesses usually look first at their type's relevant sequence 

and then either make irrelevant look-ups or stop (e.g. 108, 118, and 206). A smaller number 

consistently make irrelevant look-ups first, and look at the relevant sequence only near the end 

(e.g. 413). Others repeat the relevant sequence over and over (e.g. 101). Thus one can identify 

three styles, "early," "late," and "often"; but "often" subjects are almost always well described as 

either "early" or "late". We filter out this heterogeneity using a binary nuisance parameter called 

style, which is assumed constant across games and modifies type in a way that affects only 

search implications. We take each subject to have style s = e for "early" or s = l for "late". For a 

given game, subject, type, and style, we define search compliance as the density of relevant look-

ups early or late in the sequence. If s = e, we start at the beginning and continue until we obtain a 

complete relevant sequence. If we never obtain such a sequence, compliance is 0. Otherwise 

compliance is the ratio of the length of the relevant sequence to the number of look-ups that first 
                                                                                                                                                             
L1 (L0). By the above "median-voter" result, CHC's L2 best responds to L1 alone if τ > 1, or L0 alone if τ < 1. 
They argue that τ ≈ 1.5 in most applications, in which case their L2 is confounded with our L2. Their L3, which best 
responds to a mixture of L0, L1, and L2 in proportions 1:τ:τ2/2, is also confounded with our L2 when τ ≈ 1.5. 
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yields a complete sequence. If, for instance, the relevant sequence has length six, and the first 

complete sequence is obtained after eight look-ups, then compliance is 0.75. The definition of 

search compliance is identical if s = l, but starting from the end of the sequence. Compliance for 

a given type is thus a number from 0 to 1, comparable across styles, games, and subjects.38

To reduce the need for structural restrictions, we discretize search compliance as follows.39 

For each game, subject, type, and style, we sort compliance into three categories: CH ≡ [0.667, 

1.00], C  ≡ [0.333, 0.667], and CM L ≡ [0, 0.333], indexed by c = H, M, L. We call compliance c 

for type k and style s type-k style-s compliance c, or just compliance c when the type and style 

are clear from the context. All products over c are taken over the values H, M, and L. 

In our model, in each game a subject's type and style determine his information search and 

guess, each with error. We assume that, given type and style, errors in search and guesses are 

independent of each other and across games. We describe the joint probability distribution of 

guesses and search by specifying compliance probabilities and guess error rates and precisions, 

given type and style.40 Let I  be an indicator variable for style, with Is = 1 when the subject has 

style s (= e or l) and 0 otherwise. Given a subject's type and style, let cζ be the probability that he 

has type-k style-s compliance c in any given game, where 1=∑
c
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38The compliance data are in Appendix H. For D1, D2, and Sophisticated we take the relevant sequence to have 
length 6, the minimum with which one could satisfy their requirements, e.g. via "153426" for D1 with requirements 
{(4,[5,1]),(6,[5,3]),2}, or for D2 or Sophisticated with requirements {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2}.     
39Compliance is inherently discrete, but our discretization is coarser than necessary.   
40A natural generalization would allow search and guess errors to be correlated by allowing compliance-contingent 
error rates and precisions as in CGCB. We dispense with this for simplicity. This is a convenient place to correct a 
typographical error in CGCB's equation (4.3), where the summation (∑) should be a product (∏).    
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It is clear from (8) and (9) that the maximum likelihood estimate of p sets = 1 and Ikp s = 1 

for the (generically unique) type k and style s with the highest , 

given the estimated ε, λ, and

)),,);(,,( ζλεiiiskisksk xRNMd
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where is the log-likelihood of the guesses-only model defined in (7). Thus 

search adds an additively separable term in search compliance, minus an additional term . 

As in Section II.C's model, when  = 0 or G, reduces to the sum over g in 
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the second-to-last line of (10). When or both  and = 0 for some c (  by 

definition), the corresponding terms drop out of (8) and their analogs are eliminated from (10). 
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The model now has six independent parameters per subject: error rateε , precisionλ , type 

k, style s, and two independent compliance probabilities cζ . The maximum likelihood estimates 

of ε , cζ , and λ , given k and s, are /G, , and the standard logit precision. The 

estimates of k and s maximize the expression in (10), given the other estimates. 
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Guesses influence these estimates exactly as in Section II.C's model, and unless the 

estimated k changes the estimates of ε andλ  are the same; but now the estimated k is influenced 

by information search as well as guesses. The search term in the last line of (10) is a convex 

function of the . This favors k-s combinations for which the  (or the estimated isk
cm isk

cm cζ ) are 

more concentrated on particular levels of c, because their search implications explain more of the 

variation in search patterns. Note that such combinations are favored without regard to whether 

the levels of c on which the  are concentrated are high or low. We avoid such restrictions 

because levels of search compliance are not meaningfully comparable across types and it would 

be arbitrary to favor a type just because its compliance requirements are easier to satisfy. 

Without them, however, the likelihood may favor a type simply because compliance is 0 in many 

or all games (0 compliance is independent of style). We deal with this as simply as possible, by 

ruling out a priori types for which a subject has 0 (not just L) compliance in 8 or more games.

isk
cm

41

The center and right-hand side of Table 7 report estimates of Baseline subjects' types and 

styles, error rates, precisions, and rates of search compliance, based first on search only and then 

on guesses and search combined. For the latter we report separate as well as total log-likelihoods, 

to give a better indication of what drives them.42 Most subjects' type estimates based on guesses 

and search reaffirm the guesses-only estimates.43 For some subjects, however, the guesses-and-

                                                 
41The cutoff of 8 is a conservative response to the difficulty of specifying a precise model of search compliance. A 
more standard but more complex approach, in the spirit of CGCB's use of their Occurrence assumption in defining 
search compliance, would add a separate category for 0 compliance; estimate a subject's probability, given type and 
style, of having positive compliance; and require it to be sufficiently greater than 0. This would have a similar effect.   

. 

rises 

42Ties in the search-only or guesses-and-search type-style estimates are not rare, due to our coarse categorization. 
When they occur we report the tied estimate closest to the guesses-only estimate, indicating the others in the notes. 
Most subjects' style estimates are early but there is a sizeable minority of late estimates, suggesting that without the 
style parameter, our characterization of search compliance would distort the implications of some subjects' searches
43This happens in part because the guess part of the log-likelihood is nearly 6 times larger than the search part, and 
so has much more weight in determining the estimates based on guesses and search. The difference in weights a
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search type estimate resolves a tension between guesses-only and search-only estimates in favor 

of a type other than the guesses-only estimate. In more extreme cases, a subject's guesses-only 

type estimate is excluded because it has 0 search compliance in 8 or more games.44

Table 1 (column 6) reports the aggregate type frequencies based on (10). When the 

guesses-and-search type estimate differs from the guesses-only estimate, we favor the former but 

require it to pass the analogs of the guesses-only criteria. Under the updated criteria, we can 

classify 43 of our 71 Baseline subjects: 22 L1, 13 L2, and 8 Equilibrium.45 The search analysis 

allows us to classify 2 subjects as L1 who were previously classified as L2; and to classify 1 

previous L1 and 1 previous L2 subject whose guesses-only estimates were inconclusive. It also 

calls into question the classification of 4 subjects: 1 each L1 (subject 415), L2, D1, and 

Equilibrium. Each of the 43 Baseline subjects now classified, with guesses-and-search type 

identifiers in bold and with no superscripts (though some have subscripts) in Table 7: (i) does 

better at the 1% level than a random model of guesses and search within our specification; (ii) 

the guesses-only part of its likelihood is higher than the guesses-only likelihood for all but at 

most a random number of pseudotypes; and (iii) is not a member of any cluster.46

Adding to these Baseline subjects the 12 of 17 OB subjects (7 L1, 1 L2, 1 L3, 2 

Equilibrium, and 1 Sophisticated) previously classified, with guesses-only type identifiers in 

bold in Table 7, we have a total of 55 of 88 subjects who can be classified: 29 L1, 14 L2, 1 L3, 

10 Equilibrium, and 1 Sophisticated.47 Going beyond our criteria, one might add subject 415 as a 

probable L1 and the 4 subjects in clusters A and B (Appendix F) as likely hybrids of L3 and/or 

                                                                                                                                                             
because our theory makes sharper predictions about guesses than about search, which are far less likely to be 
satisfied by chance. If we tried to put search on a more equal footing by making sharper predictions, e.g. requiring 
more precise levels of compliance within a finer categorization, our subjects' searches would rarely satisfy types' 
search implications, and the stronger restrictions would cause severe specification bias. 
44This group includes subject 415, estimated L1 on guesses (with 9 exact) but (noisy) D1 on guesses and search. 
Subject 415 has 9 games with 0 L1 search compliance due to no adjacent [4,6]'s or [6,4]'s (Table 4), but his 
sequences are rich in [4,2,6]'s and [6,2,4]'s and L1 search compliance across games is weakly correlated with L1 
guesses. We therefore believe that this subject simply violated our assumption that basic operations are represented 
by adjacent look-ups (Section I.B).This group also includes several subjects whose guesses-only type estimates we 
believe were rightly excluded: 115, 204, and 401, estimated D1 based on guesses but Equilibrium or L1 on guesses 
and search; 112, estimated Equilibrium based on guesses but L2 on guesses and search; and 304 and 421, estimated 
Sophisticated based on guesses but Equilibrium or L1 on guesses and search.  
45A guesses-and-search type estimate can satisfy the classification criteria even if it did not satisfy the guesses-only 
criteria if it does sufficiently better than random in explaining search. But a guesses-and-search estimate may fail the 
new criteria because it must have the same or lower likelihood for guesses than the guesses-only type estimate. 
46In (ii) we include OB subjects' pseudotypes for comparability with guesses-only results, so random still means 11.     
47Other subjects' low levels of compliance with Sophisticated's search requirements suggest that the identification of 
the one Sophisticated subject, who was a noisy OB subject, might not have survived monitoring search.      
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Equilibrium. Either way, the search analysis refines and sharpens our conclusions, and con

the absence of significant numbers of subjects of types other than L1, L2, Equilibrium, or 

possibly hybrids of L3 and/or Equilibrium. For the 28 to 33 unclassified subjects, our 

firms 

specification analysis suggests that it will be difficult to improve upon a random model. 
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This paper has reported an experiment that elicits subjects' initial responses to a series of 16

two-person guessing games, monitoring their searches for hidden payoff information along with 

their guesses. Our design yields strong separation of the guesses and searches implied by lead

decision rules in a very large space of possible behaviors. Many subjects' guesses yield clear 

strategic fingerprints, so that their types can be read directly from their guesses. Other subjects'

types can be identified via an econometric and specification analysis. The full analysis reveals 

large numbers of L1, L2, Equilibrium, and L3 and/or Equilibrium hybrid subjects, and indicates 

the absence of significant numbers of other types. Thus, to the extent that our subjects' deviation

 equilibrium can be predicted, they appear to be based almost entirely on level-k thinki

Because our level-k types build in risk-neutral, self-interested rationality and perfect 

models of the game, many subjects' systematic deviations from equilibrium can be confidently

attributed to non-equilibrium beliefs rather than irrationality, risk aversion, altruism, spite, or 

confusion. Thus our results affirm subjects' rationality and ability to comprehend complex g

and reason about others' responses to them, while challenging the use of equilibrium as the 

principal model of initial responses. They are consistent with the results of previous analyses, b

significantly refine and sharpen them. The surprisingly simple structure of the alternative non-

equilibrium model they suggest should help to allay the common fear that if equilibrium is no

assumed, "anything can happen." Moreover, such models have already been used in several

ations, including Crawford (2003); CHC; and Crawford and Iriberri (2005a, 2005b). 

We close by noting that the cognitive implications of our results suggest conclusions about 

the structure of learning rules. Our subjects' comprehension of the games and tendencies towa

exact best responses to the beliefs implied by simplified models of others point clearly away 

from reinforcement learning and toward beliefs-based models like weighted fictitious play or 

hybrids like Camerer and Ho's (1999) experience-weighted attraction learning. We plan in futu

experiments to use information search to discriminate among alternative theories of learning, 
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whose search implications are often more sharply separated than their implications for decisions.
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216 (68%) of these subjects' 320 guesses were exact L1 guesses. 
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Figure 1. "Fingerprints" of 20 Apparent L1 Subjects 
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Figure 2. "Fingerprints" of 12 Apparent L2 Subjects 
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Note: Only deviations from L2's guesses are shown. 

38 (72%) of these subjects' 192 guesses were exact L2 guesses.
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69 (54%) m guesses. 
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of these subjects' 128 guesses were exact Equilibriu
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Figure 5. Separation of Types' Predicted Guesses Across Games 

 

 
 
Figure 6. Screen Shot of the MouseLab Display 
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Table 2. Overall Structure of the Experimental Design 
Session Date Location Subjects 

B1 1/31/2002 UCSD 13 
B2 4/19/2002 (a.m.) UCSD 20 
B3 4/19 2002 (p.m.) UCSD 17 
B4 5/24/2002 (a.m.) UCSD 21 

OB1 5/24/2002 (p.m.) UCSD 17 
R/TS1 2/1/2002 UCSD 13: 4 L1, 5 L2, 4 Equilibrium 
R/TS2 5/20/2002 (a.m.) UCSD 5 Equilibrium 
R/TS3 5/20/2002 (p.m.) UCSD 8 D1 
R/TS4 5/23/2002 UCSD 11: 3 L1, 4 L2, 3 D1, 1 Equilibrium 
R/TS5 4/25/2003 York 10 L3 
R/TS6 4/30/2003 York 11: 2 L3, 9 D2 
R/TS7 5/1/2003 York 11: 3 L2, 2 L3, 1 D1, 2 D2, 3 Equilibrium 
R/TS8 5/6/2003 York 8: 3 D1, 2 D2, 3 Equilibrium 
R/TS9 5/9/2003 York 12: 1 L2, 1 L3, 3 D1, 1 D2, 6 Equilibrium 
R/TS10 5/14/2003 York 12: 2 L2, 5 D1, 1 D2, 4 Equilibrium 
R/TS11 5/21/2003 York 10: 3 L1, 4 L2, 3 D1 
R/TS12 5/23/2003 York 5 L1 
R/TS13 5/28/2003 York 8: 4 L1, 4 L2 
R/TS14 5/30/2003 York 12: 3 L1, 2 L2, 2 L3, 2 D1, 3 D2 
R/TS15 6/10/2003 York 12: 3 L1, 2 L2, 1 L3, 2 D1, 1 D2, 3 Equilibrium 

 
Table 3. Strategic Structures of the Games

Game Order Targets Equilibrium Rounds of Pattern of Dominance at
i  j Played  Dominance Dominance Both Ends

1. α2β1 6 Low Low 4 A No
2. β1α2 15 Low Low 3 A No
3. β1γ2 14 Low Low 3 A Yes
4. γ2β1 10 Low Low 2 A No
5. γ4δ3 9 High High 2 S No
6. δ3γ4 2 High High 3 S Yes
7. δ3δ3 12 High High 5 S No
8. δ3δ3 3 High High 5 S No
9. β1α4 16 Mixed Low 9 S/A No
10. α4β1 11 Mixed Low 10 S/A No
11. δ2β3 4 Mixed Low 17 S/A No
12. β3δ2 13 Mixed Low 18 S/A No
13. γ2β4 8 Mixed High 22 A No
14. β4γ2 1 Mixed High 23 A Yes
15. α2α4 7 Mixed High 52 S/A No
16. α4α2 5 Mixed High 51 S/A No
Note: Game identifiers: Limits α for 100 and 500, β for 100 and 900, γ for 300 and 500, or δ for 300 and 900; targets 1 
for 0.5, 2 for 0.7, 3 for 1.3, 4 for 1.5. Low targets are < 1; High targets are > 1; Mixed targets are one < 1, one > 1. High 
equilibrium is determined by players' upper limits; Low equilibrium is determined by players' lower limits. Rounds of 
dominance refers to the number player i needs to identify his equilibrium guess. Alternating dominance (A) occurs first 
for one player, then the other, then the first, etc.; simultaneous dominance (S) occurs for both players at once; and 
simultaneous then alternating dominance (S/A) is simultaneous in the first round and then alternating. Dominance at 
both ends refers to whether guesses are eliminated near both of a player's limits. 
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Table 4. Types' Ideal Guesses and Relevant Look-ups 

Type Ideal guess Relevant look-ups 

L1 pi [aj+bj]/2 {[aj,bj],pi} ≡ {[4, 6], 2} 

L2 piR(aj,bj; pj[ai+bi]/2) {([ai,bi],pj),aj,bj,pi} ≡ {([1, 3], 5), 4, 6, 2} 

L3 piR(aj,bj; pjR(ai,bi; pi[aj+bj]/2)) {([aj,bj],pi),ai,bi,pj} ≡ {([4, 6], 2), 1, 3, 5} 

D1 pi(max{aj,pjai} + min{pjbi,bj})/2 {(aj,[pj,ai]),(bj,[pj,bi]),pi} ≡ {(4,[5,1]),(6,[5,3]),2} 

D2 pi[max{max{aj,pjai},pjmax{ai,piaj}} 
+min{pjmin{pibj,bi},min{pjbi,bj}}]/2 

{(ai,[pi,aj]),(bi,[pi, bj]),(aj,[pj,ai]),(bj,[pj,bi]),pj,pi} 
≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 

Eq. {ai if piaj ≤ ai or min{piaj,bi} if piaj > a i} if pipj < 1 or 
{bi if pib j ≥ bi or max{ai,pibj} if pibj < bi} if pipj > 1 

{[pi,pj],aj} ≡ {[2, 5], 4} if pipj < 1 
or {[pi,pj],bj} ≡ {[2, 5], 6} if pipj > 1 

Soph. [no closed-form expression; Sophisticated's search 
implications are the same as D2's] 

{(ai,[pi,aj]),(bi,[pi, bj]),(aj,[pj,ai]),(bj,[pj,bi]),pj,pi} 
≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 

Note: The most basic operations are represented by the innermost look-ups, grouped within square brackets; these can appear in any order, 
but may not be separated by other look-ups. Other operations are represented by look-ups grouped within parentheses or curly brackets; 
these can appear in any order, and may be separated by other look-ups. Equilibrium's minimal search implications are derived not directly 
from Equilibrium's ideal guesses, but from piaj when  pipj < 1 and pibj when  pipj > 1 via Observation 1 (see Appendix H). 

 
 

Table 5. Types' Adjusted Guesses and Guesses that Survive Iterated Dominance
Game Player i's guess for type Range of iteratively undominated guesses 

 L1 L2 L3 D1 D2 Eq. Soph. 1 round 2 rounds 3 rounds 4 rounds 
1. α2β1 350 105 122.5 122.5 122.5 100 122 100, 500 100, 175 100, 175 100, 100 
2. β1α2 150 175 100 150 100 100 132 100, 250 100, 250 100, 100 100, 100 
3. β1γ2 200 175 150 200 150 150 162 150, 250 150, 250 150, 150 150, 150 
4. γ2β1 350 300 300 300 300 300 300 300, 500 300, 300 300, 300 300, 300 
5. γ4δ3 500 500 500 500 500 500 500 450, 500 500, 500 500, 500 500, 500 
6. δ3γ4 520 650 650 617.5 650 650 650 390, 650 585, 650 650, 650 650, 650 
7. δ3δ3 780 900 900 838.5 900 900 900 390, 900 507, 900 659.1, 900 856.8, 900 
8. δ3δ3 780 900 900 838.5 900 900 900 390, 900 507, 900 659.1, 900 856.8, 900 
9. β1α4 150 250 112.5 162.5 131.25 100 187 100, 250 100, 250 100, 187.5 100, 187.5 

10. α4β1 500 225 375 262.5 262.5 150 300 150, 500 150, 375 150, 375 150, 281.27
11. δ2β3 350 546 318.5 451.5 423.15 300 420 300, 630 300, 630 300, 573.3 300, 573.3 
12. β3δ2 780 455 709.8 604.5 604.5 390 695 390, 900 390, 819 390, 819 390, 745.29
13. γ2β4 350 420 367.5 420 420 500 420 300, 500 315, 500 315, 500 330.75, 500
14. β4γ2 600 525 630 600 611.25 750 630 450, 750 450, 750 472.5, 750 472.5, 750 
15. α2α4 210 315 220.5 227.5 227.5 350 262 100, 350 105, 350 105, 350 110.25, 350
16. α4α2 450 315 472.5 337.5 341.25 500 375 150, 500 150, 500 157.5, 500 157.5, 500 
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Table 6. B and OB Subjects' Aggregate Compliance with Iterated Dominance and Equilibrium 

Game 
(# rounds of 
dominance) 

Respects 1 or 
more rounds 
of dominance 

Respects 2 or 
more rounds 
of dominance 

Respects 3 or 
more rounds 
of dominance 

Respects 4 or 
more rounds 
of dominance 

Equilibrium 
exact 

compliance 
All games 90 (62) 75 (41) 53 (34) 40 (26) 18 (0) 
1. α2β1 (4)     100 (100) 34 (19) 34 (19)   13 (0) 13 (0) 
2. β1α2 (3) 78 (19) 78 (19) 16 (0) - (-) 16 (0) 
3. β1γ2 (3) 73 (13) 73 (13) 10 (0) - (-) 10 (0) 
4. γ2β1 (2)     100 (100) 44 (0) - (-) - (-) 44 (0) 
5. γ4δ3 (2) 81 (25) 69 (0) - (-) - (-) 69 (0) 
6. δ3γ4 (3) 88 (43) 35 (11) 26 (0) - (-) 26 (0) 
7. δ3δ3 (5)       97 (85) 91 (66) 70 (40)   26 (7) 24 (0) 
8. δ3δ3 (5)  95 (85) 94 (66) 68 (40)   20 (7) 20 (0) 
9. β1α4 (9) 70 (19) 70 (19) 34 (11)  34 (11) 5 (0) 

10. α4β1 (10)  100 (88) 56 (56) 56 (56)  31 (33) 3 (0) 
11. δ2β3 (17) 86 (55) 86 (55) 81 (46)  81 (46) 5 (0) 
12. β3δ2 (18)   97 (64) 92 (54) 92 (54) 69 (44) 1 (0) 
13. γ2β4 (22) 100 (100) 97 (93) 97 (93) 94 (85) 20 (0) 
14. β4γ2 (23) 88 (38) 88 (38) 84 (35) 84 (35)   8 (0) 
15. α2α4 (52) 90 (63) 90 (61) 90 (61) 90 (60) 11 (0) 
16. α4α2 (51)  98 (88) 98 (88) 94 (86) 94 (86) 6 (0) 
Note: Compliance percentages are rounded to the nearest integer, with random compliance percentages in parentheses. 
Guesses that respect k or more rounds of dominance are k-rationalizable. 
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Table 7. Subject-by-Subject Econometric Type Estimates and Results of Specification Test
      Guesses Only          Search only Guesses and search

ID  dom. ln L k exact λ ln L k ζH ζM ln Lt ln Lg ln Ls k exact λ ζH ζM

513    - - - - - - - - - -0 0.00 L1 16 - - - 
118               0 -9.62 L1 15 1.85 -7.41 L1e 0.88 0.06 -17.03 -9.62 -7.41 L1e 15 1.85 0.88 0.06
101               1 -10.27 L1 15 0.55 -9.94 L1e

‡ 0.69 0.31 -20.21 -10.27 -9.94 L1e‡‡ 15 0.55 0.69 0.31
104             0 -16.63 L1 14 2.20* -3.74 L1e 0.00 0.94 -20.37 -16.63 -3.74 L1e 14 2.20 0.00 0.94
413               0 -17.81 L1 14 0.88 -6.03 L1l 0.13 0.88 -23.84 -17.81 -6.03 L1l 14 0.88 0.13 0.88
207               0 -17.96 L1 14 0.42 0.00 L1e 1.00 0.00 -17.96 -17.96 0.00 L1e  14 0.42 1.00 0.00
216               1 -25.41 L1 13 1.06 -11.25 L3e 0.75 0.19 -38.69 -25.41 -13.29 L1e 13 1.06 0.31 0.63
402            0 -30.93 L1 12 5.65* -9.00 L1e 0.00 0.75 -39.93 -30.93 -9.00 L1e 12 5.65 0.00 0.75
418             0 -42.23 L1 10 21.22** -7.41 L2e 0.88 0.06 -52.16 -42.23 -9.94 L1e 10 21.22 0.00 0.69
301               1 -45.84 L1D 10 0.00 -3.74 L1e 0.06 0.94 -49.58 -45.84 -3.74 L1e

D 10 0.00 0.06 0.94
508              0 -46.19 L1D 10 2.05 - - - - - - - - - - - - 
308               3 -47.34 L1 10 0.00 -9.63 L3e 0.81 0.13 -60.65 -47.34 -13.30 L1el 10 0.00 0.19 0.69
102              4 -47.63 L1 10 0.00 -9.63 L2e 0.81 0.06 -57.57 -47.63 -9.94 L1e 10 0.00 0.00 0.69
415              1 -53.64 L1 9 0.88 -16.38 D1e 0.31 0.50 -107.28 -90.90 -16.38 D1e

+ 2 0.76 0.31 0.50
504              1 -56.97 L1 8 1.68** - - - - - - - - - - - - 
208               6 -61.62 L1 8 0.00 -3.74 L1l 0.06 0.94 -65.37 -61.62 -3.74 L1l 8 0.00 0.06 0.94
318             0 -62.61 L1 7 3.18* -3.74 L1e

‡ 0.00 0.94 -66.36 -62.61 -3.74 L1e 7 3.18 0.00 0.94
512                0 -63.33 L1 7 1.56 - - - - - - - - - - - - 
502                1 -64.55 L1 7 1.01 - - - - - - - - - - - - 
516               1 -64.93 L1C 7 1.10* - - - - - - - - - - - - 
409             0 -73.59 L1E 4 9.90** -10.59 L1l 0.00 0.38 -84.18 -73.59 -10.59 L1l

 E 4 9.90 0.00 0.38
106            0 -75.82 L1 5 1.19* -7.72 Eqe 0.00 0.19 -85.75 -75.82 -9.94 L1l 5 1.19 0.00 0.31
305               3 -79.89 L1 5 0.37 -6.03 L1e 0.88 0.13 -85.92 -79.89 -6.03 L1e 5 0.37 0.88 0.13
411             1 -80.58 L1 4 1.45** 0.00 L3e 1.00 0.00 -86.61 -80.58 -6.03 L1e 4 1.45 0.13 0.88
509                1 -81.81 L1 4 0.86 - - - - - - - - - - - - 
203               4 -83.90 L1 4 0.00 -9.94 Eqe 0.00 0.31 -94.49 -83.90 -10.59 L1e 4 0.00 0.00 0.63
505                4 -84.13 L1 4 0.43 - - - - - - - - - - - - 
317             3 -86.58 L1 3 0.92* -3.74 L1e 0.94 0.06 -90.32 -86.58 -3.74 L1e 3 0.92 0.94 0.06
416             1 -86.74 L1† 1 4.48** -3.74 L1e

‡ 0.00 0.94 -90.48 -86.74 -3.74 L1e 1 4.48 0.00 0.94
217              3 -87.12 L1 3 0.68 -10.59 L1e 0.00 0.38 -97.71 -87.12 -10.59 L1e 3 0.68 0.00 0.38
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219             3 -87.32 L1+ 3 0.89* -7.72 L1e 0.00 0.81 -95.04 -87.32 -7.72 L1e
+ 3 0.89 0.00 0.81

501               1 -87.93 L1† 0 4.38** - - - - - - - - - - - - 
410             3 -89.18 L1 2 1.53** -7.72 L1el

‡ 0.00 0.19 -96.90 -89.18 -7.72 L1el 2 1.53 0.00 0.19
510                5 -89.60 L1 3 0.00 - - - - - - - - - - - - 
420             2 -89.68 L1+ 2 1.25** -3.74 Eql 0.00 0.06 -94.26 -90.52 -3.74 Eql

+ 3 0.19 0.00 0.06
408             2 -89.71 L1+ 2 1.09* -6.03 L1e 0.00 0.88 -95.74 -89.71 -6.03 L1e

+ 2 1.09 0.00 0.88
201             3 -90.26 L1+ 2 1.21** -3.74 L1e

‡ 0.00 0.94 -94.00 -90.26 -3.74 L1e
+ 2 1.21 0.00 0.94

105             2 -90.58 L1+ 2 1.29** -9.00 Eqe 0.25 0.75 -102.56 -93.56 -9.00 Eqe
+ 2 0.11 0.25 0.75

103            3 -90.61 L1+ 2 1.12* -6.03 L1e 0.00 0.13 -96.63 -90.61 -6.03 L1e
+ 2 1.12 0.00 0.13

213             2 -95.57 L1†+ 0 1.19* -3.74 L2e 0.94 0.00 -100.34 -96.60 -3.74 L2e
+ 0 0.62 0.94 0.00

515                4 -95.68 L1†+ 1 0.60 - - - - - - - - - - - - 
113             5 -96.61 L1†+ 1 0.07 -9.63 L3el

‡ 0.81 0.06 -108.49 -98.86 -9.63 L3el
+ 4 0 0.81 0.06

109                8 -97.31 L1†+ 1 0.00 - - - - - - - - - - - - 
309              0 0.00 L2 16 - -9.94 L2el

‡ 0.69 0.00 -9.94 0.00 -9.94 L2el 16 0.00 0.69 0.00
405              0 0.00 L2 16 - -13.30 L3e 0.69 0.13 -14.40 0.00 -14.40 L2e 16 0.00 0.63 0.25
206              0 -10.07 L2 15 0.79 -7.41 L2e 0.88 0.06 -17.49 -10.07 -7.41 L2e 15 0.79 0.88 0.06
209               0 -25.51 L2 13 0.96 -9.00 L1e 0.00 0.75 -35.45 -25.51 -9.94 L2l 13 0.96 0.69 0.31
108               0 -25.88 L2 13 0.45 0.00 L2e

‡ 1.00 0.00 -25.88 -25.88 0.00 L2e 13 0.45 1.00 0.00
214             2 -35.30 L2 11 2.73** -3.74 L1e 0.00 0.94 -41.33 -35.30 -6.03 L2e 11 2.73 0.88 0.13
307             1 -38.88 L2 11 1.04* -7.72 Eqe 0.00 0.19 -48.51 -38.88 -9.63 L2l 11 1.04 0.81 0.13
218               0 -40.54 L2 11 0.60 -7.72 L1e 0.00 0.81 -53.84 -40.54 -13.30 L2l 11 0.60 0.69 0.19
422              2 -55.79 L2 9 0.22 0.00 L1e 0.00 1.00 -61.82 -55.79 -6.03 L2e 9 0.22 0.88 0.13
316              1 -58.43 L2 8 0.73 -10.97 Eqe

‡ 0.00 0.44 -72.26 -58.43 -13.84 L2l 8 0.73 0.06 0.38
407             0 -60.98 L2C 8 0.44 -6.03 L2e

‡ 0.88 0.13 -67.00 -60.98 -6.03 L2e
C 8 0.44 0.88 0.13

306              2 -68.48 L2 7 0.18 -3.74 L1l 0.00 0.06 -75.68 -71.94 -3.74 L1l 6 0.71 0.00 0.06
412             0 -69.43 L2 6 1.05** 0.00 L2e

‡ 1.00 0.00 -69.43 -69.43 0.00 L2e 6 1.05 1.00 0.00
205               0 -72.81 L2 6 0.01 0.00 L1e 0.00 1.00 -75.80 -75.80 0.00 L1e 4 3.27 0.00 1.00
220               1 -72.96 L2 6 0.32 0.00 L1e 0.00 1.00 -76.70 -72.96 -3.74 L2e 6 0.32 0.94 0.06
403               0 -73.60 L2 6 0.50 -6.03 Eql

‡ 0.00 0.13 -86.91 -80.88 -6.03 Eql
+ 4 0.84 0.00 0.13

517               0 -73.70 L2 5 0.98** - - - - - - - - - - - - 
503                3 -88.21 L2+ 3 0.00 - - - - - - - - - - - - 
414             4 -89.00 L2 2 0.78* -7.72 L1e 0.00 0.19 -102.56 -92.62 -9.94 Eqe

+ 2 0.36 0.00 0.31
110               3 -92.51 L2+ 2 0.00 -9.00 L1l 0.00 0.75 -107.03 -98.03 -9.00 L1l

+ 0 0.56 0.00 0.75
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210             0 -51.13 L3B 9 0.92* -10.59 L1e 0.00 0.38 -68.44 -51.13 -17.32 L3e
B 9 0.92 0.38 0.25

302            0 -61.46 L3B 7 1.11** -6.03 Eqe 0.00 0.13 -71.14 -65.12 -6.03 Eqe
B 7 1.11 0.00 0.13

507               0 -63.23 L3 7 0.94** - - - - - - - - - - - - 
313             0 -79.12 D1E 3 2.68** -6.03 L1e

‡ 0.00 0.88 -90.93 -84.90 -6.03 L1e‡‡
E 2 3.28 0.00 0.88

312             0 -80.45 D1† 1 5.85** -3.74 L2e
‡ 0.94 0.06 -84.74 -81.00 -3.74 L2e 3 1.37 0.94 0.06

204             2 -84.86 D1E 3 1.22** 0.00 L1e
‡ 0.00 1.00 -88.47 -88.47 0.00 L1e

+E 2 1.59 0.00 1.00
115             1 -86.10 D1 2 1.74** -9.94 Eqe 0.00 0.31 -107.99 -98.05 -9.94 Eqe

+ 0 0.39 0.00 0.31
401             2 -91.99 D1†+ 0 1.58** -6.03 Eql 0.00 0.13 -104.35 -98.32 -6.03 Eql

+ 0 0.32 0.00 0.13
310              0 -41.69 Eq 11 0.00 -9.94 L1l 0.00 0.31 -56.84 -41.69 -15.15 Eqel 11 0.00 0.13 0.31
315              0 -41.80 Eq 11 0.00 0.00 L3e

‡ 1.00 0.00 -50.80 -41.80 -9.00 Eqe 11 0.00 0.00 0.75
404              1 -54.69 Eq 9 0.03 -9.00 Eqe

‡ 0.00 0.75 -63.69 -54.69 -9.00 Eqe 9 0.03 0.00 0.75
303              0 -59.93 Eq 8 0.41 -3.74 Eqe

‡ 0.00 0.06 -63.68 -59.93 -3.74 Eqe 8 0.41 0.00 0.06
417              0 -60.52 EqA 8 0.30 -10.97 L1e 0.00 0.44 -73.80 -60.52 -13.29 Eqe

A 8 0.30 0.31 0.63
202              0 -60.78 EqA 8 0.10 -9.94 Eqe 0.00 0.31 -70.72 -60.78 -9.94 Eqe

A 8 0.10 0.00 0.31
518                0 -66.38 Eq 7 0.61 - - - - - - - - - - - - 
112             2 -66.39 Eq 7 0.00 -16.64 L2e 0.25 0.25 -106.23 -89.60 -16.64 L2e

+ 3 0 0.25 0.25
215             0 -73.85 Eq 6 0.55 -3.74 L1e 0.00 0.06 -81.57 -73.85 -7.72 Eqe 6 0.55 0.00 0.19
314               5 -78.06 Eq 5 0.52 -9.94 Eqe 0.00 0.69 -87.99 -78.06 -9.94 Eqe 5 0.52 0.00 0.69
211               3 -79.14 Eq 5 0.00 -7.72 Eqe 0.00 0.19 -86.86 -79.14 -7.72 Eqe 5 0.00 0.00 0.19
514                8 -85.98 Eq 4 0.00 - - - - - - - - - - - - 
406               2 -86.73 Eq 3 0.59 -6.03 L1l 0.00 0.13 -99.17 -86.73 -12.44 Eql 3 0.59 0.06 0.25
212              5 -96.62 Eq†+ 1 0.00 -6.03 L1e 0.00 0.88 -104.34 -96.62 -7.72 Eqe

+ 1 0.00 0.00 0.81
506               0 -82.10 So 3 1.26** - - - - - - - - - - - - 
304              5 -93.29 So+ 2 0.25 0.00 Eqe 0.00 1.00 -97.31 -97.31 0.00 Eqe

+ 1 0 0.00 1.00
421              4 -96.78 So† 1 0.31 -10.59 Eqe 0.00 0.38 -109.34 -98.38 -10.97 L1e

+ 0 0.43 0.00 0.56
Notes: A guesses-only or guesses-and-search type identifier superscripted † means the subject's estimated type was not significantly better than a random model of guesses (λ = 0, ε ≈ 1) at 
the 5% (or 1%) level. A guesses-only or guesses-and-search type identifier superscripted + means the estimated type had lower likelihood than 12 or more pseudotypes, more than expected 
at random. A guesses-only or guesses-and-search type identifier superscripted A, B, C, D, or E indicates membership in a cluster. A guesses-only or guesses-and-search type identifier in 
bold appears or is reliable by the criteria stated in the text. An estimated λ superscripted ** (*) means that λ = 0 is rejected at the 1% (5%) level. ln Lt, ln Lg, and ln Ls refer to total, guesses-
only, and search-only likelihoods. A type-style identifier subscripted el indicates that both styles have equal likelihoods and ζc. A search-only type-style identifier subscripted ‡ indicates 
that there are alternatives with different types and/or ζc: L1l  for subjects 101 and 404; L2 and L3e e for 318 and 204, L3 for 416 and 201; L2e l for 113; L1e and L3el for 309; L1e  and L3e for 
108; L1e for 316, 407, 403, and 315;  L1e, L3e, and Eqe for 412 and 312;  L1l, D2e, and Soe for 313; and D1e for 303. A guesses-and-search type-style identifier subscripted ‡‡ indicates that 
there are alternatives with different ζc: L1l  for subjects 101 and 313. No search estimates are reported for subject 109, who had 0 search compliance in 8 or more games for every type. 
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