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In this work, an approach for online signature verification based on writer specific features and classi- 

fier is investigated. Existing models for online signatures are generally writer independent, as a common 

classifier or fusion of classifier is used on a common set of features for all writers during verification. 

In contrast, our approach is based on the usage writer dependent features as well as writer dependent 

classifier. The two decisions namely optimal features suitable for a writer and a classifier to be used for 

authenticating the writer are taken based on the error rate achieved with the training samples. The per- 

formance of our model is tested on both MCYT-100 (DB1), a sub corpus of MCYT data set, consisting of 

signatures of 100 writers, MCYT-330 (DB2) consisting of signatures of all 330 writers and visual subcor- 

pus of SUSIG dataset. Experimental results confirm the effectiveness of writer dependent characteristics 

for online signature verification. The error rate that we achieved is lower when compared to many exist- 

ing contemporary works on online signature verification especially when the number of training samples 

available for each writer is sufficient enough. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Signature has been the most commonly adapted behavioral bio-

etric trait for human identity establishment in many applications.

epending on the acquisition mode, signature verification can be

ategorized as offline and online [21] . In an offline mode, verifi-

ation is done based on the information extracted from the hard

opy of the signature image captured from a paper document. In

n online mode, signature is captured using special devices such

s smart pens, pressure sensitive tablets etc., which can record dy-

amic features of a writer such as velocity, pressure, acceleration

tc., and verification is done considering both static and dynamic

eatures. As these dynamic features are unique for an individual

riter and also difficult to forge, online signature verification is

ore reliable than an offline mode. 

Based on the representation schemes and matching techniques,

nline signature verification methods can be categorized as para-

etric and function based approaches [34] . A parametric based

pproach results in more compact representation as the entire

ignature is represented by means of a few parameters [25,36,38] .
✩ This paper has been recommended for acceptance by Umapada Pal. 
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uring verification, corresponding parameters of a test signature

nd a reference signature are compared. Parameters are further

lassified as global and local parameters depending on whether

hey correspond to the whole signature or to a specific point in

he signature [20] . In a function based approach, a signature is

epresented by means of time functions of various dynamic prop-

rties such as pressure, velocity, acceleration etc., and verification

s done by comparing the time functions of a test signature and

 reference signature [22,33,39,40] . A function based approach

enerally takes a longer matching time compared to a parametric

ased approach yet resulted in lower error rate. 

In literature we can see the application of various classifiers

or online signature such as SVM [15,32] , neural networks [1,5] ,

MM [2,3,12] , Parzen window [29,30,43] , distance based [4,35] ,

andom forest [16] and symbolic classifier [17,32] . Further, fusion

ased approaches are also proposed. Fusion may be either at the

eature level or at the score level. In [28] , the effect of different dy-

amic features such as pen pressure, azimuth and pen altitude on

he verification performance is investigated. Rohilla et al. [37] pro-

osed an approach where the various online signature features are

ategorized and are fused in different combinations for verifica-

ion. Aguiliar et al. [1,2] proposed an approach where the matching

cores obtained from two classifiers trained on different categories

f features are fused to obtain a combined score for authenticating

 signature. Nanni [29] proposed an approach where the matching

http://dx.doi.org/10.1016/j.patrec.2016.06.016
http://www.ScienceDirect.com
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score of various single class classifiers are fused using sum rule. In

these works, it has been well established that the fusion based ap-

proaches result in a considerable improvement in the performance

of the system when compared to the performance of an individ-

ual classifier. Cordella et al . [9] proposed a multi-expert approach

where the decision on a test signature is taken based on combined

decision of the individual experts. Zhang et al . [42] proposed a

three stage verification system considering global, local and func-

tion features. Verification is done in stages considering these cate-

gories of features and a test signature is accepted as genuine if it

passes through all the three stages. In multi expert approach [6] ,

a signature is segmented into different strokes and each stroke is

represented in different domains. Each stroke is authenticated in-

dividually and the final decision is taken based on the weighted

average of the decisions of individual strokes. Approaches based on

ensemble of classifiers also have been attempted [26,30] . 

As a signature of a writer depends on his/her physical and

mental state, the effectiveness of a verification system depends

on how best the writer dependent characteristics are considered.

Generally, in a signature, writer dependent characteristics include

writer dependent threshold, writer dependent features and writer

dependent classifiers. Most of the existing works on online signa-

ture verification exploit writer dependency at the threshold level

where different similarity thresholds are used for different writers

[1,2,17,21] . It has been well argued in these works that the usage of

writer dependent threshold resulted in lower error rate compared

to the usage of a common threshold for all writers. 

Few attempts exploiting writer dependency at feature level can

be traced where different set of features are used for different

writers to effectively preserve the characteristics of the respective

writer. In [41] , optimal features for a writer are selected using ge-

netic algorithm based on the discriminating power of the feature

vector of the writer. But the main drawback of the genetic algo-

rithm is the need for setting up of a number of parameters such

as mutation probability, crossover probability, stop condition etc.

Guru et al . [18,19] proposed a model based on writer dependent

features which are selected based on a score computed for each

feature of the respective writer, thereby resulting in selection of

different set of features for different writers. 

In the existing works, the utilization of writer dependency is

limited to the usage of writer dependent thresholds and writer de-

pendent features. Writer dependency has not been still exploited

at classifier level especially for online signatures. Eskander et al.

[11] proposed a hybrid approach for offline signatures where ini-

tially a writer independent classifier is built for each individual

and later a writer dependent classifier is designed for each writer

when enough number of samples are available. In spite of several

approaches, still there is a difference in the way a human expert

does verification when compared to a machine. Generally, a hu-

man expert looks for a different set of discriminating character-

istics for different writers. Hence for a verification system to be

effective, it requires considering writer dependent features rather

than a common set of features for all writers. Further, the match-

ing strategy adopted by a human expert will also be different for

different writers. As the performance of any classifier depends on

the nature of training samples, usage of same classifier for all writ-

ers is not effective. The reason for variations in the distribution of

training signatures for different writer is due to variations in sign-

ing from a writer to a writer [24] . Hence, an automatic verification

system based on the usage of writer dependent classifier is more

effective when compared to the usage of a common classifier. 

Considering these factors, in this work, we investigate an ap-

proach for online signature verification utilizing writer dependent

characteristics. We exploit writer dependency both at feature level

and at classifier level in two different stages. In the first stage,

writer dependent features are selected to effectively preserve the
haracteristics of a particular writer. In the second stage, a classi-

er suitable for a writer is trained using the selected features. Even

hough a writer specific model requires a classifier to be trained

ach time when a new user is enrolled to the system, it is more

ecured than the writer independent system. Considering the se-

urity issues in most of the applications, it is necessary to build

 verification system based on writer dependent characteristics.

verall, the major contributions of this work are: 

• Exploration of writer dependent features and adaption of writer

dependent classifier. 
• A quantitative study on the relationships between writer de-

pendent features and writer dependent classifiers on verifica-

tion performance. 

This paper is organized as follows. In Section 2 , we discuss dif-

erent stages of our proposed model. Details of training and test-

ng data, experimental protocol along with the results are given in

ection 3 . A comparative study of our model with other existing

odels is reported in Section 4 . Detailed critical discussion of the

roposed model is presented in Section 5 and finally conclusions

nd future avenues are drawn in Section 6 . 

. Proposed model 

The proposed model has three stages; selection of writer de-

endent features, fixing up of a suitable classifier for a writer fol-

owed by signature verification based on the selected features and

lassifier. 

.1. Writer dependent feature selection 

In this work, writer dependent features are selected using the

eature selection algorithm proposed by Cai et al. [7] . It is a filter

ype feature selection algorithm which works on the principle of

pectral clustering. Features selected indicate the ability of the fea-

ure in preserving the cluster structure. In our work, features for

ach writer are selected as follows. Given n number of signatures

f a writer each characterized by P features, the feature selection

lgorithm computes the score for each of the P features and selects

features ( d < P ) out of P features with top scores. The steps in

he adapted feature selection method are 

• Define a graph with n vertices each corresponding to a data

point x i and a weight matrix representing the relationships be-

tween each data point and its nearest neighbor using heat-

kernel weighting scheme. 

W i j = e −
‖ x i −x j ‖ 

σ (1)

• Compute the graph Laplacian L = D − W where W is the

weight matrix and D is the diagonal matrix whose elements are

the row sum or column sum of the weight matrix. 
• Solve the generalized eigen problem Ly = λDy where Y =

( y 1 , y 2 , y 3 , . . . , y K ) are the eigen vectors of the above eigen

problem. Each row of Y is the flat embedding for each data

points. 
• After flat embedding for the data points are obtained, the con-

tribution of each feature in differentiating each cluster is mea-

sured as follows; given y k , a relevant subset of features is ob-

tained by minimizing the fitting error as 

min 

a k 
‖ y k − X 

T a k ‖ 

2 + β | a k | (2)

Each a k contains the combination coefficients for different fea-

ures in approximating y i . | a i | is the L − 1 norm of a k . If the data

et consists of K clusters, then after obtaining K sparse coefficient

ectors as discussed, a subset containing non-zero coefficients in a 
k 
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orresponding to a feature is obtained. For every feature J, a score

alled MCF S(J) is computed as 

CF S(J) = max 
k 

| a k, j | (3)

here a k, j is the j th element of a k 
Based on the MCFS score, only d features with top MCFS scores

re selected for each writer. In our work, the value of the parame-

er d is empirically fixed up during experimentation based on the

qual error rate (EER). The d features selected results in lowest EER

or a particular writer and is decided based on the EER obtained

ith validation samples. Even though for every writer, d number of

eatures is selected, the indices of the selected d features vary from

 writer to a writer thereby resulting in writer dependent features.

fter selecting the d number of features, the indices of all the d

eatures selected are stored in the knowledgebase for future usage

uring verification stage. 

.2. Classifier selection 

A decision regarding the adaption of writer dependent classi-

er is arrived as follows. Let there be N number of users and each

roviding n number of samples. Out of n number of samples, n t 
amples are used for training purpose and n v samples are used for

alidation. For validation, we need forgery samples also and hence

e considered n f number of random forgery samples during vali-

ation process. Let there be Cnumber of classifiers. Given a writer i

ith n number of samples, P number of features are extracted. Out

f the available P features, we select d number of features for each

riter. To select d number of writer dependent features, we recom-

end using the feature selection method discussed in Section 2.1 .

ence after selecting d number of features, we have a data ma-

rix of size n × d for i th writer. Out of n × d data matrix, n t × d

s used as training set and trained each of the C classifiers. Using

 v × d and n f × d, EER is obtained for each classifier. i.e. for i th

riter we have 

 C = { E E R 

i 
c 1 

, E E R 

i 
c 2 

, E E R 

i 
c 3 

, . . . , E E R 

i 
C } (4)

here E E R i 
C j 

refers to EER of j th classifier for i th writer. 

The experimentation is carried out for T number of trails by

hanging the training and validation samples. The training and val-

dation samples are randomly selected without overlapping in each

f the T trails. For each trial, a classifier with a minimum error rate

s identified. 

 . e C T sel = min { E c } (5)

Let C sel = { C 1 
sel 

, C 2 
sel 

, C 3 
sel 

, . . . , C T 
sel 

} be the set of classifiers

dentified because of T different trials, where C k 
sel 

is the classifier

elected at k th trial. In order to select the best classifier among

he C sel list, we rank each classifier based on its frequency for a

articular writer as defined in ( 6 ). 

 requency ( C j , i ) = 

No . times j th classifier selected for i th writer 

Number of trials conducted 

(6) 

The classifier having the highest frequency say C i 
j 

shall be the

est classifier for the i th writer and is selected for writer i . Simi-

arly for all writers in the database, a classifier is selected using the

bove mentioned procedure. All parameters selected for a writer i

amely the indices of all the d features selected and the classifier

elected for a writer i say C i 
j 

along with all internal parameters of

he classifier are stored in the knowledgebase. 

.3. Signature verification 

The decision regarding the acceptance or rejection of a test sig-

ature claimed to be of writer i is arrived as follows. Given an
nknown sample S test claiming that it belongs to the writer i , first,

he features selected for a claimed writer i available in the knowl-

dgebase are retrieved. The same features of the test signature S test 

re compared with the corresponding features of the reference sig-

atures of writer i . The recommended classifier C i 
j 

along with its

xed internal parameters available in the knowledgebase is used

or verification of test signature of the claimed writer i . 

.4. Time complexity of signature verification 

The two main stages in any biometric system are enrollment

nd verification. In this work, the enrollment phase includes selec-

ion of suitable features and a classifier for each writer. Indices of

ll selected features and details of the classifier are stored in the

nowledgebase which will be used during verification stage. As en-

ollment takes place offline, we do not take into account the time

pent for enrollment. 

During verification, first we need to fetch the indices of all

features of the claimed i th writer from the knowledgebase which

s basically a searching operation which takes d units of time. Then,

e need to compute only those d features with respect to i th

riter. The time required to compute these d features varies from

 writer to a writer. Let T 1 ( F 
i 

d 
) be the time taken to compute all

features. Then we need to select a classifier C i 
j 

that has been

elected for the i th writer during validation which takes 1 unit

f time. Finally, the test signature is given to the classifier which

ecides whether the given signature is genuine or not. The time

omplexity of the classifier also varies from a writer to a writer as

ifferent classifiers are selected for different writers. Let T 2 ( C 
i 
j 
) be

he time complexity of the j th classifier selected for i th writer. So,

verall time complexity of the proposed signature verification for

 th writer is, 

ime = O 

(
d + T 1 

(
F i d 

)
+ 1 + T 2 

(
C i j 

))
(7) 

The time complexity of each of the classifier depends on the

ize of enrollment samples and also on the number of features

sed. Since all the classifier used in this work are well known

lassifiers in the field of pattern recognition, for description about

omplexity of these classifiers the reader can refer [10] . 

. Experimentation 

Dataset : We conducted experimentations on the MCYT online

ignature dataset DB1 consisting of 25 genuine and 25 skilled

orgery samples of 100 writers and also on the dataset DB2 con-

isting of same number of genuine and forgery samples of 330

riters. We have considered 100 global features for our experi-

entation. The details of these 100 features can be found in the

ork [1] . Also, we have conducted experimentation on publicly

vailable Visual Subcorpus of SUSIG database which consist of sig-

atures by 94 writers [23] . 

Classifiers : We have considered 6 different classifiers which are

ither statistical classifiers or neural network based classifier. Sta-

istical classifiers include Naïve Bayesian (NB), nearest neighbor

NN), support vector machine (SVM), principal component analy-

is (PCA) and linear discriminant analysis (LDA) and from the neu-

al network based category we have considered probabilistic neural

etwork (PNN) classifier. 

.1. Experimental results on MCYT dataset 

We trained the system with 05 and 20 genuine signatures per

riter. In both the situations, we have considered equal num-

er of random forgery samples for validation purpose. Genuine

ignatures of other writers are taken as a random forgery for a
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Table 1 

EER with the usage of a single classifier as common to all writers and also EER obtained by the proposed approach 

( C 7 ) . 

DB1 DB2 

Skilled Random Skilled Random 

5 20 5 20 5 20 5 20 

C 1 51.05 6 .10 37 .98 7 .40 31 .05 6 .00 39 .13 6 .94 

C 2 20.33 1 .20 8 .90 1 .00 18 .94 1 .03 7 .75 0 .88 

C 3 21.10 1 .20 7 .90 1 .20 19 .58 1 .01 7 .54 0 .82 

C 4 20.98 13 .60 15 .93 14 .60 20 .05 11 .15 13 .55 11 .67 

C 5 20.88 3 .20 12 .60 3 .30 20 .41 1 .82 12 .76 0 .91 

C 6 20.40 1 .60 8 .93 1 .00 19 .53 1 .64 7 .86 1 .05 

C 7 19.43 (75) 1 .10 (50) 7 .75 (60) 0 .80 (50) 18 .41 (25) 0 .94 (60) 7 .32 (60) 0 .67 (65) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

EER obtained with a common classifier nearest to the EER of the proposed 

model on DB1. 

Test category Conventional classifier 

with lowest EER 

EER EER of the 

proposed model 

Skilled_05 { C 2 } 20 .33 19 .43 

Skilled_20 { C 2 ,C 3 } 1 .20 1 .10 

Random_05 { C 3 } 7 .90 7 .75 

Random_20 { C 2 ,C 6 } 1 .00 0 .80 

Table 3 

EER obtained with a common classifier nearest to the EER of the proposed 

model on DB2. 

Test category Conventional classifier 

with lowest EER 

EER EER of the 

proposed model 

Skilled_05 { C 2 } 18 .94 18 .41 

Skilled_20 { C 3 } 1 .01 0 .94 

Random_05 { C 3 } 7 .54 7 .32 

Random_20 { C 3 } 0 .82 0 .67 
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writer. Further, the training set is split into training and validation

set. Fifty percent of the available training samples are used for

validation purpose to fix up the values for d and a classifier. Dur-

ing validation, the parameters are adjusted so that the two error

rates false acceptance rate (FAR) and false rejection rate (FRR)

are equal i.e., equal error rate (EER). Once the parameters are set,

without altering them we have used the same parameters during

testing also. It is not possible to carry out the experimentation

during testing under varying threshold and identifying EER where

FAR will be equal to FRR. Hence, the average of best values FAR

and FRR is taken as equal error rate (EER) as recommended in

[8] . We conducted verification experiments with both skilled and

random forgeries. In case of skilled forgery testing, remaining

genuine signatures and all the skilled forgery samples are used for

calculating FRR and FAR, respectively. In case of random forgery

testing, remaining genuine signatures and one genuine signature

of other writers not considered for validation process are used for

calculating FRR and FAR, respectively. Depending on the training

and testing set used, we have four different categories of testing

namely Skilled_05, Skilled_20, Random_05 and Random_20. De-

tails of training and testing samples used in all the four categories

of testing for DB1 and DB2 are available in [17] . 

We conducted experimentation for different number of trials

( T ) and in each trial, training and testing signatures were ran-

domly selected. It is observed that the number of trials has an

effect on the selection of classifiers. The performance of the sys-

tem improves marginally with the increase in the number of tri-

als. In our work, with T = 20, we have achieved the best result. In

case of tie between two classifiers, we have prioritized the order

of the classifiers based on the ease of implementation depending

on the complexity of various classifiers. Hence whenever a tie oc-

curs among the classifiers, the classifier which comes first in the

list is preferred. But the list can be altered according to the criteria

as decided by the implementer. Initially, we conducted verification

experiments using each of the individual classifier common to all

writers as in a traditional setup. EER obtained when same classifier

is used for all writers is as shown in Table 1. 

In Table 1 , the labels C 1 –C 6 denote the classifiers NB, NN, SVM,

PNN, LDA and PCA, respectively. Further to demonstrate the su-

periority of our approach denoted by C 7 , verification experiments

were conducted with writer dependent features and classifier. The

EER obtained with writer dependent features and classifier for all

the four categories of testing are shown in last row of Table 1 . In

Table 1 , the number of features ′ d ′ selected in each category of

testing for the best EER for our approach is also mentioned within

the parenthesis. From Table 1 it is clear that the error rate with a

common classifier for all writers is higher when compared to that

of the usage of writer dependent classifier. 

It is interesting to observe that for some categories of testing,

usage of a common classifier (as in traditional setup) for all writ-

ers resulted in an EER which is closer to the EER obtained by
he proposed model (shown in Tables 2 and 3 for DB1 and DB2,

espectively). 

However, from Tables 2 and 3 , it is also clear that none of the

ndividual classifier gives lowest EER for all four categories of test-

ng leading to confusion in selecting a classifier which works well

or all categories of testing. For instance, Table 2 suggests that, it is

etter to use NN classifier in case of Skilled_05, SVM or NN classi-

er in case of Skilled_20, SVM classifier in case of Random_05 and

N or PCA classifier in case of Random_20. For DB2 it is NN clas-

ifier for Skilled_05 and SVM classifier for Skilled_20, Random_05

nd Random_20. But it is not the case with our proposed model

s it gives lowest EER for all four different categories of testing.

verall, the proposed model suggests a classifier for a writer which

esults in lowest EER irrespective of the category of testing. 

Even though the proposed model is based on the usage of

riter dependent features, number of features (feature dimension)

or every writer is kept same in this work. To arrive at the de-

ision regarding the number of features to be selected, we have

onducted experimentation under varying number of feature di-

ension. For each value of the feature dimension, writer depen-

ent classifier is selected as discussed in Section 2.2 and the veri-

cation is done using the selected classifier. The EER obtained for

arying feature dimensions is shown in Table 4 for DB1 and DB2.

e also have conducted verification experiments using all the fea-

ures for all writers without any feature selection. The last row in

able 4 indicates the EER obtained without feature selection (WFS)

ut using writer dependent classifier for verification. It is clear

rom Table 4 that the performance of the model enhances with

he combination of writer dependent features and writer depen-

ent classifier. 



K.S. Manjunatha et al. / Pattern Recognition Letters 80 (2016) 129–136 133 

Table 4 

EER of the proposed model under varying feature dimension on DB1 and DB2. 

Features DB1 DB2 

Skilled Random Skilled Random 

5 20 5 20 5 20 5 20 

5 20 .08 8 .50 15 .50 5 .00 20 .16 6 .87 13 .22 5 .45 

10 21 .40 4 .20 12 .08 4 .00 19 .54 3 .79 10 .55 3 .33 

15 20 .55 2 .70 11 .78 3 .60 19 .16 2 .78 9 .39 2 .73 

20 19 .80 2 .60 11 .05 2 .60 18 .89 2 .24 8 .95 1 .97 

25 19 .55 2 .10 9 .68 2 .40 18 .41 1 .82 8 .17 1 .45 

30 20 .18 2 .20 9 .13 1 .80 18 .85 1 .85 8 .28 1 .42 

35 20 .60 2 .40 9 .90 1 .80 19 .27 1 .76 8 .61 1 .48 

40 20 .95 2 .70 8 .90 2 .20 18 .49 1 .91 7 .73 1 .27 

45 20 .05 1 .80 9 .20 1 .70 18 .83 2 .12 7 .55 1 .30 

50 20 .15 1 .10 8 .50 0 .80 19 .25 1 .21 7 .64 1 .06 

55 19 .98 2 .90 9 .45 2 .10 19 .07 1 .60 7 .40 1 .06 

60 19 .80 2 .50 7 .75 1 .70 18 .74 0 .94 7 .32 0 .73 

65 19 .75 2 .00 8 .38 1 .20 18 .61 1 .24 7 .53 0 .67 

70 19 .65 2 .30 8 .73 1 .80 18 .79 1 .27 7 .39 0 .85 

75 19 .43 2 .50 9 .15 1 .90 18 .92 1 .24 7 .48 0 .76 

WFS 20 .53 1 .90 8 .00 1 .40 19 .34 1 .55 7 .52 1 .03 
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Table 6 

EER of the proposed model un- 

der varying number of features se- 

lected for SUSIG dataset. 

Features Skilled Random 

5 11 .33 8 .67 

10 5 .53 4 .47 

15 4 .36 4 .10 

20 4 .42 4 .20 

25 2 .71 2 .71 

30 1 .92 1 .92 

35 2 .39 2 .34 

40 1 .92 1 .81 

45 2 .82 2 .61 

WFS 2 .55 2 .45 

Table 7 

EER with the usage of a single classi- 

fier as common to all writers on SUSIG 

dataset. 

Classifier Skilled Random 

C 1 16 .06 21 .27 

C 2 2 .70 8 .46 

C 3 2 .81 4 .73 

C 4 4 .45 4 .06 

C 5 6 .49 8 .08 

C 6 2 .34 9 .36 

C 7 1 .92 (30) 1 .81 (40) 
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We further studied the effect of training size and number of

eatures selected on the selection of a classifier. The cardinality

f different classifiers for varying features selected is shown in

able 5 for 100 writers of DB1. Cardinality of a classifier is the

umber of users for which a particular classifier is selected. Anal-

sis on Table 5 indicates that for less training size, NN classifier is

uitable for majority of the writers irrespective of number of se-

ected features. With large training size NB classifier is selected for

ajority of the writer especially when the number of features se-

ected is less. In case of large training size, frequency of selection

f SVM classifier is high when the number of features selected is

igh. The probability of selection of NB classifier decreases with

he increase in the number of features selected for small training

ize. PNN classifier is not sensitive to either increase in training

ize or increase in the number of features selected. 

.2. Experimental results on SUSIG dataset 

The database contains a total of 20 0 0 genuine signatures

ollected in two sessions and 10 0 0 skilled forgeries which include

00 highly skilled forgeries. We have used 10 genuine signatures

f every writer for training purpose and the remaining genuine

nd all skilled forgeries for testing as in Pirlo et al. [33] . In case

f random forgery testing, remaining genuine signatures and one

enuine signature of other writers not considered for validation

rocess are used experimentation. We have computed 47 global

eatures characterizing each signature. The details of the computed

eatures are given in appendix. 

The verification results of the proposed model under vary-

ng d are as shown in Table 6 . In Table 6 , the last row denotes

he EER obtained with all the 47 features for all writers without
Table 5 

Cardinality of the different classifiers for different training

Classifier Features 

5 training signatures 

10 20 30 40 50 60 70

C 1 10 2 1 0 0 0 0

C 2 42 55 55 56 61 49 56

C 3 21 20 22 27 20 26 28

C 4 6 2 3 4 3 3 2

C 5 13 14 10 5 11 14 12

C 6 8 7 9 8 5 8 2
eature selection. To demonstrate the effectiveness of writer de-

endent classifier selection, we conducted experiments as in a tra-

itional setup by using each of the classifier common to all writ-

rs. The EER obtained when a same classifier is used for all writ-

rs is shown in Table 7 . The last row denotes EER obtained with

roposed model. From Tables 6 and 7 , it can be observed that the

sage of writer dependent features and classifier resulted in en-

anced performance when compared to a common set of features

nd a common classifier for all writers. 

. Comparative study 

Comparing the performance of different verification systems is

ifficult due to the variations in the dataset used, variations in

raining and testing size. For comparative study we have consid-

red similar models which are validated based on MCYT data cor-

us (DB1). From Table 8 , it is clear that the error rate that we

chieved is lowest when compared to all the models especially

n case of Skilled_20 and Random_20 (except [26] ). The reason

or higher error rate in case of Skilled_05 and Random_05 is due

o the fact that number of training samples is very less for ex-

racting writer dependent characteristics and also for a fixed num-

er of features, the performance of a classifier degrades due to a
 size on DB1. 

20 training signatures 

 10 20 30 40 50 60 70 

 78 46 30 20 16 15 14 

 9 21 24 21 20 20 21 

 5 23 35 49 55 50 53 

 0 0 1 2 1 3 2 

 1 0 2 3 3 2 2 

 7 10 8 5 5 10 8 
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Table 8 

EER of different online signature verification approaches on DB1. 

Method Skilled_05 Skilled_20 Random_05 Random_20 

Proposed model 19 .4 1 .1 7 .8 0 .8 

Symbolic classifier [17] 5 .8 3 .8 1 .9 1 .7 

Linear programing description (LPD) [29] 9 .4 5 .6 3 .6 2 .5 

Principal component analysis description (PCAD) [29] 7 .9 4 .2 3 .8 1 .4 

Support vector description (SVD) [29] 8 .9 5 .4 3 .8 1 .6 

Nearest neighbor description (NND) [29] 12 .2 6 .3 6 .9 2 .1 

Random ensemble of base (RS) [31] 9 .0 – 5 .3 –

Random subspace ensemble with resampling of base (RSB) [31] 9 .0 – 5 .0 –

Base classifier (BASE) [31] 17 .0 – 8 .3 –

Parzen window classifier (PWC) [29] 9 .7 5 .2 3 .4 1 .4 

Ensemble of Parzen window classifier [30] 8 .4 2 .9 

Ensemble of one class classifier based on over completer feature generation [26] 4 .5 2 .2 1 .5 0 .5 

Mixture of Gaussian description_3(MOGD_3) [29] 8 .9 7 .3 5 .4 4 .3 

Mixture of Gaussian description_2 (MOGD_2) [29] 8 .1 7 .0 5 .4 4 .3 

Gaussian model description [29] 7 .7 4 .4 5 .1 1 .5 

Kholmatov model (KHA) [31] 11 .3 – 5 .8 –

Fusion methods [31] 7 .6 – 2 .3 –

Regularized Parzen window classifier RPWC [31] 9 .7 – 3 .4 –

[27] – – 4 .2 –

Table 9 

Comparative analysis of the verification performance on SUSIG dataset 

with skilled forgeries. 

Approach FRR FAR EER # TS 

Yuen et al . [39] 14 .8 2 .64 8 .72 10 

Wang et al . [40] 2 .46 2 .46 2 .46 05 

Khalil et al. [22] 3 .06 3 .06 3 .06 05 

Pirlo et al. [33] with all domain 3 .6 4 .15 3 .88 10 

Pirlo et al. [33] with stable domain 2 .15 2 .10 2 .13 10 

Kholmatov and Yanikoglu [23] 3 .03 3 .03 3 .03 05 

Rashidi et al. [36] 2 .09 2 .09 2 .09 05 

Liu et al. [25] 0 .51 0 .51 0 .51 05 

Proposed model 3 .83 0 1 .92 10 

#TS – number of training samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

s  

f

5

 

b  

w  

e  

p  

e  

i  

c  

i  

f  

p  

T  

a  

o  

f  

t  

n  

t  

H  

m  

c  

a  

b  

g  

c  

f

 

S  

p  

i  

i  

w  

i  

T  

s  

a  

s  

p  
limited number of training samples [13] . In this work, objective

is to build, a verification model based on writer dependent char-

acteristics. Intra class variations are common in case of signature

biometric trait and it needs to be characterized effectively to un-

derstand the biometric trait. In order to extract such writer depen-

dent characteristics, definitely one needs more number of samples

which is contrast to conventional writer independent models. The

same has been demonstrated by the experimental results that the

proposed model performs better, when enough number of samples

are used for training rather than using less number of samples. 

In the models that we have considered for comparative study

in Table 8 , for some categories of testing respective authors have

not quoted the results and hence such entries are filled with (-). In

Table 8 , except symbolic classifier model [17] , remaining are writer

independent where same set of features and same classifier are

used as common for all writers. Even in model [17] , writer depen-

dency has been exploited in the form of writer dependent thresh-

old only. Further, in all the models considered for comparative

study, verification is done by means of a same classifier trained

with all the 100 global features for all writers. On the contrary, our

model works in lower dimension when compared to other models.

Further, to demonstrate the efficacy of the proposed model,

the results obtained by our model on SUSIG dataset is compared

against the other state of the art models on the same dataset.

Table 9 shows the verification performance of different models on

SUSIG dataset. 

In Table 9 , it can be observed that our model performs better

than other existing approaches even on SUSIG dataset. EER of our

model is lower than the EER of the state of the art models except
he model proposed by Liu et al. [25] . The results obtained demon-

trated that the proposed model performs better than most of the

unctional as well as parametric models as given in Table 9. 

. Discussion 

In this work, an online signature verification model is proposed

ased on the application of writer dependent features as well as

riter dependent classifiers. Error rate that we achieved is low-

st when compared to the other models for online signatures re-

orted in Table 8 when number of training samples available for

ach writer is sufficiently large (Skilled_20 and Random_20). This

s due to the fact that a writer dependent system requires suffi-

ient number of samples for extracting the characteristics of an

ndividual writer. From Table 8 , it can be observed that the per-

ormance of the model is poor when the number of training sam-

les available for each writer is less (Skilled_05 and Random_05).

he decision regarding the features and also classifier suitable for

 writer is arrived at based on the validation samples. In practice,

btaining a large number of samples for training purpose is not

easible. The reasons for recommending few training samples by

he researchers are (i) the writers may be reluctant to give more

umber of samples during enrollment, and (ii) it may be difficult

o store all training samples as it may require more storage space.

owever, in the former case, it can be generated synthetically as

ention in the work Galbally et al. [14] . In the latter case, in the

urrent trend, storage is not a big issue. In many applications such

s banking where security is a major issue, obtaining enough num-

er of training samples is not at all difficult as the customer has to

ive his/her signature during every transaction. Hence, our model

an be deployed once enough number of signatures are captured

or each writer. 

In most of the work in the literature, EER for Skilled_05,

killed_20, Random_05 and Random_20 are provided. However the

erformance of any model depends on the training size and hence

t requires to study for a specific model what should be the train-

ng size required to achieve the best performance. In this respect,

e have conducted experimentation under varying size of train-

ng samples with fixed feature dimension for both DB1 and DB2.

ables 10 and 11 show the EER obtained under varying training

ize for different values of number of features selected in DB1

nd DB2. In Tables 10 and 11 , the results are shown for features

elected from 50 to 75 in step of 5 for varying training sam-

les from 5 to 15. With respect to each value of the number of
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Table 10 

EER for varying training size and features selected on DB1. 

Training → Features 

50 55 60 65 70 75 

Skilled Random Skilled Random Skilled Random Skilled Random Skilled Random Skilled Random 

5 20 .15 8 .50 19 .98 9 .45 19 .80 7 .75 19 .75 8 .38 19 .65 8 .73 19 .43 9 .15 

6 13 .05 7 .58 13 .26 6 .73 12 .89 6 .34 12 .31 6 .55 12 .97 6 .79 13 .13 6 .68 

7 10 .72 5 .69 10 .69 5 .22 10 .19 5 .58 9 .75 6 .08 9 .61 5 .22 9 .50 5 .03 

8 9 .76 5 .12 9 .53 5 .61 8 .94 5 .44 8 .17 5 .03 8 .64 4 .94 8 .06 4 .76 

9 7 .56 4 .28 7 .97 4 .81 7 .00 4 .47 8 .37 4 .62 7 .25 4 .44 7 .94 4 .47 

10 6 .60 3 .40 6 .33 2 .93 5 .83 3 .23 6 .43 3 .26 6 .23 3 .06 6 .10 3 .23 

11 3 .21 2 .21 3 .18 2 .29 2 .64 1 .78 2 .50 1 .50 2 .25 1 .71 2 .28 1 .43 

12 2 .15 1 .50 1 .38 0 .84 1 .42 0 .53 1 .53 1 .04 1 .81 1 .23 1 .23 0 .61 

13 1 .29 0 .83 0 .92 0 .58 1 .12 0 .46 0 .96 0 .63 1 .12 0 .42 0 .91 0 .71 

14 1 .32 0 .86 1 .41 1 .14 1 .09 0 .86 1 .54 1 .27 1 .13 0 .82 1 .09 1 .00 

15 0 .95 0 .90 1 .55 0 .95 1 .25 0 .60 0 .70 0 .45 0 .90 0 .70 1 .05 0 .75 

Table 11 

EER for varying training size and features selected on DB2. 

Training → Features 

50 55 60 65 70 75 

Skilled Random Skilled Random Skilled Random Skilled Random Skilled Random Skilled Random 

5 19 .25 7 .64 19 .07 7 .40 18 .74 7 .32 18 .61 7 .53 18 .79 7 .39 18 .92 7 .48 

6 12 .92 6 .31 13 .41 6 .21 12 .70 6 .39 12 .83 6 .05 12 .97 6 .20 13 .21 6 .04 

7 10 .56 4 .99 10 .26 5 .13 10 .19 4 .87 10 .55 5 .08 10 .07 5 .17 10 .37 5 .25 

8 8 .98 4 .66 8 .71 4 .94 8 .85 4 .65 8 .75 4 .55 9 .01 4 .50 8 .71 4 .45 

9 7 .83 4 .25 7 .88 4 .42 7 .41 4 .36 7 .63 4 .15 7 .25 4 .15 7 .58 4 .24 

10 6 .64 3 .44 6 .57 3 .40 6 .58 3 .62 6 .62 3 .43 6 .48 3 .22 6 .77 3 .37 

11 3 .92 2 .70 3 .82 2 .83 3 .08 2 .04 3 .10 2 .06 3 .45 2 .30 3 .12 2 .15 

12 2 .49 1 .40 2 .03 0 .95 1 .92 0 .98 2 .00 0 .74 2 .11 1 .04 2 .06 1 .01 

13 1 .44 0 .86 1 .42 0 .87 1 .24 0 .81 1 .55 0 .74 1 .65 0 .84 1 .34 0 .74 

14 1 .79 1 .23 1 .75 1 .42 1 .64 1 .15 1 .47 0 .96 1 .25 0 .82 1 .43 0 .91 

15 1 .57 1 .27 1 .54 1 .08 1 .58 1 .47 1 .24 1 .11 1 .51 0 .92 1 .71 1 .29 
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eatures selected, the first column indicates the EER obtained with

killed forgery and the second column indicates the EER with ran-

om forgeries. From Tables 10 and 11 , it is clear that error rate of a

erification model, not only depends on the feature dimension and

lassifier adapted but also on the size of the training samples. 

Further, in Table 8 , the lowest EER for skilled forgery category

s 3.8 [17] and for random forgery category, it is 1.4 [29] for 20

raining samples. Most of the authors have quoted their result for

B1. However, in [17] , the EER for DB2 is also quoted and in case

f DB2, the best average result for skilled and random forgery cat-

gory is 4.7 and 1.67 respectively with writer dependent thresh-

ld. However in case of the proposed model, even with 12 training

amples, we achieve an EER of 1.23 and 0.53 for DB1 ( Table 10 ) and

.92 and 0.74 for DB2 ( Table 11 ) with skilled and random forgeries

espectively which is very much less compared to the state of the

rt with 20 training samples as given in Table 8 . This indicates the

uperiority of the proposed model with respect to usage of training

amples in obtaining low EER. 

Overall, the proposed model can be treated as a generalized

odel which can be applied on any category of online signature

eatures i.e., parametric or functional. Based on the type of the fea-

ures, corresponding pool of classifiers need to be considered. Ex-

mple, for global features (i.e., parametric in nature) one can think

f Bayesian classifier, nearest neighbor classifier, neural networks,

VM etc., and for local features (i.e., functional features), classifiers

uch as DTW, HMM can be used. The model has not been tuned

uitable for any specific category of features and classifiers. De-

ending on the type of features, only modification in the proposed

odel may be with respect to the decision on writer dependent

eature selection. In case of parametric features, feature selection

s necessary and in case of functional it may be eliminated as en-

ire signature will be used for verification process. However, in this
 f
ork we have concentrated only on parametric or global features

or experimental purpose. 

. Conclusion and future work 

In this work, a new approach for online signature verification

as been proposed exploiting writer dependency both at feature

evel as well as classifier level. The efficacy of the model has been

ested considering 6 different classifiers which are extensively used

n the field of signature verification. The experimental results sug-

est that the proposed model which is based on the usage of

riter dependent features and classifier is better than the existing

odels especially when the number of training samples available

or a writer is more. This paper is expected to open up a new issue

or further study on writer dependent classifier selection. In this

ork, verification is done considering only the top ranked classi-

er for each writer. As a future work, the model can be extended

y considering the combination of classifiers based on their rank-

ng. Further, investigation of an approach for writer dependent fea-

ure dimension and study on different f eature selection approaches

or selection of writer dependent features will be promising future

venues. 
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Appendix. List of 47 global features computed for SUSIG 

dataset. 

Feature 
# Feature description 

Feature 
# Feature description 

1 Number of sample points ( S ) 25 std( Y velocity) 
2 count(PenDown samples) 26 Median( X velocity) 
3 count(PenUp samples) 27 Median( Y velocity) 

4 
count ( Pen Down samples ) 

count ( Pen Up samples ) 
28 Mode( X velocity) 

5 Signature height ( H ): 
max( Y ) −min( Y ) 

29 Mode( Y velocity) 

6 Signature width ( W ) : 
max( X ) −min( X ) 

30 corr( X − Y velocity) 

7 Width to height ratio : W / H 31 
Time of maximum X velocity 

count ( PenDown samples ) 

8 Sample points to width ratio : S / W 32 
Time of maximum Y velocity 

count ( PenDown samples ) 
9 max(pressure) 33 Large eigen value ( λL ) 
10 Sample point at max(pressure) 34 Small eigen value ( λS ) 
11 Mean(pressure) 35 Total signing duration: 

S ∑ 

i =1 

√ 

( v elocity x i ) 
2 + ( v elocity y i ) 

2 

12 var(pressure) 36 Mean( X -acceleration) 
13 max(pressure) −min(pressure) 37 Mean( Y -acceleration) 
14 avg( X velocity) 38 corr( X −Y acceleration) 
15 avg( Y velocity) 39 var( X acceleration) 
16 max( X velocity) 40 var( Y acceleration) 
17 max( Y velocity) 41 std( X acceleration) 

18 
count (S) with −ve X or Y velocity 

count ( PenDown samples ) 
42 std( Y acceleration) 

19 
count (S) with + ve X or Y Vvelocity 

count ( PenDown samples ) 
43 Strokes count: count(PenUp 

samples) 
20 count( S ) with positive X velocity 44 count(local maxima in X -direction) 
21 count( S ) with positive Y velocity 45 count(local maxima in Y -direction) 
22 var( X velocity) 46 

( ( max ( Y ) −min ( Y ) ) ∗( max ( X ) −min ( X
�x ∗�y 

23 var( Y velocity) 47 
( ( max ( X ) −min ( X ) ) ∗�y ) 

( ( max ( Y ) −min ( Y ) ) ∗�x ) 
24 std( X velocity) 
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