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The Strategic Value of Recall

Ron Peretz∗

November 27, 2007

Abstract

This work studies the value of two-person zero-sum repeated games
in which at least one of the players is restricted to (mixtures of)
bounded recall strategies. A (pure) k-recall strategy is a strategy
that relies only on the last k periods of history. This work improves
previous results [4, 7] on repeated games with bounded recall. We
provide an explicit formula for the asymptotic value of the repeated
game as a function of the stage game, the duration of the repeated
game, and the recall of the agents.

1 Introduction and Examples

Bounded recall is one of the alternatives proposed by Aumann [1] to model
limited rationality in repeated games. Lehrer [4] studied infinitely repeated
two-player zero-sum games where both players have bounded recall. Neyman
and Okada [6, 7] study a setting in which one player is bounded while the
other is fully rational. In [7] they examine specifically the case of bounded
recall. The current work extends results of both [4] and [7].

Our main result is the following:1

Theorem 1.1. Let G =< I, J, g > be a two-player zero-sum game in strategic
normal form. For every sequence of positive integers {Tk}∞k=1 and every h 6=

∗Center of Rationality, the Hebrew University of Jerusalem. Research supported in part
by Israel Science Foundation grant 263/03. This work is based on the author’s Master’s
thesis (2005). The author would like to thank his advisor Prof. Abraham Neyman for his
close guidance and endless patience.
Email: ronprtz@math.huji.ac.il.

1See theorem 1.1: the former result (regarding GTk) extends [7]. The later extends [4].
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log2 I, if limk→∞
log2 Tk

k
= h, then2

lim
k→∞

valGTk [k,∞] =

lim
k→∞

valG∞[k, Tk] = max
σ∈∆(I):

H(σ)≥h,or
H(σ)=0

min
τ∈J

G(σ, τ).

1.1 Examples

Let us denote

V∗ := max
i∈I

min
j∈J

G(i, j)

ν̃(h) := max
σ∈∆(I):
H(σ)≥h

min
τ∈J

G(σ, τ) = min
τ∈∆(J)

max
σ∈∆(I):
H(σ)≥h

G(σ, τ)

ν(h) := max
σ∈∆(I):

H(σ)≥h,or
H(σ)=0

min
τ∈J

G(σ, τ) = ν̃(h) ∨ V∗.

Consider the “matching pennies” game described in Figure 1. Since the
optimal strategy in this game is (1

2
, 1

2
), which is also the one with maximal

entropy, the theorem says, roughly, that if log2 Tk

k
< 1, then the value of the

repeated game (in either one of the settings), ν, is “equal” to the value of
the one-stage game.

The function ν(h) is continuous at every point except maybe h = log2(I).
In the above example, ν is not continuous at that suspicious point h = 1. It
can be shown that limk→∞

log2 Tk

k
= h implies the convergence of the value of

the repeated games if and only if ν is continuous at h.

2Gα[k,m] is the α-fold repeated version of G where player one is restricted to k-recall
strategies and player two is restricted to m-recall strategies.

Figure 1: Examples (left to right): “matching pennies,” “matching pen-
nies+,” and a game with a continuous ν.
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The third example in Figure 1 is a game where ν is continuous at the
suspicious point h = 1. This is because one of the pure strategies ensures
the same payoff as the strategy with maximal entropy (1

2
, 1

2
).

Finally, let us look at the “matching pennies+” game. The third alterna-
tive of player one is strongly dominated in the one-step game. Nevertheless,
in the repeated game, player one can gain from playing the myopic inferior
third alternative occasionally. An intuitive explanation is that by playing the
third alternative rather than the first or second, player one can encode infor-
mation about the history beyond her recall, and it turns out that memory is
valuable in repeated games with bounded complexity.

2 Preliminaries

2.1 The games Gα[k, m]

Let G =< I, J, g > be a two-person zero-sum game, and let k and T be
positive integers.

Definition 2.1. A history in the repeated version of G is a finite sequence
of action profiles. We define the set of all histories, H, by

H =
∞⋃

n=0

(I × J)n

Definition 2.2. A pure strategy σ of player one (resp. two) in the repeated
version of G is a function σ : H → I (resp. J).

Definition 2.3. A k-recall strategy is a strategy that relies on the last k
elements of a history. That is, σ is k-recall iff for every n > k and every
h ∈ (I × J)n

σ(h) = σ(hn−k+1, . . . , hn).

Note that the set of k-recall strategies is finite.
One may think of a repeated game as a game in extended (tree) form.

A strategy in the repeated game induces strategies at every sub-game corre-
sponding to a history. Since the sub-games of a repeated game are isomorphic
to it, we may state the following:

Definition 2.4. Let τ be a (pure or behavior) strategy in a repeated game.
Let h be a history of actions in that game. The induced strategy τ|h – “τ
given h” is defined by

τ|h(g) = τ(hg)
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Note that if τ is k-recall, so is τ|h.

Definition 2.5. The play induced by a strategy σ for player one and a
strategy τ for player two is an infinite sequence of action profiles a1, a2, . . .,
defined recursively by

• a1 = (σ(∅), τ(∅));

• an+1 = (σ(a1, . . . , an), τ(a1, . . . , an)).

Definition 2.6. The game GT (k,∞) is a two-person zero-sum game in which

• the set of strategies for player one is the set of k-recall strategies;

• the set of strategies for player two is the set of all strategies in the
repeated version of G;

• the payoff function is a function of the play induced by the strategies
of the players,

1

T

T∑
n=1

g(an)

Definition 2.7. The game G∞(k, T ) is a two-person zero-sum game in which

• the set of strategies for player one is the set of k-recall strategies;

• the set of strategies for player two is the set of T -recall strategies;

• the payoff function is a function of the play induced by the strategies
of the players,

lim
N→∞

1

N

N∑
n=1

g(an)

Note that the above limit exists since the play in this setting enters a
loop at some stage.

2.2 Oblivious strategies and sequences

A (pure) oblivious strategy in a repeated game is a strategy that ignores
the history of actions of the other players. It can, therefore, be viewed as a
sequence of actions. In this work we focus on k-recall obilvious strategies.

Definition. Given a finite alphabet A and a positive integer k, we define
the set of k-recall sequences B(k,A) ⊂ AZ by

B(k,A) =
{
(at) ∈ AZ:∀t, t′ (at−k, . . . , at−1) = (at′−k, . . . , at′−1) → at = at′

}
4



Since the set Ak is finite, every k-recall sequence must have a period
≤ |A|k. A special case is the sequences with period exactly |A|k.

Definition. We define the set of de Bruijn sequences of order k over the
alphabet A, DB(k,A) by

DB(k,A) = {(at) ∈ B(k, A):

∀(b1, . . . , bk) ∈ Ak ∃t ∈ Z s.t. (at+1, . . . , at+k) = (b1, . . . , bk)}

Note that we define de Bruijn sequences to be periodic (Z-indexed). Not
only do de Bruijn sequences exist, but there are lots of them. The following
result is due to N. G. de Bruijn [3]:

Theorem 2.8. |DB(k,A)| = |A|!|A|k−1

2.3 Entropy

For completeness we provide a few standard notions in information theory.
The reader may refer to [2] for further study.

Definition. Let p = (p1, . . . , pn) ∈ ∆(n). The entropy of p, H(p) is defined
by

H(p) = −
n∑

i=1

pi log2(pi)

Definition. Let p = (p1, . . . , pn), q = (q1, . . . , qn) ∈ ∆(n). The Kullback-
Leibler divergence of q from p, D(p||q) is defined by

D(p||q) =
n∑

i=1

pi log2

pi

qi

Definition. Let X be a random variable that assumes values in a finite set
I. We define the entropy of X, H(X) to be the entropy of its distribution
mass. That is,

H(X) = −
∑
i∈I

P(X = i) log2(P(X = i))

Definition. Let X and Y be random variables that assume values in finite
sets I and J respectively. (X,Y ) is a I × J-valued random variable. We
define the entropy of X conditioned on Y , H(X|Y ) by:

H(X|Y ) = H(X, Y )−H(Y )

5



2.4 The method of types

We look at finite sequences over a finite alphabet A. We think of the alphabet
A as the vertices of the simplex ∆(A) and so we can refer to the average of
the elements of the sequence.

Definition. Let s = s1, . . . , sl be a sequence of elements of an alphabet A.
The empirical distribution of s is the following quantity:

emp(s) =
1

l

l∑
i=1

si

Conversely, given a distribution q ∈ ∆(A) we can look at the set of
sequences with empirical distribution q.

Definition. Given an alphabet A, a positive integer l, and a probability
measure q ∈ ∆(A), we define T q(l) by

T q(l) =
{
s ∈ Al:emp(s) = q

}
Proposition 2.9. If T q(l) 6= ∅ then

2H(q)l

l|A|
≤ |T q(l)| ≤ 2H(q)l

Proposition 2.10 (large deviation). Let x = x1, . . . , xl be a sequence of
i.i.d. random variables with common distribution q ∈ ∆(A). Let p ∈ ∆(A),
T p(l) 6= ∅; then

2−D(p||q)l

l|A|
≤ P(emp(x) = p) ≤ 2−D(p||q)l

Proofs. See [2]

2.5 Approximated iids

The next lemma and the following corollary provide a simple criterion to
determine whether a given oblivious strategy secures the value of its empirical
distribution.

Lemma 2.11 (Neyman-Okada [6]). Let p ∈ ∆(I). For every ε > 0 there ex-
ists a δ > 0 such that if (x, y) is a (I×J)-valued random variable satisfying (i)
H(x|y) > H(p)−δ, and (ii) ‖x− p‖ < δ, then E[g(x, y)] ≥ minj∈J G(p, j)−ε.

6



Corollary 2.12. Let p ∈ ∆(I). Let {Tk}∞k=1 be a sequence of positive inte-
gers, and let xk be ITk-valued random variables satisfying (i) lim infk

1
Tk

H(xk) ≥
H(p), and (ii) E[emp(xk)] →k→∞ p. Then, for every sequence of strategies τ k

of player two in the games GTk , we have lim inf GTk(xk, τ k) ≥ minj∈J G(p, j).

Proof. Given a pure strategy τ k of player two we denote by (x, y) the (I×J)-
valued random variable (xk

t , τ
k
t ), where t is a random variable that assumes

values in {1, . . . , Tk} uniformly and independently of xk. GTk(xk, τ k) =
G(x, y). (x, y) surely satisfy condition (ii) of Lemma 2.11 and so it remains
to verify condition (i) of the lemma. Since conditional entropy is a concave
function, and yk

n is a function of xk
1, . . . , x

k
n−1, we have

H(x|y) ≥ 1

Tk

Tk∑
n=1

H(xk
n|yk

n) ≥ 1

Tk

Tk∑
n=1

H(xk
n|xk

1, . . . , x
k
n−1) =

1

Tk

H(xk)

and hence
lim inf

k
H(x|y) ≥ H(p)

3 A Proof for Theorem 1.1 (Part I)

In this section we prove most of Theorem 1.1. Namely, the part that refers
to the game GTk [k,∞], i.e., the finitely repeated game in which player one is
restricted to (mixtures of) k-recall strategies and player two is fully rational.
The second part, which refers to G∞[k,mk], will be proved in Section 4.

Henceforth let G =< I, J, g > be a two-person zero-sum game.

3.1 The function ν

Define a set function K : [0, log2(I)] ⇒ ∆(I) by

K(h) = {p ∈ ∆(I):h ≤ H(p)}

The entropy function is concave and continuous; therefore K(h) is convex
and compact. By von Neumann’s theorem the game in which player one is
restricted to strategies in K(h) has a value

ν̃(h) = max
σ∈K(h)

min
j∈J

∑
i∈I

σ(i)g(i, j) = min
τ∈∆(J)

max
σ∈K(h)

∑
i∈I,j∈J

σ(i)τ(j)g(i, j)
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Recall that
V∗ = max

i∈I
min
j∈J

g(i, j)

ν(h) =

{
ν̃(h) ∨ V∗ 0 ≤ h ≤ log2 I

V∗ h > log2 I

Proposition 3.1. ν is non-increasing and continuous at any point other
than h = log2(I), where it is continuous from the left.

Proof. The entropy function is continuous; therefore the graph of K, which is
the area below the graph of the entropy function, is closed. Hence K is upper
semi-continuous. The entropy function is concave; therefore the graph of K
is convex. Hence K is lower semi-continuous. ∆(I) is compact; therefore K
is continuous with respect to the Hausdorff metric.

The function p 7→ minj∈J

∑
i∈I p(i)g(i, j) is continuous in ∆(I); there-

fore taking its maximum is continuous with respect to the Hausdorff metric.
Composing the two functions gives ν̃. This shows that ν is continuous in
[0, log2(I)]. At h > log2(I), ν(h) is constant.

The fact that ν is non-increasing follows from the fact that ν̃ is non-
increasing, which follows from the fact that K is monotone.

Given Proposition 3.1, we can conclude this part of the proof with the
following propositions:

Proposition 3.2. For every p ∈ ∆(I), if limsupk→∞
log2 Tk

k
< H(p), then

lim inf valGTk [k,∞] ≥ minj∈J G(p, j).

Proposition 3.3. For every h ∈ R+, if liminfk→∞
log2 Tk

k
> h, then

lim sup valGTk [k,∞] ≤ ν(h).

In the next two sections we will provide proofs of Propositions 3.2 and
3.3.

3.2 lim inf valGTk[k,∞] is at least ν(h)

The proof of Proposition 3.2 relies on the richness of k-recall sequences among
all sequences of length Tk. For every ε > 0 consider the set of all k-recall
sequences of length Tk with empirical distribution within a distance of ε from
p. Let us denote this set Ck = Ck(ε).

Proposition 3.4. Under the conditions of Proposition 3.2 ∀ε > 0 ∃K ∈ N
such that ∀k > K

|Ck(ε)| > 2(H(p)−ε)Tk .

8



Proof. The richness of k-recall sequences is treated in Section A of the Ap-
pendix. See Proposition A.2.

Proof of Proposition 3.2. For every k let the mixed strategy of player one σk

be the uniform distribution over the set Ck provided by Proposition 3.4. The
sequences in Ck are implementable by oblivious k-recall strategies, and, by
Neyman-Okada’s Criterion (Lemma 2.12), the expected payoff is asymptoti-
cally large enough.

Alternatively, one can consider a slightly different (perhaps more nat-
ural) distribution as a strategy for player one: the probability mass of Tk

independent p trials restricted to sequences that are implementable by obliv-
ious k-recall strategies. Verifying that this strategy “works” can be done
by either Neyman-Okada’s Criterion or large deviation considerations (e.g.,
Theorem 1 in [5]).

3.3 lim sup valGTk[k,∞] is at most ν(h)

Given 0 ≤ h and an integer k we will construct a mixed strategy τ = τ k for
player two in the games G∞[k,∞]. Then we will prove that for any sequence
of positive integers {Tk}∞k=1 satisfying lim infk→∞

log2 Tk

k
> h, τ k ensures that

the lim sup of the mean payoff in the first Tk steps is at most ν(h).
The strategy τ will be a mixture of pure strategies of the form τx, where

x = x1, x2, . . . is an infinite sequence of actions of player two. We will first
describe τx as a function of x and discuss its properties (for a special class of
sequences). Then we will define τ by providing a probability measure over
the possible values for x. The last part of the proof is the analysis of the
payoff that τ secures.

We begin by defining a mapping s from the set of all finite histories to
the set {0, . . . , k} (Figure 2). The set {0, . . . , k} can be interpreted in this
context as the “states of mind” of the strategy τ . Note that the mapping s

9



Figure 2: An illustration of the function s as a flow chart.

does not depend on the sequence x (it does, however, depend on k).

s(∅) = k

s(a1, . . . , at+1) =

s(a1, . . . , at)− 1 if s(a1, . . . , at) > 1,

1 if s(a1, . . . , at) = 1, and

∀s < t ((as−k+2, . . . , as+1) 6= (at−k+2, . . . , at+1),

or H(emp(a1
t−k+2, . . . , a

1
t+1)) ≥ h)

0 if s(a1, . . . , at) = 1, and

∃s < t s.t. ((as−k+2, . . . , as+1) = (at−k+2, . . . , at+1),

and H(emp(a1
t−k+2, . . . , a

1
t+1)) < h)

or

if s(a1, . . . , at) = 0, and

∃s < t s.t. (as−k+2, . . . , as+1) = (at−k+2, . . . , at+1)

k otherwise.

In words: the initial state is k. States 2 to k simply count down to 1.
State 1 looks in the history for an occurrence of the past k actions as long
as the actions of player one have low entropy. If found, it goes to state 0;
otherwise it stays in state 1. State 0 looks in the history for an occurrence
of the past k actions. If found, it stays in state 0; otherwise it jumps back
to state k.

Given a play a1, a2, . . . we denote st = s(a1, . . . , at−1). Note that

• sl+1, . . . , sl+k 6= 0, iff sl+k = 1;

• if player one is limited to k-recall, then whenever st = 0 player two can
predict the next action of player one, a1

t .

10



Now we are ready to define τx. For every finite history h = a1, . . . , at

(t = 0 indicating the empty history) define

τ k
x (h) =

{
γ((a1

t+1)) if s(h) = 0,

xt+1 otherwise,

where γ : I → J is such that ∀i ∈ I g(i, γ(i)) ≤ V∗.
We shall now define τ by specifying a random choice of x. Choose a

strategy in the one-shot game q ∈ ∆(J) such that for every p ∈ K(h)∑
i∈I,j∈J p(i)q(j)g(i, j) ≤ ν̃(h). Define x = x1, . . . , xk2 , x1, . . . to be a k2-

periodic sequence of i.i.d. random variables with common distribution q.
For every strategy τx in the support of τ (defined by a k2-periodic sequence

x) and every k-recall strategy for player one σ, consider the induced play
a1, a2, . . . and the sets

L(i) = {l| 0 ≤ l ≤ Tk, H(emp(a1
l+1, . . . , a

1
l+k)) < h,

sl+k = 1, sl+k+1 = . . . = sl+k+i = 0, sl+k+i+1 6= 0}
L = ∪∞i=0L

(i)

A = {(al+1, . . . , al+k)|l ∈ L}

Form the definition of s we have for every i > 0

L(i) = {l|sl+k 6= 0, sl+k+1 = . . . = sl+k+i = 0, sl+k+i+1 6= 0}. (3.1)

Analogously we define

N (i) = {n|sn−i−1 6= 0, sn−i = . . . = sn−1 = 0, sn 6= 0}
= {l + k + i + 1| l ∈ L(i)},

N = ∪∞i=0N
(i).

Every time a k-tuple in A recurs along the play it is followed by a sequence
in which si = 0 (the predictive state) that is longer than the previous occur-
rence; therefore the map l 7→ (al+1, . . . , al+k) is injective when restricted to
each L(i) . Hence ∣∣L(i)

∣∣ =
∣∣N (i)

∣∣ ≤ |A| ≤ k22hk

The latter inequality follows by bounding by 2hk the number of sequences of
length k of actions of player one with empirical distribution < h, and by k2

the number of possible reactions of player two. Hence
∣∣∪i<k3L(i)

∣∣ ≤ k52hk.

By (3.1),
∣∣∪i≥k3L(i)

∣∣ ≤ Tk/k
3. Consequently, for large k

|L ∪N | < Tk/k
2.99

11



Hence, for almost every t ∈ {0, . . . , Tk}, none of the numbers t − k, t − k +
1, . . . , t + k2 is in L ∪N ; therefore, for almost every t, either

(i) st+1 = . . . = st+k2 = 0, or

(ii) st+1, . . . , st+k2 6= 0, and ∀0 ≤ l < k2 H(emp(at+l+1, . . . , at+l+k)) ≥ h.

Proposition 3.5. lim supk→∞ maxσ with k-recall G
Tk(σ, τ k) ≤ ν(h)

Proof. Fix k > 0, and an arbitrary k-recall strategy for player one σ. σ and
τ k induce a play a = a1, a2, . . . and a sequence of states st = s(a1, . . . , at−1).
Clearly, a and s are random variables (functions of x = x1, . . . , xk2). Let t be
another r.v. independent of x, assuming values in {0, . . . , Tk} with uniform
distribution. Define a real valued r.v. W by

W =
1

k2

k2∑
i=1

G(at+i) (3.2)

The expectation of W approximates the actual payoff – 1/Tk

∑Tk

t=1 G(at).

|E[W −G(at)]| = O( k2

Tk
); therefore the objective is to bound EW from above.

In case (i) W is at most V∗. If the probability of case (ii) does not converge
to zero (as k →∞), then for every sub-sequence bounded away from zero the
actions of player two xt+1, . . . , xt+k2 conditioned on (ii) form an approximated
i.i.d. sequence and therefore, by lemma 2.11, secure a payoff of ν̃(h).

In the case of h > log2 I, the condition in (ii) cannot be satisfied and
hence (i) occurs with probability close to one and V∗ is secured.

4 Refinements, Extensions, and Remarks

4.1 A proof for Theorem 1.1 (Part II)

In this section we prove the remaining part of Theorem 1.1 – the part that
refers to the game G∞[k, Tk]. Our proof for this part follows the track of the
proof for the other part with minor adjustments. We begin by strengthening
Theorem A.1.

Theorem 4.1 (Theorem A.1, strengthened). Let {Tk}∞k=1 be a sequence
of positive integers, Tk → ∞. Let x1, x2, . . . be a sequence of i.i.d. ran-
dom variables with common distribution p (over a finite set of values). If
lim sup log2 Tk

k
< H(p), then there exists a sequence {T ′

k}∞k=1 such that

1. ∀k Tk ≤ T ′
k,

12



2. P
(
∀t 6= s ∈ ZT ′

k
(xt+1, . . . , xt+k) 6= (xs+1, . . . , xs+k)

)
= exp(−o(T ′

k));

where the elements of ZT are identified with their representatives 1, . . . , T in
Z in the obvious way.

Proof. A close look at the proof of Theorem A.1 (and the construction of the
sets Ck in particular) shows that it actually proves this stronger statement.

The next two propositions are analogous to Propositions 3.2 and 3.3.

Proposition 4.2. For every p ∈ ∆(I), if lim supk→∞
log2 Tk

k
< H(p), then

lim inf valG∞[k, Tk] ≥ minj∈J G(p, j).

Proposition 4.3. For every h ∈ R+, if lim infk→∞
log2 Tk

k
> h, then

lim sup valG∞[k, Tk] ≤ ν(h).

Proof of Proposition 4.2 (sketch). Take the integers T ′
k ≥ kTk provided by

Theorem 4.1. Let the oblivious strategy of player one – σ = σ1, σ2, . . . –
consist of a mixture of all the T ′

k-periodic sequences in B(k, I) with the
distribution induced from the T ′

k-fold Cartesian product of p. Theorem 4.1
implies that

lim inf
1

Tk

H(σ1, . . . , σTk
) ≥ H(p), (4.1)

limE[emp(σ)] = p, (4.2)

T ′
k � Tk (4.3)

Let τ be a (pure or behavior) Tk-recall strategy for player two. Denote by
i1, j1, i2, j2, . . . the play induced by σ and τ . For every t = 1, 2, . . ., consider
the mean empirical distribution of the joint actions of players one and two
during the period t + 1 till t + T ′

k:

Q = Qt = E[emp(it+l, jt+l)
T ′

k
l=1]
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The required mean payoff during this period is obtained by Lemma 2.11 and3

HQ(i|j) ≥ 1

T ′
k

T ′
k∑

l=1

H(it+l|jt+l) (4.4)

≥ 1

T ′
k

T ′
k∑

l=1

H(it+l|it+1, . . . , it+l−1, τ|ht) (4.5)

=
1

T ′
k

H(it+1, . . . , it+T ′
k
|τ|ht) (4.6)

≥ 1

T ′
k

[H(it+1, . . . , it+T ′
k
)−H(τ|ht)] ≥ H(p)− o(1) (4.7)

where ht denotes the history up to step t, ht = i1, j1, . . . it, jt.

Proof of Proposition 4.3 (sketch). Let τ ∗ be an optimal strategy for player
two in the game GTk(k,∞). To ensure the same payoff in the game G∞(k,∞)
repeat τ ∗ every Tk stages. That is, play the strategy τ defined by

τ(a1, . . . , at) = τ ∗(asTk+1, . . . , asTk+r)

where sTk + r = t and r < t.
The problem is that τ is not a Tk-recall strategy since it is a function of

the stage number t. Player two can simulate τ by inserting a statistically
significant yet short enough (� Tk) sequence of actions at the end of every
period of Tk stages. The technical details are left to the reader.

4.2 The special point h = log2(I)

In this section we give an example of a game G for which the fact that log2 Tk

k

converges does not imply that valGTk [k,∞] converges.
Consider the game M , called the “matching pennies” game, which can

be described in strategic normal form by the following matrix:(
2 0
0 2

)
A close look at the proof of Theorem 1.1 shows that the argument that deals
with h > log2 I is valid also for Tk ≥ k62k; therefore, the value of Mk6·2k

[k,∞]
converges to V∗(M) = 0.

Proposition 4.4. lim infk→∞ valM2k
[k,∞] ≥ 1

2

3Recall definition 2.4.
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Proof. Let x = xk =
{
xk

n

}
n∈Z be a random sequence that takes values in

DB(k, {0, 1}) with uniform distribution. Let y and t be random variables:
y ∼ x, t ∼ U

{
1, . . . , 2k

}
, and x, y, and t are independent. Define a ran-

dom variable f = h(xt|x1 = y1, . . . , xt−1 = yt−1). Then Ef = 1
2k H(x) =

1
2k log2(|DB(k, {0, 1})|) = 1

2
. Define an event

X = {“∃k ≤ t′ < t such that (xt′−k+1, . . . , xt′−1) = (xt−k+1, . . . , xt−1)
′′}

X is the event that the k− 1 actions right before time t occurred once more
before time t, and hence the action at time t must be other than the previous
one. Hence, f |X= 0. Since every sequence of k − 1 actions occurs exactly
twice along a de Bruijn cycle, P(X) → 1

2
. 1Xc − f is non-negative and its

expectation converges to zero; therefore ∀ε > 0, P(f > 1 − ε) → 1
2
; and

therefore lim infk→∞ M2k
(xk, ·) ≥ 1

2
.

Appendix

A The richness of k-recall sequences

In this section we state and prove the following theorem:

Theorem A.1. Let {Tk}∞k=1 be a sequence of positive integers, Tk →∞. Let
x1, x2, . . . be a sequence of i.i.d. random variables with common distribution
p (over a finite set of values). If lim sup log2 Tk

k
< H(p), then

P
(
∀0 ≤ t 6= s ≤ Tk (xt+1, . . . , xt+k) 6= (xs+1, . . . , xs+k)

)
= exp(−o(Tk)).

We begin by reducing Theorem A.1 to the following combinatorial state-
ment:

Proposition A.2. Let {Tk}∞k=1 be a sequence of positive integers, Tk →k→∞
∞. Let A be a finite alphabet and p ∈ ∆(A). If lim sup log2 Tk

k
< H(p), then

there exist sets Ck ∈ ATk+k satisfying

∀x ∈ Ck ∀0 ≤ t < s ≤ Tk (xt+1, . . . , xt+k) 6= (xs+1, . . . , xs+k),

lim
k

max
x∈Ck

‖emp(x)− p‖ = 0,

lim inf
k

log2 |Ck|
Tk

≥ H(p)

(A.1)

Proposition. Proposition A.2 implies Theorem A.1.
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Proof. First, since the number of non-empty types |{T q(n) : q ∈ ∆(A)}| is
polynomial in n, we may assume w.l.o.g. that the elements of Ck all have
the same empirical distribution pk. Take x = x1, . . . , xTk+k i.i.d. random
variables with distribution p.

P(x ∈ Ck) = P(emp(x) = pk) ·
|Ck|

|T pk(Tk + k)|
(A.2)

By Proposition 2.10,

Px∼pn(emp(x) = q) ≥ 2−D(q||p)n

n|A|
; (A.3)

and, by Proposition 2.9,
|T q(n)| ≤ 2H(q)n. (A.4)

Combining (A.1), (A.3), and (A.4) we get the required result.

In the rest of this section we prove Proposition A.2.
For k = 1, 2, . . ., we shall construct sets Ck satisfying (A.1). We assume

w.l.o.g. that k < Tk. Let l = l(k) and m = m(k) be integers with the
following properties:

1 � l(k) � k (A.5)

m(k)l(k) + 2l(k) < k (A.6)

m(k)l(k) ∼ k (A.7)

Let A, p, and Tk be as given in Proposition A.2. Let q = q(k) ∈ ∆(A) such
that

q(k) →k→∞ p,

∀k T q(l) 6= ∅

Consider the alphabet B = T q(l). For every De Bruijn sequence x̂ ∈
DB(B, m) we shall define a corresponding (infinite) sequence x in AZ. The
set C (= Ck) will consist of the elements 1 through Tk + k of such sequences.
Formally, C := {(x1, . . . , xTk+k)|x corresponds to some x̂ ∈ DB(B, m)}.

Let α be a least probable element of A with respect to the probability
mass q, and let β 6= α be another element of A.4 Let b = αlβ. That is, b is
a word over the alphabet A that consists of l consecutive alphas followed by
one beta. The correspondence x̂ 7→ x is defined as follows:

x = . . . bx̂1x̂2 . . . x̂mbx̂m+1x̂m+2 . . . x̂m+mb . . .

4We assume w.l.o.g. that A includes more than one element.
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That is, x is the concatenation of the elements of x̂ separated by a b after
every mth element.

The first two lines of (A.1) hold trivially. It remains to verify that the last
line of (A.1) holds. Since DB(B, m) is invariant to shifts for every T < |B|m
we have

log |{x̂1 . . . x̂T |x̂ ∈ DB(B, m)}|
T

≥ log |DB(B, m)|
|B|m

=
log2(|B|!)
|B|

≥

≥ log2 |B| − log2 log2 |B| (A.8)

The last inequality follows from the inequality of means n
log2 n

≤ n
1+ 1

2
+...+ 1

n

≤
n
√

n! . Let T be an integer, Tk

l(k)
≤ T ≤ Bm(k). Substituting in (A.8) we obtain

log2 Ck

Tk

≥ log |{x̂1 . . . x̂T |x̂ ∈ DB(B, m)}|
(l(k))T

≥ log2 |B| − log2 log2 |B|
l(k)

→ H(p)

Finally, we have to verify that such a T exists. It is sufficient to show that
Tk ≤ |B|m(k), and indeed:

log2 |B|
m(k)

k
=

l(k)m(k)

k

log2 |B|
l(k)

→ H(p) > lim sup
log2 Tk

k
�

Remark. The assumption of Theorem A.1 that lim sup log2 Tk

k
< H(p) is

necessary.5 On the other hand, the theorem does not tell us how small o(Tk)
is. Finding an explicit expression for (the asymptotic of) that probability is
of interest.
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