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Abstract

This work studies the value of two-person zero-sum repeated games
in which at least one of the players is restricted to (mixtures of)
bounded recall strategies. A (pure) k-recall strategy is a strategy
that relies only on the last k& periods of history. This work improves
previous results [4, 7] on repeated games with bounded recall. We
provide an explicit formula for the asymptotic value of the repeated
game as a function of the stage game, the duration of the repeated
game, and the recall of the agents.

1 Introduction and Examples

Bounded recall is one of the alternatives proposed by Aumann [1] to model
limited rationality in repeated games. Lehrer [4] studied infinitely repeated
two-player zero-sum games where both players have bounded recall. Neyman
and Okada [6, 7] study a setting in which one player is bounded while the
other is fully rational. In [7] they examine specifically the case of bounded
recall. The current work extends results of both [4] and [7].

Our main result is the following:!

Theorem 1.1. Let G =< 1, J, g > be a two-player zero-sum game in strategic
normal form. For every sequence of positive integers {Tj},-, and every h #

*Center of Rationality, the Hebrew University of Jerusalem. Research supported in part
by Israel Science Foundation grant 263/03. This work is based on the author’s Master’s
thesis (2005). The author would like to thank his advisor Prof. Abraham Neyman for his
close guidance and endless patience.
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1See theorem 1.1: the former result (regarding G7*) extends [7]. The later extends [4].
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H(o)>h,or
H(o)=0

1.1 Examples

Let us denote

V, = maxmin G(i, j)

i€l jeJ

v(h) == max minG(o,7) = min max G(o,7)
ceA(l): TeJ TeA(J) ceA(I):
H(o)>h H(o)>h

h) = inG =v(h) V V..

v(h) e  min (0,7) = v(h)
H(o)>h,or
H(o)=0

Consider the “matching pennies” game described in Figure 1. Since the
optimal strategy in this game is (3, 1), which is also the one with maximal
entropy, the theorem says, roughly, that if % < 1, then the value of the
repeated game (in either one of the settings), v, is “equal” to the value of
the one-stage game.

The function v(h) is continuous at every point except maybe h = log, (/).
In the above example, v is not continuous at that suspicious point h = 1. It
can be shown that limy_, loga Tk — p, implies the convergence of the value of

3
the repeated games if and only if v is continuous at h.

2G%[k,m] is the a-fold repeated version of G where player one is restricted to k-recall
strategies and player two is restricted to m-recall strategies.

2|0 2|0 34 | 312
H(x) 0 2 7 o H(x)
°12 V(X) WV(X)

] 1 ] 1 log(3) 0 H(1/3) 1

Figure 1: Examples (left to right): “matching pennies,” “matching pen-
nies+,” and a game with a continuous v.



The third example in Figure 1 is a game where v is continuous at the
suspicious point A = 1. This is because one of the pure strategies ensures
the same payoff as the strategy with maximal entropy (%, %)

Finally, let us look at the “matching pennies+” game. The third alterna-
tive of player one is strongly dominated in the one-step game. Nevertheless,
in the repeated game, player one can gain from playing the myopic inferior
third alternative occasionally. An intuitive explanation is that by playing the
third alternative rather than the first or second, player one can encode infor-
mation about the history beyond her recall, and it turns out that memory is

valuable in repeated games with bounded complexity.

2 Preliminaries

2.1 The games G“[k, m]

Let G =< I,J,g > be a two-person zero-sum game, and let k and T be
positive integers.

Definition 2.1. A history in the repeated version of GG is a finite sequence
of action profiles. We define the set of all histories, $), by

H= G(IXJ)”

Definition 2.2. A pure strategy o of player one (resp. two) in the repeated
version of G is a function o : ) — I (resp. J).

Definition 2.3. A k-recall strategy is a strategy that relies on the last k
elements of a history. That is, ¢ is k-recall iff for every n > k and every
he(IxJ)m

o(h)=0c(hn_ts1,---,hn).

Note that the set of k-recall strategies is finite.

One may think of a repeated game as a game in extended (tree) form.
A strategy in the repeated game induces strategies at every sub-game corre-
sponding to a history. Since the sub-games of a repeated game are isomorphic
to it, we may state the following:

Definition 2.4. Let 7 be a (pure or behavior) strategy in a repeated game.

Let h be a history of actions in that game. The induced strategy 7, — “7
given h” is defined by

Tin(g) = 7(hg)



Note that if 7 is k-recall, so is 7).

Definition 2.5. The play induced by a strategy o for player one and a
strategy 7 for player two is an infinite sequence of action profiles aq, ao, . . .,
defined recursively by

e ay = (0(0),7(0));
o a,.1 = (o(ay,...,a,),7(as,...,a,)).
Definition 2.6. The game G” (k, 00) is a two-person zero-sum game in which

e the set of strategies for player one is the set of k-recall strategies;

e the set of strategies for player two is the set of all strategies in the
repeated version of G;

e the payoff function is a function of the play induced by the strategies

of the players,
T

% Z g(an)

n=1
Definition 2.7. The game G*(k, T') is a two-person zero-sum game in which
e the set of strategies for player one is the set of k-recall strategies;

e the set of strategies for player two is the set of T-recall strategies;

e the payoff function is a function of the play induced by the strategies
of the players,

N—oo N

1 N
fim 3 g(a,)
n=1

Note that the above limit exists since the play in this setting enters a
loop at some stage.

2.2 Oblivious strategies and sequences

A (pure) oblivious strategy in a repeated game is a strategy that ignores
the history of actions of the other players. It can, therefore, be viewed as a
sequence of actions. In this work we focus on k-recall obilvious strategies.

Definition. Given a finite alphabet A and a positive integer k, we define
the set of k-recall sequences B(k, A) C AZ by

B(/{Z, A) = {(at) S AZZVt, t/ (at_k, e ,CLt_l) = (at/_k, e ,(lt/_1> — Ay = at/}



Since the set A* is finite, every k-recall sequence must have a period
< |A|". A special case is the sequences with period exactly |A|*.

Definition. We define the set of de Bruijn sequences of order k over the
alphabet A, DB(k, A) by
DB(k,A) = {(a;) € B(k, A):
V(bl, ey bk) S Ak dt € Z s.t. (atH, Ce ,at+k) == (b17 . ,bk)}

Note that we define de Bruijn sequences to be periodic (Z-indexed). Not
only do de Bruijn sequences exist, but there are lots of them. The following
result is due to N. G. de Bruijn [3]:

Theorem 2.8. |DB(k, A)| = |A]!|A|k71

2.3 Entropy

For completeness we provide a few standard notions in information theory.
The reader may refer to [2] for further study.

Definition. Let p = (p1,...,ps) € A(n). The entropy of p, H(p) is defined
by

H(p) = — sz- log, (p;)

Definition. Let p = (p1,...,01),¢ = (q1,---,¢,) € A(n). The Kullback-
Leibler divergence of ¢ from p, D(p||q) is defined by

. Di
D(pllg) = _ pilog, “
i=1 v

Definition. Let X be a random variable that assumes values in a finite set
I. We define the entropy of X, H(X) to be the entropy of its distribution
mass. That is,

H(X)=— ZP(X = i) log,(P(X = 1))

Definition. Let X and Y be random variables that assume values in finite
sets I and J respectively. (X,Y) is a I x J-valued random variable. We
define the entropy of X conditioned on Y, H(X|Y) by:

H(X|Y)=H(X,Y)— H(Y)



2.4 The method of types

We look at finite sequences over a finite alphabet A. We think of the alphabet
A as the vertices of the simplex A(A) and so we can refer to the average of
the elements of the sequence.

Definition. Let s = sq,...,s be a sequence of elements of an alphabet A.
The empirical distribution of s is the following quantity:

l
1
emp(s) = 7 >
=1

Conversely, given a distribution ¢ € A(A) we can look at the set of
sequences with empirical distribution q.

Definition. Given an alphabet A, a positive integer [, and a probability
measure g € A(A), we define T(1) by

T9(l) = {s € Alemp(s) = g}

Proposition 2.9. If T(1) # () then

oH(9)l
A S IT0] < 2 )
Proposition 2.10 (large deviation). Let * = xy,...,x; be a sequence of

i.i.d. random variables with common distribution q € A(A). Let p € A(A),
TP(1) # 0; then

92— D(plla)l

A < P(emp(z) =p) < 2~ D)

Proofs. See [2] O

2.5 Approximated iids

The next lemma and the following corollary provide a simple criterion to
determine whether a given oblivious strategy secures the value of its empirical
distribution.

Lemma 2.11 (Neyman-Okada [6]). Let p € A(I). For every € > 0 there ex-
ists a 0 > 0 such that if (x,y) is a (I x J)-valued random variable satisfying (i)
H(z|y) > H(p)—9¢, and (i) ||z — p|| < 0, then E[g(z,y)] > min;c; G(p,j)—e.



Corollary 2.12. Let p € A(I). Let {T}},—, be a sequence of positive inte-
gers, and let z* be I+ -valued random variables satisfying (i) lim inf}, 7%kH(xk) >
H(p), and (ii) Elemp(2¥)] —1_co p. Then, for every sequence of strategies %

of player two in the games G, we have lim inf GT#(2*, 7%) > min;c; G(p, j).

Proof. Given a pure strategy 7% of player two we denote by (z, ) the (I x J)-
valued random variable (xF,7F), where ¢ is a random variable that assumes
values in {1,...,T}} uniformly and independently of z*. GTr(z* 7F) =
G(z,y). (z,y) surely satisfy condition (ii) of Lemma 2.11 and so it remains
to verify condition (i) of the lemma. Since conditional entropy is a concave

function, and y* is a function of 2%, ..., 2% | we have
T L 1
Hzly) > 7 )  H(aply) > = D H(wglat, o o)) = ﬁH(l‘k)
n=1 n=1

and hence
lim inf H (z|y) > H(p)

3 A Proof for Theorem 1.1 (Part I)

In this section we prove most of Theorem 1.1. Namely, the part that refers
to the game GT*[k, o0, i.e., the finitely repeated game in which player one is
restricted to (mixtures of) k-recall strategies and player two is fully rational.
The second part, which refers to G*°[k, my|, will be proved in Section 4.

Henceforth let G =< I, J, g > be a two-person zero-sum game.

3.1 The function v
Define a set function K : [0,logs(I)] = A(I) by

K(h)={pe A(l):h < H(p)}

The entropy function is concave and continuous; therefore K (h) is convex
and compact. By von Neumann’s theorem the game in which player one is
restricted to strategies in K (h) has a value

v(h) = max min » o(¢)g(¢,j) = min max o()7(5)g(i, ]
(h) = max mir 2 (1)g(i, 7) AT o 2 ()7 ()9 (i, 5)



Recall that
v — gl g
max min g(7, j)

Y < h<
o(h) = v(h)VV, 0<h<log,I
Vi h > log, I

Proposition 3.1. v is non-increasing and continuous at any point other
than h = log,(I), where it is continuous from the left.

Proof. The entropy function is continuous; therefore the graph of K, which is
the area below the graph of the entropy function, is closed. Hence K is upper
semi-continuous. The entropy function is concave; therefore the graph of K
is convex. Hence K is lower semi-continuous. A(7) is compact; therefore K
is continuous with respect to the Hausdorff metric.

The function p — minje; > .., p(i)g(i, j) is continuous in A(I); there-
fore taking its maximum is continuous with respect to the Hausdorff metric.
Composing the two functions gives . This shows that v is continuous in
[0,log,(1)]. At h > log,(I), v(h) is constant.

The fact that v is non-increasing follows from the fact that o is non-
increasing, which follows from the fact that K is monotone. m

Given Proposition 3.1, we can conclude this part of the proof with the
following propositions:

Proposition 3.2. For every p € A(1), if limsupkﬂoolog% < H(p), then
lim inf valGT*[k, 0o] > minje; G(p, j).

Proposition 3.3. For every h € Ry, if limin fj,_o long’“ > h, then
lim sup valGT# [k, oo] < v(h).

In the next two sections we will provide proofs of Propositions 3.2 and
3.3.

3.2 liminfvalG't [k, oo] is at least v(h)

The proof of Proposition 3.2 relies on the richness of k-recall sequences among
all sequences of length T}.. For every € > 0 consider the set of all k-recall
sequences of length T}, with empirical distribution within a distance of € from
p. Let us denote this set Cy = Ck(€).

Proposition 3.4. Under the conditions of Proposition 3.2 Ve > 0 4K € N
such that Vk > K
1C(e)| > o(H(p)=e) Tk



Proof. The richness of k-recall sequences is treated in Section A of the Ap-
pendix. See Proposition A.2. n

Proof of Proposition 3.2. For every k let the mixed strategy of player one oy,
be the uniform distribution over the set C provided by Proposition 3.4. The
sequences in Cj are implementable by oblivious k-recall strategies, and, by
Neyman-Okada’s Criterion (Lemma 2.12), the expected payoff is asymptoti-
cally large enough. O

Alternatively, one can consider a slightly different (perhaps more nat-
ural) distribution as a strategy for player one: the probability mass of T}
independent p trials restricted to sequences that are implementable by obliv-
ious k-recall strategies. Verifying that this strategy “works” can be done
by either Neyman-Okada’s Criterion or large deviation considerations (e.g.,
Theorem 1 in [5]).

3.3 limsup valGT[k, oc] is at most v(h)

Given 0 < h and an integer k& we will construct a mixed strategy 7 = 7% for
player two in the games G*°[k, co]. Then we will prove that for any sequence
of positive integers {7} }32, satisfying liminfy % > h, 7F ensures that
the lim sup of the mean payoff in the first T} steps is at most v(h).

The strategy 7 will be a mixture of pure strategies of the form 7., where
T = x1,T9,... 18 an infinite sequence of actions of player two. We will first
describe 7, as a function of x and discuss its properties (for a special class of
sequences). Then we will define 7 by providing a probability measure over
the possible values for x. The last part of the proof is the analysis of the
payoff that 7 secures.

We begin by defining a mapping s from the set of all finite histories to
the set {0,...,k} (Figure 2). The set {0,...,k} can be interpreted in this
context as the “states of mind” of the strategy 7. Note that the mapping s



1

Found in history
& low entropy
?

0

Found in history
?

Figure 2: An illustration of the function s as a flow chart.

does not depend on the sequence z (it does, however, depend on k).

s(0) =k
s(ay, ..., a41) =
(s(ay,...,a;) —1 ifs(ay,...,a;) >1,

1 if s(ay,...,a;) =1, and

Vs <t ((Gs—kt2y -y as11) FZ (Qp—kr2y -5 A1),
or H(emp(a;_j9:- -, a11)) = h)

0 if s(ay,...,a;) =1, and
ds <t st ((as—ga2s - -y 0s11) = (Qp—proy -+ Qpy1),
and H(emp(a;_; o, ..,0141)) <h)
or
if s(ay,...,a;) =0, and
ds <t st. (As—ga2s .-y 0511) = (Qp—psoy o Qpy1)

k otherwise.

\

In words: the initial state is k. States 2 to k simply count down to 1.
State 1 looks in the history for an occurrence of the past k actions as long
as the actions of player one have low entropy. If found, it goes to state 0;
otherwise it stays in state 1. State 0 looks in the history for an occurrence
of the past k actions. If found, it stays in state 0; otherwise it jumps back
to state k.

Given a play ay, as, ... we denote s; = s(aq,...,a;—1). Note that

® Siit, Sk 70, iff i =15

e if player one is limited to k-recall, then whenever s; = 0 player two can
predict the next action of player one, a;.

10



Now we are ready to define 7,. For every finite history h = ay,...,a;
(t = 0 indicating the empty history) define

Pk(h) = {v((aiﬂn if s(h) =0,

Tl otherwise,

where v : [ — J is such that Vi € I g(i,7(i)) < V..
We shall now define 7 by specifying a random choice of x. Choose a
strategy in the one-shot game ¢ € A(J) such that for every p € K(h)

> icrjes P()a(5)g(i,j) < ©(h). Define x = @1,..., 22, 71,... to be a k>
periodic sequence of i.i.d. random variables with common distribution gq.

For every strategy 7, in the support of 7 (defined by a k2-periodic sequence
x) and every k-recall strategy for player one o, consider the induced play
ai,as, ... and the sets

LW = {{] 0 <1< Ty, H(emp(al1+1, . ,all+k)) < h,

Siek = L, Sivkq1 = oo = Siqhgi = 0, Sippgis1 7 0}
L=uz,L®
A={(ay1,...,q4x)|l € L}

Form the definition of s we have for every i > 0

LD = {l|sp1x # 0, 81451 = - = Stynri = 0, 814 ppir1 7 0} (3.1)
Analogously we define
NO ={nlsy_i1#0,80_;=...= 85,1 =0, 5, #0}
={l+k+i+1]1e LW},
N =UX,NO.

Every time a k-tuple in A recurs along the play it is followed by a sequence
in which s; = 0 (the predictive state) that is longer than the previous occur-
rence; therefore the map [ — (a;11,...,a;1x) is injective when restricted to
each L . Hence

‘L(z‘) _ ’N(i)‘ < |A| < k22hk

The latter inequality follows by bounding by 2% the number of sequences of
length k of actions of player one with empirical distribution < h, and by k?
the number of possible reactions of player two. Hence |U;<sL®| < k520
By (3.1), }UizksL(i)‘ < T./Kk3. Consequently, for large k

|LUN| < Ty, k>

11



Hence, for almost every t € {0,..., T}, none of the numbers t — k,t — k +
1,...,t+ k% is in L U N; therefore, for almost every t, either

(1) St+1 = ... = St-‘rk’Q - O7 or
(11) St41y -5 St+k2 # 0, and V0 S l < k.? H(emp(at+1+1, N ,at+1+k>) Z h.
Proposition 3.5. lim sup, . MaXy with k-recat G (0, 7%) < v(h)

Proof. Fix k > 0, and an arbitrary k-recall strategy for player one 0. o and

7% induce a play a = a1, as, ... and a sequence of states s; = s(ay, ..., a—1).
Clearly, a and s are random variables (functions of z = x1,...,x32). Let ¢ be
another r.v. independent of z, assuming values in {0, ..., Ty} with uniform

distribution. Define a real valued r.v. W by
s
i=1

The expectation of W approximates the actual payoff — 1/Tj tTi1 G(ay).
E[W — G(a)]| = O(:’;—i); therefore the objective is to bound EW from above.

In case (i) W is at most V. If the probability of case (ii) does not converge
to zero (as k — 00), then for every sub-sequence bounded away from zero the
actions of player two x;,1, ..., Ty 442 conditioned on (ii) form an approximated
i.i.d. sequence and therefore, by lemma 2.11, secure a payoff of 7(h).

In the case of h > log, I, the condition in (ii) cannot be satisfied and
hence (i) occurs with probability close to one and Vi is secured. ]

4 Refinements, Extensions, and Remarks

4.1 A proof for Theorem 1.1 (Part II)

In this section we prove the remaining part of Theorem 1.1 — the part that
refers to the game G*°[k, T}]. Our proof for this part follows the track of the
proof for the other part with minor adjustments. We begin by strengthening
Theorem A.1.

Theorem 4.1 (Theorem A.1, strengthened). Let {T;}32, be a sequence
of positive integers, T, — oo. Let x1,2o,... be a sequence of i.i.d. ran-
dom variables with common distribution p (over a finite set of values). If
lim sup % < H(p), then there ezists a sequence {T}}32, such that

1. Vk T, < T,

12



2. P(Vt 7é s € ZT,Q (xt+17 s 7xt+k) # (‘r8+17 s ,SUerk)) = eXp(_O<TI:;));

where the elements of Zr are identified with their representatives 1,...,T in
Z in the obvious way.

Proof. A close look at the proof of Theorem A.1 (and the construction of the
sets Cy in particular) shows that it actually proves this stronger statement.
m

The next two propositions are analogous to Propositions 3.2 and 3.3.

Proposition 4.2. For every p € A(I), if limsup,_, % < H(p), then
lim inf valG*°[k, T;| > minjc; G(p, j).

Proposition 4.3. For every h € R, if liminfy_, logiT’“ > h, then
lim sup valG*=[k, Ty,] < v(h).

Proof of Proposition 4.2 (sketch). Take the integers 1}, > kT} provided by
Theorem 4.1. Let the oblivious strategy of player one — o = 01,09,... —
consist of a mixture of all the T}-periodic sequences in B(k,I) with the
distribution induced from the T}-fold Cartesian product of p. Theorem 4.1
implies that

1
liminfTH(al,...,UTk) > H(p), (4.1)
k
lim E[emp(o)] = p, (4.2)
T]i > Ty

Let 7 be a (pure or behavior) Tj-recall strategy for player two. Denote by
11, J1,12, j2, - . . the play induced by ¢ and 7. For every t = 1, 2,..., consider
the mean empirical distribution of the joint actions of players one and two
during the period ¢t + 1 till ¢ + T}

. N4
Q = Q¢ = Elemp(iryi, jev1), 2]

13



The required mean payoff during this period is obtained by Lemma 2.11 and?

Tl
g 1 O S
HQ(Z‘J) 2 T Z H (ig11]je+1) (4.4)
k=1
1 &
= T Z H(ipqqliggr, - - Gepi—1, Tiny) (4.5)
k=1
1 . .
= FH(/Lt+1, Ce alt+T};|T|ht) (46)
k
1 . .
2 F[H(ZtH, e ,2t+T,;) — H(mn,)] 2 H(p) —o(1) (4.7)
k
where h; denotes the history up to step t, hy = i1, J1, - - - %, Je- O]

Proof of Proposition 4.3 (sketch). Let 7" be an optimal strategy for player
two in the game G+ (k, 00). To ensure the same payoff in the game G*(k, 0o)
repeat 7" every T}, stages. That is, play the strategy 7 defined by

(a1, ... a1) = T (AsT 415 - - - 5 AsTytr)

where sT, +r =t and r < t.

The problem is that 7 is not a Tj-recall strategy since it is a function of
the stage number ¢. Player two can simulate 7 by inserting a statistically
significant yet short enough (< T}) sequence of actions at the end of every
period of T}, stages. The technical details are left to the reader. O

4.2 The special point h = log,([)

In this section we give an example of a game G for which the fact that %

converges does not imply that valGT#[k, co] converges.
Consider the game M, called the “matching pennies” game, which can
be described in strategic normal form by the following matrix:

2 0
0 2
A close look at the proof of Theorem 1.1 shows that the argument that deals

with & > log, I is valid also for Tj, > k62%; therefore, the value of M**2" [k, 0]
converges to V,(M) = 0.

Proposition 4.4. liminf;_ .. valM?"[k, c0] > 1
2

3Recall definition 2.4.

14



Proof. Let v = aF = {x’;}nez be a random sequence that takes values in
DB(k,{0,1}) with uniform distribution. Let y and ¢ be random variables:
yn~wx, t~ U{l, . .,2’“}, and z, y, and t are independent. Define a ran-
dom variable f = h(zz1 = y1,...,24-1 = y—1). Then Ef = %H(x) =
5 logy(|DB(k, {0,1})]) = 3. Define an event

X ={“k <t < tsuchthat (zy_ps1,--  Te_1) = (Te_py1, -, 2e1)"}

X is the event that the k — 1 actions right before time ¢ occurred once more
before time ¢, and hence the action at time t must be other than the previous
one. Hence, f |x= 0. Since every sequence of k — 1 actions occurs exactly
twice along a de Bruijn cycle, P(X) — 1. 1x. — f is non-negative and its
expectation converges to zero; therefore Ve > 0, P(f > 1 —¢) — %; and

therefore lim infy_o, M2 (zF,.) > 1. O

Appendix

A The richness of k-recall sequences

In this section we state and prove the following theorem:

Theorem A.1. Let {T}}32, be a sequence of positive integers, T, — oco. Let
X1, To, ... be a sequence of i.i.d. random variables with common distribution
p (over a finite set of values). If limsup log%T’“ < H(p), then

P(WVO<t#s<Ty (g1, Tean) # (Tsp1, - Toyr)) = exp(—o(T})).

We begin by reducing Theorem A.1 to the following combinatorial state-
ment:

Proposition A.2. Let {T}}32, be a sequence of positive integers, Ti, — koo
oo. Let A be a finite alphabet and p € A(A). If lim suplog%T’“ < H(p), then
there exist sets Cy € AT+HF satisfying

Ve € Cp V0 <t <5 <Tp (Ty1,. -, Tigk) # (Tog1s -+, Toik),

li -l =0,
im gézgki [emp(z) — p|| (A.1)
.. . log, |Ck|
22 >
hmkmf T, > H(p)

Proposition. Proposition A.2 implies Theorem A.1.
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Proof. First, since the number of non-empty types [{T%(n) : ¢ € A(A)}] is
polynomial in n, we may assume w.l.o.g. that the elements of Cj all have
the same empirical distribution p;. Take z = x;,..., 274 ii.d. random
variables with distribution p.

|Cil
P =P = . A2
By Proposition 2.10,
9—D(dllp)n

P (emp(a) = q) 2 — 77— (A.3)

and, by Proposition 2.9,
1T9(n)| < 2H@n, (A.4)
Combining (A.1), (A.3), and (A.4) we get the required result. O

In the rest of this section we prove Proposition A.2.

For k£ = 1,2,..., we shall construct sets C}, satisfying (A.1). We assume
w.lo.g. that k& < Ty. Let | = I(k) and m = m(k) be integers with the
following properties:

1<i(k) < k (A.5)
m(k)I(k) +21(k) < k (A.6)
m(k)(k) ~ k (A.7)

Let A, p, and T} be as given in Proposition A.2. Let ¢ = ¢(k) € A(A) such
that

Vk T(1) #

Consider the alphabet B = T9(l). For every De Bruijn sequence & €
DB(B,m) we shall define a corresponding (infinite) sequence x in AZ. The
set C' (= C}) will consist of the elements 1 through T} + & of such sequences.
Formally, C := {(x1, ..., 274x)|z corresponds to some £ € DB(B,m)}.

Let o be a least probable element of A with respect to the probability
mass ¢, and let 3 # o be another element of A.* Let b = o!3. That is, b is
a word over the alphabet A that consists of [ consecutive alphas followed by
one beta. The correspondence & +— x is defined as follows:

r=...021%9 ... TpbTp 1 Tmao . o T - -

4We assume w.l.o.g. that A includes more than one element.
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That is, z is the concatenation of the elements of = separated by a b after
every mth element.

The first two lines of (A.1) hold trivially. It remains to verify that the last
line of (A.1) holds. Since DB(B,m) is invariant to shifts for every T' < |B|™
we have

log [{#1...2r|z € DB(B,m)}| S log |DB(B,m)| _ logs(| BI!)
T B | B|™ Bl -~
> logy | B] — log, log, |B] (A.8)

n_ < L <
8o = gty —

V/n!'. Let T be an integer, ZC(F—,’;) < T < B™%_ Substituting in (A.8) we obtain

log, Cy - log [{Z;...27|2 € DB(B,m)}| - log, | B| — log, log, | B|
T. (k)T - L(k)

The last inequality follows from the inequality of means |

— H(p)

Finally, we have to verify that such a T exists. It is sufficient to show that
Ty, < |BI™™, and indeed:

logy [BI™" _ 1(k)m(k) log, | B|
k -k (k)

logy Tj, 0

— H(p) > limsup

Remark. The assumption of Theorem A.1 that lim sup% < H(p) is
necessary.” On the other hand, the theorem does not tell us how small o(7},)
is. Finding an explicit expression for (the asymptotic of) that probability is
of interest.
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